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Abstract
Deep neural networks (DNNs) have been applied in many pattern recognition or object detection applications. DNNs

generally consist of millions or even billions of parameters. These demanding computational storage and requirements

impede deployments of DNNs in resource-limited devices, such as mobile devices, micro-controllers. Simplification

techniques such as pruning have commonly been used to slim DNN sizes. Pruning approaches generally quantify the

importance of each component such as network weight. Weight values or weight gradients in training are commonly used

as the importance metric. Small weights are pruned and large weights are kept. However, small weights are possible to be

connected with significant weights which have impact to DNN outputs. DNN accuracy can be degraded significantly after

the pruning process. This paper proposes a roulette wheel-like pruning algorithm, in order to simplify a trained DNN while

keeping the DNN accuracy. The proposed algorithm generates a branch of pruned DNNs which are generated by a roulette

wheel operator. Similar to the roulette wheel selection in genetic algorithms, small weights are more likely to be pruned but

they can be kept; large weights are more likely to be kept but they can be pruned. The slimmest DNN with the best

accuracy is selected from the branch. The performance of the proposed pruning algorithm is evaluated by two deterministic

datasets and four non-deterministic datasets. Experimental results show that the proposed pruning algorithm generates

simpler DNNs while DNN accuracy can be kept, compared to several existing pruning approaches.

Keywords Deep neural network � Network simplification � Network compression � Heuristic method

1 Introduction

Deep neural networks (DNNs) have been found in

numerous pattern recognition applications since they have

superior performance in many recognition tasks, such as

computer vision, image processing, natural language pro-

cessing [1]. However, DNNs, especially those high-per-

forming ones with many layers and large width, have a

large number DNN parameters such as network connec-

tions, channels, weights and biases. They require large

memory storage; consequently they are unsuitable for

resource-limited applications such as mobile or embedded

devices. To achieve a higher performance, deeper and

wider DNNs are usually considered; hence more memory

and computational resources are required. This is a main

obstacle to implement a high-performance DNN on mobile

or embedded devices.

To relieve the cumbersome DNN memories, pruning

approaches is commonly used to sparse insignificant
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weights to be zero [2–5], or remove insignificant kernels or

channels [6–10]. After the cumbersome components of

DNN is pruned, the DNN is more feasible for hardware

implementations [11–13]. Gradient-based or magnitude-

based pruning approaches are commonly used. For gradi-

ent-based pruning approaches, LeCun et al. [14] was the

first to prune insignificant weights between network links

based on the second derivatives to the loss function; Hes-

sian matrix is used to compute the second derivatives

which are computationally demanding. Hassibi et al. [15]

simplified the second derivative computations by ignoring

the diagonal assumption since Hessian matrices are usually

non-diagonal. However, computational complexities of

second derivatives are demanding which exponentially

increase with network sizes. The approaches only suit

small DNNs but not the modern DNNs which have more

than billions of weights. Magnitude-based pruning

approaches do not have this limitation of demanding

computations. Magnitude-based pruning methods simply

assume that large weights are more significant than smaller

weights [16, 17]. Magnitude-based pruning methods prune

all zero weights and smaller weights below an absolute

threshold value; those pruned weights can be in network

links, kernels or channels. However, DNN accuracies are

usually degraded by pruning.

More recent pruning methods fine-tune or retrain pruned

DNNs in order to improve accuracies after the DNNs are

pruned [18]. Han et al. [19] proposed a pruning approach

which first removes network connections uncorrelated to

network outputs and further prunes small weights. After the

pruning process, the DNN is retrained to improve accuracy.

A similar approach has been proposed by Luo et al. [20],

where a three-stage approach is proposed to develop a

compressed DNN with high accuracy. The approach first

dropouts small weights during the training; a less cum-

bersome DNN is trained. The processes of pruning, fine-

tuning and retraining are performed simultaneously in

order to further slim the DNN but keep the DNN accuracy.

However, there are still lack of approaches to determine

when to prune and when to terminate the pruning. Frankle

and Carbin [21] have proposed a lottery ticket hypothesis

which determines when to terminate the pruning and when

to restart the fine-tuning. The winning tickets help the DNN

being pruning faster and learning more accurately than the

original DNNs.

The aforementioned pruning strategies assume weight

importance can be quantified by weight values. Small

weights are pruned and large weights are kept. They do not

consider the connections between small weights and large

weights. Since small weights are possible to link with

significant weights which have impact to DNN predictions,

connections with significant weights are broken. DNN

accuracy can be degraded significantly after smaller

weights are pruned. In the paper, a branching tree pruning

algorithm is proposed based on a roulette wheel operator.

The branching tree pruning algorithm starts with a trained

DNN. The trained DNN is pruned into a branch of pruned

DNNs using a roulette wheel operator; the pruned DNNs

are not identical and are retrained. The best retrained DNN

is selected to generate another branch of pruned DNNs and

they are retrained to generate another branch. To select

which DNN weights are pruned, the roulette wheel oper-

ator is proposed. The roulette wheel is used to determine

which weights are more likely to prune based on the weight

values. Similar to roulette wheel selection in genetic

algorithms [22], small weights are more likely to be pruned

but are possible to be kept; large weights are likely to be

kept but are possible to be pruned. The pruning process

repeats iteratively until the accuracy of the pruned DNN is

poorer than the original un-pruned DNN. The approach

attempts to seek for a slimmer DNN and keep the DNN

accuracy, unlike the aforementioned pruning methods

which prune weights with small values or weights with

small gradients when training. The proposed branching tree

pruning algorithm also overcomes the limitations of the

existing pruning-retraining approaches which terminate the

pruning process prematurely [21, 23].

The performance of proposed approaches are evaluated

with two types of data, deterministic data (MNIST dataset1

and CIFAR-10 dataset2) and non-deterministic (four data-

sets from TID [24]). The labels of the deterministic data are

the same when the same inputs are given. The deterministic

data evaluates whether the DNN accuracy can be kept for

invariant labels. The labels of the non-deterministic data

are subjective and are different when the same inputs are

given. The non-deterministic data evaluates whether the

performance of the pruned DNN is robust to varying labels.

Experimental results show that the proposed approach

outperforms the several commonly used pruning approa-

ches [21, 23] for both deterministic data and non-deter-

ministic data.

2 Pruning of deep neural networks

The pruning rate, H, indicates how much the DNN is

simplified. H is quantified by the pruning rate function

HðWÞ in (1), whereW is the weight set of the pruned DNN:

1 http://yann.lecun.com/exdb/mnist/.
2 https://www.cs.toronto.edu/*kriz/cifar.html.
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with sgnðjwjÞ ¼
1 if jwj[ 0

0 if jwj ¼ 0

�

In (1), WO is the weight set of the original cumbersome

DNN. w is the weight in the weight set. For the fraction in

(1), the nominator is the number of non-zero weights of the

pruned DNN; the denominator is the number of non-zero

weights of the original DNN. This fraction indicates whe-

ther the size of WO is close to that of W. When the fraction

is close to one, the sizes of bothWO andW are close. When

the fraction is small, the number of non-zero weights in W

is small and many weights are pruned from the original

DNN. Since HðWÞ is the subtraction of the fraction from 1,

HðWÞ is large when more weights are pruned.

In order to simplify the DNN and keep the DNN accu-

racy, the pruning problem is formulated by the objective

function (2) with the constraint (3):

max
W

H Wð Þ ð2Þ

subject to
XN

i¼1

f xi Wjð Þ � yij j �
XN

i¼1

f xi W
O

��� �
� yi

�� �� ð3Þ

where (2) maximizes HðWÞ by optimizing W. (3) ensures

that the accuracy of the pruned DNN is not less than that of

the original DNN. N is the data size. Given that xi is the

input of the DNNs, yi is the actual label of the data; f ðxijWÞ
and f ðxijWOÞ are the predictions of the pruned DNN and

the original DNN, respectively. The left and right sides of

(3) indicate the sum absolute errors between the actual

labels and predictions; they indicate the errors obtained by

the pruned DNN and the original DNN, respectively. After

(2) with (3) is solved, the pruned DNN is simpler than the

original cumbersome DNN but the accuracy can be kept.

To solve (2), the commonly used pruning algorithms

rank the weights from small to large values [2, 6, 25, 26].

Weights with smaller values are pruned; weights with

larger values are kept. Alternatively some pruning algo-

rithms rank the weights which have small gradients when

training with the backpropagation [14, 15, 27–29]. They

prune the weights with small training gradients. The

remaining weights, which are not pruned, are retrained

with respect to the loss function. In those commonly used

algorithms, weights with small values or small training

gradients are considered to have small impacts to the pre-

dictions; those insignificant weights can be ignored and can

be pruned. However, DNNs have large numbers of nodes

and connections. A weight with small value is connected

with many nodes and some nodes can be linked with

weights which have significant impact to the predictions.

When small weights connecting with significant nodes are

pruned, predictions of DNN can change significantly. The

accuracy of the pruned DNN can be declined. Alterna-

tively, some approaches reinitialize the remaining weights

randomly after the pruning and keep the pruned weights to

be zeros [18–20]. Those approaches retrain the remaining

weights of DNN again with respect to the loss function.

However, experimental results show that those randomly

pruning approaches only achieve poor results [21].

To overcome the common limitations of the state-of-art

algorithms, a branching tree pruning algorithm is proposed

in Sect. 4. The branching tree pruning algorithm is an

iterative method. It first generates several pruned DNNs

based on a trained DNN. It again prunes the weights and

retrains the remaining weights of those pruned DNNs. Each

retrained DNN generates several pruned DNNs with dif-

ferent pruning sets of which a proposed roulette pruning

operator in Sect. 1 is used. The proposed roulette prune

operator prunes the small weights more frequently and the

large weights are more likely to be kept. The algorithm

checks which DNNs have more the higher accuracy; the

DNN with the highest accuracy is further pruned with

several pruning sets. The process continues, until the DNN

accuracy is declined compared to the original DNN. Unlike

the commonly used algorithms which prune the smallest

weights and weights with small gradients when training,

the proposed algorithm uses a roulette prune operator in

order to prune some weights where the small weights are

more likely to be pruned and the large weights are more

likely to be kept. The remaining weights are retrained. The

process continues until the DNN accuracy declines. Unli-

kely the commonly used methods which only target for the

sub-optimal pruning sets, the proposed algorithm is similar

to the roulette wheel selection in genetic algorithms which

attempts to search for the global optimum [22]. The pro-

posed algorithm is more likely to search a set of weights

which is redundant and is worth to be pruned. The algo-

rithm also attempts to keep the DNN accuracy.
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3 Branching tree pruning algorithm

This section presents the proposed branching tree pruning

algorithm and discusses how it seeks and prunes the

redundant weights while keeping the accuracy of the

original DNN which has not been pruned. The main

component of the proposed algorithm namely roulette

prune operator is proposed in Sect. 3.1. The algorithmic

flow of the proposed branching tree pruning algorithm is

presented in Sect. 3.2.

3.1 Roulette prune operator

The roulette prune operator is illustrated in Algorithm 1.

The proposed operator uses the roulette wheel approach to

select redundant weights to be pruned. The selection

approach is similar to roulette wheels in the casino. Each

interval of the roulette wheel is assigned as each of the

possible selections of which weights are to be pruned.

Weights with large value are assigned with small intervals;

they have smaller chances to be selected. Weights with

small values are assigned with large intervals; they have

larger chances to be selected. Large weights are likely to be

kept but they still have chances to be pruned. Small

weights are more likely to be pruned but they still have

chances to be kept. Unlike the commonly used approach

which only prunes small weights and generates DNNs with

only large weights, the proposed operator attempts to

explore a better pruning solution with a good combination

of small and large weights.

In the roulette prune operator illustrated in Algorithm 1,

the operator input is a DNN weight set P with weights,

pi 2 P, and a pruning rate H, which is the required number

of weights to be pruned.H is set by the proposed branching

tree pruning algorithm in Sect. 3.2. The operator output is

the pruned weight set namelyW, where the pruned weights,

wi ¼ 0 2 W , are set to be zero. Steps 1 and 2 initialize the

empty roulette wheel interval for each weight. In Steps 3 to

5, the roulette prune operator computes the roulette interval

for each weight based on the inverted weight value, where

small weights occupy large intervals and large weights

occupy small intervals. Steps 6 and 7 generate the roulette

wheel interval for each weight. The selection of weights is

similar to the roulette wheel game in the casino. When the

weight is large, its inverted value is small and its roulette

wheel interval is small; the chance of being pruned is

small. For a small weight, its inverted value is large and its

roulette wheel interval is large. The chance of being pruned

is large.

The random selection in the while-loop simulates how

the roulette wheel is rotated and how a ball falls in an

interval. A random number is generated by rand(). When

the random number is between the range of the jth roulette

interval, Step 9 prunes the jth weight by setting pj to be

zero. The number of pruned weights is counted by Step 10.

The roulette selection is repeated until the pre-defined

number of weights is pruned. In Step 11, a pruned weight

set namely W is initialized by using the remaining weights

which have not been pruned, while some weights, wj 2 W ,

are set as zeros as pj ¼ wj ¼ 0. The backpropagation

algorithm is used to tune the W with respect to a loss

function and the pruned weights with wj ¼ 0 are still kept

as zeros.

In the proposed operator, weights with a small value are

likely to be pruned but they still have chances to be kept.

Hence, probabilities of keeping small weights are not zero.

Unlike the commonly used methods, they prune a fixed

percentage of the smallest weights and smallest weights

have to be pruned. In the proposed method, smallest

weights still have chances to be survived. This is an

advantage for the whole DNN. Since there is a chance that

small weights are possible to be kept, useful information

from small weights is possible to pass to other nodes to

perform predictions. The proposed operator is incorporated

with the branching tree pruning algorithm in Sect. 3.2, in

order to seek for a better pruning configuration.

Neural Computing and Applications

123



Algorithm 1 ROULETTE-PRUNE
�
P;H

�
�! W
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3.2 Algorithmic flow

The algorithmic flow of the proposed branching tree

pruning algorithm is illustrated in Fig. 1. The algorithm is

used to generate a pruned weight set, Wfinal, which has a

smaller number of weights compared to the original weight

set WO. The original DNN accuracy can be kept. The

number of weights of Wfinal is Hfinal time smaller than that

of WO, where Hfinal is the final pruning rate which is small

than one. In Level 1, the proposed algorithm first repro-

duces Nbranch pruned weight sets namely W1;1, W1;2,..., and

W1;Nbranch
by ROULETTE-PRUNE in Sect. 3.1, where the

pruned weight sets in level 1 are H time slimmer than WO.

Since ROULETTE-PRUNE is a non-deterministic algo-

rithm, the pruned weight sets in level 1 are not identical.

Those nonidentical weight sets attempt to explore different

pruning configurations, in order to search for a pruning

configuration which has a smaller number of weights and

keeps the original DNN accuracy.Fig. 1 Branching tree pruning algorithm

(a) Zero (b) One (c) Two (d) Three (e) Four

(f) Five (g) Six (h) Seven (i) Eight (j) Nine

Fig. 2 Ten figures from MNIST

database

(a) Airplane (b) Automo-

bile

(c) Bird (d) Cat (e) Deer

(f) Dog (g) Frog (h) Horse (i) Ship (j) Truck

Fig. 3 Ten figures from CIFAR

database
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In Level 1, the best pruned weight set W1;Best is selected

to explore Level 2. The Nbranch pruned weight sets namely

W2;1, W2;2,..., and W2;Nbranch
in Level 2 are explored and the

best weight set namely W2;Best is selected to explore weight

sets for Level 3. The process continues until no more

weight set can be pruned while the prediction accuracy can

be kept. In Level ðiþ 1Þ, the best weight set is finally

selected as the output of the proposed branching tree

pruning algorithm. The best weight set is slimmer than WO

and the original accuracy can be kept, when the best weight

set is used in the DNN. The proposed branching tree

pruning algorithm is similar to the genetic algorithm with

roulette wheel selection. The proposed algorithm attempts

to overcome the limitations of the commonly used pruning

approaches which keep exploring a single pruning solution

and are not likely to explore a better pruning configuration.

Algorithm 2 BRANCH-TREE
�
WO;Hreq

�
�!

�
Wfinal;Hfinal

�
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The proposed branching tree pruning algorithm is

detailed in Algorithm 2. WO, is the input of the branching

tree pruning algorithm. The outputs are Wfinal and Hfinal.

Steps 1 to 3 and Step 5 initialize the algorithmic parameters

and set the level number, i, and the branch, j, to be zero.

They also set WO, as the initial weight set, Wi;j which is

used as the initial searching point of the algorithm. Step 4

uses the loss function (4) to compute the loss value of the

DNN with Wi;j ¼ WO.

Li;j ¼ F
�
Wi;j

�
¼

XND

k¼1

�
f ðxkjWi;jÞ � yk

�2 ð4Þ

where Li;j is the loss value with respect to the pruned

weight Wi;j which is at the jth branch of the ith level.

Step 5 initializes the best branch index, Best, as 1. Step 6

sets the pruning rate in the current tree level. Step 7 uses

ROULETTE � PRUNE to generate the pruned weight set,

Wiþ1;k, for the kth branch at level ðiþ 1Þ, in order to

explore a better pruning configuration. The if-condition is

used to check whether the loss value of the pruned DNN

withWiþ1;k is better than the DNN with the bestWiþ1;Best. If

the condition is satisfactory, Step 8 replaces Wiþ1;Best with

Wiþ1;k and the index, Best, is set as k, since the kth branch

generates the best weight set. Steps 7 to 9 repeat continu-

ously to explore a better pruning configuration, until a

lower loss value cannot be explored for all branches. Step

10 sets the best weight set as the final weight set,Wfinal, and

it also sets H as the final pruning rate, Hfinal. Finally, Wfinal

and Hfinal are returned as the algorithmic outputs, where a

smaller weight set Wfinal is used in the DNN and the

accuracy of the original DNN can be kept.

4 Algorithmic performance evaluations

To evaluate the performance of the proposed branching

tree pruning algorithm, both deterministic datasets and

non-deterministic datasets are used and are described in

Sect. 4.1. Then four commonly used pruning algorithms

described in Sect. 4.2 are used to compare with perfor-

mance of the proposed algorithm. The results obtained for

the deterministic datasets and non-deterministic datasets

are discussed in Sects. 4.3 and 4.4, respectively.

4.1 Benchmark datasets

The deterministic datasets in Sect. 4.1.1 are commonly

used to evaluate the pruning performance, where the data

labels are the same when the same data is given. They

evaluate whether the DNN accuracy can be kept when the

DNN is pruned. For the non-deterministic datasets in Sect.

4.1.2, the data labels are similar but not identical when the

same data is given. They evaluate whether the performance

of the pruned DNN is robust to the varying labels.

4.1.1 Deterministic datasets

For the deterministic datasets, the commonly used bench-

mark classification datasets namely MNIST3 and

CIFAR104 are used. Some figures for MNIST and

CIFAR10 are shown in Figs. 2 and 3, respectively. These

two datasets have been used to evaluate the performance of

many pruning algorithms [23, 27, 30–35]. The MNIST

database of handwritten digits has a training set of 60,000

gray images with the size of 28 � 28 pixels in 10 classes

from zero to nine, and a test set of 10,000 examples. The

CIFAR-10 dataset consists of 60 000 color images with the

size of 32 � 32 pixels, and 6000 images per class. The

classes consist of the items of airplane, automobile, bird,

cat, deer, dog, frog, horse, ship, and truck. These two

datasets are deterministic since the recognition outcomes

are the same when the same images are given. For exam-

ple, when an image with digit number one in MNIST is

shown, the group true is one; when an image with the

animal cat is shown, the group true is a cat. In the two

deterministic datasets, each image has an exact ground

truth.

4.1.2 Nondeterministic datasets

For the non-deterministic dataset, we use the TID image

quality evaluation dataset to evaluate the performance of

the pruning algorithms. Some of those images with dif-

ferent distortion types are shown in Fig. 4. For example,

when the image shown in Fig. 4a distorted with Gaussian

noise was shown to many persons, the scores evaluated by

persons are different. These types of images evaluate

whether the pruned DNN is robust for the predictions when

the non-deterministic scores are used as the labels.

The TID database has 3000 distorted images of which

each image was contaminated by a distortion on a reference

image. There are 25 reference images and 24 distortion

types with 5 levels. The 24 distortion types are caused by

either camera operations, image transmissions, image

compression/decompression, or conventional image pro-

cessing. There are totally 3000 distorted images in the TID

database. Some distortions are common in many applica-

tions; some are rare in real applications but they are par-

ticularly generated to evaluate the prediction performance

[24].

In the TID database, the image qualities were scored

from the range between 1 to 5 by the human observers

3 http://yann.lecun.com/exdb/mnist/.
4 https://www.cs.toronto.edu/*kriz/cifar.html.
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which are from 5 countries, Finland, France, Italy, Ukraine,

and USA. We further ranked the image scores as integer

values either 1, 2,..., or 5. To further increase the training

samples, each distortion image was patched into 16 � 12

blocks with a resolution of 32 � 32 pixels. Therefore, 576

000 image blocks are used to test the performance of the

pruning algorithms. Based on the TID database which is

non-deterministic, we can evaluate whether the pruning

(a) Gaussian noise (b) Luminance

noise

(c) Spatial noise (d) Masked noise (e) High freq.

noise

(f) Impulse noise (g) Quantization

noise

(h) Gaussian blur (i) Image denois-

ing

(j) JPEG compres-

sion

(k) JPEG2000

compression

(l) JPEG trans-

mission

(m) JPEG2000

trans.

(n) Noneccentric-

ity patt.

(o) Block-wise dis-

tortions

(p) Mean shift (q) Contrast

change

(r) Color satura-

tion

(s) Multi. Gaus-

sian

(t) Comfort noise

(u) Lossy compres-

sion

(v) Color quanti-

zation

(w) Chromatic

aberrations

(x) Sparse sam-

pling

Fig. 4 25 distortion types for TID2013 database
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algorithms is sensitive to nonidentical scores when the

same image block is presented.

Despite using the full TID dataset, three datasets namely

Noise, Actual and New described in Table 1 are used to

evaluate the performance of the pruning algorithms. These

three datasets contain some noise types of the full TID

datasets which are designed for particular image applica-

tions. The Noise, Actual and New datasets contain 192 000,

288 000 and 168 000 image blocks, respectively.

4.2 Algorithmic comparison

For the deterministic databases, MNIST and CIFAR10, the

architecture of convolution neural networks has commonly

been used to evaluate the pruning algorithms

[23, 27, 30–35]. Hence, pruning of convolution neural

networks is used to evaluate the pruning algorithm per-

formance. In this research, the network architecture for

evaluating the performance of recent pruning algorithms is

used [23]. The DNN consists of two convolution layers,

one pooling layer and one fully connected layer. The first

convolution layer has 32 kernels with the size of 3 � 3. The

second convolution layer has 64 kernels with the size of 3

� 3. The third layer is the max pooling layer and the final

layer is the full connected layer with 128 hidden nodes.

The total number of weights is 1.2 million.

For the non-deterministic database, TID, the convolu-

tion neural networks have been used to perform the clas-

sifications with reasonable results [36–38] but large

numbers of parameters are required. The VGGnet archi-

tecture is used [39]. The VGGnet architecture consists of

eight convolution layers with 3�3 cascaded convolution

kernels and four maxpool layers [38]. The DNN was

developed to process image blocks with the resolution of

32 � 32 pixels. To unify the image resolution of VGGnet

input, images are resized by two convolution layers and a

single maxpool layer. The image features of the DNN are

inputted to two cascaded fully connected neural networks

and a single pooling layer. The DNN consists of 5.2 million

parameters [38].

Table 1 Distortion types for

TID2013 and its subsets
Distortion type Full Noise Actual New

(a) Gaussian noise U U U �
(b) Luminance noise U U � �
(c) Spatial noise U U U �
(d) Masked noise U U U �
(e) High freq. noise U U U �
(f) Impulse noise U U U �
(g) Quantization noise U U � �
(h) Gaussian blur U U U �
(i) Image denoising U � U �
(j) JPEG compression U � U �
(k) JPEG2000 compression U � U �
(l) JPEG transmission U � U �
(m) JPEG2000 trans. U � � �
(n) Noneccentricity patt U � � �
(o) Block-wise distortions U � � �
(p) Mean shift U � � �
(q) Contrast change U � � �
(r) Color saturation U � � U

(s) Multi. Gaussian U � U U

(t) Comfort noise U � � U

(u) Lossy compression U � U U

(v) Color quantization U � � U

(w) Chromatic aberrations U � � U

(x) Sparse sampling U � � U

Total number of images 3000 1000 1500 875

Total number of patches 576 000 192 000 288 000 168 000

U: the corresponding noise type is included

�: the corresponding noise type is excluded
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The performance of the proposed pruning operator,

ROULETTE-PRUNE, and the proposed algorithm,

branching tree pruning algorithm, is compared with those

obtained by the commonly used pruning operators [21]

[23]:

• Large final: Weights are pruned randomly while

weights ranked with larger values are kept from the

fully trained DNN. When c% of weights are set to be

pruned, c% of the larger weights are kept and c% of the

remaining weights are selected randomly to be pruned.

• Random: The weights in the fully trained DNN are

randomly selected to be pruned. When the pruning rate,

c%, is pre-defined, c% of the weights are selected

randomly to be pruned.

• Smallest weights: Weights with the smallest absolute

values in the fully trained DNN are pruned. c% of the

smallest weights are pruned.

• Smallest weights global: Smallest weights across all

layers are pruned in the fully trained DNN. For a DNN

with N layers, ð cNÞ% of the smallest weights in each

layer are pruned when the overall pruning rate is set as

c%.

To evaluate the performance of the four commonly used

pruning operators and the proposed ROULETTE-PRUNE

in Sect. 3.1, pretrained DNNs are used. The number of

epochs used to train the DNNs is 50. The comparisons were

conducted by two commonly used approaches which were

suggested by Frankle et la. [21] [23] to evaluate the

pruning performance of DNNs.

• Pruning with reinitialized weights: The DNN was

trained with a reasonable accuracy with respect to a

dataset. Pruning is performed to sparse some non-zero

weights into zeros. The DNN is reinitialized by

regenerating the non-zero weights with random num-

bers and keeping the sparsed weights as zeros. The

DNN is retrained by the reinitialized non-zero weights,

while the sparsed weights are kept zeros. The DNN

weights are pruned iteratively after training with several

epochs until the DNN accuracy is smaller than the

original DNN. The approach attempts to evaluate

whether re-initializing values in unsparsed weights is

more effective than keeping the weight values.

• Pruning with trained weights: Similar to the above

approach, pruning with reinitialized weights, a DNN

was trained with a reasonable accuracy with respect to a

dataset. Pruning is performed to sparse some non-zero

weights into zeros. Both the original trained weights

and the sparsed weights are kept. The DNN is retrained

Fig. 5 Pruning of DNNs with initial weights for MINST data
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based on the kept weights. The DNN weights are

pruned and then retraining with pre-defined number of

epochs iteratively, until the DNN accuracy is poorer

than the original DNN. The approach attempts to

evaluate whether using the original un-pruned weights

to retrain the DNN is effective.

For the proposed branching tree pruning algorithm5 in Sect.

3.2, the number of branches in each level is set as 5. The

proposed algorithm is terminated when no improvement is

obtained in a level, ðiþ 1Þ. Hence, the total number of

searches of the proposed algorithm is 5� ðiþ 1Þ. To

achieve a fair comparison, the other tested operators are

performed with 5� ðiþ 1Þ searches. The best pruned DNN
is used for the comparisons.

4.3 Performance evaluations with deterministic
data

This subsection evaluates the numerical results obtained by

the proposed ROULETTE-PRUNE operator in Sect. 3.1

and the proposed branching tree pruning algorithm in Sect.

3.2. The performance was evaluated by the two

deterministic datasets, MINST and CIFAR-10. The results

obtained by proposed methods are compared with the four

tested operators, large final, random, smallest weights, and

smallest weights global. The pruning results with reini-

tialized weights and trained weights are shown in Sects.

4.3.1 and 4.3.2, respectively.

4.3.1 Pruning results with reinitialized weights

The results of pruning with reinitialized weights are shown

in Figs. 5 and 6 for the MINST and CIFAR data, respec-

tively. Figure 5 shows the pruning performance for the

MINST dataset where the un-pruned weights are randomly

reinitialized before the DNN is retrained. In the figures, the

red lines show the accuracy rate of the trained DNN which

is not pruned; the accuracy rate is close to 0.95. Figure 5a,

b, and c show the accuracy rates for the DNNs which are

pruned with 20%, 56%, and 90%, respectively. The fig-

ures show that the accuracy rates for the five tested

methods are close to the original accuracy rate of which the

trained DNN is not pruned. However, the accuracy rate

achieved by the random operator is less than 20% which is

significantly poorer than the other four tested when the

pruning rate is 90%. Figure 5d shows the results when the

pruning rate is 99%. The results show that the proposed

5 The proposed branching tree pruning algorithm is coded by python

tensorflow. The source code is available by requesting the first author.

Fig. 6 Pruning of DNNs with initial weights for CIFAR data

Neural Computing and Applications

123



ROULETTE PRUNE operator achieves better accuracy

rate which is close to 80% compared to other tested

operators. These results indicate that the proposed operator

achieves a better result when the pruning rate is high.

Figure 6 shows the pruning performance of DNNs

which are trained with CIFAR data. The red lines show the

accuracy rates of the trained DNN which is not pruned; the

accuracy rate is close to 70%. Figure 6a shows the results

of which the DNN is pruned by 20% of weights. The

accuracy rates for the five tested methods are close to the

original accuracy rate, except that the accuracy rate

achieved by the smallest weights operator is slightly poor

than the others. Figure 6b shows that the results of which

the DNN is pruned by 55% of weights. The accuracy rates

obtained by the four operators, large final, random, smallest

weights global and the proposed operator are close to the

original accurate rate, while significantly poorer accuracy

is obtained by the smallest weights operator. Figure 6c

shows the results of which the DNN is pruned by 90% of

weights. It shows that significantly poorer results are

achieved by the tested operators while the proposed oper-

ator achieves a better accuracy rate which is close to the

original accuracy rate. Similar results are obtained for the

DNN pruned with 99% of weights. Figure 6d shows that

the proposed operator achieves a significantly better

accuracy rate compared to the four tested operators.

Therefore, these results further indicate that the proposed

operator achieves better results when the pruning rates are

high.

4.3.2 Pruning results with trained weights

Figure 7 shows the pruning performance of the DNNs

trained with the MNIST data, where the trained weights are

used as the initial weights for retraining after some weights

are pruned. The red lines show the accuracy rate of the

original trained DNN which is close to 0.95. Figure 5a, b, c

and d show the accuracy rates for the DNNs which are

pruned with 20%, 56%, 90% and 99%, respectively. The

DNNs are retrained with the trained weights while the

pruned weights are kept to be zero. Figure 7a, b, and c

shows that the accuracy rates for the six tested pruning

methods are close to the original accuracy rates of which

the original DNN is not pruned. Figure 5d shows that the

performance of the four tested methods decreases signifi-

cantly when the pruning rate is 99%, compared to the

proposed operator and the proposed algorithm. These

results indicate that the proposed ROULETTE-PRUNE

operator and the proposed branching tree pruning

Fig. 7 Pruning of DNNs with trained weights for MINST data
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algorithm outperforms the tested methods, when the

pruning rates are high.

Figure 8 shows the pruning performance of DNNs

trained with CIFAR data, where the trained weights are

used as the initial weights for retraining. Figure 8a and b

show the results when 20% and 56% of weights are pruned,

respectively. The two figures show that the accuracy rates

obtained by the four tested methods and the two proposed

methods are close to the original accuracy rates. Figure 8c

and d show the results when the DNN is pruned by 90%
and 99% of weights, respectively. These two figures show

that the proposed ROULETTE-PRUNE operator and the

proposed branching tree pruning algorithm achieve better

results which are close to the original accuracy rate, while

the performance of the other four tested methods decrease

significantly. These results further indicate that the pro-

posed operator and the proposed method are able to keep

the original accuracy rate when more weights are pruned.

Fig. 8 Pruning of DNNs with trained weights for CIFAR data

Fig. 9 Accuracies of pruned DNNs with trained weights for TID data Fig. 10 Accuracies of pruned DNNs with trained weights for Noise

data
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4.4 Performance evaluations with non-
deterministic data

The performance of the proposed methods are evaluated by

the non-deterministic data, the four image quality evalua-

tions datasets, namely TID, Noise, Actual and New [24] in

Table 1. For these four datasets, 80% of image patches are

used for training and the rest of the 20% are used to test the

pruned DNN performance.

Figure 9 shows the pruning performance of the DNNs

trained with the TID data, where the trained weights are

used as the initial weights to retrain the DNNs after the

original DNN is pruned by 20%. The accuracy rates are

illustrated. The figure shows that the accuracy rate of the

original DNN is 62.33% which are better than the pruned

DNNs generated by the four tested methods. Therefore, the

accuracies are poorer after the DNN is pruned when the

tested methods are used. However, better accuracies can be

achieved by the two proposed methods, ROULETTE-

PRUNE operator and branching tree pruning algorithm,

which obtain higher accuracies compared with the original

DNN. Although 20% of weights are pruned by the pro-

posed methods, better accuracies can be achieved com-

pared to the original DNN. The red line shows the accuracy

rate of the original DNN. It clearly shows that the proposed

methods achieve better accuracies compared to the other

four tested methods.

Figure 10 shows the pruning performance of DNNs

trained by the Noise data. It shows that the accuracy rate of

the original DNN without pruning is higher than 75 %.

Fig. 11 Accuracies of pruned DNNs with trained weights for Actual

data

Fig. 12 Accuracies of pruned DNNs with trained weights for New

data

Fig. 13 Predictions for TID dataset
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Poorer accuracy rates are obtained by the four tested

methods, large final, random, smallest weights and smallest

weights global, compared to the original DNN. Therefore,

the accuracies of the tested methods are poorer after the

DNN is pruned. However, better accuracies can be

achieved by the proposed ROULETTE-PRUNE operator

and proposed branching tree pruning algorithm which

obtain higher accuracies compared with the original DNNs,

after 20% of weights are pruned. Also the accuracy

achieved by the proposed methods is better than those

achieved by the other four tested methods. Similar results

can be obtained for the Noise, Actual and New datasets

which are shown in Figs. 10, 11 and 12, respectively. For

the three datasets, the accuracy rates of the original DNNs

without pruning are about 69 %. Poorer accuracy rates are

obtained by the four tested methods while better accuracy

rates are achieved by the two proposed methods, after 20%
of the weights are pruned.

For the TID dataset, the scatter plots in Fig. 13a and b

show the predictions of the original DNN and the slimmed

DNN which are pruned by the proposed branching tree

pruning algorithm, respectively. In the scatter plot, the x-

axis shows the actual scores and the y-axis shows the

predictions, where both actual scores and predictions are

divided into the grids from 0 to 6. The circle size and color

indicate the number of samples that match the

Fig. 14 Predictions for Noise dataset

Fig. 15 Predictions for Actual dataset
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corresponding prediction and actual score. When more

samples match, the corresponding circle size is larger and

the color is lighter. For example, we consider the coordi-

nates (5,5) and (5,6). (5,5) indicates the number of samples

which predict 5 when the actual score is 5. (5,6) indicates

the number of samples which predict 6 when the actual

score is 5. The two figures clearly show that the circle size

of (5,5) is larger and also the color is lighter compared to

(5,6). In the diagonal grids, the figures clearly indicate that

the circle sizes are larger and the circle colors are lighter

than the off-diagonal grids. The figures show that the pat-

terns or grid distributions of both the original DNN and the

slimmed DNN are similar. Therefore, similar predictions

can be achieved by the slimmed DNN and the original

DNN. 20% of memory can be saved when the DNN pruned

with 20% of weights is used.

Similar results can be found for Noise, Actual and New

datasets which are shown in Figs. 14, 15 and 16, respec-

tively. The figures show that the patterns or grid

distributions of both original DNN and pruned DNN are

similar for those of the Noise, Actual and New datasets.

Therefore, these results further show that similar predic-

tions can be obtained by the pruned DNNs and the original

DNNs. These results further demonstrate the effectiveness

of the proposed branching tree pruning algorithm.

Table 2 summarizes the accuracy rates for the original

DNNs which have not been pruned and the accuracy rates

achieved by the tested methods, Large final, Random,

Smallest weights and Smallest weights global, and the

proposed methods, Proposed operator and Proposed full

algorithm. For the MINST and CIFAR data, the original

DNNs are pruned with 99% of the weights, where the

network architecture for evaluating the performance of

pruning algorithms is used [23]. For MINST and CIFAR,

the table shows that the accuracy rates of the DNNs pruned

by the tested methods decrease significantly, compared to

the original DNNs. The Proposed operator and Proposed

full algorithm achieve better results. For the TID, Noise,

Fig. 16 Predictions for New dataset

Table 2 Accuracy rates of pruned DNNs with trained weights for the six datasets (MINST, CIFAR, TID, Noise, Actual and New)

Tested methods Proposed methods

Datasets Original DNN

(%)

Large final

(%)

Random

(%)

Smallest weights

(%)

Smallest weights

global (%)

Proposed

operator (%)

Proposed full

algorithm (%)

MINST 93.29 16.29 11.35 11.13 8.92 95.06 98.25

CIFAR 69.84 10.03 12.75 11.81 12.87 72.62 70.93

TID 62.33 58.84 56.86 57.57 58.43 63.67 65.06

Noise 69.15 69.05 68.65 68.07 69.01 70.89 71.94

Actual 69.01 65.03 66.08 66.16 67.05 70.13 70.76

New 68.50 66.92 66.62 66.03 66.28 70.20 70.46
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Actual and New data, the DNN architecture is implemented

for image quality evaluations [38]. The results show that

the accuracy rates decrease for the tested methods com-

pared to the original DNNs. Better accuracy rates can be

achieved by the proposed methods. These results further

indicate that the proposed methods outperform the tested

methods.

5 Conclusion

In this paper, a branching tree pruning algorithm incorpo-

rated with a ROULETTE-PRUNE operator was proposed

to simplify cumbersome DNNs by reducing the number of

weights while keeping the DNN accuracy. The proposed

algorithm attempts to overcome the limitation of the

commonly used approaches that only pruned small weights

which are possible to be connected with significant weights

and have impact to DNN outputs. DNN accuracies can be

degraded significantly after the pruning. The proposed

algorithm is similar to the genetic algorithm with roulette

wheel selection. It generates a few DNNs which prune both

large and small weights simultaneously. Small weights

have higher chances to be pruned but have chances to be

kept; large weights are likely to be kept but have chances to

be pruned. The process continues for many iterations to

explore simpler DNNs while the DNN accuracy can be

kept.

Experiments were conducted with two deterministic

datasets namely MNIST and CIFAR-10, and four non-de-

terministic datasets, namely full TID, Noise, Actual and

New. The performance of the proposed algorithm was

compared to those of the four commonly used pruning

methods. For the deterministic datasets, the proposed

algorithm is able to generate simpler DNNs; the DNN

accuracy can be kept particularly when the pruning rate is

high. For the non-deterministic datasets, results show that

more accurate DNNs can be generated by the proposed

algorithm after the DNNs are pruned. The other tested

methods generated poorer DNNs after the pruning. These

results show that similar or better predictions can be

obtained by the pruned DNNs compared to the original

DNNs, when the proposed algorithm is used. Less memory

is required, when the pruned DNNs are used but the

accuracy can be kept.

In this paper, the performance of the proposed algorithm

has only been validated by 2D images or offline predic-

tions, where 3D images and online predictions have not be

used to validate the algorithmic performance. In the future,

we will further validate the algorithmic performance by

implementing the proposed algorithm on our current

research which involves DNNs with 3D images [40] and

online predictions [41]. We will use the proposed algorithm

to slim DNNs which are used for medical diagnosis with

3D images [40]. We will validate the prediction perfor-

mance when the insignificant weights of the DNNs are

pruned. We will evaluate the algorithmic performance by

implementing the proposed algorithm on acoustic com-

munication systems which require real time predictions

[41]. We will validate whether prediction accuracy can be

kept and how much computation time can be reduced when

the DNNs are pruned by the proposed algorithm.
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