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Abstract
The forensic-based investigation (FBI) is a metaheuristic algorithm inspired by the criminal investigation process. The

collaborative efforts of the investigation and pursuit teams demonstrate the FBI’s involvement during the exploitation and

exploration phases. When choosing the promising population, the FBI algorithm’s population selection technique focuses

on the same region. This research aims to propose a dynamic population selection method for the original FBI and thereby

enhance its convergence performance. To achieve this objective, the FBI may employ dynamic oppositional learning

(DOL), a dynamic version of the oppositional learning methodology, to dynamically navigate to local minima in various

locations. Therefore, the proposed advanced method is named DOLFBI. The performance of DOLFBI on the CEC2019 and

CEC2022 benchmark functions is evaluated by comparing it with several other popular metaheuristics in the literature. As

a result, DOLFBI yielded the lowest fitness value in 18 of 22 benchmark problems. Furthermore, DOLFBI has shown

promising results in solving real-world engineering problems. It can be argued that DOLFBI exhibits the best convergence

performance in cantilever beam design, speed reducer, and tension/compression problems. DOLFBI is often utilized in

truss engineering difficulties to determine the minimal weight. Its success is comparable to other competitive MAs in the

literature. The Wilcoxon signed-rank and Friedman rank tests further confirmed the study’s stability. Convergence and

trajectory analyses validate the superior convergence concept of the proposed method. When the proposed study is

compared to essential and enhanced MAs, the results show that DOLFBI has a competitive framework for addressing

complex optimization problems due to its robust convergence ability compared to other optimization techniques. As a

result, DOLFBI is expected to achieve significant success in various optimization challenges, feature selection, and other

complex engineering or real-world problems.

Keywords Forensic-based investigation � Dynamic oppositional based learning � Metaheuristics � Engineering problems �
Truss topology optimization

1 Introduction

Converging to optimal results for practical and complex

optimization problems is a common challenge in real-

world problems. In particular, complex and difficult-to-

converge engineering and mathematical problems have led

to the development of various optimization techniques.

Various derivative-based methods are used in the opti-

mization of mathematical equations. Among these methods

are Newton-based approach [1], Broyden–Fletcher–Gold-

farb–Shanno Algorithm [2], Adadelta [3], AdaGrad [4],

etc. On the other hand, derivative-independent optimiza-

tion techniques such as population-based, sequential

model-based, local optimization hill climbing, and global

optimization [5]. Metaheuristic algorithms (MAs), typi-

cally designed and implemented based on population

dynamics, yield effective solutions for mathematical and

real-world problems. MAs have a rapid and effective

convergence strategy due to their ability to handle non-
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convex problems and their structure, which does not rely

on derivatives.

The inspiration of MAs from natural and mathematical

phenomena leads to increased cases due to randomness.

However, metaheuristic techniques illuminate many issues

related to effective search and convergence methods. MAs

progress through two stages: exploitation and exploration.

The balance of these two phases is required for a meta-

heuristic technique. If this balance is not maintained, either

the local search becomes excessively practical and misses

the global optimum point, or the global search becomes

excessively practical. Even if the global optimal zone is

found, it may not be converged to the local optimum point

[6].

There are four types of MAs: evolution-based, swarm-

based, physics/mathematics-based, and human-based.

Evolutionary algorithms simulate natural selection and

genetic crossover processes. This category includes algo-

rithms such as genetic algorithms (GA) [7], evolution

strategies (ES) [8], and genetic programming (GP) [9].

Swarm-based algorithms solve optimization problems by

mimicking the behavior of living organisms that naturally

move in groups. Algorithms such as particle swarm opti-

mization (PSO) [10–12], ant colony optimization (ACO)

[13], and artificial bee colony (ABC) [14] are evaluated in

this group. Physics and mathematics-based algorithms are

designed to solve problems that require optimization using

principles from physics and mathematics. Examples of

some physics and mathematics-based metaheuristic algo-

rithms include simulated annealing (SA) [15], gravitational

search (GSA) [16], and black hole algorithm (BH) [17].

Human-based metaheuristic algorithms are algorithms

inspired by human behavior or interactions. Each human-

based algorithm utilizes human social skills to explore and

enhance solutions, mimicking various human interactions

and sources of information. Each human-based algorithm

uses human social skills to examine and improve solutions

while mimicking different human interactions or sources of

information. Tabu Search (TS) [18], teaching learning-

based optimization (TLB) [19], and forensic-based inves-

tigation algorithm (FBI) [20] improved in this study are

also considered under this category.

MAs may differ in their application areas, performance,

advantages, and disadvantages. At this point, MA devel-

opment, enhancement, and hybridization have recently

gained significant attention in the literature as crucial

subjects for achieving more effective and efficient opti-

mization solutions. New methods can be proposed by

integrating techniques that involve parameter adjustments,

changing operators, selection strategies, elitism, and local

search, and by enhancing population distribution within the

framework of metaheuristic algorithms. Oppositional based

learning (OBL) [21] is a learning paradigm and one of the

approaches utilized for improvement. OBL can be used in

artificial intelligence to address problems like data mining,

classification, prediction, and pattern recognition. OBL

improves learning by utilizing the conflicting characteris-

tics of two opposed notions. This situation develops as a

means for the metaheuristic algorithm to improve effi-

ciency and performance in reaching the ideal result across

multiple solution spaces by picking diverse populations.

Dynamic oppositional based learning (DOL) [22] is a

dynamically adapted version of the OBL. In contrast to

OBL, DOL seeks to improve results by making the process

more flexible and adaptive. With DOL, reacting to

changing conditions more efficiently and getting the best

results thus far may be feasible. DOL can update features

dynamically to meet shifting data distributions and evolv-

ing features over time. When new data is added, or old data

is discarded, it can recalculate and optimize conflicting

notions, emphasizing DOL’s adaptable nature.

The following are some of the uses of the OBL and its

derivatives in metaheuristic and usage areas: Balande and

Shrimankar created the OBL learning paradigm in collab-

oration with TLB, a human-based metaheuristic for opti-

mizing the permutation flow-shop scheduling problem

[23]. Izci et al. enhanced the arithmetic optimization

algorithm with modified OBL (mOBL-AOA) [24] and

applied it to benchmarks. Elaziz et al. used DOL with

atomic orbit search (AOSD) for the feature selection

problems [25]. Sharma et al. introduced DOL-based bald

eagle search for global optimization issues, naming it self-

adaptive bald eagle search (SABES). Shahrouzi et al.

proposed static and dynamic OBL with colliding bodies

optimization, a robust optimization technique tested using

global optimization benchmarks in numerous engineering

applications [26]. Khaire et al. integrated the OBL and

sailfish optimization algorithm to identify the prominent

features from a high-dimensional dataset [27]. Wang et al.

have proposed hybrid aquila optimizer and artificial rabbits

optimization algorithms with dynamic chaotic OBL

(CHAOARO) for some engineering problems [28]. Yildiz

et al. utilized a hybrid flow direction optimizer-dynamic

OBL for constrained mechanical design problems [29].

Although the algorithms stated above are widely

employed in numerous sectors in the literature, new

methods for MAs are continually being presented. This is

because not all optimization issues can be solved by a

metaheuristic method. The no free lunch (NFL) theorem

provides additional evidence for this [30]. As a result,

when a novel approach is proposed, it is validated against

real-world issues and mathematical benchmark functions.

This study proposes using the DOL paradigm to create the

FBI algorithm. The FBI algorithm includes stages for

investigation and pursuit. Here, two distinct demographic

groupings are involved in two stages. The goal of the
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investigation phase is to locate where suspicion is most

likely to exist. The uncertainty probability is computed to

ascertain this. The location indexes calculated in the orig-

inal FBI are chosen randomly. In DOLFBI, however, the

DOL updated the location and relayed to the chase team.

Similar activities are carried out during the pursuit stage,

and the location information collected by DOL is trans-

mitted back to the investigation stage. This method is

repeated until the optimal location is determined using the

probability values.

The primary motivations and contributions of this paper

are given as follows:

• The present work suggests an enhanced algorithm for

forensic-based learning through the use of oppositional

based learning (DOLFBI).

• The DOL paradigm has been added to the FBI for

opposite population selection. The study proposes

improving the FBI algorithm’s random population

selection process by applying opposite integers because

opposed numbers narrow the search space, allowing for

more effective scanning and faster convergence.

• Benchmark suites (CEC2019 and CEC2022), engineer-

ing, and truss topology problems are all being used to

evaluate convergence capabilities. In particular, truss

topology problems are significant and complex opti-

mization problems specific to civil engineering. In other

words, the goal of the truss topology problem is to

minimize the weight of distinct structural components

produced from different node numbers to determine the

optimal sections.

• The proposed method has been tested with metaheuris-

tics commonly used in the literature, and its conver-

gence ability has been studied using average and best

findings. Furthermore, the Wilcoxon sign and Friedman

rank tests were used to validate the results.

The article’s organization is as follows: Sect. 2.1 and their

subsections have the working principle, algorithmic struc-

ture, and mathematical model of the FBI algorithm. Sec-

tion 2.2 discusses the DOL paradigm and its impact and

added value. Section 3 consists of the working flow of the

FBI algorithm developed with DOL and the pseudo-codes

of the proposed method DOLFBI. Section 4 includes

parameter settings of the proposed and compared algo-

rithms, properties, and experimental results of the

CEC2019 and CEC2022 benchmarks, well-known engi-

neering problems, and truss topology optimization prob-

lems, supporting the results with statistical tests. Sect. 5

includes an overview of the study and future objectives.

2 Materials and methods

The basic FBI algorithm and the DOL principle, which

form the basis of the proposed DOLFBI algorithm, will be

explored in detail under subheadings in this section.

2.1 Forensic-based investigation algorithm

This section describes the forensic investigation procedure,

the details of the suggested algorithm and its mathematical

model. A visual of the investigation process and a flow

diagram of the FBI algorithm’s operation are presented for

further clarity.

2.1.1 Steps of the forensic investigation process

Forensic investigation is one of the most risky tasks in

which law enforcement is frequently involved for any

country. For each research, a different path may be

required. In some cases, the incident immediately enters

the suspect management phase, and in others, the crimi-

nal’s name may be disclosed due to multiple investigations.

However, research activities tend to be comparable [20].

Salet [31] stated that a large-scale forensic investigation

by police officers consists of five steps, and Fig. 1 illus-

trates these five steps. Steps 2, 3 and 4 are defined as a

cyclical process.

These phases, along with their explanations, are outlined

as follows:

• Open a case: The information discovered by the first

police officers on the scene launches the investigation.

Team members look into the crime scene, the victim,

potential suspects, and background information. They

also locate and question potential witnesses.

• Interpretation of findings: Team members attempt to

gain an overview of all accessible information. The

team attempts to connect this knowledge to their

present situation perception.

Fig. 1 The phases of the investigation process
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• Direction of inquiry: This is the stage at which team

members construct distinct hypotheses based on their

Interpretation of the findings. Based on these findings,

the team approves, modifies, or terminates a new

direction or current research recommendations.

• Actions: In light of the lines of research and the

determined priorities, the team makes decisions on

other actions. Priorities are vital at this step, and the

most promising research direction is explored first. As a

result, new information may be presented, and the team

assesses its meaning or implications based on the

information available. Changes in research and action

may be required to interpret new findings.

• Prosecution: This process is repeated until a clear and

unambiguous picture of the incident is obtained. It ends

when a serious suspect is identified before determining

whether or not to prosecute them.

There are no hard and fast rules governing the number of

police officers involved in an investigation, and this num-

ber is frequently tied to the gravity, difficulty, and com-

plexity of the case.

2.1.2 Mathematical model of the algorithm

The FBI algorithm is a human-based metaheuristic algo-

rithm inspired by police officers’ forensic investigation

processes. An investigation can be launched after receiving

notification of criminal activity. The investigation involves

identifying physical evidence, acquiring information, col-

lecting and preserving evidence, and questioning and

interrogating witnesses and suspects [32]. Based on the

information gathered and witness declarations, all probable

suspects within the search area are identified, and likely

locations are determined. The FBI makes two assumptions:

there is a single most sought suspect in an incident, and that

individual remains in hiding throughout the investigation.

The process results in the capture and arrest of the suspect.

An investigation team is organized to investigate ‘‘sus-

picious places,’’ prospective hiding places for the suspect.

After the investigative team has determined the most likely

location, a search area is established, and a pursuit team is

assembled. All tracking team members travel to the indi-

cated site with team members capable of apprehending the

suspect.

The pursuit team proceeds toward the suspected location

following the head office’s orders and reports all infor-

mation regarding the suspected location. The investigation

and pursuit teams collaborate closely throughout the

investigate-find-approach process. The investigation team

directs the tracking team to approach the spots. By peri-

odically reporting the findings of their searches, the

pursuing team hopes to update the information and maxi-

mize the accuracy of future evaluations.

The algorithm includes two major stages: the investi-

gation stage (Phase A) and the pursuit stage (Phase B). The

investigator team runs Phase A and Phase B by the police

team. In Phase A, XAi
shows the ith suspected location,

i ¼ 1; 2; :::;NA. NA indicates the number of the suspected

locations to be investigated. In Phase B, XBi
shows the ith

suspected location, i ¼ 1; 2; :::;NB. NB indicates the num-

ber of the suspected locations to be investigated. Here, NA

and NB equal N, such that N shows the population size.

Since the forensic investigation is a cyclical process, the

process ends when the current iteration count (t) reaches

the maximum iteration count (tMax).

Stage A1 The interpretation of the findings portion of the

forensic investigation process corresponds to Stage A1.

The team analyzes the data and pinpoints any suspect

spots. Every conceivable suspect location is investigated in

light of other discoveries. First, a new suspicious location

named XA1i is extracted from XAi
based on information

about XAi
and other suspicious locations. The general for-

mula of the movement for this study, in which each indi-

vidual is assumed to act under the influence of other

individuals, is as Eq. (1):

XA1ij ¼ XAij
þ ððR� 0:5Þ � 2Þ �

Xa1

a¼1

XAaj

 !.
a1;

j ¼ 1; 2; :::;Dim

ð1Þ

where Dim is the problem size (dimension), R corresponds

to a random number in the range [0,1], a1 shows the

number of individuals which affect the movement of XAij

and a1 2 f1; 2; :::; n� 1g. Here, as a result of trial and error

tests, the best and shortest convergence is observed if the

value of a1 is 2. Accordingly, the new suspect location XAi

is revised as in Eq. (2).

XA1ij ¼ XAij
þ ððR1 � 0:5Þ � 2Þ � ðXAij

� ðXAkj
þ XAhj

Þ=2Þ
ð2Þ

where k, h, and i indexes correspond to three suspected

locations and fk; h; ig 2 f1; 2; :::;Ng. k and h are randomly

chosen numbers. N shows the population size and also the

number of suspected locations, where Dim is the problem

size (dimension), and R1 is a random number in the range

[0,1]. Therefore, the expressions ðR1 � 0:5Þ � 2Þ and ðR1 �
0:5Þ � 2Þ represent the range [-1,1].

Stage A2 corresponds to the direction of the inquiry

phase. Investigators compare the probability of each sus-

picious location with that of the others to determine the

most likely suspicious location. The probability of each

location is estimated using PðXAi
Þ, Eq. (3) and a high

PðXAi
Þ value means a high probability for the location.
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PðXAi
Þ ¼ ðpW � pAi

Þ
.
ðpW � pBÞ ð3Þ

where pW is worst (lowest) possibility and pB is the best

(highest) possibility. pAi
indicates the possibility of ith

location.

Updating a search location is influenced by the direc-

tions of other suspected locations. Instead of updating all

directions, randomly selected directions in the updated

location are changed. In this stage, the movement of XAi

depends on the best individual and other random individ-

uals. Like Stage A1, the general formula for motion is in

Eq. (4).

XA2i ¼ Xbest þ
Xa2

c¼1

ac�XAcj ð4Þ

Here, Xbest represents the best location; a2 are number of

individuals which affect XA2i and a2 2 f1; 2; :::; n� 1g; c is

the effectiveness coefficient of the remaining individuals

and c 2 �1; 1½ �. ac ¼ 3 has been taken in the experiments.

Thus, Eq. (5) obtains the new suspect position.

XA2ij ¼ Xbest þ XApj
þ R5 � ðXAqj

� XAri
Þ ð5Þ

where R5 is the random number in the range [0,1]; and

p,q,r, and i are four suspected locations selected 1,..,N. p, q,

and r are randomly chosen, and j ¼ 1; 2; :::;Dim.

Stage B1 can be expressed as the ‘‘action’’ phase. Once

the best location information has been received from the

investigative team, all agents in the pursuit team must

approach the target in a coordinated manner to arrest the

suspect. Each agent (Bi) approaches the position with the

best probability according to Eq. (6). An update is made if

the newly approached site generates a higher probability

than the previous location.

XB1ij ¼ R6 � XBij
þ R7 � ðXbest � XBij

Þ ð6Þ

R6 and R7 are the random numbers in the range [0,1].

Fig. 2 The flowchart of FBI algorithm
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Stage B2 is the stage in which the process of ‘‘actions’’

is expanded. Locations are updated according to the

probabilities of new locations reported to the headquarters

by the police agents in case of any movement. The head-

quarters commands the tracking team to approach this

location. In the process, agent Bi moves toward the best

position, and agent Bi is influenced by another team

member (BR). Agent Bi’s new position is calculated as in

Eq. (7). If the probability of BR is better than the proba-

bility of Bi; otherwise, it is formalized as Eq. (8). The new-

found location is updated if it is more probable than the old

one.

XB2ij ¼ XBRj
þ R8 � ðXBRj

� XBij
Þ þ R9 � ðXbest � XBRj

Þ
ð7Þ

XB2ij ¼ XBij
þ R10 � ðXBij

� XBRj
Þ þ R11 � ðXbest � XBij

Þ
ð8Þ

Here, R8, R9, R10 and R11 are the random numbers; R and i

represent the two police agents, and they are selected from

1, ..., N. R is selected randomly in this group.

The optimum location for the suspect will be advised to

the investigation team by the pursuit team. They perform

this to help them increase the accuracy of their analysis and

evaluation. Forensic investigative procedures might repeat

themselves. The operating steps of the FBI algorithm are

summarized in Fig. 2.

2.2 Dynamic oppositional based learning

Xu et al. [33] have proposed a method that overcomes the

difficulties of opposition-based learning (OBL), quasi-re-

flection-based learning methods (QRBL), and quasi-oppo-

site-based learning methods (QOBL) and named as

dynamic-opposite learning (DOL). QOBL proposed by

Rahnamayan et al. [34], one of the variants of oppositional

based learning (OBL), aims to increase the chance of

approaching the solution by using quasi-opposite numbers

instead of opposite numbers. According to the probability

theorem, randomly initialized candidate solutions are fur-

ther away from the global solution than the opposite pre-

diction. Therefore, opposite numbers can effectively

reduce the search space area and increase the convergence

speed. The quasi-opposite number is formed from the

interval between the median and the opposite number of

the current population [35]. (QRBL) is proposed by Erge-

zer et al. [36] to extend the search space between current

and central locations. However, these OBL approaches will

miss the local optimal point if there is one between the

current and opposite values. Thus, a system that dynami-

cally broadens the search space should be considered in

this situation. In this instance, DOL prevails. First and

foremost, DOL needs to define the opposing point and

opposite number. The mathematical expression of DOL is

as in Eqs. (9), (10).

OPi ¼ ððub� lbÞ: � randÞ þ lb� Xi; i ¼ 1; :::;NP ð9Þ

DOi ¼ Xi þ rand � ðrand � OPi � XiÞ ð10Þ

where lb and ub represent the lower and upper bounds, rand

is a random number in the range of [0,1], Xi refers to a real

number used as agent positions in between [lb, ub], NP

denotes the population size, and i is the current agent

selected from [1, NP]. OPi is obtained based on OBL and

DOi corresponds to dynamic opposition number.

3 The proposed DOLFBI algorithm

It has been mentioned in Sect. 2.1.2 that the original FBI

algorithm consisted of two main phases: the investigation

phase (Phase A) and the pursuit phase (Phase B). In Stage

A1, the investigation process is followed by detecting

suspicious locations. In Stage A2, on the other hand, the

location with the highest probability and the current best

location is determined by calculating the suspicion proba-

bility of each location. By applying DOL over the best

available position XA2 (from Eq. (5)), the position update

for Phase A is performed in the next iteration.

Similar situations exist for Stage B. In Stage B1, also

called the action phase, the best location information from

the exploration team is received, and the tracking team

approaches this location in a coordinated manner. Then, in

Stage B2, where the action has been expanded, in case of

any movement, the locations are updated according to the

probabilities of the new locations reported to the head-

quarters by the police teams, and headquarters orders the

monitoring team to approach this location. If the proba-

bility is higher than the old location, the current location

becomes the new location.

The pursuit team updates the location with DOL and

sends it back to Stage A before informing the investigative

team about the suspect’s best location. The process con-

tinues in this way until it produces the best result. Since the

algorithm has two different population sets (A and B),

DOL is applied to both population groups. The algorithm

of the developed DOLFBI is included in Algorithms 1, 2,

and 3.
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Algorithm 1 Pseudocode of Investigation Team Process
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Algorithm 2 Pseudocode of Pursuit Team Process

Algorithm 3 Pseudocode of dynamic oppositional based learning
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Algorithm 4 Pseudocode of DOLFBI

4 Simulation results

The flow in this section is given as follows: First, the values

of the specific parameters used in the proposed and com-

pared traditional and advanced methods are expressed. The

algorithms are applied to the CEC2019 and CEC2022 test

data within these parameters. As a result, the best and

average outcomes are tabulated. The performance of the

proposed method for known engineering challenges is then

compared. Similarly, the proposed strategy is studied for

20, 24, and 72-truss optimization issues. The acquired

Table 1 Parameter settings of encountered algorithms

Algorithm Parameter

DOLFBI Change ¼ ½1; 2�; g ¼ 1, Jr ¼ 0:25

FBI Change ¼ ½1; 2�; g ¼ 1

WOA a1 ¼ ½2; 0�; a2 ¼ ½�2;�1�; b ¼ 1

GWO a ¼ ½2; 0�
MFO b ¼ 1,t ¼ ½�1; 1�, a 2 ½�1; 2�
SSA c1 2 ½0; 1�; c2 2 ½0; 1�
SCA A ¼ 2

SMA z ¼ 0:03

HGS VC2 ¼ 0:03 ðvariation control parameterÞ
HBA beta ¼ 0:6;C ¼ 2

AVOA p1 ¼ 0:6; p2 ¼ 0:4; p3 ¼ 0:6;

alpha ¼ 0:8; beta ¼ 0:2; gamma ¼ 2:5

GWO_JOS a ¼ ½2; 0�, Jr ¼ 0:25

HHO_JOS E0 2 ½�1; 1�, Jr ¼ 0:25

MFO_JOS b ¼ 1,t ¼ ½�1; 1�, a 2 ½�1; 2�, Jr ¼ 0:25

WOA_JOS a1 ¼ ½2; 0�; a2 ¼ ½�2;�1�; b ¼ 1, Jr ¼ 0:25

SOA_JOS A ¼ ½2; 0�; fc ¼ 2; Jr ¼ 0:25

AOSMA z ¼ 0:03

OAVOA L1 ¼ 0:8; p1 ¼ 0:5; p2 ¼ 0:5; p3 ¼ 0:5;w ¼ 2

AOSMA beta ¼ 1

GSOBLChOA f ¼ ½2; 0�
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results are validated using the Wilcoxon sign and Friedman

rank tests.

4.1 Parameter settings

The population number and maximum iteration parameters,

determined to be 30 and 5000, respectively, have been

crucial parameters impacting the original FBI. A DOL

strategy is being used to improve the procedure. The

jumping rate (Jr) parameter, which is set to 0.25, affects

DOL. These criteria serve as the foundation for all com-

parisons done within the framework of experimental

studies. Table 1 shows the parameter settings for the tra-

ditional and enhanced methods utilized in the comparison.

4.2 Benchmark test suites

CEC2019 and CEC2022 were employed as benchmarks in

this study. The CEC2019 test functions comprise ten

multimodal functions listed in Table 22. The first three

CEC2019 functions have 9, 16, and 18 dimensions. Other

CEC2019 functions have a dimension of 10. All of the

global minimum values converge to 1. The benchmark

functions in CEC2022 are unimodal, basic, hybrid, and

composition. These are all minimization problems.

Table 23 gives their comprehensive descriptions and

specifications. The first five functions are shifted and

rotated functions [37]. F11 is unimodal, which means it has

a single minimum point. F12–F15 are multimodal, with

multiple local minimum points. F16–F18 are hybrid func-

tions developed by combining distinct functions. F16, for

example, is derived from the functions of Bent Cigar,

HGBat, and Rastrigin. F19 through F22 are composition

functions. All functions are tested in the [�100,100] range,

each with a global minimum value.

First, Tables 2 and 3 show the comparison results for the

CEC2019 benchmark set. As a result, the optimum con-

vergence for the F2, F3, F4, F5, F6, F7, and F8 problems is

found using DOLFBI using both the best value and the

mean value. Most of the compared methods for the F1

problem, including DOLFBI, converge to the global opti-

mum value of 1, and this convergence value is reached on

average; however, when analyzed in terms of standard

deviation, SMA, HGS, and AVOA provide full conver-

gence for all runs.

Tables 4 and 5 show the findings achieved compared to

the improved approaches. Although the analyses produced

similar results for DOLFBI, DOLFBI for F10 converged

better than the advanced approaches this time. Except for

F9 and F10, DOLFBI is a success for the CEC2019

benchmark set based on the ten challenges (Tables 6 and

7).

The CEC2022 set contains 12 problems. Traditional and

upgraded approaches used in 2019 are being investigated

for 2022. The convergence of DOLFBI is thriving,

according to the findings of F11–F20 (for the first 11

problems) in Tables 8 and 9. Although MFO appears to get

the best convergence for F22, it attained this convergence

value in DOLFBI but fell below MFO in standard

deviation.

Convergence behaviors for both benchmark sets are

plotted in Figs. 7 and 8 using the average convergence

curve from 30 runs. From this, it is concluded that the

drawings agree with the result tables. Here is the DOLFBI

curve plotted in red and dotted; only the relationship to

conventional methods is considered. The first 1000 itera-

tions are plotted to show the convergence behavior clearly.

If it is generally interpreted, it can be deduced that many

methods converge to the optimum value for F1. It is pos-

sible to observe this similar behavior for F2, F12, F18, F20,

Table 3 CEC2019 compared results for traditional methods (F9–F10)

Methods F9 F10

Best cost Mean SD Best cost Mean SD

DOLFBI 1.08E?00 1.10E?00 8.37E-03 1.00E?00 9.57E?00 9.46E?00

FBI 1.19E?00 1.16E?00 1.83E-02 2.10E?01 2.10E?01 4.27E-03

WOA 1.24E?00 1.27E?00 8.66E-02 1.41E?01 2.08E?01 1.24E?00

SSA 1.05E?00 1.16E?00 4.80E-02 2.10E?01 2.10E?01 4.30E-04

SCA 1.20E?00 1.36E?00 5.35E-02 2.07E?01 2.13E?01 1.18E-01

MFO 1.15E?00 1.28E?00 7.73E-02 2.10E?01 2.11E?01 5.45E-02

GWO 1.03E?00 1.10E?00 2.53E-02 1.17E?01 2.10E?01 1.73E?00

SMA 1.05E?00 1.12E?00 3.49E-02 1.03E?00 1.97E?01 4.85E?00

HGS 1.19E?00 1.28E?00 5.83E-02 2.10E?01 2.10E?01 1.62E-03

HBA 1.03E100 1.10E100 3.44E202 1.00E100 1.99E101 4.79E100

AVOA 1.07E?00 1.26E?00 7.38E-02 2.10E?01 2.10E?01 6.77E-03
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and F22. The problems where early convergence is most

prominent are F3, F4, F6, F8, F10, and F17. Although the

global optimum value of the F10 benchmark function is 1,

it usually converges to about 20. The successful conver-

gence in the F10 function determines how many times it

converges to 1 in 30 different convergence performances.

Thus, it can be seen that DOLFBI often converges to 1 and,

therefore, performs better on average than other methods.

Considering Figs. 7 and 8, CEC2019 problems are more

challenging than CEC2022.

DOLFBI’s trajectory analysis is in Figs. 3 and 4. This

analysis is performed in 2000 iterations and 100 popula-

tions. The first column shows the positions of all individ-

uals in the population at the end of 2000 iterations for

dimensions x1 and x2 only. The red dot indicates the global

minimum point, while the black dots represent the candi-

date solutions. It can be seen that at the end of the iteration,

the candidate solutions are concentrated around the global

optimum. The second column denotes the trajectory for the

first dimension. Although the algorithm oscillates sharply

at the beginning of the iterations, it converges to the

optimum position at the end. The third column represents

the average fitness value over 30 different runs, while the

fourth column shows the convergence curve. According to

the detailed trajectory analysis, it can be said that DOLFBI

exhibits a consistent and robust convergence throughout

the iterations.

Box plots visualize statistical measures such as standard

deviation, mean, minimum maximum, and quartile.

Therefore, box-plot analysis is performed between

DOLFBI and the compared algorithms. Box-plot analyses

are visualized in Figs. 5 and 6. Generally speaking, it can

be seen that DOLFBI converges better with lower standard

deviations except for F6, F8, and F18. Some algorithms

produce extreme values in the F3, F9, F15, F18, F19, F20,

and F21 benchmark functions in 30 runs. DOLFBI

achieves an efficient convergence in these functions with a

low standard deviation.

The proposed DOLFBI scans the search space utilizing a

dynamic oppositional learning strategy, which makes it

superior to other compared approaches. This method uses

opposite numbers. According to this strategy, opposite

numbers play a major role in the generation-to-generation

transfer of promising populations. The layout of the FBI

algorithm considers two significant population groups (in-

vestigation and pursuit teams). Consequently, the DOL’s

impact on the FBI became more noticeable Figs. 7 and 8.

4.3 Engineering problems

This section presents the engineering design problems to

which the proposed method is applied and their compara-

tive results. Each problem has its parameters and con-

straints. Accordingly, the most optimal values and best cost

values of these parameters are emphasized for each

problem.

• ENG1: This problem involves finding the optimal

parameters of a cantilever beam. It has one constraint

and five variables. Five variables represent five block

lengths. Figure 9a shows the cantilever beam structure.

x1, x2, x3, x4, and x5 are the height and width values of

the square structure.

• ENG2: This problem deals with minimizing the pres-

sure vessel design. The problem has four constraints

and four variables. Figure 9b shows the pressure vessel

structure. Ts (thickness of the shell),Th (the thickness of

the head), R (inner radius), and L (length of the

cylindrical section) are the variables of the problem.

• ENG3: Tension/compression aims to minimize the

weight of a tension/compression spring while adhering

to constraints on shear stress, surge frequency, and

minimum deflection [38]. In Fig. 9c, d represents the

Table 5 CEC2019 compared results for improved methods (F9–F10)

Methods F9 F10

Best cost Mean SD Best cost Mean SD

DOLFBI 1.08E?00 1.10E?00 8.37E-03 1.00E100 9.57E100 9.46E100

GWO_JOS 1.08E?00 1.14E?00 4.64E-02 1.17E?00 1.33E?01 1.10E?01

HHO_JOS 1.26E?00 1.33E?00 8.13E-02 2.10E?01 2.10E?01 1.69E-03

MFO_JOS 1.07E100 1.14E100 4.84E202 2.10E?01 2.10E?01 1.47E-02

SOA_JOS 1.17E?00 1.30E?00 1.01E-01 2.12E?01 2.13E?01 8.18E-02

WOA_JOS 1.17E?00 1.28E?00 1.17E-01 2.10E?01 2.10E?01 2.00E-02

AOSMA 1.08E?00 1.23E?00 1.18E-01 3.59E?00 1.75E?01 7.80E?00

GSOBLChOA 3.96E?00 4.14E?00 2.01E-01 2.15E?01 2.16E?01 9.30E-02

OAVOA 1.16E?00 1.27E?00 9.84E-02 2.10E?01 2.10E?01 5.04E-02

OFDA 1.11E?00 1.20E?00 6.89E-02 2.10E?01 2.11E?01 6.69E-02
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Fig. 3 Trajectory analysis of the DOLFBI
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Fig. 4 Trajectory analysis of the DOLFBI (Cont)
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Fig. 5 Box-plot analysis of the compared algorithms
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Fig. 6 Box-plot analysis of the compared algorithms (Cont)
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Fig. 7 Convergence analysis of the compared algorithms (Cont)
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Fig. 8 Convergence analysis of the compared algorithms (Cont)
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wire diameter, D mean coil diameter, and P number of

active coils.

• ENG4: This engineering problem involves improving

the performance and efficiency of a speed reducer or

gearbox [39]. The structure of the speed reducer is

given in Fig. 9d. The variables that need to be

optimized are face width ðx1Þ, module of gear ðx2Þ,
count of gear in the pinion ðx3Þ, first shaft’s length

between bearings ðx4Þ, second shaft length between

bearings ðx5Þ, first shaft’s diameter ðx6Þ, and second

shaft’s diameter ðx7Þ.
• ENG5: The crashworthiness design problem aims to

minimize the vehicle’s weight to enhance its ability to

protect occupants during a collision [40]. The crash-

worthiness structure is given in Fig. 9e. The variables

of this design are expressed as thicknesses of B-Pillar

inner, B-Pillar reinforcement, floor side inner, cross-

members, door beam, door beltline reinforcement, and

roof rail (x1-x7), materials of B-Pillar inner and floor

side inner (x8 and x9), and barrier height and hitting

position (x10 and x11).

• ENG6: The beam will be optimized to achieve mini-

mum cost by varying the weld and member dimensions.

The problem’s constraints include limits on shear stress,

bending stress, buckling load, and end deflection. [41].

Welded beam design consists of four variables: the

thickness of weld (h), the length of the clamped bar (l),

the height of the bar (t), and the thickness of the bar (b).

The structure of the welded beam is shown in Fig. 9f.

Here, the convergence performance of DOLFBI for the six

engineering problems mentioned above is investigated. It is

also interpreted by making comparisons with other

pioneering and new metaheuristics. First, the ENG1 (can-

tilever beam design) results are in Table 10. Accordingly, it

can be interpreted that the DOL approach improves FBI,

Fig. 9 Engineering problems
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and DOLFBI converges better than other metaheuristics.

DOLFBI converges to the smallest (good) value

1.301205963 with

[5.951125854, 4.874066596, 4.464381903, 3.478196725,

2.138494389] ideal parameters [42–44]. Second, the ENG2

(pressure vessel design) real-world problem is reported in

Table 11. Here it can be seen that DOLFBI lags behind FBI

by one thousandth, but comes significantly closer com-

pared to other methods. The best cost value of DOLFBI is

obtained as 5885.333014, while the ideal parameters cal-

culated are [0.7782, 0.3846, 40.3196, 199.9999] [45]. This

method is followed most closely by GWO with 5887.323

value. The third problem, ENG3 (tension/compression

spring design), is detailed in Table 12. DOLFBI is the

method that gives the best convergence value

0.012665965, followed by HS after FBI. The best cost

value of DOLFBI is obtained with the ideal parameters

[0.051764678, 0.358539609, 11.18294909]. The fourth

problem, ENG4 (speed reducer) result, is reported in

Table 13. Here, DOLFBI and FBI have the same conver-

gence performance with the best cost value of

2993.761765. The GOA follows this result with 2994.4245.

The fifth is ENG5 (crashworthiness problem), which is

more challenging than the others because it is a problem

with many parameters and constraints. According to the

results in Table 14, it can be interpreted that DOLFBI

outperformed FBI, and that the DOL approach improved

and improved the FBI significantly but still lagged behind

Table 10 Compared results for

cantilever beam design problem
Methods I1 I2 I3 I4 I5 Optimum cost

DOLFBI 5.951125854 4.874066596 4.464381903 3.478196725 2.138494389 1.301205963

FBI 5.951153093 4.87415325 4.464322977 3.478236317 2.138399853 1.301205964

CSMA 5.97 4.8841 4.4544 3.4738 2.1571 1.30328

BOA [36] 5.969612 4.887111 4.461483 3.475294 2.145763 1.30661

WOA [36] 5.973752 4.862526 4.486167 3.487862 2.129218 1.306626

ECBO [36] 5.915208 4.908425 4.489401 3.478983 2.149223 1.306733

GOA [36] 6.010043 4.795002 4.455917 3.529235 2.153681 1.306898

PSO [36] 6.033067 4.819485 4.524332 3.436107 2.131126 1.306913

AO 5.8881 5.5451 4.3798 3.5973 2.1026 1.339

AOA 5.88901 5.5399 4.38001 3.602512 2.103258 1.339074

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.3399

ALO 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995

SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

SMA 6.017757 5.310892 4.493758 3.501106 2.150159 1.33996

MFO 5.983 5.3167 4.4973 3.5136 2.1616 1.33998

CSDE 6.018 5.308 4.496 3.501 2.152 1.34

MMA 6.01 5.3 4.49 3.49 2.15 1.34

GCA_I 6.01 5.304 4.49 3.498 2.15 1.34

GCA_II 6.01 5.3 4.49 3.49 2.15 1.34

Table 11 Compared results for pressure vessel design problem

Methods P1 P2 P3 P4 Optimum cost

FBI 0.7782 0.3846 40.3196 200 5885.332992

DOLFBI 0.7782 0.3846 40.3196 199.9999 5885.333014

GWO 0.7782 0.3853 40.3197 200 5887.323

PSO 0.7911 0.3911 40.9912 190.8581 5907.979

BWO 0.7796 0.3921 40.3598 199.4567 5912.114

WOA 0.7816 0.3855 40.3196 200 5912.401

BBBC 0.7989 0.3993 41.375 186.2517 5947.589

HHO 0.7784 0.4128 40.3296 199.8615 5966.674

GSA 0.9391 0.4642 48.6595 109.3493 6221.299

AOA 0.9393 0.6038 46.0635 184.5142 8569.154
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SMO and LIACOR by one thousandth. The best cost value

is 22.84298 with SMO, while it is 22.84300988 when

DOLFBI is used. Finally, for ENG6 (welded beam design),

DOLFBI has lagged behind RSA alone. However, it is seen

that it gives more effective results than other compared

methods (Table 15).

When interpreted in general, it would not be wrong to

comment that the DOL approach improves the FBI,

although DOLFBI falls in the second and third places in the

literature for some challenging problems.

4.4 Truss topology optimization

The arrangement and layout of beam members in a

structural system are addressed by structural truss topol-

ogy. A truss is a frame of triangularly interconnected

pieces (such as beams, bars, or rods). The cage’s

triangular design provides stability, strength, and stiffness.

Truss elements can be assembled in various configura-

tions to meet specific design and engineering needs. The

optimization of 20, 24, and 72-bar truss systems is

examined in this work. The subheadings provide details

on each topology (Table 16).

20-Bar Truss Problem: This structural problem has nine

nodes leading to 14 degrees of freedom and is shown in

Fig. 10. It is given as a benchmark problem by Kaveh and

Zolghadr [46] and Tejani et al. [47]. The design parameters

and constraints of the issues are given in Table 16.

24-Bar Truss Problem: The second structural problem is

24-bar truss and shown in Fig. 11 and the constraints are

given in Table 16.

72-Bar Truss Problem: The last truss problem is 72-bar

truss has been previously used by Mohan et al. [48]. It has

Table 12 Compared results for

tension/compression spring

design problem

Methods P1 P2 P3 Optimum cost

DOLFBI 0.051764678 0.358539609 11.18294909 0.012665337

FBI 0.05149234 0.352003304 11.57082579 0.012665965

HS 0.001622 0.316351 15.2396 0.012776352

PSO 0.05 0.310414 15 0.01319258

CA 0.05 0.317395 14.031795 0.012721

CPSO 0.051728 0.357644 11.244543 0.012674

EHO 0.058 0.5278 5.582 0.0135

MVO 0.05 0.315956 14.22623 0.01281693

SCA 0.05 0.3171 14.1417 0.012797

WOA 0.0507 0.3339 12.7645 0.012683

HHO 0.0562 0.4754 6.667 0.013016

AOA 0.0508 0.3348 11.702 0.012681

DO 0.051215 0.345416 11.983708 0.012669

Table 13 Compared results for speed reducer problem

Methods P1 P2 P3 P4 P5 P6 P7 Optimum cost

DOLFBI 3.5 0.7 17 7.3 7.8 3.343372427 5.285352186 2993.761765

FBI 3.5 0.7 17 7.3 7.8 3.343372427 5.285352186 2993.761765

GOA 3.5 0.7 17 7.3 7.7153 3.3505 5.2867 2994.4245

SNS [8] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.4711

WCA [15] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.4711

PSO-DE [36] 3.5 0.7 17 7.3 7.8 3.3502 5.2867 2996.3481

WSA [6] 3.5 0.7 17 7.3 7.8 3.3502 5.2867 2996.3482

AFA [7] 3.5 0.7 17 7.3025 7.8001 3.3502 5.2867 2996.3727

AAO [14] 3.499 0.6999 17 7.3 7.8 3.3502 5.2872 2996.783

ABC [2] 3.5 0.7 17 7.3 7.8 3.3502 5.2867 2997.0584

AOA [1] 3.5038 0.7 17 7.3 7.7293 3.3565 5.2867 2997.9157

CS [19] 3.5015 0.7 17 7.605 7.8181 3.352 5.2875 3000.981

Neural Computing and Applications

123



been split into and the constraint size is 198 and these are

given in Table 16.

In the 72-bar problem, the elements are clustered in 16

groups. These are C1 (A1-A4), C2 (A5-A12), C3

(A13-A16), C4 (A17-A18), C5 (A19-A22), C6

(A23-A30), C7 (A31-A34), C8 (A35-A36), C9

(A37-A40), C10 (A41-A48), C11 (A49-A52), C12

(A53-A54), C13 (A55-A58), C14 (A59-A66), C15

(A67-A70), and C16 (A71-A72). As it can be seen in

Table 12, some clusters (C3 and C16) have been removed

for all algorithms and also removed from the Fig. 12.

Table 17 compares DOLFBI with the methods in the

literature for 24-bar truss topology optimization. Elements

less than zero are not taken into account. In addition, the

extracted element in all compared methods is not included

in the table, for example, 4, 5, 11, 17, 18. Considering the

efficient metaheuristic methods in the literature, DOLFBI

ranks third. ITLBO takes first place with a minimum

weight of 120.0798. However, it can be said that DOLFBI

has a competitive convergence behavior. 20-bar truss

topology optimization results are reported in Table 18. In

this problem, DOLFBI and ITLBO converge to the same

and lowest weight values as 154.7988. In this problem,

where there are 20 total sections, eight are selected as 1, 5,

8, 11, 13, 15, 18, and 20. Table 19 gives the optimum

sections and weights of the 72-bar truss structure. 72-bar

truss has a structure that can converge to the optimum

weight with few elements. After IOWA, DOLFBI is in

second place with 450.388 weight value. The optimum

topology of 20 and 24-bar truss problems are given in

Fig. 13.

4.5 Statistical tests

In this study, Wilcoxon sign rank (WSR) and Friedman

rank statistical tests are used to show the effectiveness and

difference of the proposed method. These two tests are

nonparametric statistical tests. The Wilcoxon paired-pairs

test is a nonparametric hypothesis test that compares the

median of two paired groups and determines whether they

are the same distributed [49]. Thus, WSR shows whether

there is a significant difference between any two meta-

heuristic algorithms. In this study, a 5% significance level

research is carried out. Friedman rank test determines a

rank value for the proposed algorithm [50] (Tables 17, 18,

19).

Table 20 tabulates the WSR results. The p value

between DOLFBI and alternative metaheuristic algorithms

is displayed in this table. The h value between DOLFBI

and methods is 0 for other functions except for FBI in F8

and HBA in F3. This means that DOLFBI differs signifi-

cantly from the methods compared in the literature.Ta
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Table 21 reports the Friedman results. According to the

Friedman rank results, HGS in F1, HGS, HBA, and AVOA

in F19 have the first rank. Considering the function-based

rank average of all algorithms, DOLFBI is in the first rank,

and then the FBI is in the second rank. In the last ranks,

there are SCA and SMA. In CEC2019 and CEC2022

functions, it is clear that DOLFBI precedes other algo-

rithms and exhibits competitive convergence.

4.6 Discussion

The study integrated dynamic oppositional based learning

(DOL), an effective population determination method, into

one of the newly proposed algorithms, the forensic-based

investigation algorithm (FBI). In this case, a more suc-

cessful convergence was sought by employing DOL, which

picks individuals using the opposite approach rather than

the original FBI’s random population selection algorithm.

With the proposed study, it appears conceivable to improve

the convergence outcomes of metaheuristic algorithms,

which are regarded to be weak, particularly during the

population selection stage.

The paper’s proposed method is compared to basic and

enhanced metaheuristic methods. Basic approaches lack

the search space’s contrasting strategy. Selecting opposite

solution possibilities from the search space reduces the

probability of becoming stuck in the local optimum. The

enhanced approaches, on the other hand, were likewise

developed using the combined opposite selection strategy.

However, the FBI exhibits an excellent convergence per-

formance due to the exploitation and exploration capabil-

ities of the Investigation and Pursuit stages.

The impact and contribution of the DOL are evident

numerically in the results, especially in the FBI, because

two critical population groups are obtained. Additionally,

Table 15 Compared results for

welded beam design problem
Methods P1 P2 P3 P4 Optimum cost

RSA 0.144825 3.517514 8.934025 0.211832 1.674273

DOLFBI 0.20572964 3.470488666 9.03662391 0.20572964 1.724852309

FBI 0.20572964 3.470488666 9.03662391 0.20572964 1.724852309

DTBO 0.20573 3.4705 9.0366 0.20573 1.724965

AVOA 0.205936 3.473962 9.045661 0.205936 1.726578

MVO 0.205817 3.475574 9.049972 0.205915 1.729194

TSA 0.205769 3.478321 9.044835 0.206017 1.729384

WOA 0.205884 3.478878 9.046 0.206435 1.730721

TLBO 0.2049 3.539827 9.013294 0.210235 1.762968

GWO 0.197608 3.318376 10.008 0.201596 1.824323

GA 0.206693 3.639508 10.01 0.203452 1.840211

MPA 0.218678 3.51375 8.881413 0.225135 1.867986

PSO 0.164335 4.036574 10.01 0.223871 1.878014

GSA 0.147245 5.496235 10.01 0.217943 2.177546

Fig. 10 Ground topology structure of 20-truss problem

Fig. 11 Ground topology structure of 24-truss problem
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DOLFBI, an enhanced version of FBI, is expected to yield

promising results in numerous engineering or challenging

real-world scenarios, feature selection with its binary form,

and various optimization problems.

5 Conclusions

The DOLFBI presented in this study was created by

combining the DOL paradigm with the FBI algorithm. The

DOL paradigm, a variant of OBL, promotes efficiency by

generating opposing populations and finding the global

optimum as quickly and correctly as possible. DOL adap-

tively and dynamically determines randomly selected

populations in traditional FBI for DOLFBI. Unlike primary

and complex metaheuristic algorithms, DOLFBI

Table 16 Design parameters of the 20-, 24- and 72-bar truss problems

Design

parameters

Values

20-bar truss 24-bar truss 72-bar truss

Design

variables

Pi; i ¼ 1; 2; :::; 20 Pi; i ¼ 1; 2; :::; 24 Gi; i ¼ 1; 2; :::; 16;G : group number

Multiple load

conditions
Condition 1: F1 ¼ 5 � 105 N;F2 ¼ 0

N

Condition 1: F1 ¼ 5 � 104 N;F2 ¼ 0

N

Condition 1: F1x ¼ F1y ¼ 22:25 kN;F1z ¼
22:25 kN

Condition 2:

F1 ¼ 0 N;F2 ¼ 5 � 105 N

Condition 2: F1 ¼ 0 N;F2 ¼ 5 � 104

N

Condition 2: F1z ¼ F2z ¼ F3z ¼ F4z ¼
22:25 kN

Stress bounds rmax
i ¼ 172:43 MPa rmax

i ¼ 172:43 MPa rmax
i ¼ 172:375 MPa

Displacement

bounds

Case 1: dmax
4y ¼ 10 mm dmax

5y&6y ¼ 10 mm dmax
j ¼ 6:35 mm (for Nodes 1, 2, 3 and 4

Case 2: dmax
4y ¼ 6 mm along the x- and y- axes)

Natural

frequency

bound(s)

f1 > 60 Hz and f2 > 100 Hz f1 > 30 Hz f1 > 4 Hz and f3 > 6 Hz

Continuous

sections
½Pmin;Pmax� ¼ ½�100; 100� cm2 ½Pmin;Pmax� ¼ ½�40; 40� cm2 ½Pmin;Pmax� ¼ ½�30; 30� cm2

ca : 1 cm2 ca : 1 cm2 ca : 1 cm2

Material

properties
E ¼ 6:9 � 1010 Pa and q ¼ 2:740 kg/

m3

E ¼ 6:9 � 1010 Pa and q ¼ 2:740 kg/

m3

E ¼ 6:895 � 1010 Pa and q ¼ 2:767; 99 kg/

m3

Lumped mass - 500 kg (on Node 3) 2.270 kg (on Node 1, 2, 3 and 4)

Fig. 12 Ground topology structure of 72-truss problem

Fig. 13 20 and 24-truss

topology optimization with

DOLFBI
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Table 17 Results for the 24-bar truss topology optimization

Element no. ALO IALO DA IDA WOA IWOA HTS IHTS TLBO ITLBO DOLFBI

A1 Removed Removed 17 Removed Removed Removed Removed Removed Removed Removed Removed

A2 Removed Removed 19 Removed 25 Removed Removed Removed Removed Removed Removed

A3 Removed Removed 11 Removed Removed Removed 1 Removed Removed Removed Removed

A6 Removed Removed 13 Removed 4 Removed 1 Removed Removed Removed Removed

A7 21 19 Removed 22 23 21 21 20 19 19 20

A8 9 3 Removed 3 3 3 4 3 3 3 3

A9 Removed Removed 5 Removed Removed Removed 1 3 2 2 1

A10 1 Removed Removed Removed 9 1 2 Removed Removed Removed Removed

A12 2 4 1 6 Removed Removed 4 5 5 5

A13 18 19 16 20 14 18 18 13 14 14 1

A14 Removed Removed 2 Removed Removed Removed Removed Removed 1 Removed Removed

A15 11 4 13 4 16 4 4 5 4 3 3

A16 24 24 24 24 25 24 24 24 24 24 2

A19 Removed Removed Removed Removed 1 Removed Removed Removed Removed Removed Removed

A20 1 Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed

A21 4 Removed Removed Removed 2 Removed Removed Removed Removed Removed Removed

A22 1 1 19 1 1 1 3 2 Removed 1 Removed

A23 1 Removed Removed Removed Removed 1 Removed 3 Removed Removed Removed

A24 Removed 1 Removed 5 21 Removed Removed Removed 1 1 1

Optimum

weight

147.9755 125.5556 188.6131 132.7053 206.9689 126.2518 137.8316 124.1041 121.7832 120.0798 122.057

Table 18 Results for the 20-bar truss topology optimization

Element no. ALO IALO DA IDA WOA IWOA HTS IHTS TLBO ITLBO DOLFBI

A1 29 Removed Removed 29 31 Removed 29 Removed 29 15 15

A4 29 29 29 29 Removed 29 29 29 29 Removed Removed

A5 Removed 29 30 Removed 29 29 Removed 29 Removed 20 20

A6 Removed Removed Removed Removed 54 Removed Removed Removed Removed Removed Removed

A8 29 Removed Removed 29 44 Removed 29 Removed 29 20 20

A9 Removed Removed 2 Removed Removed Removed Removed Removed Removed Removed Removed

A10 Removed Removed Removed Removed 45 Removed Removed Removed Removed Removed Removed

A11 Removed 29 32 Removed 31 29 Removed 29 Removed 20 20

A12 Removed Removed Removed Removed 9 Removed Removed Removed Removed Removed Removed

A13 21 42 43 21 5 42 21 42 21 21 21

A14 Removed Removed Removed Removed 50 Removed Removed Removed Removed Removed Removed

A15 42 Removed Removed 42 31 Removed 42 Removed 42 21 21

A16 Removed Removed 42 Removed Removed Removed Removed Removed Removed Removed Removed

A17 Removed Removed Removed Removed 22 Removed Removed Removed Removed Removed Removed

A18 46 21 26 46 Removed 21 46 21 46 33 33

A20 Removed 46 46 Removed 33 46 Removed 46 Removed 33 33

Optimum

weight

157.1498 157.1498 202.6373 157.1498 282.4375 157.1498 157.1498 157.1498 157.1498 154.7988 154.7988
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outperforms or lags behind FBI and other algorithms.

Twenty-two challenging benchmark problems from

CEC2019 and CEC2022 are compared using traditional

and sophisticated methodologies.

Compared to standard algorithms, DOLFBI converges

to a lower fitness value than other approaches in 18 of 22

benchmark problems (excluding F1, F9, F10, and F22).

According to the findings of a comparison with other OBL-

based enhanced MAs in the literature, DOLFBI achieved

the best convergence for 19 problems except F1, F9, and

F22. The Wilcoxon sign and Friedman rank tests validate

the results and statistical tests for DOLFBI. Only FBI in the

F8 function and h ¼ 0 in the F3 function in HBA are

generated in WSR; in all other circumstances, h ¼ 1 is

generated. According to the Friedman test, DOLFBI ranks

top in the CEC2019 and CEC2022 comparison problems.

As a result, F4, F10, F14, and F17 demonstrate early

convergence behavior. This study also includes a trajectory

and qualitative analysis for DOLFBI. The trajectory anal-

ysis shows that the oscillation of the first dimension toward

the last iteration is fixed and approaches an optimum.

DOLFBI has the best convergence in cantilever beam

design, speed reducer, and tension/compression problems

in terms of engineering challenges. It is ranked second for

welded beam design, third for pressure vessel design, and

fourth for crashworthiness.

DOLFBI performs successfully not only in mathemati-

cal problems but also in real-world problems. Based on an

analysis of the tabulated findings, trajectory analyses,

convergence curves, and box-whisker plots, it is evident

that DOL yields encouraging outcomes for several FBI

improvement issues.

Finally, DOLFBI is employed in the design of 20-, 24-,

and 72-bar truss topology optimization challenges. As a

result, it is compared to other methods in the literature. The

results show that it comes in second position behind TLBO,

with an optimal weight of 122.057 at 24-bar. They are on

par with ITLBO and in first place with a weight value of

154.7988 at 20 bar. Finally, it ranks second after IWOA for

the 72-truss issue, with an optimum value of 450.388.

A binary version of the proposed method can be created

and used as a feature selection method in future investi-

gations. Furthermore, the suggested method is adaptable to

neural networks, extreme learning machines, and deep

learning architectures.

Although dynamic OBL enhances convergence perfor-

mance, the running time for exploring opposing regions

can be computed as O(dim*N). In addition, although this

change in running time causes DOLFBI to run slower, this

does not cause an extra burden in algorithm complexity.

DOLFBI, on the other hand, calls the objective function

one last time to maintain the existing optimum value. As a

result, the overall number of called functions grows.

Table 19 Results for the 72-bar truss topology optimization

Element no. ALO IALO DA IDA WOA IWOA HTS IHTS TLBO ITLBO DOLFBI

C1 5 5 11 6 12 5 6 7 5 5 6

C2 11 11 19 9 9 Removed 11 11 11 11 11

C4 Removed Removed 15 10 10 11 Removed Removed Removed Removed Removed

C5 10 7 39 7 15 7 8 8 10 10 8

C6 9 7 8 8 12 Removed 9 9 8 8 8

C7 3 Removed Removed Removed Removed Removed Removed Removed Removed Removed Removed

C8 7 5 14 Removed Removed 4 4 4 4 4 4

C9 17 12 12 18 8 15 11 11 14 11 12

C10 7 18 8 19 8 8 8 9 8 9 8

C11 Removed Removed Removed Removed 9 Removed Removed Removed Removed Removed Removed

C12 Removed Removed Removed Removed 10 Removed Removed Removed Removed Removed 15

C13 13 18 12 14 18 13 16 16 13 15 9

C14 7 8 8 9 7 8 8 7 9 Removed Removed

C15 Removed 3 Removed Removed 7 2 Removed Removed Removed 8 Removed

Optimum

weight

459.3283 449.4936 618.5515 463.9091 562.8129 447.1073 450.388 452.0754 452.0754 450.388 450.388
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Appendix A

See Tables 22, 23, 24.

Table 21 Friedman rank test for benchmark suites

Functions DOLFBI FBI WOA SSA SCA MFO GWO SMA HGS HBA AVOA

F1 3.8 5 11 8 6.6 9 6.4 10 1.7 2.8 1.7

F2 1.067 4.033 11 7 9 8 6 10 1.933 3 4.967

F3 1 4.167 7.533 6.467 9.733 9.267 6.267 11 4.867 2.3 3.4

F4 1 3 10 5.867 9 7 2 11 4 5.133 8

F5 1 2 9 6.667 10 4.733 7.267 11 4.267 3 7.067

F6 1 2.133 10 4.867 9 6.267 2.867 11 6.733 4.133 8

F7 1 2 9.267 5 9.733 8 3 11 4 6.6 6.4

F8 1 2 9 6 8 10 3 11 5 4 7

F9 1 4 8.067 5 10 8.867 2 11 6 3 7.067

F10 1.133 5 6 2.933 9 7 10 11 4 8 1.933

F11 1.767 1.767 11 6.533 8.533 5.267 7.533 10 5.533 3.533 4.533

F12 1 2 11 3 9 6.767 7.4 10 5.4 4.2 6.233

F13 1.5 1.5 10 7.667 9 6 4.067 11 4.933 3 7.333

F14 1 3 9.733 4.533 9.267 6.733 2 11 8 4.467 6.267

F15 1.467 3.7 10 1.533 7.4 7.467 4.8 11 6.133 3.5 9

F16 1 2 5.8 5.2 10 7.133 8.133 11 8.733 3.067 3.933

F17 1 2 9.6 6 9.4 7.8 4.933 11 3 4.067 7.2

F18 1 2 10 6.867 9 6.8 7.333 11 3 4 5

F19 3.4 5 7.6 6 9 7.4 10 11 2.2 2.2 2.2

F20 1 2.4 7.267 3.867 9.267 8.267 5.933 11 6 3.533 7.467

F21 1.5 1.5 8.133 4.333 9.2 9.667 5.333 11 7 3 5.333

F22 1.4 6.2 9.6 1.6 8 4 5 11 3 9.4 6.8

Mean 1.258 2.868 8.93 4.997 9.077 7.222 5.443 10.9 5.09 4.207 6.008

Rank 1 2 9 4 10 8 6 11 5 3 7

Table 22 CEC2019 benchmark function problems

No Description Dimension Range Fmin

F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [- 8192, 8192] 1

F2 Inverse Hilbert Matrix Problem 16 [�16384, 16384] 1

F3 Lennard–Jones Minimum Energy Cluster 18 [- 4, 4] 1

F4 Rastrigin’s Function 10 [�100, 100] 1

F5 Grienwank’s Function 10 [�100, 100] 1

F6 Weierstrass Function 10 [�100, 100] 1

F7 Modified Schwefel’s Function 10 [�100, 100] 1

F8 Expanded Schaffer’s F6 Function 10 [�100, 100] 1

F9 Happy Cat Function 10 [�100, 100] 1

F10 Ackley Function 10 [�100, 100] 1

Neural Computing and Applications

123



Funding Open access funding provided by the Scientific and Tech-

nological Research Council of Türkiye (TÜBİTAK). Not applicable.
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