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Abstract
Feature selection is one of the most relevant processes in any methodology for creating a statistical learning model.

Usually, existing algorithms establish some criterion to select the most influential variables, discarding those that do not

contribute to the model with any relevant information. This methodology makes sense in a static situation where the joint

distribution of the data does not vary over time. However, when dealing with real data, it is common to encounter the

problem of the dataset shift and, specifically, changes in the relationships between variables (concept shift). In this case, the

influence of a variable cannot be the only indicator of its quality as a regressor of the model, since the relationship learned

in the training phase may not correspond to the current situation. In tackling this problem, our approach establishes a direct

relationship between the Shapley values and prediction errors, operating at a more local level to effectively detect the

individual biases introduced by each variable. The proposed methodology is evaluated through various examples, including

synthetic scenarios mimicking sudden and incremental shift situations, as well as two real-world cases characterized by

concept shifts. Additionally, we perform three analyses of standard situations to assess the algorithm’s robustness in the

absence of shifts. The results demonstrate that our proposed algorithm significantly outperforms state-of-the-art feature

selection methods in concept shift scenarios, while matching the performance of existing methodologies in static situations.

Keywords Concept shift � Feature selection � Regression � Shapley values

1 Introduction

Artificial intelligence and machine learning in particular

are becoming increasingly valuable nowadays. The

understanding of the vast amount of data available being

generated every day in a connected world, offers many

possibilities like natural language processing systems,

recommendation engines, medical diagnosis or forecasting

models. Thus, the use of historical data to build models

capable of capturing relationships between different vari-

ables is becoming more and more frequent, either for

explanatory or predictive purposes. However, different

issues may arise when modeling a problem: the trade-off

between the explainability and accuracy of different algo-

rithms, computational complexity, etc. A common problem

to all fields is the selection of the correct information in

high-dimensional contexts. Failure to perform this task

properly can lead to problems of overfitting, that is, of poor

generalization.

Dimension reduction is generally performed in two

ways: feature extraction (FE) or feature selection (FS). FE

consists of projecting the feature space in a high-dimen-

sional space to a smaller one, while FS chooses a subset of

the original features [1]. In a large number of applications,

transforming the original variables can make it challenging

to analyze the results. This modification can be problematic
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when we need the outcomes to be interpretable, as the

intuition behind the original features is lost. That is why, in

such cases, feature selection is usually preferred [2].

Moreover, even when the dimension of the data is not so

high, it is important to follow the principle of parsimony or

Ockham’s razor, as the models built will be more

explainable and, in case they are used as predictive models,

more general and robust.

When fitting a model with real data, a very common

problem is the so-called dataset shift. This occurs when the

statistical properties of the target variable change over time

[3]. This shift may occur for seemingly arbitrary reasons,

but it may also be due to changes in the explanatory

variables. If there is not sufficiently long history of data

available since the change occurred and the affected vari-

ables are in the explanatory variables of the model, the

relationship learned by the model through these features

may be erroneous.

Feature selection algorithms do not detect this kind of

problem, as they usually take as reference a measure of the

degree of importance of the variable to determine whether

it is relevant or not. However, they do not observe whether

the effect that each variable has on the predictions is the

desired one, regardless of the magnitude of the effect.

We introduce a new method for variable selection in

regression problems that is robust to the presence of

characteristics whose behavior has changed over time and

have an undesirable effect on predictions in the current

context. This selection is done using Shapley values, as

previously considered in [4–6] or [7]. While all these works

consider a global treatment of each feature to asses their

importance, our method relates Shapley values to the errors

of the predictions in order to pay special attention to the

local effects of each variable for each prediction.

It is important to note that we do not propose a method

to detect or characterise a dataset shift, but rather that in the

event of any variable undergoing some sort of shift that

negatively influences the performance of the model, this

variable is a candidate for elimination, regardless of the

overall level of influence it has on the behavior of the

model.

The rest of the paper is organized as follows: Sect. 2

describes the types of feature selection algorithms. Sec-

tion 2.1 introduces Shapley values in the context of

machine learning, discussing their inclusion in different

variable selection algorithms. Section 2.2 introduces the

dataset shift problem and its importance in the production

of predictive models in real applications. In Sect. 3 the new

proposed algorithm is explained in detail, distinguishing

the results obtained in Section 4. Finally, the work is

concluded in Sect. 5, opening also new possible lines of

research.

2 Previous work

Feature selection is a complicated task when there is no

help from experts in the field. The selection in such cases

has to be made directly from the data and optionally by

using statistical models. Establishing the state of the art in

variable selection methods is a difficult task, as it depends

considerably on the task to be performed (classification or

regression) and the dataset employed. However, there is a

clear classification of the different types of existing meth-

ods: filters, wrappers and embedded methods.

Filters Filters make a selection of features using only

the relationships that exist between the data, and they do

not rely on the use of any model. Thus, some criterion is

used to establish a ranking among the variables and those

that exceed a certain threshold in this ranking are chosen as

relevant. Examples of different criteria are: correlation

with the target variable, information gain, Fisher score,

variance threshold or the chi-square test [1]. Since they do

not rely on a model, they tend to be computationally very

efficient methods. However, they require making assump-

tions about the data that are not always met, leading to a

selection that is not necessarily optimal under the criteria

used.

Wrappers Wrapper methods, popularized by [8], are

those that interact with a predefined model to assess the

quality of the selected feature set. The methodology is

divided into two steps: finding a feature set and assessing

the quality of the feature set [2]. Three common strategies

when proposing a dataset are forward selection, backward

selection and stepwise selection [9]. The use of meta-

heuristics, typically bio-inspired [10], is also common.

There are methods that were specifically designed for

certain models, such as the Boruta method [11] for random

forest models. The constant interaction with a model makes

them computationally more expensive than filter methods,

although the results are usually better [1].

Embedded methods Embedded methods are those that

incorporate variable selection into the learning phase of the

model. In this way, they are computationally efficient and

take advantage of the benefits of interacting with a model.

The most common are those that add some kind of regu-

larization to the learning process, so that the coefficients of

certain features are forced to be zero or close to zero [2].

Although there are complex methods, it is very common to

use Lasso regression to select variables, obtaining more

than acceptable results on many occasions, such as in time

series forecasting [12].
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2.1 Shapley values in the context of feature
selection

Shapley values [13] are a game theory concept to explain

the importance of an individual player in a collaborative

team. The idea behind the notion is based on distributing

the total gain among the players according to the relative

importance of their contributions. Specifically, the Shapley

value for player i is defined as the average marginal con-

tribution over all possible coalitions. This is

/i ¼
X

S�N nfig

jSj! ðjN j � jSj � 1Þ!
jN j! vðS [ figÞ � vðSÞð Þ

where N is the set of players and v : PðN Þ �! R a

function that returns the gain of a coalition.

This idea can be transferred to the explainability of

machine learning models [14]. Specifically, the game

would be the task of predicting an instance of the dataset,

the gain would be the difference of the prediction with the

average prediction of all instances, and the players would

be the values of the different variables that collaborate to

obtain the prediction. In this way, Shapley values allow us

to measure the influence that each variable has on a pre-

diction, distinguishing the characteristics that have a higher

or lower impact on the predictions made by a model.

However, for high-dimensional data the calculation of the

Shapley values in an exact way is not feasible, as the

computational complexity is Oð2jN jÞ.
The use of Shapley values as a local model-agnostic

technique for the explainability of machine learning mod-

els became popular with the introduction of SHAP

(SHapley Additive exPlanations) [15] and in particular

with the appearance of TreeSHAP [16], which allows the

efficient calculation of an approximation of Shapley values

for models based on decision trees. Although this approx-

imation presents problems estimating nonzero Shapley

values in features that are not relevant but have a high

correlation with variables that are influential [17, 18], it

works well in practice.

For other types of models, such as neural networks,

there are techniques such as the one presented in [19] or

[20] that allow the calculation of an approximation of the

Shapley value in polynomial time. For instance, the first

approximation is based on random sampling from the

equivalent definition of Shapley value

/i ¼
1

jPðN Þj
X

p2PðN Þ
vðPp

i [ figÞ � vðPp
i Þ

� �

where PðN Þ denotes the set of permutations of N and

Pp
i ¼ fj 2 N : pðjÞ\pðiÞg is the so-called predecessor

set of the player i, that takes the position pðiÞ in the per-

mutation p 2 PðN Þ.

Taking into account that the Shapley value can be used

to measure the influence of a characteristic on a prediction,

an overall measure of the influence of a variable can be

defined by taking the mean of the absolute values of the

Shapley values of every observation for each feature. This

measure can be used to filter by a minimum overall influ-

ence or to establish a ranking and select the k most

important variables [4]. In practice, this method works

well, although the idea of using Shapley values within the

variable selection field can be refined considerably.

A first idea is the variation of the Boruta [11] method,

Boruta-Shap [5]. Boruta-Shap, like Boruta, is based on the

use of shadow variables, which are copies of the original

variables with the values randomly permuted. The general

idea is that a variable is relevant if its importance measure

is greater than that of the best shadow variable. Boruta-

Shap modifies the algorithm by using the previously

described global influence as a measure of importance and

making technical modifications to speed up the process,

establishing that not only better feature sets are obtained

than through the original algorithm, but also in less time.

Another modification is Shapicant [6], which is inspired

by the Permutation Importance (PIMP) method, [21]. In

PIMP, a model is trained on the original data and an

importance measure is obtained for each variable. Then, a

permutation of the target variable is made and the model is

ree-trained to obtain another importance score for each of

the variables. The process is repeated several times and if a

variable is significantly more relevant on average over the

original dataset than over the randomized set, then it is

considered to be relevant. Shapicant uses the Shapley

values as a measure of importance, but separating positive

and negative values.

A new original method was proposed by [7], Powershap.

This algorithm is divided into two phases: in the Explain

component, a uniform random variable is added to the

dataset, a given model is trained and the overall influence

measure is calculated based on Shapley values for each of

the variables, including the random variable. This proce-

dure is repeated for a fixed number of iterations but varying

the random variable associated with the model to obtain

different results. In the Core part, the performance of all

the features is compared with that of the random variable

and the most important variables are determined through a

hypothesis test. Furthermore, it proposes an automatic

method to optimise the hyperparameter associated with the

number of iterations of the first component while keeping

fixed the threshold for the p-value.

It is noteworthy that all these algorithms presented

include the Shapley values through the mean of the abso-

lute values for each variable as a measure of global

influence.
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2.2 Dataset shift

The concept of dataset shift was introduced in [22], where

it is described as a phenomenon in which the joint distri-

bution of the explanatory variables and the target variable

is different between the training set and the test set used in

the creation of a statistical learning model. More formally,

given a time period 0; t½ �, a set of samples denoted

S0;t ¼ d0; . . .; dtf g, where di ¼ ðXi; yiÞ with Xi the vector of

explanatory variables and yi the target variable. Let

F0;tðX; yÞ be the distribution following S0;t, analogously

denote Stþ1;1 and Ftþ1;1ðX; yÞ for a time period

t þ 1; 1½ Þ. A dataset shift is said to occur at time t þ 1 if

F0;tðX; yÞ 6¼ Ftþ1;1ðX; yÞ, i.e., 9 t : PtðX; yÞ 6¼ Ptþ1ðX; yÞ
[23].

Independently of the model used, a typical data analysis

scheme assumes that the distribution of the data is static for

the model to be valid. If there is a variation in the distri-

bution, that change must be modeled. Such changes are

very common in real problems, such as economic, political,

social, regulatory, etc., reasons that affect the behavior of

many phenomena. This is the reason why the dataset shift

problem must be addressed.

Let t þ 1 be the instant at which the dataset shift occurs,

there are three possible reasons why the joint probability

distribution is different [24]:

1. Covariate shift which is probably the most studied type

of shift and happens when PtðyjXÞ ¼ Ptþ1ðyjXÞ but

PtðXÞ 6¼ Ptþ1ðXÞ.
2. Prior probability shift, when PtðXjyÞ ¼ Ptþ1ðXjyÞ but

PtðyÞ 6¼ Ptþ1ðyÞ
3. Concept shift, which occurs when the relationship

between the explanatory and target variables change,

that is, when PtðyjXÞ 6¼ Ptþ1ðyjXÞ but PtðXÞ ¼ Ptþ1ðXÞ
or when PtðXjyÞ 6¼ Ptþ1ðXjyÞ but PtðyÞ ¼ Ptþ1ðyÞ. It is

the most complex type of shift. An example in a

classification problem is shown in Fig. 1.

Much of the related research in this field focuses on shift

detection (whether shift occurs or not), on understanding

why it occurs (when, how and where) and on shift adap-

tation (reacting to change). It is also often treated from the

perspective of classification problems, while the field of

regression has not been explored in great depth [25]. Most

strategies designed to react to the presence of the shift are

based on retraining the models with more current data or

with data similar to those occurring in the current context,

although other strategies are possible [23]. The imple-

mentation of such strategies can be complicated and

requires constant maintenance. In addition, many algo-

rithms require a large amount of data to perform satisfac-

torily, which severely limits the use of data related to the

current paradigm.

In the particular case of a concept shift, where the

relationship between the explanatory variables and the

target variable changes, the situation where only one group

of variables is responsible for the shift may arise. If the

elimination of this group of variables still allows the con-

struction of a good statistical model, the full use of the

dataset and a much simpler model maintenance can be

achieved, as the shift will no longer be present.

3 A new feature selection algorithm
for regression problems

Generally, feature selection algorithms quantify the

importance of a variable and, based on some criterion,

determining a minimum threshold of importance to be

considered. However, they do not take into account the

effect that a variable has, i.e., a feature may have a large

impact on the decisions a model makes, but it does not

Fig. 1 In a the learned decision

frontier is observed with respect

to the training data. In b it can

be seen that the relationship

between the variables has

changed and that the decision

frontier learned in training is not

valid for the test data
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necessarily need to have the right influence. This should

not be the case in a standard static situation where the

learned behavior directly corresponds to the actual behav-

ior, but under a concept shift setting this situation is quite

common.

Here, we propose a new variable selection algorithm

that is robust to these situations. It is able to detect the

features that cause the shift in case they are among the

possible explanatory variables and, in situations where

there is no shift, performs similar or better than the state of

the art.

3.1 The intuitive idea

To achieve the goal of detecting the features that do not

have the right influence on the predictions, we will analyze

at a more local level the effect that each variable has on

each prediction. We are going to estimate this effect using

the Shapley value of the feature over the prediction. Then,

depending on the error we are making in each one of the

observations (over or under predicted), we are going to

consider it a positive or negative effect. For instance, if an

observation is under predicted, then a feature that decreases

the prediction value is not ideal, because it is contributing

to making that error higher. After that, we are going to

compute if a feature has more positive effects or negative

effects and in case the second is higher, we are going to

assign this feature a ‘‘negative influence’’ and it will be

considered for removal in an iterative process.

At a high level, the algorithm classifies the observations

based on whether their predictions result in under pre-

dicted, over predicted or well predicted. This categoriza-

tion is achieved by employing various quantiles across the

distribution of prediction errors. Subsequently, both groups

of wrongly predicted observations are analyzed separately

to investigate the impact of each feature on each group. In

essence, the study focuses on identifying variables that

contribute to the observed biases within each group.

As previously discussed, the consideration of Shapley

values within feature selection methods is not novel;

however, their use at a more local level and their associ-

ation with prediction errors represents a distinctive

approach.

Together with this local use of Shapley values, the

groups of well classified over predicted and under pre-

dicted observations are crucial for the algorithm. While we

opted to employ quantiles as a means to establish these

groups, it is important to note that this approach is not

mandatory. There may exist other criteria that are equally

suitable for creating this distinction among the observa-

tions. Alternative methods could be explored to effectively

generate these groups, potentially providing additional

insights for the analysis.

3.2 The detailed algorithm

The starting point of the algorithm is a given model and a

set of training and validation data. All variables are con-

sidered and a backward selection strategy will be estab-

lished, eliminating variables sequentially.

The first step is to train the model and obtain predictions

on the validation set. Working individually with each of

these predictions is not feasible, so three groups of obser-

vations are constructed based on the prediction error. For

this purpose, two user-selected parameters are used,

qlow; qhigh 2 ½0; 1�, which correspond to two quantiles.

Definition 1 Let x be the vector of explanatory variables

of an observation ðx; yÞ of the validation set, err(x,y) ¼
y� ŷðxÞ be the error of its prediction with the model

considered, err be the vector of errors of all predictions,

Qlow ¼ Quantileðerr; qlowÞ and Qhigh the analogue1. Let

q� be the quantile such that Pðerr� 0Þ ¼ q�, Q� the value

such that Quantileðerr; q�Þ ¼ Q� (note that Q� is not nec-

essarily 0). The following are defined as

Q�
low ¼

Qlow if 0 2 Qlow;Qhigh

h i

Q� ifQhigh\0

Qlow � ðQhigh � Q�Þ ifQlow[ 0

8
>><

>>:

Q�
high ¼

Qhigh if 0 2 Qlow;Qhigh

h i

Qhigh � Qlow � Q�� �
ifQhigh\0

Q� ifQlow[ 0

8
>><

>>:

It is said that:

• x is correctly predicted if err(x,y) 2 Q�
low

;Q�
high

h i

• x is under predicted if err(x,y) 2 Q�
high

;þ1
� �

• x is over predicted if err(x,y) 2
�
�1;Q�

low

�

In this way, it is considered that Q�
low

;Q�
high

h i
is the

correctly predicted space of errors while the complemen-

tary is wrongly predicted.

Note that in the previous definition, in case that

0 62 Qlow;Qhigh

h i
, we are simply doing a translation of

the quantiles in case the model is highly biased. Thus, the

bias of the model is included in the poorly predicted space

but keeping the same width between boundaries as in the

original proposal. In Fig. 2, it is shown graphically over the

distribution of the errors.

1 Lower case is used for the quantile and upper case for the value

associated with the quantile.
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Notation 1 Let ðx; yÞ be an observation from the valida-

tion set, ŷ the model’s prediction of that observation and

SHAPvar a function that returns the Shapley value of a

variable for an observation. The effect of a variable, var, on

an observation is denoted as

Effectvar;x ¼ sgnðSHAPvarðx; y; ŷÞÞ � SHAPvarðx; y; ŷÞ2

Note that the Shapley value could actually be taken

directly, but taking the square increases the effect of the

most influential characteristics.

The effect of a variable on a group (correctly predicted,

over predicted, under predicted) can be derived as:

Effectvar;group � Efvar;group ¼
X

x2group
Effectvar;x

Definition 2 Let var be a variable, err the vector of errors

of the predictions on the validation set, q2ðerrÞ the median

of the vector err and let C.P, O.P and U.P be the three

groups described above, we define the negative influence of

var, neg infvar, as

The general idea of the previous definition is to study

the effect that each variable has on each group of obser-

vations. Each of the cases encapsulates the following cor-

responding idea:

1. If a variable has no effect on the predictions, its

negative influence is defined as infinite, as we are

adding a variable to the model that does not contribute

with any value and thus this variable is a candidate for

overfitting.

2. In case the model is biased toward over predictions and

the variable increases the value of over predictions

(undesirable effect) and increases the value of under

predictions (desirable effect), the negative influence is

the difference of the absolute values of the undesirable

minus the desirable effects. The correctly predicted

group is always considered as a desired effect.

3. This is symmetrical to the previous case for the group

of those under predicted.

4. In case the variable increases over predictions and

decreases under predictions, the variable has an

undesired effect for all but the correcty predicted ones.

5. In any other case, the variable has no negative

influence.

Note the significance of segregating observations into dif-

ferent groups (C.P, O.P, and U.P). In each iteration, the

model may be in a distinct bias position, consistently

generating predictions that are persistently higher or lower.

The model’s position, as determined through q2ðerrÞ,

influences whether a variable’s effect can be negative or

not. For instance, when q2ðerrÞ\0, indicating a general

trend of overpredictions, a variable with a substantial effect

on causing overpredictions (large jEfO:Pj) becomes a can-

didate for having neg inf [ 0. This indicates that the

variable is one of the features contributing to the observed

bias. On the contrary, when q2ðerrÞ[ 0, indicating a

neg infvar ¼

þ1 if
X

group

jEfvar;groupj ¼ 0

jEfvar;O:Pj � jEfvar;U:Pj þ jEfvar;C:Pj
� �

if q2ðerrÞ\0; Efvar;O:P [ 0;

Efvar;U:P [ 0;

jEfvar;O:Pj[ jEfvar;U:Pj þ jEfvar;C:Pj

jEfvar;U:Pj � jEfvar;O:Pj þ jEfvar;C:Pj
� �

if q2ðerrÞ[ 0; Efvar;O:P [ 0;

Efvar;U:P [ 0;

jEfvar;U:Pj[ jEfvar;O:Pj þ jEfvar;C:Pj

jEfvar;U:Pj þ jEfvar;O:Pj � jEfvar;C:Pj if Efvar;O:P [ 0; Efvar;U:P\0;

jEfvar;U:Pj þ jEfvar;O:Pj[ jEfvar;C:Pj

0 otherwise

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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tendency of underpredictions, the same variable becomes a

candidate to significantly aid the model, as jEfO:Pj in this

case has a positive effect that helps increase the value of

predictions, thereby mitigating the current bias, and its neg

inf will be 0.

With these concepts defined, the algorithm can be fully

described (Algorithm 1)

Algorithm 1 New feature selection algorithm for regression problems

The algorithm is divided into two phases, a preliminary

and optional phase and the main component. In the first

preprocessing phase, a random variable is introduced into

the dataset, specifically, a permutation of the most influ-

ential variable according to the mean of the absolute values

of the Shapley values between the original variables. Once

included in the dataset, the global influence of each vari-

able is recalculated a certain number of times specified by

the user, where in each iteration the random seed that

determines the learning process of the algorithm is modi-

fied to obtain different influences. At the end of the pro-

cess, all those variables that have a global influence less

than or equal to that of the new variable introduced are

removed. Including this first phase seems to improve the

results when the number of variables eliminated is not too

large, since it deletes variables that only seem to introduce

noise. In case a large number of variables are excluded in

this phase, it is recommended not to apply it, since the

importance or role of each variable in the decisions of the

model may not be entirely clear.
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The second component corresponds to the core part of

the algorithm, where the effect of each variable is analyzed

when making predictions. This is a backward feature

selection scheme, i.e., variables are sequentially removed

until a criterion is no longer met. To eliminate a variable,

first the predictions in the validation set are classified

according to the error made and the qlow and qhigh
quantiles chosen (Definition 1). Then, according to the

effect of each variable on each group (Notation 1), the

negative influence is computed (Definition 2). If there are

variables that have no effect on the predictions, that is, with

infinite negative influence, in this iteration all those that

meet this property are eliminated. If all the variables have

some effect on the prediction, the variable with the greatest

negative influence is eliminated. The process ends when

there is no variable with nonzero negative influence or

when there are no more features left. At the end of each

iteration a metric (MAE, MSE, R 2, etc.) can be computed

on the predictions of the validation set in an informative

way, although it is not used to make decisions during the

process. The feature set that obtained the best value of the

metric is returned. Supposing that a value very similar to

the best could be obtained with a notably smaller number

of variables, which would also constitute a reasonable final

feature set, the user could decide to consider it.

3.3 Remarks on the algorithm

As previously mentioned, the shift is not detected explic-

itly, but in the presence of a change with a negative

influence on a variable, the proposed algorithm is able to

detect its undesired effect and evaluate whether the

preservation of the feature in the model is really beneficial.

Identifying variables that lead to changes in behavior

becomes challenging when dealing with correlated vari-

ables that jointly contribute to the observed change. Our

algorithm does not directly address this challenge due to

the complexity involved in handling both groups of fea-

tures and individualized variables automatically, especially

without expert knowledge. However, our approach indi-

rectly tackles this issue by selecting the final set of features

based on the best metric from the validation set. When

dealing with correlated features that may individually

degrade the model but collectively enhance it, we can

identify such scenarios by analyzing increases in MAE

variations between iterations in the validation set (as shown

in Fig. 10). Conversely, if correlated variables individually

improve the model but collectively worsen it, these vari-

ables might be retained without considering the potential

impact of different variable groups. To address this,

employing a cross-validation strategy, commonly used in

machine learning tasks, can help detect and rectify such

issues, facilitating the selection of a variable set expected

to perform well on the test set. In any case, if the depen-

dence between the features is a critical aspect, modifica-

tions can be adopted in the computation of the Shapley

value that do take this fact into account. This way, a closer

approximation of the true Shapley value is obtained while

maintaining the good properties that it presents. See for

example [26].

Concerning the long-term performance of the algorithm,

the main aspect to take into account, regardless of the

number of concept shifts, is the amount of data available

for a possible new behavior in order to be able to make a

proper comparison with the previous period. It should be

noted that the proposed methodology makes use of a

Fig. 2 The left-hand side shows that no translation is necessary since, given the quantiles chosen, the model does not show any significant bias.

On the right, the model tends to overpredict, so this bias is penalized by shifting the quantiles to define the correctly predicted region
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validation set that must contain a considerable part of the

data corresponding to the new context. If this volume of

data is not significant, the new context may go unnoticed

and the algorithm will not behave correctly. If the behav-

ioral changes of the phenomenon are very frequent, the

methodology presented may not be adequate for the same

reason, although part of the past data could be ignored for

feature selection if the behavior is clearly different. In any

event, over extended periods of time, the algorithm should

be run periodically to update the selection of variables that

have a positive influence in the inference.

Regarding the computational complexity of the algo-

rithm, four factors can influence it: the complexity asso-

ciated with model training, the complexity of evaluating

new observations, the efficiency in estimating the Shapley

value, and the number of considered features. While these

factors pose no issues for algorithms based on decision

trees, linear regression models, or generalized linear

models, they may make the algorithm impractical for

neural networks. To analize this case, consider, for exam-

ple, the algorithm of [20]. It gives an approximation of the

Shapley values in OðM2Þ network evaluations, where M is

the number of features, which is usually dominated by the

computational complexity associated to the network

training. When dealing with complex tasks requiring net-

works with numerous parameters, conducting all the

mentioned phases in each iteration of the algorithm can

become infeasible, despite each step being computationally

viable in polynomial time. Therefore, this limitation should

be taken into consideration.

Considering that the model is given and thus one can

consider its evaluation and training costs fixed. The com-

plexity of the algorithm depends only on the number of

features and the size of the dataset. If these are very large

and time is a critical aspect of the task at hand, the fol-

lowing strategies can be followed to decrease the com-

puting time. In the case that there is a big number of

possible explanatory features one can handle a number of

features in each iteration with the following procedure:

1. Instead of removing variables one by one, it is possible

to remove them in blocks. That is, you can set a

constant number of features or a percentage of them

(which would limit, in part, the maximum number of

iterations of the algorithm) to be deleted in each

iteration. Thus, in the corresponding iteration, the

determined M features with the greatest negative

influence would be eliminated.

2. The strategy described above can be adapted progres-

sively as the algorithm evolves. For example, when

working with algorithms that make use of a learning

rate, it is possible to start with a high learning rate and,

as the iterations go by, progressively reduce the

learning rate until a finee-grained optimization is

performed in the final iterations. This same idea can

be adopted to the presented methodology: one can start

with a high number of variables to be removed in the

first iterations and this number is decreased over the

iterations until they are again removed one at a time as

in the original methodology. Naturally, how many

features are allowed to be deleted in the first iteration,

and how this number varies, depends entirely on the

problem being addressed.

In case the computation time is related to a large number of

samples, two aspects should be taken into account:

1. Depending on the model used, the training time can be

long and costly. The user should evaluate whether all

the data are necessary to build the final model.

However, it is usual that performance improves as

more data is available, at least if it belongs to the same

behavioral context.

2. The estimation time of the Shapley value can be

reduced by using a smaller number of samples. [19]

shows that from certain orders of magnitude the

approximation of the Shapley value is practically

equivalent, so that for the feature selection task to be

performed, using all the samples is probably not

necessary.

Outliers, noise in the data or different transformations such

as data standardization or encoding of categorical variables

should not be of concern over the feature selection process

as such. The different strategies followed to make a correct

modeling of the process should be maintained, because if

performed correctly, they should improve the performance

of the algorithm. By varying any part of the base learning

algorithm in a broad sense, including the data transfor-

mation, the selection of features could change according to

the modeling that has been performed, as there is the

possibility of varying the Shapley values. However, if the

transformations were adequate, there will be a better

detection of those features with real negative influence,

because the model will be more appropriate. Even so, if

proper modeling has not been followed (e.g., outliers with a

possible crucial effect have not been eliminated or miti-

gated), this may have an impact on the removed variables

and the remaining ones may not be an optimal set. There

are no measures designed and implemented in the algo-

rithm to tackle this kind of problems, since it is considered

that these cases must be resolved beforehand.

Let us stress why this algorithm is designed to be robust

to concept shift situations. The variable importance is not

the only metric that is taken into account. In fact, the

possible bias generated by a variable is the main focus of

the algorithm. If a variable is constantly generating a bias

in the model predictions, which is common in concept shift
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contexts, then that variable is actually discarded from the

possible explanatory variables, even if it has a great impact

on the model. It is crucial to emphasize that, similar to

constant model retraining in real-world applications to

adapt to changing conditions, the reintegration of, at least,

these important features (based on a global metric like the

mean of the absolute Shapley values across all observa-

tions) should be assessed. If the feature genuinely influ-

ences the target variable, even in the presence of concept

shifts affecting that explanatory variable, there is a possi-

bility that, with a substantial amount of new collected data

related to the shift, it could once again have a positive

effect on the predictions and, therefore, in model perfor-

mance. In such instances, reintroducing it into the model

feature set should be considered. This type of mechanisms

are related to a successful long-term performance of the

algorithm. As previously mentioned, periodically re-run-

ning the algorithm is one of the best practices to check

whether the positive and negative influence of the variables

remain unchanged.

4 Experiments

To analyze the effectiveness of the algorithm, the proposed

method was compared with other feature selection algo-

rithms using different configurations. Specifically, the

quantile configurations (0.25, 0.75), (0.2, 0.8),

(0.15, 0.85), (0.1, 0.9), (0.05, 0.95), which correspond to

considering from 50% of poorly predicted observations in

the development of the algorithm to 10%, were analyzed.

In addition, 30 iterations of the preprocessing phase were

applied and the MAE is used to select the final set of

features.

The other algorithms evaluated are considered as ref-

erences in the variable selection methods: Boruta, PIMP

and Lasso as traditional methods and Boruta-Shap, Shapi-

cant and Powershap based on Shapley values. In case they

use validation and training sets to make the variable

selection, the same are introduced in all cases, if only one

dataset is used, validation and training are introduced as

one. In the particular case of the Lasso regularization, the

variables are previously normalized by the maximum and

minimum, and four different values of the regularization

constant are considered: 0.01; 0.001; 0.0001; 0.00001.

Following [7], a CatBoost estimator [27] with 250

iterations is applied on all datasets and on all variable

selection algorithms, except Lasso regression to select

features. On the test set, we analyze the MAE, RMSE and

R 2 of 50 different runs where the seed is varied to obtain

different results and to observe the stability of the results

with the selected variables. In contrast to the Verhaeghe’s

methodology, the 50 seeds are fixed in advance and the

order of the variables is always entered alphabetically,

otherwise different results could be obtained with the same

set of features2.

Two different situations are analyzed: selection of

variables with the presence of concept shift and selection of

variables in standard situations.

4.1 Concept shift

4.1.1 Synthetic experiments

We believe that analizying the method in fully controlled

toy datasets is necessary to test the effectiveness of the

method. To this end, two of the most typical dataset shift

situations have been recreated: a sudden shift and an

incremental shift [23], represented in Fig. 3.

We will try to fit the following objective function:

f ðxtÞ ¼ 2x1;t þ k1x
2
2;t þ 3 sinð2px3;tÞ � 0:4x4;t þ k2x

2
5;t

þ 2x1;t�1 þ k1x
2
2;t�1 þ 3 sinð2px3;t�1Þ � 0:4x4;t�1 þ k2x

2
5;t�1

þ et

where xt ¼ ðx1;t; . . .; x5;t; . . .; x10;tÞ 2 R10; k1; k2 2 R.

Note that only the first five variables are informative. The

scalars k1 and k2 are employed to generate diverse shift

scenarios, while et represents noise. This function has been

chosen in a way that linearities and nonlinearites are both

included. For nonlinearities standard simple functions has

been selected. An autoregressive component has been

considered, aligning with typical time series problems.

Different coefficients have chosen to visualize how the

algorithm performs with various scales of the features.

We generate 30000 samples of

xi 	Uð0; 1Þ; i ¼ 1; . . .; 10. We model the noise as a

N(0, 0.01). We also include as a possible explanatory

variable the first lag of the objective variable.

Let ka1 2 �10;�1;�0:1f g; kb1 2 �4;�0:4;�0:04f g;
ka2 2 10; 1; 0:1f g; kb2 2 �25;�2:5;�0:25f g. In order to

recreate a sudden concept shift, we define

k1 ¼
ka1; for the first 20000 samples

kb1; for the last 10000 samples

�

k2 ¼
ka2; for the first 20000 samples

kb2; for the last 10000 samples

�

To recreate an incremental concept shift situation, if we

call index to the sample number, we define:

2 To ensure the veracity and reproducibility of the results, the

different databases, the algorithm code and the results can be found at

https://github.com/CCaribe9/SHAPEffects.
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k1 ¼

ka1; for the first 20000 samples

ðkb1 � ka1Þðindex� 20000Þ þ 10000ka1
10000

; if index 2 ð20000; 25000Þ
kb1; for the last 5000 samples

8
>><

>>:

k2 ¼

ka2; for the first 20000 samples

ðkb2 � ka2Þðindex� 20000Þ þ 10000ka2
10000

; if index 2 ð20000; 25000Þ
kb2; for the last 5000 samples

8
>><

>>:

Every combination of ka1; k
b
1; k

a
2; k

b
2 is taken into account,

resulting in a total of 81 potential scenarios for both types

of shifts. This aspect holds particular interest as it enables

the analysis of the system’s behavior when the impacted

variables exhibit varying degrees of significance.

For both cases, the first 20000 samples are used for

training, the next 5000 for validation and the last 5000 as

test. The different sets are considered following a temporal

order, as in time series problems. The shift occurs inside

the validation set, which is the first moment in which the

algorithms could detect the change of behavior. The sudden

shift is considered at the start of the validation set, so there

is bigger contrast between the sudden shift and the incre-

mental shift situation, which happens throughout the entire

validation set. We compute the difference between the

mean MAE/RMSE/R 2 of the proposed algorithm with

every other method, although the standard deviation, the

minimum value and the maximum value are also measured.

Results The proposed method is called SHAPEffects.

The results are graphically described by the histogram of

each one of these differences in Figs. 4 and 5.

Only MAE outcomes are presented, as the results for

RMSE and R2 are equivalent. The obtained results are

highly encouraging, given that the difference is predomi-

nantly negative (smaller MAE). In fact, when that differ-

ence is positive, it is practically negligible. These instances

arise when the importance of one or both variables sub-

jected to the shift is almost insignificant, indicated by

comparable small coefficient values. The analysis reveals

that the disparity between the two types of shifts is mini-

mal. Moreover, the proposed algorithm consistently

achieves superior results compared to other methods. The

marginal discrepancies observed between the two shift

types arise when the influence of the variables is relatively

limited. In the case of incremental shifts, where a gradual

change occurs, the proposed algorithm may not find ben-

eficial to eliminate some of the variables that are

undergoing the shift in the validation data, as at the

beginning of the shift the variables may be contributing

correctly to the outcomes. This behavior aligns with the

approach followed by the other algorithms, contributing to

the small differences observed (see Tables 5 and 6).

For a more individualized evaluation rather than a col-

lective comparison, the mean MAE of the optimal SHA-

PEffects configuration is compared with the mean MAE of

each alternative method, and subsequently visualized on a

scatter plot (Figs. 6 and 7). Similarly, in the case of the

Lasso, the best configuration is selected, which from the

previous figures is k ¼ 0:0001.

It can be seen that when the MAE is low (when the

coefficients of the changing variables are very small) all

methods exhibit similar performance, as previously stated

out. However, as the error increases, which corresponds to

a greater increase in the influence of the variables that

undergo the change in behavior, there are situations in

which the MAE is notably greater than that obtained by our

Fig. 3 Above is a sudden shift situation. Below is an incremental shift

situation
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proposal for all the algorithms, which can be seen when we

see that no method exceeds the line y ¼ x. These behaviors

are more evident in the case of the sudden shift, although

they are also visible in the incremental case.

It is important to note that the cases in which the pro-

posed algorithm performs notably better than the other

algorithms (when the points are separated from the diag-

onal), is when one of the two variables undergoing the

change is removed. Specifically, when x5 is eliminated,

which is the most relevant one. The rest of the algorithms

do not drop these variables when they take on a

notable importance (Tables 1, 2, 3 and 4).

Furthermore, we look in detail at what we believe to be

the three most representative cases:

1. ka1 ¼ �10; kb1 ¼ �4; ka2 ¼ 10; kb2 ¼ �25 (Tables 1

and 2)

2. ka1 ¼ �1; kb1 ¼ �0:4; ka2 ¼ 1; kb2 ¼ �2:5 (Tables 3

and 4)

3. ka1 ¼ �0:1; kb1 ¼ �0:04; ka2 ¼ 0:1; kb2 ¼ �0:25

(Tables 5 and 6)

In the scenarios characterized by substantial or moderate

influence of the variables, our proposed methodology

clearly demonstrates its advantage, yielding superior

results across all provided configurations. On the contrary,

when the influence of the variables is minimal, the algo-

rithms exhibit a similar behavior. Moreover, no significant

distinction is observed between the results obtained in

Fig. 4 Histograms (for the 81 cases) of the difference of the mean MAE of the proposed method with every other algorithm for the sudden shift

case
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sudden shift cases and incremental shift cases, emphasizing

the robustness of our algorithm.

In this synthetic example, we have exclusively exam-

ined a concept shift that affects the entire validation set. It

is worth noting that if the concept shift were to be incor-

porated into the training set, the results across all

methodologies could potentially improve, depending on the

model’s ability to effectively learn from this shift. Con-

versely, if the concept shift were to occur later and later in

the validation data, at a certain point our algorithm would

no longer eliminate the variables, resulting in comparable

outcomes with the other methods, in a similar way to what

happened in the previous examples with the incremental

concept shift and small coefficient.

4.1.2 Electricity price forecasting (EPF)

The literature related to electricity price forecasting is

extensive, with day-ahead (12 to 36 h) forecasting prior to

the Day-Ahead Market being the most studied case from a

variety of perspectives [28–30]. However, the electricity

market is constantly subject to regulatory changes and is

highly influenced by political and economic situations.

Specifically, in the Iberian market, given the crisis related

to the gas price in mid-2022, a regulatory measure related

to the gas price subvention to thermal power plants was

established on June 15 2022 [31], changing the dynamics

of the electricity market. Predictive models typically use

the price of different fuels as regressors, among them the

Fig. 5 Histograms (for the 81 cases) of the difference of the mean MAE of the proposed method with every other algorithm for the incremental

shift case
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price of gas [32–34], so this change of behavior has created

a situation of uncertainty around the models. Figures 8

and 9 graphically show the change in the relationship

between the variables. There are two reasons for studying

this particular case: firstly, the issue at hand is considerably

familiar to the authors, which makes it easier and safer to

interpret. Secondly, we know that a concept shift situation

exists and at least one of the variables that is causing it,

which allows us to work in a controlled environment as

well as with real data.

The question that arises in this case is whether keeping

variables related with the gas price in the models is useful

to predict the current situation. A dataset with 335

explanatory variables linked to the electricity market,

several connected to the gas price, is available to predict

the price of the Day-Ahead Market. The data considered is

publicly available, mostly obtained from ESIOS portal,

which is an information system developed by Red Eléctrica

de España, and the data related to the gas price is obtained

from the Iberian Gas Market (MIBGAS). The main vari-

ables considered are forecasts related to renewable energy

generation, load forecasts, prices from the different mar-

kets, prices of the previous Daily Markets in France and

lagged values of the series to be predicted. To describe the

current behavior of the market with respect to each of the

characteristics, statistics of some of these same variables

during the last week are also included. These are the mean,

standard deviation, median, minimum, maximum, first

quartile, third quartile, skewness and kurtosis. The data

start in January 2021 and end in August 2022, both

included. The data are divided into: January 1, 2021 to May

31, 2022 for training, June 1, 2022 to July 31, 2022 as

validation, and August 2022 as test.

Results Following the methodology described above,

the results obtained are shown in Table 7.

The advantage of the proposed method is evident in all

aspects. All the proposed configurations achieve better

results than any other method analyzed. The configurations

(0.25, 0.75) and (0.2, 0.8) eliminate all the variables rela-

ted to the gas price, obtaining the best results. Moreover, in

these two configurations the worst-case iterations (Max

column for MAE and RMSE and Min column for R2) are

better than the average of the other variable selection

methods. In addition, not only better results are obtained,

but they are also more stable: the standard deviation is

noticeably smaller in general than with the other algo-

rithms. In particular, the best configuration is the one with

the lowest variance. Furthermore, the percentage of

improvement between our methodology and the other

methodologies is around 20-25%, which is significative.

The number of variables selected seems to be higher than

with the other methods; however, the improvement in the

quality of the predictions justifies this selection. This

essentially highlights the absence of overfitting concerns

due to a high number of features selected in alternative

methodologies, as our algorithm makes an even more

extensive selection. The phenomenon observed here is that

the features chosen by our method exhibit higher predictive

performance within the current test set context, which is

the actual key in feature selection. Recall that the selected

Fig. 6 Mean MAE of the best SHAPEffects configuration vs mean

MAE of every other method for the sudden shift case

Fig. 7 Mean MAE of the best SHAPEffects configuration vs mean

MAE of every other method for the incremental shift case

Neural Computing and Applications

123



Table 1 Test results on the first case for the sudden shift context

Algorithm MAE RMSE R2

Mean Std Max Min Mean Std Max Min Mean Std Max Min

Powershap 13.44 3.99e–

02

13.54 13.31 17.18 4.90e–

02

17.30 17.05 –1.41 1.38e–

02

–1.38 –1.45

Boruta-Shap 13.41 2.70e–

02

13.47 13.36 17.14 3.95e–

02

17.24 17.06 –1.40 1.11e–

02

–1.38 –1.43

Shapicant 19.27 3.94e–

03

19.27 19.26 22.30 1.02e–

02

22.32 22.27 –3.07 3.73e–

03

–3.06 –3.07

Boruta 13.41 2.70e–

02

13.47 13.36 17.14 3.95e–

02

17.24 17.06 –1.40 1.11e–

02

–1.38 –1.43

PIMP 13.39 2.84e–

02

13.46 13.33 17.11 3.64e–

02

17.21 17.02 –1.39 1.02e–

02

–1.37 –1.42

Best Lasso (0.001) 13.41 2.70e–

02

13.47 13.36 17.14 0.04 17.24 17.06 –1.40 1.11e–

02

–1.38 –1.43

SHAPEffects (0.25-

075)

12.89 4.64e–

02

12.97 12.78 15.89 5.14e–

02

15.98 15.76 –1.06 1.33e–

02

–1.03 –1.09

SHAPEffects (0.2-08) 12.73 4.00e–

02

12.80 12.63 15.73 4.41e–

02

15.81 15.62 –1.02 1.13e–

02

–0.99 –1.04

SHAPEffects (0.15-

085)

12.73 4.00e–

02

12.80 12.63 15.73 4.41e–

02

15.81 15.62 –1.02 1.13e–

02

–0.99 –1.04

SHAPEffects (0.1-0.9) 12.61 2.90e–

02

12.68 12.52 15.60 3.30e–

02

15.67 15.49 –0.99 8.41e–

03

–0.96 –1.01

SHAPEffects (0.05-

095)

12.80 4.63e–

02

12.91 12.69 15.82 5.07e–

02

15.94 15.69 –1.05 1.31e–

02

–1.01 –1.08

Bold values indicate the best result for that column among all the methods studied

Table 2 Test results on the first case for the incremental shift context

Algorithm MAE RMSE R2

Mean Std Max Min Mean Std Max Min Mean Std Max Min

Powershap 13.71 1.96e–

02

13.75 13.66 17.52 0.03 17.58 17.48 –1.51 7.25e–

03

–1.50 –1.53

Boruta-Shap 13.71 1.96e–

02

13.75 13.66 17.52 0.03 17.58 17.48 –1.51 7.25e–

03

–1.50 –1.53

Shapicant 19.27 4.07e–

03

19.27 19.26 22.30 0.01 22.32 22.27 –3.07 3.83e–

03

–3.06 –3.07

Boruta 13.68 2.07e–

02

13.71 13.61 17.48 0.03 17.53 17.38 –1.50 7.83e–

03

–1.47 –1.51

PIMP 13.65 1.84e–

02

13.69 13.61 17.44 0.03 17.49 17.38 –1.49 7.24e–

03

–1.47 –1.50

Best Lasso (0.001) 13.68 2.07e–

02

13.71 13.61 17.48 0.03 17.53 17.38 –1.50 7.83e–

03

–1.47 –1.51

SHAPEffects (0.25-

075)

12.97 2.54e–

02

13.04 12.91 15.98 0.03 16.06 15.92 –1.09 7.43e–

03

–1.07 –1.11

SHAPEffects (0.2-08) 12.97 2.54e–

02

13.04 12.91 15.98 0.03 16.06 15.92 –1.09 7.43e–

03

-1.07 -1.11

SHAPEffects (0.15-

085)

12.97 2.54e–

02

13.04 12.91 15.98 0.03 16.06 15.92 –1.09 7.43e–

03

–1.07 –1.11

SHAPEffects (0.1-0.9) 12.97 2.54e–

02

13.04 12.91 15.98 0.03 16.06 15.92 –1.09 7.43e–

03

–1.07 –1.11

SHAPEffects (0.05-

095)

12.97 2.54e–

02

13.04 12.91 15.98 0.03 16.06 15.92 –1.09 7.43e–

03

–1.07 –1.11

Bold values indicate the best result for that column among all the methods studied
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variables are those that obtain the best MAE in the vali-

dation (Fig. 10).

Another possible selection, as discussed above, would

be the use of a smaller number of variables with a slightly

higher MAE, since it can be observed that the elimination

of the last variables does not produce a significant increase

in MAE. It is also possible to observe a considerable

increase in the MAE seven iterations later from the optimal

MAE obtained during the process. It could be studied

which variable causes this increase and if its elimination is

really advantageous.

4.1.3 Another real world example

In order to validate the results, we analyzed one more real

world data example: the Sberbank Russian Housing Market

dataset [35]. It corresponds to data from a Kaggle com-

petition with the objective of predicting the price of dif-

ferent houses. As the objective is not to obtain the best

result in this dataset, only the training data have been used,

which have been divided into three different sets chrono-

logically, previously eliminating all the null data. As

explanatory variables we have different variables related to

information about the area in which each property is

located. On the Kaggle competition website itself, a con-

cept shift situation is described: ‘Although the housing

market is relatively stable in Russia, the country’s volatile

economy makes forecasting prices as a function of apart-

ment characteristics a unique challenge’. This perfectly

describes a common situation in which we know that we

are in a concept shift scenario, but our knowledge is limited

regarding the presence of any potentially responsible

Table 3 Test results on the second case for the sudden shift context

Algorithm MAE RMSE R2

Mean Std Max Min Mean Std Max Min Mean Std Max Min

Powershap 1.79 2.63e–03 1.79 1.78 2.23 2.79e–03 2.23 2.22 0.53 1.18e–03 0.53 0.53

Boruta-Shap 1.79 2.63e–03 1.79 1.78 2.23 2.79e–03 2.23 2.22 0.53 1.18e–03 0.53 0.53

Shapicant 1.79 2.43e–03 1.80 1.78 2.23 2.33e–03 2.24 2.22 0.53 9.90e–04 0.53 0.52

Boruta 1.79 2.43e–03 1.80 1.78 2.23 2.33e–03 2.24 2.22 0.53 9.90e–04 0.53 0.52

PIMP 1.74 1.55e–03 1.74 1.73 2.16 1.60e–03 2.16 2.15 0.56 6.59e–04 0.56 0.55

Best Lasso (0.001) 1.79 2.63e–03 1.79 1.78 2.23 2.79e–03 2.23 2.22 0.53 1.18e–03 0.53 0.53

SHAPEffects (0.25-075) 1.70 2.60e–03 1.71 1.69 2.11 2.70e–03 2.11 2.10 0.58 1.08e–03 0.58 0.58

SHAPEffects (0.2-08) 1.70 2.25e–03 1.70 1.69 2.10 2.65e–03 2.11 2.10 0.58 1.06e–03 0.58 0.58

SHAPEffects (0.15-085) 1.70 2.56e–03 1.70 1.69 2.10 2.76e–03 2.11 2.09 0.58 1.10e–03 0.58 0.58

SHAPEffects (0.1-0.9) 1.70 2.83e–03 1.70 1.69 2.11 3.08e–03 2.11 2.10 0.58 1.23e–03 0.58 0.58

SHAPEffects (0.05-095) 1.70 2.56e–03 1.70 1.69 2.10 2.76e–03 2.11 2.09 0.58 1.10e–03 0.58 0.58

Bold values indicate the best result for that column among all the methods studied

Table 4 Test results on the second case for the incremental shift context

Algorithm MAE RMSE R2

Mean Std Max Min Mean Std Max Min Mean Std Max Min

Powershap 1.79 4.44e–03 1.80 1.78 2.23 3.76e–03 2.24 2.22 0.53 1.60e–03 0.53 0.52

Boruta-Shap 1.79 4.44e–03 1.80 1.78 2.23 3.76e–03 2.24 2.22 0.53 1.60e–03 0.53 0.52

Shapicant 1.79 4.10e–03 1.80 1.78 2.23 3.04e–03 2.24 2.23 0.53 1.29e–03 0.53 0.52

Boruta 1.79 4.10e–03 1.80 1.78 2.23 3.04e–03 2.24 2.23 0.53 1.29e–03 0.53 0.52

PIMP 1.74 1.49e–03 1.74 1.73 2.16 1.39e–03 2.16 2.15 0.56 5.71e–04 0.56 0.56

Best Lasso (0.001) 1.79 4.44e–03 1.80 1.78 2.23 3.76e–03 2.24 2.22 0.53 1.60e–03 0.53 0.52

SHAPEffects (0.25-075) 1.70 2.92e–03 1.71 1.69 2.11 2.87e–03 2.11 2.10 0.58 1.15e–03 0.58 0.58

SHAPEffects (0.2-08) 1.70 3.67e–03 1.71 1.69 2.10 3.27e–03 2.11 2.10 0.58 1.31e–03 0.58 0.57

SHAPEffects (0.15-085) 1.70 2.34e–03 1.70 1.69 2.10 2.35e–03 2.11 2.09 0.58 9.40e–04 0.58 0.58

SHAPEffects (0.1-0.9) 1.70 2.34e–03 1.70 1.69 2.10 2.35e–03 2.11 2.09 0.58 9.40e–04 0.58 0.58

SHAPEffects (0.05-095) 1.79 4.44e–03 1.80 1.78 2.23 3.76e–03 2.24 2.22 0.53 1.60e–03 0.53 0.52

Bold values indicate the best result for that column among all the methods studied
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feature, and, if such a feature exists, which specific one it

may be.

Results The results are shown in Table 8.

Once more, a notable disparity becomes apparent

between each configuration of the proposed method and the

remaining algorithms, with the former standing out

prominently. The algorithm that achieves closer results is

the Lasso, but uses five times more variables than the best

provided configuration so, in this case, this extended

selection is not justified. Again, in this instance, the worst

results obtained in each metric by the best configuration of

our methodology is better than the best results obtained by

most of the other algorithms. Moreover, in this dataset

there is up to a 14% improvement, which is considerable

but not as high as in the EPF example. In this particular

instance, the specific variables that were excluded,

resulting in the algorithm’s superior performance, remain

unidentified, but it would be interesting to analyze each one

of the features that produces big decreases in MAE during

the procedure. As mentioned earlier, it is important to note

that the intention of the proposed algorithm is not to detect

these features but rather to eliminate them if they are

present.

4.2 Static scenarios

Other datasets presenting a more static situation between

training, validation and test sets are now analyzed. It is also

relevant to study the behavior in this context, because we

would like the algorithm to behave as good as possible in

all kinds of scenarios. They are all available in Kaggle or in

the UCI machine learning repository [36]:

Table 5 Test results on the third case for the sudden shift context

Algorithm MAE RMSE R2

Mean Std Max Min Mean Std Max Min Mean Std Max Min

Powershap 1.289 0.002 1.293 1.285 1.583 0.002 1.586 1.578 0.733 6.503e–04 0.734 0.732

Boruta-Shap 1.289 0.002 1.293 1.285 1.583 0.002 1.586 1.578 0.733 6.503e–04 0.734 0.732

Shapicant 1.291 0.002 1.295 1.287 1.587 0.002 1.591 1.583 0.731 6.189e–04 0.733 0.730

Boruta 1.291 0.002 1.295 1.287 1.587 0.002 1.591 1.583 0.731 6.189e–04 0.733 0.730

PIMP 1.351 0.002 1.357 1.347 1.669 0.002 1.673 1.666 0.703 6.029e–04 0.704 0.702

Best Lasso (0.001) 1.289 0.002 1.293 1.285 1.583 0.002 1.586 1.578 0.733 6.503e–04 0.734 0.732

SHAPEffects (0.25-075) 1.294 0.002 1.300 1.290 1.591 0.002 1.595 1.587 0.730 6.990e–04 0.731 0.728

SHAPEffects (0.2-08) 1.295 0.002 1.301 1.291 1.593 0.002 1.598 1.589 0.729 7.447e–04 0.731 0.727

SHAPEffects (0.15-085) 1.291 0.002 1.295 1.287 1.587 0.002 1.591 1.583 0.731 6.189e–04 0.733 0.730

SHAPEffects (0.1-0.9) 1.294 0.002 1.298 1.290 1.589 0.002 1.593 1.585 0.731 7.544e–04 0.732 0.729

SHAPEffects (0.05-095) 1.293 0.002 1.297 1.286 1.587 0.002 1.591 1.581 0.731 6.873e–04 0.733 0.730

Bold values indicate the best result for that column among all the methods studied

Table 6 Test results on the third case for the incremental shift context

Algorithm MAE RMSE R2

Mean Std Max Min Mean Std Max Min Mean Std Max Min

Powershap 1.291 0.002 1.295 1.286 1.585 0.002 1.589 1.581 0.732 7.101e–04 0.733 0.730

Boruta-Shap 1.289 0.002 1.294 1.284 1.583 0.002 1.588 1.578 0.733 7.179e–04 0.734 0.731

Shapicant 1.291 0.002 1.295 1.288 1.587 0.002 1.592 1.584 0.731 6.103e–04 0.732 0.730

Boruta 1.291 0.002 1.295 1.288 1.587 0.002 1.592 1.584 0.731 6.103e–04 0.732 0.730

PIMP 1.351 0.002 1.355 1.347 1.669 0.002 1.672 1.665 0.703 5.940e–04 0.704 0.702

Best Lasso (0.001) 1.289 0.002 1.294 1.284 1.583 0.002 1.588 1.578 0.733 7.179e–04 0.734 0.731

SHAPEffects (0.25-075) 1.293 0.002 1.298 1.287 1.588 0.002 1.594 1.582 0.731 7.552e–04 0.733 0.729

SHAPEffects (0.2-08) 1.294 0.002 1.299 1.290 1.591 0.002 1.596 1.587 0.730 6.544e–04 0.731 0.728

SHAPEffects (0.15-085) 1.289 0.002 1.294 1.284 1.583 0.002 1.588 1.578 0.733 7.179e–04 0.734 0.731

SHAPEffects (0.1-0.9) 1.294 0.002 1.300 1.290 1.589 0.003 1.595 1.582 0.730 8.828e–04 0.733 0.728

SHAPEffects (0.05-095) 1.289 0.002 1.294 1.284 1.583 0.002 1.588 1.578 0.733 7.179e–04 0.734 0.731

Bold values indicate the best result for that column among all the methods studied
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Fig. 8 The time series of the Day-Ahead market price and the gas price are observed. Before the regulatory change it can be seen that certain

peaks in the price of electricity correspond to peaks in the price of gas. After the regulatory change the relationship is not so direct

Fig. 9 The correlation between

the electricity price and gas

price variables by month can be

seen: the relationship from May

2022 onwards has changed and,

although it seems to recover, it

should be taken into account

that this indicator does not

represent that the relationship is

the same as before
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• CAT Scan Localization3. This dataset consists of 384

features extracted from Computed Tomography (CT)

images. The target variable denotes the relative location

of the CT slice on the axial axis of the human body. The

data were obtained from a set of 53500 CT images from

74 different patients. Each CT slice is described by two

histograms in polar space. The first histogram describes

the location of bony structures in the image, the second

one the location of air inclusions inside the body. Both

histograms are concatenated to form the final feature

vector. Bins outside the image are marked with the

value -0.25. The target variable (relative location of an

image on the axial axis) was constructed by manually

annotating up to 10 different landmarks in each CT

Table 7 Daily market price prediction test results

Algorithm MAE RMSE R2 Number of variables

Mean Std. Max Min Mean Std. Max Min Mean Std. Max Min

Powershap 23.13 2.23 31.88 19.28 29.37 2.39 38.76 25.25 0.09 0.16 0.33 –0.57 107

Boruta-Shap 23.2 2.06 30.57 19.65 29.58 2 36.14 25.79 0.08 0.13 0.31 –0.36 53

Shapicant 22.04 1.5 25.85 19.26 28.24 1.63 32.49 24.94 0.16 0.1 0.35 –0.1 11

Boruta 23.49 3.16 33.86 18.35 29.84 3.25 40.55 23.72 0.06 0.22 0.41 –0.72 68

PIMP 23.31 1.73 27.72 20.11 29.49 1.75 33.96 26.19 0.09 0.11 0.28 –0.2 56

Best Lasso (0.0001) 22.79 1.81 30.01 19.5 29.22 1.96 36.03 25.96 0.1 0.13 0.3 –0.36 47

SHAPEffects 0.25-

0.75

18.27 0.99 20.27 16.47 23.36 1.13 26.48 21.19 0.43 0.06 0.53 0.27 122

SHAPEffects 0.2-0.8 16.97 0.77 19.32 15.77 21.5 0.86 23.36 20.02 0.52 0.04 0.58 0.43 111

SHAPEffects 0.15-

0.85

19.01 1.69 23.88 16.4 23.78 1.83 28.83 21 0.41 0.09 0.54 0.13 136

SHAPEffects 0.1-0.9 20.57 1.88 27.72 16.7 25.77 2.1 33.51 21.51 0.3 0.12 0.52 –0.17 78

SHAPEffects 0.05-

0.95

21 1.5 24.21 18.5 27.19 1.68 31.34 23.87 0.23 0.1 0.4 –0.03 133

Bold values indicate the best result for that column among all the methods studied

Fig. 10 Variation of MAE in the validation set over the iterations of the proposed variable selection procedure. The configuration shown is

(0.2, 0.8)

3 https://archive.ics.uci.edu/ml/datasets/

Relative?location?of?CT?slices?on?axial?axis.

Neural Computing and Applications

123

https://archive.ics.uci.edu/ml/datasets/Relative%2blocation%2bof%2bCT%2bslices%2bon%2baxial%2baxis
https://archive.ics.uci.edu/ml/datasets/Relative%2blocation%2bof%2bCT%2bslices%2bon%2baxial%2baxis


volume with known location. The location of the slices

between landmarks was interpolated. The division into

training, validation and test is done randomly.

• Appliances Energy Prediction4 [37]. The aim in this

dataset is to predict the energy consumption of house-

hold appliances in a low energy building. For this

purpose, the consumption of the appliances every 10

min has been stored for 4 and a half months. There are

28 possible explanatory variables, including tempera-

ture, humidity and different weather conditions of

nearby places of interest. There are also two random

variables in the dataset. The division into training,

validation and test is random.

• Max Planck Weather Dataset5. It is a dataset with 12

atmospheric characteristics over time taken every 10

min. The variable to predict is the wind speed after first

filtering only by hourly values and eliminating data

with negative wind speed. In order to have more

variables, lags from one day to one week are considered

for each of the variables, resulting in 80 possible

explanatory variables, also considering month and time.

The division is also done chronologically: from 2009 to

2015 for training, 2015 for validation and 2016 for

testing.

Results All results are shown in the Tables 9, 11, 11.

In general, very close results can be observed among all

methods. For the CAT Scan Localization dataset (Table 9),

the selection of variables through Lasso regression seems

to obtain the best results. The proposed method behaves

similarly to the other algorithms, with very similar results

for all five configurations. A similar situation occurs with

the Appliances Energy Prediction dataset (Table 10),

where Powershap, Boruta and Boruta-Shap obtain the best

result. The proposed method is slightly worse than them

and better than the other methods. In the remaining dataset

(Table 11), the described methodology obtains the best

results, selection via Lasso regression performs similarly

but with a much smaller number of variables. Thus, our

methodology got equivalent results to the other methods in

the three datasets, with a number of variables in the upper

range of those of the models analyzed. In these instances,

the variation in improvement between the different

methodologies is only around 1%, so we are able to say

that the methods achieve equivalent results. Consequently,

it can be asserted that the proposed methodology exhibits

the capability to discern features that lack substantive

impact on the target variable, thereby mitigating overfitting

and the imposition of artificial relationships that are not

actually present as well as the other methods.
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4 https://archive.ics.uci.edu/ml/datasets/

Appliances?energy?prediction.
5 https://www.bgc-jena.mpg.de/wetter/.
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5 Conclusions and future lines of research

A new feature selection method for regression problems

has been developed. The algorithm is based on the idea of

observing how the variables of a certain model influence

when making predictions, independently of the global

influence they have. Specifically, a relationship is estab-

lished between the model errors and the Shapley values,

allowing for a more local analysis than the other feature

selection algorithms. On the one hand, in situations where

there is a concept shift, the algorithm is able to find the

features that undergo this change of behavior in case they

are available and have a negative influence on the predic-

tions made by the model. Therefore, these variables are

eliminated, leading to higher predictive performance and

easier maintenance of the model after it has been put into

production. On the other hand, in static situations, the

model is able to detect the variables that cause overfitting

obtaining comparable results with the state of the art. These

variables create forced relationships in training, hence the

effects they produce in the validation stage result in an

undesired negative influence and, thus, are eliminated.

There are two clear problems to tackle as a continuation

of this work. An interesting future line of research would

be the omission of the parameters qlow and qhigh. As

observed, these parameters of the algorithm can change the

development of the algorithm iterations, producing differ-

ent results in each case. Automatic selection of such

quantiles in advance or varying between iterations in an

optimal way would facilitate the use of the method. From a

broader perspective, the generalization of our methodology

to classification problems would be a natural extension of

Table 9 Test results on CAT Scan Localization dataset

Algorithm MAE RMSE R2 Number of variables

Mean Std. Max Min Mean Std. Max Min Mean Std. Max Min

Powershap 4.42 0.09 4.62 4.2 7.12 0.17 7.46 6.78 0.89 5.00E-03 0.9 0.88 147

Boruta-Shap 4.37 0.09 4.61 4.16 7.11 0.17 7.5 6.72 0.89 5.00E-03 0.9 0.88 155

Shapicant 4.79 0.07 4.92 4.59 8.07 0.14 8.34 7.7 0.86 5.00E-03 0.87 0.85 63

Boruta 4.41 0.11 4.67 4.12 7.19 0.19 7.55 6.62 0.89 6.00E-03 0.9 0.87 182

PIMP 4.82 0.08 4.97 4.64 7.94 0.16 8.33 7.61 0.86 6.00E-03 0.87 0.85 33

Best Lasso (0.001) 4.32 0.08 4.47 4.12 7.01 0.15 7.31 6.54 0.89 5.00E-03 0.9 0.88 98

SHAPEffects 0.25-0.75 4.42 0.09 4.63 4.2 7.1 0.16 7.44 6.6 0.89 5.00E-03 0.9 0.88 174

SHAPEffects 0.2-0.8 4.45 0.08 4.62 4.26 7.32 0.15 7.61 6.96 0.88 4.00E-03 0.89 0.87 159

SHAPEffects 0.15-0.85 4.78 0.08 5.02 4.63 7.87 0.18 8.38 7.5 0.86 6.00E-03 0.88 0.84 105

SHAPEffects 0.1-0.9 4.45 0.11 4.72 4.2 7.23 0.18 7.78 6.66 0.88 5.00E-03 0.9 0.87 158

SHAPEffects 0.05-0.95 4.36 0.08 4.61 4.21 7.15 0.16 7.59 6.76 0.89 5.00E-03 0.9 0.87 168

Bold values indicate the best result for that column among all the methods studied

Table 10 Test results on appliances energy prediction dataset

Algorithm MAE RMSE R2 Number of variables

Mean Std. Max Min Mean Std. Max Min Mean Std. Max Min

Powershap 42.24 0.23 42.74 41.7 81.84 0.41 82.79 81.02 0.39 6.00E-03 0.4 0.37 24

Boruta-Shap 42.24 0.23 42.74 41.7 81.84 0.41 82.79 81.02 0.39 6.00E-03 0.4 0.37 24

Shapicant 45.04 0.22 45.51 44.66 84.74 0.33 85.57 84 0.34 5.00E-03 0.35 0.33 10

Boruta 42.24 0.23 42.74 41.7 81.84 0.41 82.79 81.02 0.39 6.00E-03 0.4 0.37 24

PIMP 45.15 0.21 45.52 44.56 85.53 0.33 86.22 84.28 0.33 5.00E-03 0.35 0.32 10

Best Lasso (0.00001) 42.7 0.25 43.23 42.21 82.33 0.36 83.28 81.55 0.38 5.00E-03 0.39 0.37 26

SHAPEffects 0.25-0.75 42.57 0.19 43.01 42.09 82.61 0.34 83.38 81.97 0.38 5.00E-03 0.39 0.36 23

SHAPEffects 0.2-0.8 42.57 0.19 43.01 42.09 82.61 0.34 83.38 81.97 0.38 5.00E-03 0.39 0.36 23

SHAPEffects 0.15-0.85 42.57 0.19 43.01 42.09 82.61 0.34 83.38 81.97 0.38 5.00E-03 0.39 0.36 23

SHAPEffects 0.1-0.9 42.36 0.21 42.78 41.8 81.94 0.35 82.59 81.2 0.39 5.00E-03 0.4 0.38 25

SHAPEffects 0.05-0.95 43.22 0.19 43.8 42.82 82.94 0.41 84.04 82 0.37 6.00E-03 0.38 0.35 19

Bold values indicate the best result for that column among all the methods studied
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this research, contributing to the different studies that

already exist on concept shift and feature selection in this

area but with a different perspective.
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