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Abstract
Deception detection is an interdisciplinary field attracting researchers from psychology, criminology, computer science,

and economics. Automated deception detection presents unique challenges compared to traditional polygraph tests, but

also offers novel economic applications. In this spirit, we propose an approach combining deep learning with discrimi-

native models for deception detection. Therefore, we train CNNs for the facial modalities of gaze, head pose, and facial

expressions, allowing us to compute facial cues. Due to the very limited availability of training data for deception, we

utilize early fusion on the CNN outputs to perform deception classification. We evaluate our approach on five datasets,

including four well-known publicly available datasets and a new economically motivated rolling dice experiment. Results

reveal performance differences among modalities, with facial expressions outperforming gaze and head pose overall.

Combining multiple modalities and feature selection consistently enhances detection performance. The observed variations

in expressed features across datasets with different contexts affirm the importance of scenario-specific training data for

effective deception detection, further indicating the influence of context on deceptive behavior. Cross-dataset experiments

reinforce these findings. Notably, low-stake datasets, including the rolling dice Experiment, present more challenges for

deception detection compared to the high-stake Real-Life trials dataset. Nevertheless, various evaluation measures show

deception detection performance surpassing chance levels. Our proposed approach and comprehensive evaluation highlight

the challenges and potential of automating deception detection from facial cues, offering promise for future research.
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1 Introduction

The study of deception detection is a complex and multi-

disciplinary field that has gathered significant research

attention. Several kinds of techniques have been proposed

to detect signs of deception, including traditional methods

such as polygraph tests and modern approaches utilizing

computer vision, natural language processing, and machine

learning [1]. Although the primary applications of decep-

tion detection techniques have traditionally been in the

field of criminalistics, with a focus on interrogation, recent

developments have shown that it has also become a sig-

nificant concern in other domains such as border security

[2], where automized contact-free or even online approa-

ches are preferred over traditional polygraph tests, which

are too complicated and costly for mass screening. How-

ever, using detection approaches in such a way—that might

lead to conviction or the restriction of the freedom to tra-

vel—is delicate due to possible unreliable or discriminating

decisions.

The significance of digitization and machine learning-

based approaches also has now become a critical issue in

the field of experimental economics [3–5]. In this regard,

also automized deception detection is of interest and, in

contrast to the aforementioned domains, it can be used in a

less invasive way. Salespeople who misrepresent the

quality of their products can cause significant economic

harm. Such fraudulent activities not only affect the buyers

but also harm salespeople who offer high-quality products

but suffer losses due to customers’ cautious purchasing

behaviors as a result of bad experiences [6]. People often

overestimate their ability to detect lies, when in reality their
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accuracy is only slightly better than chance, and at the

same time they underestimate their ability to tell lies.

Hence, an automated deception detection system could be

useful, for example, to assist customers during virtual sales

meetings using video and audio signals from regular

webcams. Although accuracy may be lower compared to

professional polygraph tests (which are hardly feasible in

this context), they can still provide a valuable contribution

to society by warning customers of potential deception as

greatly exaggerated product quality.

Also in healthcare, patient honesty is pivotal for effec-

tive treatment. Despite doctors’ awareness of potential

deception, a balance of trust is essential. Admission of

patients with factitious disorder or malingering presents a

unique challenge in hospitals, involving feigned, exagger-

ated, or fabricated medical or psychiatric symptoms.

Effective managing deception in such cases is crucial for

accurate diagnosis and effective treatment [7].

In the following, we focus on the lie—that can be a

wrong description of a photo or object that was shown to

subjects or a false statement in a legal context—while other

forms of deception as concealment, evasion, gaslighting, or

trick scam are beyond the scope of this work. However,

because the used databases include more than binary

responses, they may also include half-truths, misleading,

exaggeration, or manipulation. Furthermore, also the

investigated signs are not restricted to a single modality,

since many features such as facial expression, voice,

transcription, vital parameters, and body language might be

cues for deceptions as lies. As a matter of fact, we propose

a multi-modal approach to evaluate some of the most

promising features of contact-free deception detection—

namely facial cues—on the four publicly available decep-

tion databases. Afterward, we employ this approach to

evaluate a classical experiment known as the dice-rolling

experiment [8].

2 Related works

In the following, we give an overview of related work in

the area of general deception detection as well as from the

point of view of AI-based automation.

2.1 Polygraph tests

Polygraph testing is one of the most widely used tech-

niques for detecting deception. Polygraph tests measure

physiological responses such as heart rate, blood pressure,

and skin conductivity to determine whether a person is

lying. Despite their widespread use, the accuracy of

polygraph tests has been a topic of debate in the scientific

community [9].

There are several types of polygraph tests, such as the

Control Question Technique (CQT) or the less widely used

Concealed Information Test (CIT). These, however, do not

differ in the kind of features that are used to detect

deception, but in the kind of questions that are asked during

interrogation. Unlike CIT, the CQT can be used even

without critical information, however, CQT has been even

more criticized than CIT due to its unethical testing con-

ditions and highly questionable assumptions [9].

In general, polygraph tests are judged clearly less suit-

able by the scientific community than by the American

Polygraph Association, for example, since deceptive

answers will not necessarily produce unique cues or might

be sensitive to cultural or other context [2, 10]. Another

issue is that truth-tellers more often believe that their

innocence is obvious (known as the illusion of trans-

parency), which can make truth-tellers even less credible,

for example, since they tend to react more aggressively

than deceptive people if they feel they are not believed

[11]. This is one of many reasons why traditional poly-

graph tests—but also automized deception detection—will

only indicate the possibility of deception in real-life sce-

narios, rather than providing a definitive identification.

However, these methods are still clearly better than chance,

while purely manual attempts are only around 2–4% more

accurate [9, 12, 13]. This is true even for professionals who

routinely engage in deception detection and can fall back

on a variety of cues (behavior, administrative data, but also

crime records). Vasu et al. found that one important reason

is that even trained people have problems considering more

than a single cue at a time [14]. Junger et al. found that

manual strategies significantly improve online fraud

detection if relying on pre-existing knowledge. (Fraud

scheme is known.) However, it is noteworthy that many

non-knowledge-based strategies not only prove ineffective,

but also carry the potential to escalate the risk of falling

victim to fraud [15]. On the other hand, using knowledge-

based strategies is not always possible, e.g., in sales

meetings where the quality of a not-yet-rated product is

highly exaggerated (resulting in information asymmetry),

and only behavioral information is available.

2.2 Automized deception detection

In the following, we review some key works of contact-

free, automized uni- and multi-modal deception detection.

While polygraph tests are criticized but still relatively

reliable due to contact measurements such as skin con-

ductance and, even more important, due to an expert that
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interrogates the candidates, approaches of automized

deception detection are typically limited to contact-free

video or audio data modalities and available databases do

not involve any baselines as control questions. Since

available databases are also not comprehensive, automized

detection of deception is even more challenging. However,

since they are simple to use and involve much lower cost,

new areas of applications are enabled, for example, as an

online service. Typical contact-free modalities which are

used for automized deception detection are micro-expres-

sions, macro-expressions, thermal images, gaze, gestures,

voice features (tone and pitch), or the transcription of what

was said [1, 16].

2.2.1 Gaze and head pose

While body poses and gestures can be effective features for

detecting deception in certain contexts [17], it may not be

the case in all situations. For instance, in our targeted

application scenario and most of the available deception

databases, subjects are seated and do not exhibit significant

changes in their body language or hand-gestures that can be

used for deception detection purposes. However, head pose

and gaze direction can also serve as potential indicators of

the user’s state [18].

Head pose Head pose estimation from a single image is a

crucial task for various applications, including driver

assistance, human–robot interaction, and even pain detec-

tion [19]. Apart from that, people often avoid eye contact

when they feel guilty (for example, after being untruthful),

which makes tracking changes in head pose and gaze

direction valuable for lie detection purposes [18]. Two

types of methods are commonly used for this task: land-

mark-based and landmark-free. Landmark-based methods

require accurate landmark detection for accurate 3D head

pose estimation [20], while landmark-free methods esti-

mate head pose directly using deep neural networks to

formulate orientation prediction as an appearance-based

task [21–23]. Landmark-based methods can be affected by

occlusion and extreme rotation, which is why landmark-

free approaches perform better on comprehensive but

challenging datasets.

Gaze Gaze estimation can be achieved by conventional

regression-based methods; however, recently, approaches

that are based on Convolutional Neural Networks (CNNs)

are favored. CNNs have shown promise in modeling the

nonlinear mapping function between images and gaze, with

researchers proposing different architectures that take into

account factors such as eye images, full-face images, and

head pose [24]. Other approaches include combining sta-

tistical models with deep learning and using temporal

models such as Long Short-Term Memory networks

(LSTMs) [25, 26]. Another work is AGE-Net, which uses

two parallel networks for each eye image and an attention-

based network to generate a weight feature vector, with

outputs multiplied and refined with the output of VGG as

CNN of the face images [27].

In the context of deception detection, several studies

have utilized gaze features. Kumar et al. extracted statis-

tical features from the gaze of a group of individuals

playing the game Resistance [28]. They found that decei-

vers change their focus less often than non-deceivers,

indicating less engagement in the game. Beyond gaze

direction, Pasquali et al. report that the mean pupil dilation

is a good indication of deception of children when playing

a game. They received the promising lie-classification F1-

Score of 56.5% for Random Forest (RF), respectively,

67.7% for Support Vector Machine (SVM) [29]. However,

they did not compare this feature with any others, such as

gaze direction or blinking. Furthermore, their approach

requires additional, not contact-free hardware (Tobii Pro

Glasses 2 eye tracker) to ensure accurate measurement of

pupil dilation. Gupta et al. use the PyGaze library to extract

fixations, eye blinks and pupil size as features. They got

57.11% accuracy on the bag-of-lies database which is

better than accuracy for video (Local Binary Pattern),

audio (frequency features), and EEG modality. Combining

features from all modalities, 66% accuracy was achieved

and 60% using all contact-free modalities [12].

2.2.2 Facial expressions

Facial expressions are a common way to detect basic

emotions, which are typically conveyed through specific

sets of facial movements known as Action Units (AUs)

[11]. Constancio et al. found that, in general, emotional

features are crucial for deception detection, as the act of

deceiving triggers emotional states, and emotions are pri-

marily communicated through facial expressions [30].

These expressions can be categorized into micro- and

macro-expressions, which we will describe in the next

sections.
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Micro-expressions Micro-expressions are brief, involuntary

facial expressions that occur when a person tries to conceal

their true feelings or intentions [31]. They last less than

half a second, making them difficult to detect. However,

thanks to technological advances, it is now possible to

automatically detect and analyze micro-expressions, so

they could be used for lie detection [32].

Some studies have shown that (manually detected)

micro-expressions (ME) can be used for accurate detection

of deception, as they reveal emotions which a person tries

to hide [33, 34]. However, it should be noted that micro-

expressions do not always indicate deception, as they can

also be caused by other factors such as stress or anxiety.

Therefore, automatic deception detection systems that rely

on micro-expressions should be used in conjunction with

other methods to achieve the most accurate results [11].

According to Jordan et al., the practical use of ME for lie

detection is even questionable, and it may not enhance the

overall accuracy of the results [35]. One reason why using

micro-expressions (ME) for lie detection is limited is that

they occur in both genuine and deceptive reactions and

occur far too infrequently and in ways that are too variable

to be useful in detecting deception [11, 35]. Also, the

infrequent occurrence reduces its quality as a feature for

manual, computer-assisted or automized lie detection.

Hence, even with a model for ME detection or classifica-

tion that generalizes well—so it could be used beyond

controlled laboratory conditions and with 30–60 instead of

100–200 frames-per-second(fps)— applicability of ME in

real-life deception detection scenarios would be still lim-

ited at the present time. Additionally, even training such a

model for detecting and classifying ME within unseen data

in the first place is challenging: The available databases (as

CASME II or SAMM) are limited in sense of compre-

hensiveness, general applicable experimental design, and

kind of covered Action-Units [36, 37].

Macro-expressions Macro-expressions are regular facial

expressions described by the facial Action-Unit (AU)

coding system [38]. AUs as Cheek Raiser (AU6) or Brow

Lowerer (AU4) measure observable muscle activations in

specific regions of the face and can be used to predict

underlying basic emotions, pain or other secondary emo-

tions from individual or sequences of images. In-the-wild,

macro-expressions can sometimes result in AU of weak

intensity, but will still last longer than micro-expressions.

Since the reliable, unambiguous assignment to exactly one

basic emotion or neutral is barely feasible for many in-the-

wild samples, the regression of continuous values for

valence and arousal values is used instead or additionally,

following the idea of the circumplex model [39].

Previous methods for facial expression recognition

mixing deep learning with other methods, following a

conventional pipeline of face recognition, landmark

extraction, and regression of AUs, which are then inter-

preted by a classifier to derive expressed basic or secondary

emotions as pain [40, 41]. In this regard, training several

partial solutions on—in some cases small and under con-

trolled conditions acquired—databases is problematic, as,

for example, landmark extraction might fail when applied

to challenging in-the-wild samples. Hence, similar to head

pose detection, landmark-free approaches that estimate

AUs [42], basic emotions or valence/arousal values directly

from raw images are more effective on challenging data-

sets, provided there are enough available training samples

[43].

In their study, Chang et al. [44] used a CNN to compute

AUs, which were subsequently used to predict valence and

arousal values. On the other hand, Khorrami et al. [45] used

a holistic strategy to directly predict valence and arousal

values from (normalized) face images. AUs were implicitly

extracted using a CNN.

Mollahosseini et al. introduced the comprehensive

AffectNet database, which covers labels for basic emotion

as well as continuous labels for valence and arousal [46].

On this dataset, they conducted a comparison between

traditional approaches, such as HoG features and Support

Vector Regression (SVR), and deep learning methods,

which demonstrated superior performance. Zhang et al.

took a similar approach, where they used a pre-trained

network to make predictions about emotions and person-

alities [47]. Li et al. trained a bidirectional RNN that

incorporated future images for prediction [48].

In the study of Chu et al., they proposed to extract both

spatial representations from the data using a CNN and

temporal representations using a LSTMs [49]. Their

approach merged the results of the CNN and LSTMs

models, resulting in better performance in predicting AUs.

However, no further emotion classification was performed

in their study.

2.2.3 Other modalities

As previously mentioned, hand gestures may not be

appropriate in situations where individuals infrequently

utilize gestures. Nevertheless, Avola et al., in their study

[50], which builds upon their earlier work in 2020 [17],

demonstrated an impressive accuracy rate of 95%.
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However, results are only reported for a selected subset of

the Real-life trial (RL) (77 samples that show suit-

able gestures) and are therefore hard to compare. They

employed a set of manually engineered features, including

measurements such as palm-fingertip distance, derived

from the 42 OpenPose keypoints associated with hand

joints. Their analysis revealed that the speed distribution of

the index finger significantly differs between honest and

dishonest subjects, with dishonest subjects exhibiting an

almost negligible speed (close to 0) in contrast to the 175

speed units exhibited by honest subjects. These carefully

crafted features were subsequently used for training an

LSTM model.

A special kind of feature can be extracted from thermal

cameras. Satpathi et al. [51] derive the normalized blood

flow rate from regions of interest (forehead and periorbital

region) of such thermal data from 10 subjects. They found

that blood flow raising steeper for subjects which lie.

However, as expensive, specialized equipment, thermal

cameras are barely suitable for online applications as vir-

tual sales meetings. Hence, it is of essential interest if such

features can also be predicted using plain RGB-cameras.

This would still imply some requirements—as good video

quality and low variations of light, face pose, etc.—but is

indeed possible for vital parameters as heart or respiratory

rate [52].

When it comes to transcriptions, it is worth noting that

individuals who engage in deception tend to be vaguer,

containing less self-references and more negative and

cognitive mechanism words [53, 54]. While providing

specific details can enhance credibility, it also increases the

risk of being disproved. This approach may be effective in

a legal context or similar situations; however, it might be

less useful if a deceiver just has to describe, for example, a

product in one or two sentences without any interrogation.

Ioannidis et al. give a detailed mathematical description of

a statistical model for transcription-based lie detection for

legal context [53]. However, this work is primarily theo-

retical and does not provide any concrete results that can be

compared with other methods on a specific database.

IBorderCtrl is a tool that can potentially be used for

mass screening in order to detect traveler that might be

suspicious and need to be checked manually by border

patrol. Sanchez et al. critically analyzed the limited public

available information [2]. They found that the tool uses 38

features, or channels, such as ‘left eye blink,’ ‘increase in

face redness’ or head movement directions. The system

was trained on a small, lab condition database where 32

actors play the role of truthful or deceptive travelers,

answering 13 questions (such as ’Are there any items from

the lists of prohibited items in your case?’). For deception

detection, an accuracy of 73.66% is reported and 75.55%

for detecting truthfulness. However, due to the very limited

number of (acted) training samples, Sanchez et al. doubt

that the current system is suitable to detect deception in

border patrol context without major drawbacks.

Results on the common available deception databases

shall be discussed in the next section.

3 Available deception databases

In the following, we take a closer look at the four publicly

available deception detection datasets, three of them have

low-stake and one has high-stake context. In general, it is

observed that labeled deception datasets from real-life data

and languages other than English are scarce [30].

3.1 Bag-of-lies

Bag-of-lies (BgL) is a multimodal dataset designed for

deception detection using various modalities, including

video, audio, and, unlike other datasets, EEG data (for a

subset of the database) [12]. The dataset aims to explore

the cognitive aspect of deception and combines it with

vision, providing a realistic scenario for collecting data.

BgL contains 35 unique subjects, providing 325 annotated

samples with an even distribution of truth and lies. The

goal of this dataset is to facilitate the development of better

deception detection algorithms that are more relevant to

real-world scenarios. The samples are acquired as follows:

A photo is displayed on a screen in front of a participant,

who is then asked to describe it. The participant can freely

choose whether to describe the photo truthfully or with

deception. A motivation for a deceptive answer, as a higher

reward, is not given.

Gupta et al. achieve 66.17 % Accuracy on a subset of

BgL using EEG, gaze, video, and audio features. On the

full BgL they got 60.09 % (without EEG). Using single

modalities, gaze (using an eye tracker system) gives the

best accuracy of 61.7%/57.11% (on subset/full set) results,

while 56.2%/55.26% were achieved using video features

only.

3.2 Box-of-lies

Box-of-lies (BxL) is a dataset that is based on the game

with the same name that is part of a late night TV show. In

this show, the guest and host take turns describing an object

truthful or deceptive (or on the opponent’s move guessing

whether this description might be the truth) [55]. Besides

linguistic and dialog features, also various nonverbal cues
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are manually ground-truthed over time including features

from gaze, eye, mouth, eyebrows, face and head.

Soldner et al. achieve 69% Accuracy (guests truthful/

deceptive) training Random Forest on 60% of the samples

using all the manually extracted features. Furthermore, the

experiments showed that linguistic features were the most

relevant (66% Accuracy), followed by non-verbal cues

(61%) [55]. Furthermore, accuracy by Human, that is based

on guess while watching the video samples, is just 55%.

However, during an annotated scene—which is a time-slot

in which the truthful or deceptive description should be

given—cuts are often made, and the camera may shift to

the ’opponent’ or even both players. This as well as the fact

that BOX is biased (65% deceptive answers) could be an

obstacle using automized feature extraction. Apart from

that, most guest are actors, which could makes it difficult to

transfer any results to real-world scenarios.

3.2.1 Preliminary investigation concerning fake smiles

As a first preliminary investigation, we tried to detect fake

smiles using the measured intensities for the AUs AU12

(Lip Corner Pulled) and AU06 (Cheek Raiser). We

expected that AU06 would be low compared to AU12 in

case of faked smiles, since they should not involve the eye

areas to the same extent. However, as one can see in

Fig. 1c), the AUs correlate well for both truthful and

deceptive samples. Nevertheless, there is a clear difference

if we compare the four databases: the high-stake RL

dataset, where the subjects were on trial, shows the lowest

values for AU12 compared to the other datasets where

AU06 and AU12 show a better correlation (see Fig. 1b)).

Furthermore, there is a significant individual influence, as

shown in Fig. 1a).

3.3 Miami University deception detection
database

The Miami University Deception Detection Database

(MU3D) is a free resource that includes 320 videos of

individuals telling truths and lies. The videos feature 80

different targets of different ethnic backgrounds. Each

target produced four videos, covering positive and negative

truths and lies, which results in a fully crossed dataset to

investigate research questions as ’are positive lies more

difficult to detect than negative lies?’ or how target features

as age influence impact deception detection [56]. The

videos were transcribed and evaluated by naive raters, and

descriptive analyses of the video characteristics and sub-

jective ratings were provided. The MU3D offers stan-

dardized stimuli that can enhance replication among labs,

promote the use of signal detection analyses, and facilitate

research on the interactive effects of race and gender in

deception detection.

3.3.1 Analysis of MU3D

A significant feature of MU3D, compared to the other

datasets, is the valence ground truth, which is the positive

or negative context: telling truth or lies about a person the

subject likes or dislikes [56]. In the original paper, distri-

butions are provided only for individual features, without

Fig. 1 Plot analysis the correlation of the Action Units AU12 (Lip corner puller) and AU06 (Cheek raiser) as indication of a false smile.

Deviations can be observed between subjects, databases, however, not between true and lie-samples
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exploring their correlation. Hence, we analyze the truth

proportion (guessed by human raters) in relation to some

features (which are part of the ground truth) and compare

the results for positive and negative valence and for true

and deceptive answers, as one can see in Fig. 2.

We discovered that as the level of anxiety increased

among the subjects, the likelihood of the observers judging

them as truthful decreased. However, we found no signif-

icant influence of the actual veracity (truth, deception) or

the valence context in this regard. This shows firstly that

human raters might overestimate the significance of

noticed signs of anxiety as a cue for deception, and sec-

ondly that the influence of the valence context might not be

crucial in case of low-stake scenarios. However, truth

proportion is significantly more sensitive to the word count

in case the proband speaks the truth and valence is positive

(left bottom subplot of Fig. 2). Apart from that, the

(subjective) attractiveness has only a slight influence on

truth proportion in all cases.

3.4 Real-life trials

Perez et al. note the importance of identifying deception in

court trial data, given the high stakes involved [57]. In this

vein, they introduce Real-life trial (RL)—a novel dataset

consisting of videos from public court trials—and present a

multimodal deception detection system that utilizes both

verbal and non-verbal modalities to discriminate between

truthful and deceptive statements made by defendants and

witnesses.

The system achieves classification accuracies in the

range of 60–75% using a set of manually extracted features

and decision trees or RF for classification and leave-one-

out cross-validation. This outperforms human capability to

detect deception in trial hearings on raw data (62% accu-

racy). Their findings further indicated that facial features

were the most useful for identifying deceit using Machine

Learning (ML). Human observers, on the other hand, were

most effective on audio-only or full-video, followed by

audio, text and silent video (while agreement of 3 anno-

tators was best for audio-only) [57].

3.4.1 Preliminary investigation on RL

We repeat the experiment using the given manual features

as input for a SVM using repeated, random train-test splits

with k ¼ 30. To further analyze the dataset, we rank the

feature according to their relevance and plot their occur-

rence for samples that are labeled as deceptive, respec-

tively, truthful, as one can see in Fig. 3. Frowning,

(eyebrow) raise, or lips down are one of the most relevant

features, which are also among the best 6 features reported

in [57]. Using all non-verbal features, we achieve an

average accuracy of 76.2% for SVM, respectively, 74.9%

for RF classification, which is comparable to Perez et al.

which got 73.55% using RF and 68.59% using decision

trees [57].

4 Methodology

In this section, we present our approach for deception

detection. In Sect. 4.1, we describe our deep learning

methods for generating comprehensive features from

diverse modalities. Thereafter, we outline our proposed

deception classification approaches in Sect. 4.2.

Fig. 2 Three manual features above the truth proportion, separated

into positive (green) and negative (red) valence, and deceptive (left)

and truthful (right) responses. Each subplot is a scatter plot with linear

regression fit where each circle represents a single sample video. The

truth proportion is the mean value of human raters’ belief that the

subject answers truthfully in a sample video (colour figure online)
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4.1 Deep learning for visual modalities

In this section, we describe our research toward different

modalities, namely head pose, gaze detection, and emotion

recognition. Therefore, we train the CNN models on

comprehensive datasets (except for AUs, where we used a

ready to use model).

4.1.1 Head pose estimation

Current landmark-free methods often split up continuous

rotation variables into bins for classification, leading to a

loss of information. Additionally, using the popular Euler

angle or quaternion representations for training neural

networks for head pose estimation may not be ideal due to

their discontinuity, known as gimbal lock, for Euler angles,

and ambiguity for quaternions. To address this, we pro-

posed a landmark-free head pose estimation method in [58]

based on the rotation matrix representation, allowing for

full pose regression without ambiguity. This simplifies the

network by avoiding performance stabilizing measures

used in other methods, such as discretization of rotation

variables into a classification problem. Instead of predict-

ing the entire nine-parameter rotation matrix, we regress a

compressed 6D form. We then transform this into the 9D

rotation matrix in a second step. Furthermore, we use the

geodesic loss instead of the often used l2-norm to penalize

the network in the training process, capturing the SO(3)

manifold geometry.

4.1.2 Gaze estimation

The majority of CNN-based gaze estimation models pre-

dict 3D gaze by regressing the (yaw, pitch) in spherical

coordinates and use the mean-squared error for penalizing

their networks. We propose a simple network architecture

called L2CS-Net [59] based on the ResNet50 backbone and

the combination of classification and regression losses. We

propose to predict each gaze angle in a separate fully

connected layer in order to utilize their independence and

to capture the characteristic of each angle by detaching the

shared features of the two angles from the last layer of the

backbone. Instead of directly predicting continuous gaze

angle values directly, we bin the gaze targets to combine

classification and regression losses for a coarse-to-fine

strategy that effectively promotes our network’s gaze

performance.

In addition, we utilize two separate losses, one for each

gaze angle. Each loss consists of classification and

regression components. We perform gaze classification by

utilizing a softmax layer along with cross-entropy loss to

obtain coarse gaze direction. On the other hand, we get

fine-grained predictions by calculating the expectation of

the gaze bin probabilities followed by a gaze regression

loss.

4.1.3 Micro-expressions

In a previous experiment, we found that the available

micro-expressions (ME) datasets were insufficient for

proper training of robust, well generalizing models due to

their limited size, uneven ME class distributions, and an

strong overall bias toward certain classes [36]. To address

Fig. 3 Distribution of the given manually labeled features of the RL

dataset for truth and lie samples. Features are ordered descending

from left to right according to the achieved feature relevance based on

cross-validation using SVM. On the upper right, there is a boxplot

including the median of the accuracy which is 77.7% while the

average accuracy is 76.2% (using RF we get a median of 75.0% and

an average of 74.9%)

Neural Computing and Applications

123



this issue, we combined two databases, using only the three

most common ME classes. Although this improved intra-

database results (approximately 80% accuracy), cross-

database performance was still not better than random

guess.

Considering the limitations of the available datasets,

including a lower frame rate observed in all examined

deception datasets, we currently do not recommend using

ME for deception detection unless future datasets effec-

tively address these limitations.

4.1.4 Macro-expressions

For macro-expressions, we use two models, one to detect

AU intensities and one to predict expressed emotions

directly.

Action-Units To predict AUs for the experiments of this

article, we have used a model from Fan et al. that is based

on the Resnet50 backbone and was trained on the BP4D

database [60]. Heatmap regression and Semantic Corre-

spondence Convolution were used to achieve reliable pre-

dictions of intensities for five different AUs. Fan et al.

report good results which outperformed 6 other approaches

(in average they got an ICC of 0.72 and MAE of 0.58). For

future works, we plan to train our own models on Emo-

tioNet [61], since it contains 12 AU classes and covers

100k manually labeled in-the-wild samples.

Multitask Emotion Prediction In addition to using AUs, we

can also directly derive emotional states from facial

expressions. While it is true that certain AUs can be used to

derive emotions, annotating them is a time-consuming

process which is why many comprehensive databases do

not include AU labels. This is why we believe that inves-

tigating the use of both AUs and direct prediction of

emotions has the potential to yield benefits regarding

deception detection.

The comprehensive AffectNet database comprises

approximately 500,000 samples, each with manual labels

for basic emotion categories, as well as values for valence

and arousal [46]. This allows for the simultaneous training

of emotion classification models for neutral, happy, sad,

surprise, fear, disgust, anger, and contempt (although

contempt is considered a secondary emotion). Addition-

ally, the database allows for the regression of intensities

within the range of - 1 to 1 for both valence and arousal.

To reduce the computational costs—which is crucial for

our future experiments—we employ a multitask model to

perform both classification and regression with a single

network.

4.2 Deception detection

The above-described tasks as head pose estimation or

emotion prediction were efficiently solved using deep

learning due to the availability of at least one compre-

hensive dataset. However, when it comes to deception

detection, all available datasets are clearly limited in

respect of such a complex and highly context-sensitive

task.

Transfer learning is not feasible in this case due to the

absence of a typical pretraining domain. While macro-ex-

pressions exist as a feature of deception, they do not pro-

vide a comprehensive and suitable pretraining task.

Without a single domain that adequately represents the

target task, finding an appropriate base model through

transfer learning becomes challenging. Instead, using sev-

eral CNNs for multiple modalities/facial cues and late

fusion using LSTMs or SVM/RF might be a better and

more flexible strategy. Furthermore, signs of deception are

typically ambiguous, very individual, and weakly expres-

sed, especially in low-stake contexts. As a matter of fact,

deep learning would require even more training data

compared to tasks with measurable target values as (head

pose) angles, but the datasets cover just a few hundred

samples. Moreover, this approach exhibits a less pro-

nounced black-box nature, which can be beneficial for

certain applications. Hence, we use the above-discussed

CNN models for head pose and gaze estimation, action unit

regression, and classification of basic emotion as well as

regression of valence & arousal (VA) values as input for

early fusion to detect deception.

As shown in Fig. 4, we first apply face detection on the

deception datasets using the RetinaFace model from Deng

et. al [62]. Then, we use these face images as input for the

Fig. 4 Overview of our proposed approach for automatic deception

detection using artificial intelligence
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CNNs, while their outputs are used as cues or in the context

of machine learning (high-level) features. Through early

fusion, those features are then employed to train LSTM

models or discriminative classifiers, facilitating the detec-

tion of deception. (see Sect. 4.2.2 and 4.2.3).

4.2.1 Analysis of the facial cues

For each modality, we train a separate CNN model which

has several outputs that are used as cues (base features),

such as the yaw and pitch angle in case of gaze. As

modalities may not be suitable to the same extent for all

datasets—depending on what meaningful patterns there are

for these modalities in both the train and the test set—the

significance of a single cue may depend on the data. Hence,

we first compare the feature distributions of truthful and

deceptive samples for the four datasets.

As shown in Fig. 6, the head pose yaw angle is a very

interesting cue in the case of the RL dataset, since it is

clearly higher in the case of deception. (Distribution for

gaze yaw angle is quite similar.) This may be a result of the

high-stake context since a guilty person might tend to avoid

eye contact more.

In case of the valence feature, the distribution of

deceptive and truthful samples is almost identical. How-

ever, it is obvious that is clearly differing for the different

datasets. Unexpectedly—despite BgL being acquired under

lab conditions and in a low-stakes context like MU3D—the

valence distribution is predominantly within the negative

Fig. 6 Violinplots of key features extracted by deep learning

approaches across four publicly available datasets, highlighting

correlations with deceptive behavior

Fig. 5 Feature Ranking. We calculated feature relevance through

feature permutation using traditional classifiers (SVM and Random

Forest) for the RL dataset. The resulting list of features was ordered

based on their relevance as determined by the SVM classifier, after

which we retained the top 25%. Notably, head pose and gaze features

emerged as particularly relevant for the trial database. It is worth

noting that the relevance of features can vary depending on the

classifier used

Fig. 7 Average and standard error (using cross-validation) for

different fractions of the most relevant features for the discriminative

classifiers

Neural Computing and Applications

123



range, closely resembling that of RL datasets, which typi-

cally involve more serious contexts.

The distributions for all used features can be found in

Appendix 7.

4.2.2 Early fusion using discriminative models

In the first step of our approach, we employ discriminative

models such as SVM and RF to classify the video samples

from deception databases as truthful or deceptive. To

extract meaningful information from each base feature, we

derive a range of statistical features such as mean and

skewness. We then rank these features based on their rel-

evance. Figure 5 shows the ranking of the top 25% of

features for both linear SVM and RF for the RL dataset. As

expected, yaw angle of gaze and head pose are among the

most relevant features. For a comprehensive ranking of all

databases, please refer to Appendix 7.

Feature selection In the next step, we aim to reduce the

number of features used in our classification model. We

have observed that retaining approximately 20–30% of the

most relevant features yields good results and reduces

computational costs. However, the optimal number of

features depends on the dataset and the type of classifier

used.

In Fig. 7, we present the performance of three classifiers

on the RL dataset. Our results indicate that the best accu-

racy of 77% is achieved when using approximately 30% of

the best features, while the use of all features results in

worse performance for all tested classifiers. Nevertheless,

the results obtained with all features are still better than

those obtained by a trivial classifier or random guess, that

both would have 50% accuracy.

For the BgL and BOX datasets, we have also found that

retaining around 20%, respectively, 30% of the features

yields the best performance, while for MU3D, we obtained

the best results by keeping approximately 80% of the

features.

We have also investigated the use of principal compo-

nent analysis (PCA) for feature reduction. However, our

results show that PCA does not perform well for our

classification task. This may be due to the nonlinear rela-

tionships between the features and the outcome, which may

be lost after PCA’s linear combination, or the sensitivity of

PCA to outliers in the data.

4.2.3 Early fusion using sequence-to-class approaches

Instead of computing statistical features for each sample

video, time series analysis can be performed on the data

using sequence-to-class approaches. We tried different

Recurrent Neural Network (RNN) architectures including

GRU, LSTMs and bidirectional LSTMs, where bidirec-

tional LSTMs performed best.

4.3 Rolling dice experiment

The classical economically motivated Rolling dice Exper-

iment (RDE) from Fischbacher et al. demonstrated that

only 20% of all individuals who roll a dice without

supervision will lie to the fullest extent possible (by

claiming to have rolled the highest value when they actu-

ally did not), while 39% will be entirely truthful [8]. It is

worth noting that the participants in this experiment knew

that they were not monitored or recorded, so it was

impossible to detect lies on an individual level.

In our study, both the participants and the results of the

dice rolls are recorded. Participants are informed that the

data will be labeled for analysis and research purposes, but

that the experimenter will not have access to the records.

This is done to ensure the integrity of the data, and only

authorized individuals outside the economy research team

will have access to the records.

To summarize our experimental setup:

1. We use a single standard six-sided dice, so the possible

outcomes are 1, 2, 3, 4, 5, or 6.

2. Reward is 1 Euro times the outcome, except for a result

of 6 which results in no reward.

3. We have 100 candidates each roll the dice once.

4. We analyze the results to determine the frequency of

each outcome. We also record the claim and the actual

dicing by webcam.

In the experimental section, we will compare the results

of our modified rolling dice experiment with those of

Fischbacher et al. and, furthermore, test our approach of

automatic deception detection on the resulting dataset.

Table 1 Comparison of the statistics of the four databases

Database Samples Subj ø Unbiased ItW

BgL 325 35 9.2±4.8s U �
BxL 25 25 154.9±45.2s � U

MU3D 320 82 35.7±3.7s U �
RL 118 56 24.9±14.2s U U

RDE 101 101 28.31±2.78 � �

Here applies ø: average sample length in seconds and standard

deviation, �: No, U: Yes, Unbiased: ratio of truthful and deceptive

samples is � 0:5, ItW: in-the-wild
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5 Results and discussion

In this section, we present the results and engage in a

comprehensive discussion to interpret the findings. In the

following subsections, we will first discuss the results of

the deep learning approaches for the facial cues. Subse-

quently, we will evaluate our approach of deception

detection built on these results using the four available

datasets. After examining our new RDE dataset, we will

assess the proposed deception detection approach using this

dataset and compare the outcomes with the other datasets.

5.1 Results for head pose estimation

We utilized PyTorch to implement our proposed network,

selecting RepVGG (RepVGG-B1g2) as the backbone

model. RepVGG is designed as a multi-branch model for

training and can be converted into a VGG-like architecture

for deployment, resulting in the same accuracy but with a

shorter inference time. We chose the RepVGG-B1g2

model for its similar number of parameters to ResNet50,

which is the backbone of the state-of-the-art (SOTA)

methods we compared with in Table 2. After testing mul-

tiple configurations, we found that a single final layer with

6 output neurons performed the best. The network was

trained for 30 epochs using the Adam optimizer with initial

learning rates of 1e-5 for the backbone and 1e-4 for the

final fully connected layer, with both rates halved every 10

epochs. A batch size of 64 was used.

Our experimental evaluation involved using the syn-

thetic 300W-LP dataset for training and ALFW2000 and

BIWI real-world datasets for testing. Mean Absolute Error

(MAE) of Euler angles was used as the evaluation metric,

and our rotation matrix predictions were converted into

Euler angles. As one can see in Table 2, our method out-

performed the current state-of-the-art landmark-free

approaches for head pose estimation, achieving almost

20% lower error rate on the AFLW2000 test dataset and the

lowest error rate on all three rotation angles (yaw, pitch,

and roll). On the BIWI dataset, our method achieved state-

of-the-art results for the MAE. Our approach reported very

balanced errors, indicating the network was able to learn

consistently and robustly compared to other methods with

diverging results on single angle errors.

5.2 Results for gaze estimation

The proposed L2CS-Net for gaze estimation was trained on

the MPIIGaze datasets with Adam optimizer and a learning

rate of 0.00001 for 50 epochs. We normalize the dataset

images as in [24] to remove the effect of head pose

Table 2 Comparisons of our

pose estimation with the state-

of-the-art methods on the

AFLW2000 and BIWI dataset

AFLW2000 BIWI

Full Range1 Yaw Pitch Roll MAE Yaw Pitch Roll MAE

HopeNet (a ¼ 1) [21] � 6.92 6.64 5.67 6.41 4.81 6.61 3.27 4.90

FSA-Net [63] � 4.50 6.08 4.64 5.07 4.27 4.96 2.76 4.00

HPE [23] � 4.80 6.18 4.87 5.28 3.12 5.18 4.57 4.29

QuatNet [22] � 3.97 5.62 3.92 4.50 2.94 5.49 4.01 4.15

WHENet-V [64] � 4.44 5.75 4.31 4.83 3.60 4.10 2.73 3.48

TriNet [65] U 4.04 5.77 4.20 4.67 4.11 4.76 3.05 3.97

FDN [66] � 3.78 5.61 3.88 4.42 4.52 4.70 2.56 3.93

6DRepnet U 3.63 4.91 3.37 3.97 3.24 4.48 2.68 3.47

Bold values indicate the best result

All models are trained on the 300W-LP dataset. 1 These methods allow full range predictions

Table 3 Comparison of mean angular error between our proposed

model and SOTA methods on MPIIGaze dataset

Methods MPIIFaceGaze

iTracker (AlexNet) [67] 5.6�

MeNets [68] 4.9�

FullFace (Spatial weights CNN) [69] 4.8�

Dilated-Net [70] 4.8�

RT-Gene (1 model) [71] 4.8�

GEDDNet [72] 4.5�

RT-Gene (4 ensemble) [71] 4.3�

Bayesian Approach [73] 4.3�

FAR-Net [74] 4.3�

CA-Net [75] 4.1�

AGE-Net [76] 4.09�

L2CS-Net L2CS-Net 3.96� 3.92�
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variations. Table 3 shows the comparison of mean angular

error between our proposed network and state-of-the-art

methods on MPIIFaceGaze dataset. Our proposed network

achieves state-of-the-art gaze performance with an angular

error of 3.86 on MPIIFaceGaze.

5.3 Results for emotion prediction

Since the official test set of AffectNet is still not published,

we split the available data randomly into 70% for training

and keep the remaining for testing, similar to how Molla-

hosseini et al. split the data to the original train and test set

[46]. Since AffectNet is relatively comprehensive, the

results on our test set should be comparable, but one should

note that they may suffer from reduced amount of training

samples. For training, we use the following augmentation

techniques: random crop, random erasing, color fitter,

random grayscale and random horizontal flip. Then, the

images are normalized to 224�224 pixels.

5.3.1 Evaluation of backbones for the multitask network

The proposed network was trained with the PyTorch

framework using Adam optimizer with learning rates from

0.00001 to 0.001 and batch sizes from 8 to 64 depending on

the backbone size and was trained for 50 epochs. We use

the small validation set of AffectNet to estimate at which

epoch the model starts overfitting. As backbone, we com-

pared various different established but also new models all

pretrained on ImageNet (1k). Results are shown in Table 4,

where we also compare with the baseline of Mollahosseini

et al. who tested different single task models including

SVM and SVR. We achieved best results with a vision

transformer (base Swin Transformer), which, however, is

also the biggest model that we have tested.

Considering the importance for our future works of fast

prediction even on weak hardware, also the results for

MobileNet and especially the new Mobileone architecture

are promising. Mobileone is designed to mitigate the

architectural and optimization bottlenecks present in other

efficient neural networks, making it a highly effective

backbone for efficient neural networks on mobile devices

[14]. As one see in Table 4, the smallest version of this

CNN (Mobileone S0, which has fewer parameter than all

other tested models) outperforms MobileNet V3 and

ResNet18 and almost reaches the performance of

ResNet50d. However, MobileOne is designed for current-

generation iPhones and runs much slower on a regular CPU

(such as an Intel i7) than MobileNet.

Another interesting architecture is EfficientNet. Effi-

cientNet is designed to be highly efficient in terms of both

computational resources and model size. It achieves state-

of-the-art performance on several image classification

Table 4 Evaluation of our

emotion prediction approach on

AffectNet

Approach Class valence arousal

Acc F1 CCC RMSE CCC RMSE

[46]1 SVM1 60 0.37 – – – –

MSCognitive1 68 0.51 – – – –

AlexNet1;4 64–72 0.55–0.57 – – – –

SVR1 – – 0.340 0.494 0.199 0.400

AlexNet1 – – 0.541 0.394 0.450 0.402

Proposed multitask2 MobileNet V3 (large) 70.550 0.447 0.735 0.338 0.413 0.261

Mobileone (S0) 73.279 0.470 0.765 0.316 0.479 0.248

Resnet18 71.606 0.477 0.751 0.326 0.420 0.258

Resnet50d 74.048 0.502 0.770 0.313 0.479 0.249

EfficientNet V2 (small) 73.946 0.518 0.793 0.304 0.489 0.250

ConvNext (pico) 73.019 0.472 0.776 0.309 0.485 0.252

Swin Transformer3 (tiny) 75.654 0.514 0.753 0.310 0.467 0.244

Swin Transformer3 (base) 76.813 0.535 0.782 0.296 0.513 0.238

Bold values indicate the best result
1 [46], trained on full training set and tested on unpublished test set
2Trained on 70% of the AffectNet training samples and tested on the remaining (test set still not published)
3Patch=4, window=7
4For CNN-based classification, Mollahosseini proposed 4 models with AlexNet backbone
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benchmarks such as ImageNet with significantly fewer

parameters and floating-point operations (FLOPs) com-

pared to other state-of-the-art models like ResNet50 [77].

When it comes to emotion recognition, this particular

method demonstrates exceptional performance in

predicting valence, as indicated by its high CCC score.

This is particularly relevant because valence provides

insight into the degree to which a person is experiencing

negative, positive, or neutral emotions. This is why we use

EfficientNet to predict basic emotions and valence arousal

values as features for deception detection.

Emotion Class Confusion In Fig. 9, the confusion matrix

shows detailed classification results of the base Swin

Transformer—the tested model with the best overall per-

formance—on the AffectNet test set. Although contempt

may be more meaningful than the other classes in the

context of deception detection, its high confusion rate

especially with the happy class renders it a less reliable

feature for this purpose. Possible explanations for the high

confusion between contempt and neutral or happy emo-

tions are that the facial expressions for contempt can be

quite similar to happy, and there are only a limited number

of samples available for the contempt class.

Apart from the problems regarding contempt, the con-

fusion matrix reveals another issue. AffectNet includes

numerous instances where annotators had disagreements

regarding the appropriate class label, potentially resulting

in misclassification. This is particularly evident in cases

where the facial expressions are subtle, making it difficult

to differentiate between neutral and emotional states. On

the other hand, such subtle facial expressions are important

for real-life scenarios, where emotion can be mixed or of

Fig. 9 Confusion Matrix for the basic emotions (using a Vision-

Transformer)

Fig. 8 Heatmaps show the areas of most relevant features for the predicted class for some samples of the AffectNet dataset

Fig. 10 Results of the LSTM training on the RL database
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weak intensity. This highlights the significance of incor-

porating VA values as features for deception detection,

which capture the intensity of the displayed emotions, in

order to minimize confusion with neutral expressions.

In Fig. 8, we present some samples from the AffectNet

dataset, wherein heatmaps are utilized to highlight the most

significant regions contributing to the predicted emotion

class. These areas represent the regions from which the

most relevant features were derived, leading to the highest

score for a particular class.

It is evident that these regions are consistently located

on the face, particularly in areas where one or more Action

Units (AUs) are present.

Furthermore, we can observe two samples with

ambiguous expressions. In Fig. 8g, the expression was

correctly identified as contempt. However, in the absence

of context information, contempt is primarily recognizable

by a wry smile (notably, the heatmap is asymmetric for this

sample), which introduces a significant potential for con-

fusion with neutral or happy (not only in making predic-

tions but also in establishing manual ground truth).

Additionally, in Fig. 8d, the classification was anger,

whereas the ground truth label is disgust. It is our belief

that the image itself may suggest multiple valid interpre-

tations. For comparison, Fig. 8c clearly depicts an

expression of disgust.

5.4 Evaluation of the four available deception
detection datasets

In this section, we will conduct experimental evaluations

on the given four databases using discriminative classifiers

and LSTMs models. These evaluations will be performed

using multimodal features extracted from the deep learning

approaches described earlier. Furthermore, we will proceed

to conduct additional experiments using the data from our

rolling dice Experiment (RDE).

5.4.1 LSTMs

It is important to note that approaches like LSTMs may

struggle to learn meaningful patterns if the available

datasets lack comprehensiveness. However, given the

possibility of a temporal pattern existing in at least one of

the datasets, which could indicate deception, we train

LSTMs using the most prevalent criteria. This allows us to

evaluate whether LSTMs perform better or worse com-

pared to discriminative models in terms of detection

accuracy. For the RL dataset, Fig. 10 shows the training

losses of the used criteria and the validation results for

different measures.

It is evident that Mean Absolute Error (MAE) outper-

forms other loss functions such as Binary Cross-Entropy

(BCE) in terms of the evaluation metrics Accuracy and

CCC (Concordance Correlation Coefficient). Despite initial

expectations favoring BCE as the superior loss function,

the results indicate that MAE yields better performance

according to these evaluation metrics.

Table 5 Test results (average and standard error) using different

optimizers for training

Optimizer Train-loss Accuracy RMSE CCC

Adam .37 ± .00 65.59 ± 1.76 .24 ± .01 .40 ± .03

Nadam .38 ± .00 65.91 ± 2.10 .24 ± .01 .40 ± .04

Adadelta .21 ± .01 68.41 ± 1.92 .25 ± .01 .38 ± .03

Adagrad .29 ± .00 68.05 ± 1.81 .23 ± .01 .41 ± .03

SGD .50 ± .00 50.00 ± .00 .36 ± .01 .10 ± .01

Used loss: MAE, learning rate=0.00003 (0.003 for Adagrad, rho=0.9

for Adadelta), used dataset: RL

Fig. 11 Results for Intra- and Cross-database experiments for three different classifiers
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MAE loss is computed as the average absolute differ-

ence between predicted and actual values. In the context of

binary classification, the predicted values represent prob-

abilities or scores indicating the likelihood of belonging to

a specific class. One of the reasons why MAE performs

well could be its robustness to outliers, unlike Mean

Squared Error (MSE) or BCE loss functions. Considering

the challenging nature of the problem and the limitations of

the dataset, which may lead to an increased number of

outliers, the resilience of MAE loss to these extreme values

becomes advantageous. Furthermore, MAE loss equally

considers both overestimations and underestimations, a

crucial characteristic for accurate binary classification.

Overall, the performance of MAE over other measures

suggests its suitability for the given binary classification

task, highlighting its ability to handle outliers effectively

and treat overestimations and underestimations equally.

We also explore the impact of different optimizers on

the results. To determine the values of the measures, we

select the epoch where the loss plateaus, suggesting the end

of meaningful learning and the potential onset of overfit-

ting. We then calculate the average of the loss values for

the 10 preceding epochs. As illustrated in Table 5, the

Adam optimizer, known for its effectiveness in numerous

deep learning tasks, particularly for datasets exhibiting

complex, nonlinear patterns, gives results which not sig-

nificantly differ from those obtained using Adadelta or

Adagrad. Conversely, SGD, acknowledged for its efficacy

on large-scale datasets but prone to local minima entrap-

ment, demonstrates less favorable outcomes.

In the upcoming section, we will demonstrate that dis-

criminative models employing feature descriptors currently

outperform LSTMs on the provided deception datasets,

attributed to the limited training samples. Nevertheless,

models like LSTMs offer enhanced flexibility for modifi-

cation and scaling, possess the capability to independently

learn temporal patterns (if available), and can be fine-tuned

retrospectively with new data, such as scenarios where a

baseline is accessible from test subjects. Furthermore, in

pain recognition using a relatively larger database of

approximately 20,000 samples, LSTM demonstrated

slightly superior results compared to Random Forest (RF)

using similar features (pose and AUs) [78].

5.4.2 Cross- and intra-database results

As mentioned earlier, the identification of deception is

intricately tied to the specific problem being addressed.

However, as far as our knowledge extends, no cross-data-

base experiments have been conducted to assess this aspect

qualitatively across the four publicly available deception

databases.

Figure 11 shows the cross and intra-database results for

SVM, RF and LSTMs. Cross-database results were

obtained by training the model on all samples from one

database and evaluating it on all samples from another.

Conversely, intra-database results were obtained using

cross-validation, specifically the repeated, stratified random

train-test splits method with a total of 50 iterations for

SVM and RF and 10 iterations for LSTMs, utilizing 70% of

the samples for training purposes.

Cross-database Results As evident from the results in

Fig. 11, most cross-database experiments yield poor out-

comes, sometimes even worse than random guess.

In case of the BOX dataset, the underperformance can

be attributed to the imbalanced distribution of truthful and

deceptive samples when utilizing BOX as a training or test

dataset. Moreover, the BOX database contains numerous

surprisingly short true samples (1 or 2 s), necessitating a

sequence length of � 40 for LSTMs models, whereas the

other datasets perform best with a length of 200. In fact,

when employing LSTMs as a classifier in cross-database

experiments, the excessively small samples from BOX

must be excluded. This exclusion further exacerbates the

dataset’s imbalance. This explains the relatively good

results using MU3D for training, BOX for testing and

LSTMs as classifier, where the model actually does not

perform better than a trivial classifier.

Additionally, it is worth noting that the contribution of

modalities varies across databases, which is another con-

tributing factor to the unsatisfactory performance of cross-

database results. This highlights the importance of training

deception detection models on datasets that are specifically

Fig. 12 The confusion matrix illustrates the subjects’ reported dice

rolls after actually rolling a specific value between 1 and 6, or not

rolling at all
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tailored to the target scenario, emphasizing that the choice

of the dataset is even more critical than in general machine

learning problems.

Intra-database Results The intra-database results pro-

vide insight into the performance of the tested classifiers

across the four datasets.

In general, the BOX dataset achieves the highest accu-

racy. However, it should be noted that this dataset is

biased, which leads to classification results benefiting from

a priori knowledge. For instance, a trivial classifier

achieves an accuracy of 64% instead of the expected 50%

for the RL and MU3D datasets and 52% for the BgL

dataset. Specifically, the accuracy rates on BOX are 74%

for SVM, 72% for RF, and 65% for LSTMs. However, it is

crucial to consider the F1-scores, as they are less sensitive

to biased class distributions. The F1-scores on BOX are

0.57, 0.60, and 0.0/NaN for SVM, RF and LSTMs classi-

fiers, respectively. In the case of an F1-score of 0, it indi-

cates that either the recall or sensitivity is 0, resulting in an

undefined value (NaN). This demonstrates that the LSTMs

model did not learn meaningful feature patterns on this

dataset, while the use of descriptors for feature extraction

and classification using SVM and RF performs better.

While LSTM exhibits the capacity to grasp intricate tem-

poral patterns, its efficacy hinges on the availability of an

extensive dataset. In domains characterized by highly

individual challenges, such as deception detection, a larger

sample size becomes imperative for the model to discern

and generalize these nuanced patterns effectively, miti-

gating the risk of overfitting.

5.5 Evaluation of our rolling dice experiment

In addition to the cross-dataset analysis presented in the

previous section, we further examined the performance of

our proposed approach by investigating single modalities,

alternative measures, and incorporating data from our

RDE.

Fig. 13 Evaluation of the performance of classifiers using ROC

curves, along with additional measures such as AUC and F1-Score, on

various datasets. The ROC curves helped us assess the trade-off

between true positive rate and false positive rate at different

classification thresholds. For this experiment, deception is used as

positive class
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First, let’s examine the RDE from an economic per-

spective. Figure 12 depicts the confusion between the

actual and claimed values in our RDE, where participants

were aware of being recorded and the records were sub-

sequently analyzed by an external entity, separate from the

experiment-conducting institution. The MTVE system was

used for the experimental implementation, which was

specifically designed to gather video data from communi-

cation-based experiments [79].

Notably, the percentage of subjects who were com-

pletely truthful increased to 58%, as compared to the 39%

reported in the earlier study conducted by Fischbacher

et al. without the presence of records [8]. This suggests that

the documented record of deceptive behavior had a

noticeable yet moderate impact on the participants’

behavior.

Furthermore, the findings indicate a strong correlation

between the actual value of the dice roll and the partici-

pants’ behavior. Specifically, most individuals who rolled a

1 or 6 (representing the two worst possible outcomes)

claimed they rolled a 4 or 5 (the two best possible out-

comes). Conversely, most participants who rolled a 2, 3, 4,

or 5 were truthful about their roll. In the end, out of the 101

subjects, 27 falsely claimed to have achieved a better roll

than they actually had, while 6 subjects claimed to have

rolled worse than their actual result, and 59 called the

actual value. Additionally, 9 participants did not roll at all

(indicated with 0). These discoveries suggest that the

accuracy of self-reported data in experiments can be

influenced by various factors, including the presence of a

record that exposes deception and the actual value of the

outcome.

Please note that the recording also enables a more

accurate calculation of the overall deception rate. If—like

in [8]—no knowledge of the actual dice roll is available,

the claimed roll can only be compared to a statistical dis-

tribution (which is an equal probability distribution in the

case of a fair dice). However, using only a hundred or a few

hundred samples, the actual distribution can clearly differ

from the expected one, as it is the case in Fig. 12. Using

100 rolls, the average deviation from the ideal distribution

is 18:24� 5:2%, where ± indicates the standard deviation

for simulating the experiment 50 times. Fischbacher et al.

conducted their main experiment with 389 rolls [8],

resulting in a deviation of 8:6� 3:1%. In our case, this

deviation has no influence on the calculated deception rate,

since we use the recorded actual rolls as ground truth.

Table 6 Accuracy (and standard error) of each set of facial cues (features) for linear SVM and Random Forest

Highlighted are the best sets of cues separately for each database and classifier and—in the center of the table—the result for the best classifier

for each database in the case of all feature groups. Performed statistical analysis: Paired T test passed: (p \0:05) , Wilcoxon test passed:

(p \0:05) (p\0:1), not passed:
1Proposed approach
2Gupta et al. using video features [12] (EEG and eye tracking were tested on a subset only)
3Soldner et al. using manually extracted features plus RF [55]
4Lloyd et al. [56], 5Perez et al. [57]
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5.5.1 RoC curves and F1-scores

To evaluate our deception detection approach on the RDE

and to compare the results with the four available datasets,

we compute Receiver Operating Characteristic (RoC)

curves, F1-scores and MCC measure for all three classifiers

as shown in Fig. 13.

RoC curves are advantageous for evaluating model

performance in binary classification problems with multi-

ple datasets. They provide a visual representation of the

trade-off between true positive and false positive rates,

making them useful for comparing models across datasets

with varying biases. The derived Area Under the Curve

(AUC) measure allows comparing RoC curves of different

models with a single scalar. On the other hand, F1-score

combines precision and recall into a single metric, pro-

viding a balanced evaluation of the model’s performance.

MCC on the other hand takes into account true negatives

and is more suitable for imbalanced datasets, as BOX and

RDE. Utilizing RoC curves and F1-scores and MCC helps

assess model effectiveness in the presence of biased and

unbiased datasets.

It is evident that LSTMs perform worst over all in terms

of AUC, F1-Score and MCC. In the sense of AUC, this is

particularly true for BgL and BOX, while F1-Scores and

MCC are 0 for the biased BOX and RDE. Although on BgL

an F1 score of 0.59 is achieved, the AUC is less than 0.5

and the MCC is slightly negative, indicating that the

classifier did not successfully learn meaningful features or

that these features are not present in the test set. When

comparing the AUC and MCC scores of all four low-stake

datasets, it is observed that the LSTMs model performs the

best on the MU3D dataset. This result was expected since

the MU3D dataset has the highest number of samples.

Results on the high-stake RL dataset are better, but still

not good compared to the discriminative classifiers. SVM

achieves the best results on RL for all measures, while RF

exhibits a significantly higher AUC and MCC on RDE,

indicating that RF exhibits a better ability to capture the

overall performance of the classification task on this more

challenging dataset. Moreover, when considering the

results using data from all five datasets collectively, overall

both discriminative classifiers yield comparable results, but

RF may be slightly more accurate, as shown in Fig. 13.

Similar results were also reported in the literature.

Monaro et al., in a study using unpublished data, compared

various approaches [80]. They achieved an AUC of 0.72 ±

0.02 using Action Unit features from OpenFace and an

SVM as a classifier. However, when the SVM was replaced

with an LSTM, the AUC decreased to 0.57 ± 0.03.

Additionally, utilizing a 3D-CNN (C3D) resulted in an

AUC of 0.64 ± 0.03, still lower than the approach

employing features and SVM. Rill et al. also employed a

similar approach, as described in [81], which was tested on

the RL dataset. They utilized all OpenFace features (Action

Units, gaze, head pose, and facial landmarks) and achieved

an AUC of 57.4 using SVM for classification, and 56.0

when employing an LSTM.

In conclusion, while LSTMs are often regarded as more

sophisticated models compared to discriminative

Fig. 14 Qualitative result shows the most relevant features over time for sample 47 of the lie set of the RL dataset (G=gaze in RAD, HP=head

pose in �)
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classifiers, their limited suitability for our problem arises

due to the insufficient amount of available data. Consid-

ering the challenging task of deception detection without

control questions and contact-based sensors, results are

promising, especially for the high stake RL dataset. In case

of our RDE, detecting deception is much harder, as

expected due to the low-stake context. However, compared

to BgL and MU3D, results are good in sense of AUC, F1-

score and MCC using RF as classifier.

5.5.2 Evaluation of single modalities

In this section, we explore the effectiveness of each set of

facial cues—namely the outputs of the CNNs for gaze, AU,

pose, and emotion—in distinguishing between deception

and truth. Integrating every theoretically applicable

modality into a single system, which includes specialized

sensors like thermal data or contact-based modalities such

as skin conductance or EEG, would have potential but also

severe drawbacks. Such an approach may prove costly,

impractical, challenging, or impossible to train on datasets

without such highly specialized sensor data. Conversely,

relying solely on a single modality/set, such as only Action

Units, may not fully utilize the potential information pro-

vided by the used device, which typically includes head-

centric RGB-video, as observed in all used deception

datasets. Therefore, we will assess the performance of both

single and combined sets across the five datasets utilized in

our analysis.

Table 6 shows results for single and combined sets for

all datasets using SVM and RF. (As shown above, LSTMs

is not working well on the limited number of samples, so

we skip it for this experiment.) To analyze the significance,

we employed a pairwise t test and a Wilcoxon test, both

visualized with connectors. The t test was utilized under

the condition that both variables exhibited a Gaussian-like

distribution, as confirmed by the Shapiro test, and their

variances passed the Levene test. Conversely, in cases

where these assumptions were not met, we used the Wil-

coxon test instead, which is a nonparametric method robust

against such key assumptions.

We pairwise compare the set of facial cues that are

achieving the highest accuracy with the other sets. As

evident from the results, the performance of the modalities

varies depending on the dataset used. Notably, the sets of

emotion cues and head pose achieved the highest accuracy

four times each, whereas AU and gaze outperformed the

other sets only once. Restricting our analysis to cases

where all t/Wilcoxon tests passed, we observed that the set

of emotion cues surpassed the other sets in three instances

while pose, AU, and gaze achieved the highest accuracy

just once. Analyzing the contribution of the base features

of the emotion cues, we identified fear, disgust, and arousal

as particularly relevant.

Comparing the classifiers using all sets of facial cues,

SVM outperforms RF on three databases. However, in one

case Wilcoxon test is only passed with a p value of 0.1,

suggesting an overall similar performance level for both

classifiers. Notably, employing all sets of facial cues sig-

nificantly outperformed using any single set with the same

classifier. Only in 2 out of 10 cases did a single set

demonstrate higher accuracy; however, these cases did not

achieve statistical significance according to the t test.

Overall, it can be concluded that the set of emotion cues

exhibits the highest potential on most deception datasets,

but using combined sets makes the system more robust.

However, it is reasonable to assume that the recognition

rates could be further enhanced by incorporating additional

modalities, such as those based on audio sensors. Non-

contact vital parameter estimation, such as monitoring

heart rate or changes in blood circulation over time, may

also prove valuable, although it may encounter limitations

in certain scenarios. These limitations include very short

samples, variations in lighting conditions, and especially

video compression, which can impact the functionality of

such modalities.

5.5.3 Qualitative results

Finally, Fig. 14 presents a qualitative result from a single

sample of the RL dataset. The figure displays the basic

features of all modalities over time, along with snapshots

of the video data taken at regular intervals. (Basic emotions

are omitted for clarity.)

In this particular sample, where the subject exhibits

deceptive behavior, there is an observed increase in

valence during the last quarter of the video. This obser-

vation can be seen as an example of ‘‘liar’s delight,’’

wherein individuals derive a sense of satisfaction or

enjoyment from engaging in deceptive behavior.

Additionally, there is a noticeable change in yaw of gaze

and head pose, suggesting that the subject may be inten-

tionally avoiding eye contact with the judge or lawyer.

While the assumption concerning the subject’s motivation

is challenging to verify definitively, our prior findings

highlight the increased relevance of gaze and head pose

within the RL dataset compared to other datasets. This

observation lends support to the hypothesis that the sub-

ject’s avoidance of eye contact could be associated with

deceptive behavior.

Please note that this qualitative result serves as an

illustrative example, showcasing intriguing behavioral
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patterns and features over time. It is important to

acknowledge that not all samples exhibit such pronounced

behavior, particularly in the case of low-stake datasets.

Extracting indicative features for deception in average

examples may present a greater challenge.

6 Conclusion

In this study, we proposed an approach for deception

detection based on several sets of facial cues, with each set

corresponding to a specific visual modality predicted by its

own Convolutional Neural Network (CNN).

Initially, we developed approaches utilizing CNN

models to compute intermediate results for the individual

modalities of gaze, (head) pose, and emotion as a modality

of facial expressions. Comprehensive datasets are available

for all these modalities, and we compared our models with

the state-of-the-art, achieving good results. Further, we

used a pre-trained CNN for the recognition of Action Units

(AUs) as a second modality of facial expressions. Subse-

quently, the CNN outputs were utilized for early fusion in

deception classification. We trained and tested this

approach on four established deception datasets and found

that the context of such datasets is crucial, with the best

performance achieved on the only high-stake dataset (de-

spite its lower technical quality regarding resolution, noise,

etc.).

Discriminative classifiers such as Support Vector

Machine (SVM) or Random Forest (RF) were found to be

more effective for the fusion step than Long Short-Term

Memory networks (LSTMs) across all datasets, a finding

supported by Monaro et al. on a different (unpublished)

deception dataset [80]. The main reason is the severely

limited sample size compared to other domains. Regarding

the utilized modalities, we found that emotion—which

encompasses the basic emotion class and regression values

for valence and arousal—is overall best suited for con-

cluding the truthfulness of a video statement. However,

accuracy can be improved by incorporating multiple

modalities in most cases.

Furthermore, we performed a new rolling dice experi-

ment (RDE), generating an interdisciplinary dataset with a

low-stake economic context. Previously, subjects were not

recorded in the existing RDEs. We found that recording

subjects mildly increases the percentage of honest subjects.

More important, recording enables the evaluation of the

proposed deception detection approach. We observed that

deception detection in this scenario is challenging due to

limited signs of guilt or other physical reactions. This

observation applies similarly to other low-stakes datasets.

However, by employing multiple modalities and classifiers,

we achieved an average accuracy of 67% and an F1-score

of 0.71.

6.1 Limitations and future works

After all, we believe that the highly individual nature of

physical reactions to deception, combined with the severe

limitation of samples in existing datasets (less than 350),

underscores the pressing need for a more comprehensive

deception dataset. Such a dataset would enhance the out-

comes of future studies by facilitating the training of more

robust and generalized models for deception classification.

We propose that such a dataset should encompass mid-

stake scenarios, rather than solely focusing on extremely

low-stake situations with minimal risk or motivation to lie.

By incorporating scenarios that closely resemble real-

world contexts, such as deception occurring in online

conferences, we can more accurately capture the intricacies

and subtleties of deceptive behavior.

To address this issue, we plan to acquire a dataset of at

least double the size in the sense of samples compared to

the currently most comprehensive dataset (Bag-of-lies and

MU3D), where the proposed RDE was used as a pilot

study. To ensure that the stake of the scenario is not

unnecessarily low, we will design the experiment in a way

where subjects have to lie to each other (which might cause

more guilt than lying to a neutral observer), whereby the

payout depends (apart from a small show up fee) on

whether a ‘‘customer’’ subject can be convinced to buy a

product. This way, we expect to achieve an increased stake

compared to former datasets, where successful as well as

failed attempts of deception have fewer positive, respec-

tively, negative consequences. The dataset will be made

freely available for research.

Regarding the proposed approach of deception detec-

tion, we have so far focussed on facial cues, which are

known to be suitable for detecting patterns in emotional

states (that are, for example, caused by guilt). Incorporating

additional modalities such as contact-free vital parameters

(heart and aspiration rate), audio features or hand gestures

has the potential to enhance accuracy. It is important to

note, however, that achieving very high accuracies, such as

the claimed 90% accuracy in polygraph tests, is unlikely in

fully automated low-stake scenarios that do not involve

contact-based modalities, interrogation techniques, and

context or person-specific knowledge.
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Appendix A

Feature distribution and relevance

In this section, we present extended plots that provide an

overview of multiple datasets and all features. While these

plots may not be essential for understanding the main

paper, they offer additional insights and details for inter-

ested readers. See Figs. 15, 16, 17

Fig. 15 Violin plots show the normalized distribution for all facial cues

cFig. 16 Feature relevance computed by feature permutation using

traditional classifiers (SVM and Random Forest). Features are ordered

according relevance for the trial database based on the SVM classifier.

As one can see, the head pose and gaze features are especially

relevant in case of the trial database, but the feature relevance is very

sensitive to the dataset. Furthermore, the relevance also depends on

the classifier
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52. Fiedler M-A, Rapczyński M, Al-Hamadi A (2021) Facial video-

based respiratory rate recognition interpolating pulsatile ppg rise

and fall times. In: IEEE 18th international symposium on

biomedical imaging (ISBI). IEEE 2021, pp 545–549

53. Ioannidis K, Offerman T, Sloof R (2022) Lie detection: a

strategic analysis of the verifiability approach. Am Law Econ Rev

24(2):659–705

54. Bond GD, Lee AY (2005) Language of lies in prison: linguistic

classification of prisoners’ truthful and deceptive natural lan-

guage. Appl Cogn Psychol 19(3):313–329
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Laslo Dinges1 • Marc-André Fiedler1 • Ayoub Al-Hamadi1 • Thorsten Hempel1 • Ahmed Abdelrahman1 •

Joachim Weimann2 • Dmitri Bershadskyy2 • Johann Steiner3

& Laslo Dinges

laslo.dinges@ovgu.de

Marc-André Fiedler
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