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Abstract
The primary motivation behind this study is the aspiration to design a prosthetic foot that demonstrates enhanced func-

tionality, enabling more active and prompt responses, particularly tailored for individuals with below-knee amputations.

This goal underscores the intention to create a prosthetic foot with the capability to execute foot movements in a more

natural and effective manner. A new 1D-ResCNN model has been proposed for the rapid and accurate classification of foot

movements based on user intent in the context of a prosthetic limb. This research introduces an innovative approach by

integrating inertial measurement units with deep learning algorithms to advance the development of more functional

prosthetic feet, specifically tailored for below-knee amputees. Leveraging wearable technologies, this method allows for

the prolonged monitoring of foot movements within the users’ natural environments. The dual benefits of cost reduction

and enhanced user experience are achieved through this combination of advanced technologies, providing a promising

avenue for the evolution of prosthetic foot design and usage. The results obtained with this model are satisfying both in

terms of speed and accuracy with 99.8% compared to other methods in the literature.

Keywords Deep learning � Inertial measurement unit � Convolutional neural network � Gyroscope � Accelerometer �
Foot movement

Abbreviations
Wang(a) Sitting, standing, walking on flat

ground, climbing stairs, going

downstairs

Feng(b), Su(c), Lu(d) Climbing stairs, going downstairs,

walking on flat ground, going up a

ramp, going down ramp

Bijalwan(e) Jogging, normal a walking, tiptoe

walking, heel walking, climbing

stairs, going down stairs, sit ups

Narayan(f) 16 Movement modes: Sitting,

standing, climbing stairs, going

down stairs, walking on flat ground,

walking curved to the right, walking

curved to the left, turning right,

turning left, etc.

Vu(g) Climbing stairs, going down stairs,

walking on flat ground, standing.

Vakacherla(h) Standing, walking on flat ground,

walking on slopes, running,

squatting

Aydin Fandakli(i) Dorsiflexion, plantarflexion, inver-

sion, eversion

1 Introduction

Advancements in technology, particularly in sectors such

as health, security, transportation, and education, are now

contributing to the concept of smart living within our

homes. This integration aims to enhance the quality of life

and increase overall efficiency [1, 2]. As the cornerstone of

smart living revolves around human activities and move-

ments, researchers have increasingly focused on the field of

human activity recognition in recent years, leading to

numerous publications in the literature. Activity recogni-

tion technology enables individuals to analyze their daily

routines by capturing and processing behavioral data. In

human–human interactions and human–computer relation-

ships, human activity recognition plays a pivotal role in
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offering insights into a person’s identity and psychological

state. This paper illustrates the application of human

activity recognition within the healthcare domain. The

objective is to develop a model capable of identifying a

person’s foot activity based on sensor-generated signals.

This model is intended for use in designing smart pros-

thetics for individuals who have undergone below-the-knee

amputations.

Amputation, the removal of part or the entire limb,

stands as one of the oldest recorded surgical procedures.

The incidence of lower extremity amputations is on the rise

due to various uncertain and unexpected factors, including

benign and malignant bone diseases, natural disasters,

traffic accidents, birth defects, and peripheral vascular

diseases [3]. Researchers have shown a heightened interest

in deformations affecting the lower extremities, given their

significant impact on both human movement and psy-

chology, making research in this area particularly crucial

[4]. Notably, the UK witnessed more than 42,000 lower

extremity amputations between 2003 and 2013, highlight-

ing substantial variations in human gait [5]. The cause of

gait asymmetry in stable amputees is the increased strain

on the healthy leg, leading to greater stress on the joints

and muscles involved. Among the lower extremity ampu-

tations addressed in our study, below-knee (transtibial) and

ankle-level amputations make up 12–32%, while partial

foot amputations account for 15–26% of all amputations

[6, 7]. Assessing mobility, a key indicator of quality of life,

stands as a frequently used method to monitor the reha-

bilitation process in individuals with amputations. The

necessity for prolonged monitoring of disabled individuals

in their natural environments has spurred the development

of wearable sensors. Identifying suitable sensors for smart

prosthesis design is a prerequisite for understanding the

complex movement of the lower extremities [8]. In the

past, human activity recognition relied on data obtained in

laboratory environments through videos and sensors.

However, the high cost associated with laboratory setups,

equipment, and the challenge of collecting data within

confined spaces have led to a shift toward wearable sensor-

based systems over video-based alternatives [9]. This

review underscores that contemporary deep learning tech-

nologies, recognized as one of the most promising

approaches, prove valuable in monitoring data through

wearable sensor technologies.

Gait, being the most common human movement, plays a

crucial role in enabling individuals to participate in various

social activities. Any pathological issues related to gait

necessitate prompt intervention [10, 11]. While passive

prostheses and rehabilitation devices are often favored for

their low cost and lightweight nature, they may prove

insufficient in effectively regulating gait, potentially add-

ing to the burden on individuals [12]. To address this

challenge, there is a need for active prostheses that

empower the ankle joint to execute diverse movements.

Existing literature utilizes data collected during gait, where

human movement predominantly occurs in the sagittal

plane. However, this study takes a step further by classi-

fying foot movements, examining motion in both the

sagittal and frontal planes. To precisely ascertain the mode

of movement and user intent, the researchers introduced a

novel approach by initially detecting electromyography

(EMG) signals from the muscles [13]. Factors such as

sweating, temperature changes, and fatigue impact the

electromyography (EMG) of muscles, hindering its prac-

tical use. Recently, attempts have been made to employ

noninvasive active electrode scalp electroencephalography

(EEG) signals for motion mode recognition [14]. However,

these signals exhibit low robustness, and their heavy

computing load diminishes performance, making their

practical implementation challenging. The advent of the

Internet of Things (IoT) has ushered in a new era, enabling

the placement of sensors like accelerometers and gyro-

scopes on various devices, including portable ones like

phones and watches, as well as non-portable entities like

walls and cars. These sensors facilitate continuous data

collection from individuals, contributing to the growing

popularity and utilization of wearable micro-electrome-

chanical systems and inertial measurement units [15, 16].

Existing solutions often fall short in providing a seam-

less user experience. This study introduces a ground-

breaking approach by combining deep learning,

specifically a novel 1D-ResCNN model with batch nor-

malization, with inertial measurement units (IMUs). The

aim is to address the inherent complexities associated with

classifying foot movements based on user intent. Our

original contributions lie in overcoming the challenges of

capturing nuanced movements and ensuring real-world

adaptability. The proposed model not only outperforms

existing methods in accuracy but also offers a promising

avenue for cost-effective and user-centric prosthetic foot

design.

Following the Introduction section, the subsequent sec-

tions will include a detailed review of the literature, an

explanation of the methodologies employed, an analysis of

the findings, and conclusions drawn from the study. These

sections will provide readers with a comprehensive

understanding of the study’s fundamental steps and the

obtained results.

1.1 Related work

A human activity recognition study conducted by Vaka-

cherla et al. explored various activities such as standing,

walking on flat ground, walking on an incline, running, and

squatting. The study utilized a single three-axis
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accelerometer attached to the chest of 10 subjects. Two

methods were tested in real time: a one-dimensional con-

volutional neural network (CNN) and a hybrid model

combining CNNs and long short-term memory (LSTM).

The achieved accuracies were 96.6 and 97.2%, respectively

[17]. In a related effort to enhance CNN models in sensor-

based activity recognition, Tang et al. introduced a novel

hierarchical split convolutional network approach. This

approach was applied to four datasets, resulting in accu-

racies of 97.28% for the UCI-HAR dataset, 93.75% for the

PAMAP2 dataset, 99.02% for the WISDM dataset, and

79.02% for the UniMiB SHAR dataset [18]. Hysenllari

et al. conducted an experiment using a convolutional neural

network (CNN) to recognize activities such as walking,

jogging, cycling, sitting, standing, and lying. The purpose

was to observe how neural network performance varies

based on sensor location. Notably, the CNN achieved an

accuracy of 96.57% when the sensor was placed on the

ankle, while it demonstrated a higher accuracy of 99.28%

when located on the thigh [19]. In a related study, Huang

et al. proposed a shallower CNN model with cross-channel

communication to eliminate unnecessary information

accumulation between channels in a human activity

recognition scenario. The evaluation and performance

analysis were conducted on publicly available datasets,

including UCI-HAR, OPPORTUNITY, PAMAP2, and

UniMiB SHAR. The UCI-HAR dataset yielded the highest

accuracy of 96.98% [20]. In addressing the challenge of

limited labeled data, Nguyen et al. introduced a novel

feature-based and feature-based learning approach

employing support vector machines (SVM), k-nearest

neighbor (kNN), and random forest (RF) classifiers for

activity recognition. The method was tested on M health

daily and sport and real disp datasets, showcasing superior

performance, particularly with Random Forest [21]. For

human activity recognition, six feed-forward and convo-

lutional neural network (CNN) architectures were designed

using leave one subject out cross-validation with four

preprocessing scenarios. The 85.1% success achieved with

a 2-convolution and one-dimensional filter CNN surged to

an impressive 99.85% with the proposed approach [22].

Hassan et al. presented a deep belief network (DBN)

approach using the publicly available UCI dataset to rec-

ognize 12 human activities such as standing, sitting, lying

down, and walking. In comparison with support vector

machines (SVM) and artificial neural network (ANN),

DBN exhibited superior performance with a success rate of

95.85% [23]. Zebin et al. conducted a study involving 12

healthy volunteers, collecting accelerometer and gyroscope

data for activities such as walking, walking upstairs,

walking downstairs, sitting, standing, and lying down. The

gathered data were input into support vector machines,

multilayer perceptron, and deep convolutional neural

network classifiers for activity recognition, and their per-

formances were assessed. The results indicated that the

convolutional neural network (CNN) exhibited higher

accuracy and faster response times compared to other

machine learning methods [24]. In a related effort, Ordonez

et al. combined CNN and long short-term memory (LSTM)

methods in their study, introducing a method named

DeepConvLSTM. The proposed method’s performance

was tested on the Opportunity dataset and the Skoda

dataset, showcasing satisfactory results compared to tra-

ditional machine learning methods [25]. Eyobu et al. con-

ducted an analysis of human activity recognition

performance using a deep long short-term memory (LSTM)

neural network architecture. Their approach involved

spectrogram-based feature extraction from raw Inertial

Measurement Unit (IMU) sensor data and data augmenta-

tion to address data scarcity issues. Gyroscope and

accelerometer data were collected from 5 subjects aged

25–40 years. The proposed method’s performance was

compared between their dataset and the publicly available

UCI dataset [26]. In a study by Khera et al., 10 healthy

subjects aged 20–33 were instructed to perform dorsiflex-

ion, plantarflexion, inversion, and eversion movements,

and electromyography (EMG) data were collected. Time

and frequency features were extracted from the EMG sig-

nal, and support vector machine (SVM), neural networks

(NN), and logistic regression algorithms were employed as

classifiers. SVM outperformed the others, achieving an

accuracy rate of 93.23% [27]. Negi et al. utilized EMG and

force myography (FMG) signals from leg muscles to

classify foot movements in the sagittal plane. Traditional

machine learning methods, including linear discriminant

analysis (LDA), logistic regression (LR), SVM, and K-

nearest neighbors (KNN), were employed, with LDA

achieving the highest accuracy [28].

Chaobankoh et al. collected EMG signals from five

healthy volunteers and employed two-dimensional convo-

lutional neural networks (2D-CNN) to classify human

ankle movements such as dorsiflexion, neutral position, and

plantarflexion. The 2D-CNN classifier achieved an average

accuracy of 99% in training and 71.38% in testing [29].

In a previous study, foot movement recognition analysis

with inertial measurement units (IMU) was performed

using traditional machine learning methods and artificial

neural network (ANN). The ANN achieved a classification

accuracy of 93.66% [30].

The aim is to emulate the fluidity and efficiency of

natural foot motions, enhancing the overall functionality

and user experience for individuals with below-knee

amputations.
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2 Methods

2.1 Data set description

The foundation of deep learning approaches begins with

acquiring raw data from wearable sensors. In this study,

data were collected from 11 healthy subjects, comprising 8

males and 3 females, in the Biomechanics Laboratory of

the Department of Mechanical Engineering at the Middle

East Technical University. The subjects performed four

movements (dorsiflexion, plantarflexion, inversion, and

eversion) on a force plate named Bertec. A total of 2200

movement data points were collected, with 50 trials for

each of the four movements for each individual. The raw

data consist of three main signal types: total acceleration,

total gyroscope, and total magnetometer, each with three

axes of data. This results in a total of nine variables for

each time step. As an example, Fig. 1 illustrates the

gyroscope x-axis data from 50 trials of a subject’s plan-

tarflexion movement.

Utilizing an Inertial Measurement Unit (IMU) equipped

with a 9-axis LSMD9DS1 module, incorporating a 3-axis

gyroscope, 3-axis accelerometer, and 3-axis magnetometer,

data from the foot metatarsal are transmitted to a laboratory

computer interface. This interface, established with the

USB-6212 Multifunction I/O device from National

Instruments, enables data visualization. Subsequently, the

data displayed in this interface are extracted with SQL and

transferred to Excel for further processing. The Python

programming language is then employed to manipulate and

analyze the data. The collected data from the accelerom-

eter, measuring the rate of acceleration in a single direc-

tion, the gyroscope, gauging spatial rotation, and the

magnetometer, determining direction, are presented in

Fig. 2. These data points were acquired within a 5 s

interval from each subject.

In adherence to ethical standards, data collection from

volunteers was conducted under the approval of the ethics

committee. The study received approval with the certificate

numbered 24,237,859–595 from the Karadeniz Technical

University Faculty of Medicine Scientific Research Ethics

Committee. Prior to participating in the measurements,

eleven healthy volunteers aged 20–34 signed the informed

consent form [29].

Figure 3 visually represents the foot movements that

were collected in the laboratory for use in the classification

process.

2.2 Feature scaling

2.2.1 Normalization

The preprocessing of data stands as a crucial step in

achieving optimal classification performance before sub-

jecting the data to evaluation. Among the various tech-

niques employed during data preparation, data

Fig. 1 6th subject 50 trial plantar flexion motion Gx data
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transformation plays a fundamental role in machine

learning. One common technique is normalization, which

involves transforming features to a similar scale. This

practice enhances model performance and stability.

Normalization is particularly valuable as it ensures that

features are on a comparable scale, preventing numerical

values of different features from disproportionately influ-

encing the model. By providing equal weight to all fea-

tures, normalization contributes to the creation of more

effective models [31]. Therefore, all data in this study

underwent normalization, with the numbers in the dataset

scaled to the [0, 1] interval. This process was executed

through min–max normalization, as depicted in Eq. (1).

NormalizedðXiÞ ¼
xi � xmin

xmax þ xmin

ð1Þ

where i is the rank of the dataset, xmin is the minimum

value of the dataset, xmax is the max value of the dataset,

and normalized Xi is normalized data of the ith row.

2.3 Classification

2.3.1 Convolutional neural networks

In recent times, time series data collected from body-worn

sensors have become a focal point, with deep architectures

employed for processing to detect complex features in

human movements [32]. The seamless recognition of a

volunteer’s foot movements from raw data prompted our

exploration into deep architectures [33].

Deep learning, an advanced iteration of machine learn-

ing, represents the cutting edge in intelligent systems

within the realm of artificial intelligence. Its primary

advantage lies in its capacity to swiftly process vast

amounts of data, yielding meaningful outputs in record

time [34]. In the domain of human activity recognition with

sensors, while real-time predictions can be achieved using

traditional machine learning methods such as kNN and

SVM, the reliance on manual features obtained through

these methods may lead to suboptimal performance. This

challenge has directed researchers toward the adoption of

Fig. 2 5 s of gyroscope,

accelerometer, and

magnetometer data from a

volunteer

Fig. 3 Foot movements [27]
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convolutional neural networks (CNNs), which autono-

mously learn intricate human features [35].

While deep CNN models have demonstrated superior

performance, a deliberate decision was made to opt for a

shallower model. The rationale behind this choice stems

from the resource constraints inherent in wearable devices.

Deep models, while powerful, demand more computational

cost and memory power. CNNs stand as one of the most

prevalent deep learning algorithms, accepting raw data as

input, autonomously learning features at various levels.

They have proven particularly effective in the analysis of

signals with time series data. However, the decision to

employ a shallower model in our context arises from the

necessity to streamline the model for efficient operation

within the limited resources of wearable devices [36].

The inspiration for CNNs dates back to Hubel and

Wiesel’s 1959 discovery that cells in the animal’s visual

cortex recognize light in a small receptive field. Kunihiko

Fukusima proposed the first theoretical model of CNN in

1980 [37]. The initial success of CNNs materialized with

the introduction of the 7-layer CNN algorithm LeNet5 in

1998 by LeCun et al., albeit on a small dataset with 10

classes [38].

CNNs are beneficial in the classification of foot move-

ments for prosthetic feet due to their ability to learn spatial

hierarchies, automatically extract relevant features, handle

time-series data, leverage transfer learning, adapt to varied

input sensors, and support real-time inference. These

characteristics contribute to the effectiveness of CNNs in

accurately classifying different foot movements for

improved prosthetic control and user experience. In the

context of foot movements, this is crucial because different

movements may involve intricate spatial patterns in the

input data. The ability to capture spatial relationships

allows CNNs to discern subtle variations in foot move-

ments, enabling more accurate classification.

3 Results

The data collected from volunteers underwent preparation

for utilization in the proposed deep learning algorithm, a

process conducted using the Python programming language

within the Spider editor. Performance analysis studies

employing the prepared dataset were conducted through

various platforms, including Spider, Jupiter editors, and

Google Colab. Key libraries such as Keras, TensorFlow,

and PyTorch were preferred for these studies.

In the data preparation phase for the model, a series of

steps were executed. Initially, the data were loaded, fol-

lowed by normalization and one-hot encoding for labeling.

Subsequently, the data were partitioned into training,

testing, and validation datasets to facilitate effective model

training and evaluation.

In our study, we configured the PyTorch framework

with 2200 samples, 9 channels, and a sequence length of

100. For the task at hand, we identified 4 classes corre-

sponding to 4 distinct movements, ensuring an

equitable distribution of data for balanced training and

testing. Specifically, we allocated 80% of the data for

training and 20% for testing, with an additional 20% of the

training set reserved for validation purposes. To facilitate

seamless integration with PyTorch, the data underwent

translation into a format compatible with the framework.

The training, testing, and validation datasets were con-

verted into torch data and transformed into tensors,

ensuring their compatibility with PyTorch for subsequent

processing.

In the initial step, the 1D-ResCNN model executes

convolution operations, multiplying the input time data

with a filter matrix to extract features from the data with 9

channels and a length of 100. Subsequently, batch nor-

malization is applied to prevent the data from becoming

excessively large. The third step involves subjecting the

data to the ReLU activation function. Following this, the

data are fed into a Res-Block in the fourth stage, where

valuable features are extracted. This process is repeated

through the fifth to the ninth stages, encompassing feature

extraction processes leading up to the classification stage.

In these eight layers, raw data are taken, features are

extracted, and the model classifies these features. At the

classification stage, the data go through a linear layer,

ReLU activation function, another linear layer, ReLU

activation function, and finally, a final linear layer. The

convolutional neural network model is configured as

illustrated in Fig. 4 to model the movements of individuals

participating in the experiment. Detailed information about

the 1D-ResCNN model is outlined in Table 1, with

numerical values of the parameters provided in Table 2.

The CNN model is composed of two 1D convolution

layers featuring 16 and 32 filters with a kernel size of 3,

accompanied by a batch normalization (BN) layer, rectified

linear unit (ReLU) activation function, fully connected

layers, and Res-Blocks. The convolution layer serves as the

fundamental and principal building block of the CNN.

Batch normalization, a key component, addresses

overfitting concerns by enabling layers to learn concur-

rently, eliminating the need for layers to wait for prior ones

to learn. This enhances network organization, stability, and

speed [39]. The ReLU activation function, chosen for its

ability to introduce nonlinearity to the network, stands as

the most widely used activation function in deep neural

networks. ReLU converts all input values to positive

numbers, resulting in an output of 0 when x\ 0 [40].
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The Res-Block significantly fortifies the model by

minimizing information loss and reducing training error.

This enhancement contributes to the model’s robustness

and overall effectiveness.

The Res-Block structure was employed to mitigate

challenges related to reduced features and to streamline the

training of CNNs. The proposed Res-Block architecture is

visually depicted in Fig. 5. This Res-Block configuration

incorporates two convolutional layers with 3 9 3 filters,

complemented by two batch normalization layers and the

ReLU activation function.

For optimization purposes, the ADAM optimizer was

employed as the chosen method in the model. This opti-

mizer plays a crucial role in enhancing the convergence

speed and overall performance of the neural network dur-

ing the training process.

The study utilized various performance metrics,

including accuracy, precision, recall, and F1 score, as

defined in Eqs. (2), (3), (4), and (5), respectively.

Table 3 illustrates the examination of epoch values

during result acquisition to achieve the highest accuracy.

Through this analysis, the optimal epoch value was deter-

mined to be 50, demonstrating the least error and the

quickest response time.

Fig. 4 The architecture of the proposed 1D-ResCNN model. The inputs to the network are created by nine signal channels of one IMU. The

outputs are classified into four-foot movements: DF, PF, IN, and EV

Table 1 Detailed 1D-ResCNN architecture

Layer name Input shape Output shape Param #

CNN model [100, 9, 100] [100, 4] –

Conv1d [100, 9, 100] [100, 16, 100] 448

BatchNorm1d [100, 16, 100] [100, 16, 100] 32

ReLU [100, 16, 100] [100, 16, 100] –

Res-Block [100, 16, 100] [100, 16, 100] –

Sequential [100, 16, 100] [100, 16, 100] –

Conv1d [100, 16, 100] [100, 16, 100] 784

BatchNorm1d [100, 16, 100] [100, 16, 100] 32

Conv1d [100, 16, 100] [100, 16, 100] 784

BatchNorm1d [100, 16, 100] [100, 16, 100] 32

Conv1d [100, 16, 100] [100, 32, 100] 1,568

BatchNorm1d [100, 32, 100] [100, 32, 100] 64

ReLU [100,32,100] [100, 32, 100] –

Res-Block [100, 32, 100] [100, 32, 100] –

Sequential [100, 32, 100] [100, 32, 100] –

Conv1d [100, 32, 100] [100, 32, 100] 3,104

BatchNorm1d [100, 32, 100] [100, 32, 100] 64

Conv1d [100, 32, 100] [100, 32, 100] 3,104

BatchNorm1d [100, 32, 100] [100, 32, 100] 64

Linear [100, 3200] [100, 2048] 6,555,648

ReLU [100, 2048] [100, 2048] –

Linear [100, 2048] [100, 1024] 2,098,176

ReLU [100, 1024] [100, 1024] –

Linear [100, 1024] [100, 4] 4,100

Table 2 Numerical values of parameters

Number of trainable parameters 8.668.004

Training data 1408, 9, 100

Test data 440, 9, 100

Validation data 352, 9, 100

Batch size 100

Epoch 50
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accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð2Þ

precision ¼ TP

TPþ FP
ð3Þ

recall =
TP

TP + FN
ð4Þ

F1 score = 2*
precision*recall

precision + recall
ð5Þ

In the context of the study, the terms true positive (TP),

false positive (FP), true negative (TN), and false negative

(FN) are defined as follows:

True positive (TP): The number of positive class pre-

dictions that correctly belong to the positive class. False

positive (FP): The number of instances that were predicted

as positive but actually belong to the negative class. True

negative (TN): the number of negative class predictions

that correctly belong to the negative class. False negative

(FN): the number of instances that were predicted as neg-

ative but actually belong to the positive class.

Precision is a metric that measures the accuracy of

positive class predictions, recall measures the proportion of

actual positive instances correctly predicted, and the F1

score is the harmonic mean of precision and recall.

As the most optimum results in terms of response time

and accuracy were achieved at epoch 50, the subsequent

results presented are based on this epoch value. Table 4

provides a comparison of the proposed model in this study

with the methods utilized in our previous study [29].

As illustrated in Table 4, the proposed method demon-

strates exceptional success with notably high accuracy,

surpassing classical machine learning methods and artifi-

cial neural networks.

4 Discussions

Table 5 illustrates the types of sensors used in various

motion recognition systems, the number of participants, the

methods employed, and the reported accuracy rates. Gen-

erally, IMU sensors and CNN-based methods are fre-

quently utilized. Additionally, the proposed method

achieved a high accuracy of 99.8% using 1D-ResCNN,

which is a notably high success rate. In the study conducted

by Vu et al., walking modes such as walking on a flat

surface, standing, and stair ascending/descending were

identified using IMU data. The highest success rates were

achieved with CNN at 99.6% and with LSTM at 98.68%.

In comparison with our study, their approach exhibits

lower robustness due to its focus solely on recognizing foot

Fig. 5 Res-Block layers

Table 3 Effect of different

epoch values on error and

accuracy of training and

validation

Training error Training accuracy Validation error Validation accuracy

Epoch = 10 0.00252 1 0.0134 0.995

Epoch = 50 8.13e-5 1 0.0012 1

Epoch = 100 1.7e-5 1 0.0415 0.993

Epoch = 500 5.01e-8 1 0.0157 0.995

Epoch = 1000 1.59e-10 1 0.0279 0.993

Table 4 Comparison of traditional machine learning methods and

artificial neural networks used in our previous studies with the pro-

posed deep learning model

Classification accuracy

Linear SVM 90

Fine KNN 90.92

Gaussian naı̈ve Bayes 92.74

Wide neural network 93.66

1D-ResCNN 99.8
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movements in the sagittal plane and conducting experi-

ments with fewer participants.

This article introduces a novel application of convolu-

tional neural networks for the classification of foot move-

ments with inertial measurement units (IMU). The 1D-

ResCNN model, based on the architecture of 1D convo-

lutional neural networks (ConvNet), adeptly processes and

classifies motion data from prosthetic feet. The integration

of ‘Res’ (residual) blocks in the architecture aids in the

training of deep networks, contributing to superior perfor-

mance. Through the inclusion of Res-Blocks and batch

normalization layers in the convolutional neural network,

the proposed model exhibits commendable performance in

terms of speed, robustness, and accuracy when compared to

existing methods in the literature. The uniqueness of this

study arises from the utilization of a novel dataset, the

introduction of a new modeling approach, and the

demonstrated superior performance of this model com-

pared to other methods in the literature.

5 Conclusions

We utilized raw accelerometer, gyroscope, and magne-

tometer data as inputs for the convolutional neural network

(CNN). The network autonomously extracts valuable fea-

ture information from the raw data, enabling accurate

predictions of corresponding motions. The one-dimen-

sional CNN architecture, incorporating two convolutional

Res-Blocks, demonstrates superior performance compared

to alternative architectures. It is noteworthy that while the

proposed system exhibits encouraging performance in

classifying human ankle–foot movements, the study

involved only healthy volunteers. Future investigations aim

to explore the effectiveness of the proposed system in

individuals with below-knee amputations. The study has an

additional limitation concerning the utilization of data

collected in a laboratory setting. Future efforts aim to

gather and process data in individuals’ natural environ-

ments. This model marks a significant stride in improving

user experience in prosthetic technology, presenting an

artificial intelligence-based system capable of effectively

responding to user intent. Nevertheless, further experi-

mental studies and validation are essential to evaluate the

model’s performance under real-world conditions.
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Table 5 Comparison of the proposed model with other deep learning models

References Sensors Number of Subject Method Motion Accuracy (%)

Wang et al [41] Joint angle sensor 1 LSTM Wang(a) 98.3

Feng et al [42] Strain gauge angle sensor 3 CNN Feng(b) 93.1

Su et al [43] IMU 11 CNN Su(c) 94.15

Lu et al [44] IMU 10 CNN Lu(d) 98.06

Bijalwan et al [45] IMU 30 CNN-LSTM Bijalwan(e) 90

Narayan et al [46] IMU 8 CNN Narayan(f) 94.34

Vu et al [47] IMU 4 CNN Vu(g) 99.6

Vakacherla et al [48] Accelerometer 5 CNN Vakacherla(h) 98.1

Our proposed method IMU 11 1D-ResCNN Aydin Fandakli(i) 99.8
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