
ORIGINAL ARTICLE

Evolution inspired binary flower pollination for the uncapacitated
facility location problem

Fehmi Burcin Ozsoydan1 • Ali Erel Kasırga2,3

Received: 16 September 2023 / Accepted: 25 March 2024
� The Author(s) 2024

Abstract
The present paper introduces a modified flower pollination algorithm (FPA) enhanced by evolutionary operators to solve

the uncapacitated facility location problem (UFLP), which is one of the well-known location science problems. The aim in

UFLP is to select some locations to open facilities among a certain number of candidate locations so as to minimize the

total cost, which is the sum of facility opening costs and transportation costs. Since UFLP is a binary optimization problem,

FPA, which is introduced to solve real-valued optimization problems, is redesigned to be able to conduct search in binary

domains. This constitutes one of the contributions of the present study. In this context, some evolutionary operators such as

crossover and mutation are adopted by the proposed FPA. Next, the mutation operator is further enhanced by making use of

an adaptive procedure that introduces greater level of diversity at earlier iterations and encourages intensification toward

the end of search. Thus, while premature convergence and local optima problems at earlier iterations are avoided, a more

intensified search around the found promising regions is performed. Secondarily, as demonstrated in this study, by making

use of the reported evolutionary procedures, FPA is able to run in binary spaces without employing any additional auxiliary

procedures such as transfer functions. All available benchmarking instances are solved by the proposed approach. As

demonstrated by the comprehensive experimental study that includes statistically verified results, the developed approach

is found as a promising algorithm that can be extended to numerous binary optimization problems.

Keywords Metaheuristics � Flower pollination algorithm � Uncapacitated facility location problem � Binary optimization

1 Introduction

Today, there emerges a very competitive environment in

various sectors. Enterprises in both public and private

sectors need to keep up with this competitive environment

in order to be able to maintain their operations efficiently.

Accordingly, to keep up with such a competitive environ-

ment, enterprises inevitably need to aim to reduce costs and

increase customer satisfaction. This brings about a neces-

sity for sustainable supply chains that are established to

satisfy customer needs at the minimum cost and by not

violating production constraints. As a result, this situation

draws researchers’ attention to location science problems,

which still grab attention of numerous researchers and

practitioners from various disciplines. Due to their men-

tioned strategic importance, location science problems can

be considered as one of the commonly studied problems for

decades. What is more, most of these problems are known

to be in category of NP-hard problems. Therefore,

employing metaheuristic algorithms are very common

among researchers and practitioners particularly in solving

large-scaled instances of location science problems.

As one of the emerging and attention-grabbing branch of

metaheuristic algorithms, bio-inspired algorithms have

become popular in the last decade. Bio-inspired algorithms

are metaheuristics, which are based on metaphors in the

simulated environment and they mimic the nature of living

& Fehmi Burcin Ozsoydan

burcin.ozsoydan@deu.edu.tr

Ali Erel Kasırga
erelkasirga@gmail.com

1 Industrial Engineering Department, Faculty of Engineering,

Dokuz Eylül University, İzmir, Türkiye

2 Groupe Atlantic İzmir, İzmir, Türkiye

3 Graduate School of Natural and Applied Sciences, Dokuz

Eylül University, İzmir, Türkiye

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-09684-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-6368-4425
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09684-0&domain=pdf
https://doi.org/10.1007/s00521-024-09684-0

beings in solving optimization problems. Although they do

not guarantee optimality as metaheuristics; these algo-

rithms are commonly used due to the capability of offering

solutions of high-quality in acceptable time and being open

to various improvements.

Unfortunately, most of the bio-inspired algorithms are

devised for real-valued continuous domains, while majority

of real-life problems have discrete and combinatorial

spaces. To overcome this issue, researchers commonly

adopt transfer functions. These functions transform a con-

tinuous vector into a binary vector. However, this results in

various additional problems such as spatial distance, since,

a continuous vector may not always result in the exact

same binary vector on every occasion it is transformed.

This undesirable circumstance brings about conflicts

throughout search. Consequently, a promising vector may

be underestimated by the algorithm, while some other

vectors might unnecessarily or luckily be overestimated.

Such issues constitute the main motivation of the present

study. The aim here is to address a simple yet effective

approach to deal with spatial distance problems in bio-

inspired algorithms. Accordingly, a procedure that borrows

some evolutionary operators, which can run in binary

spaces, is adopted first. The mentioned procedure is used

along with the notion of flower pollination algorithm (FPA)

[1], which can be considered as a relatively recent bio-

inspired algorithm that has been shown to be promising in

various problems. The motivation in choosing this algo-

rithm stems from its simplicity in terms of both complexity

and intelligibility and being open to various improvements.

In addition to these enhancements in FPA, secondarily, an

adaptive mutation procedure that introduces greater level

of diversity at earlier iterations and encourages intensifi-

cation toward the end of search is adopted. Thus, while

premature convergence and local optima problems at ear-

lier iterations are avoided, a more intensified search around

the found promising regions is conducted. Accordingly, the

distinguishing features of the proposed FPA can be brought

together in twofold: (i) the proposed modification is cap-

able of handling binary spaces without any auxiliary pro-

cedures such as transfer functions, (ii) it has a further

convergence capability that also enables avoiding local

optima. The performance of the proposed approach is

tested on the uncapacitated facility location problem

(UFLP), which is one of the well-known location science

optimization problems and has numerous potential real-life

applications in practice. A comprehensive experimental

analysis including statistical demonstrations, convergence

analysis and complexity analysis is conducted. According

to the statistically verified results, the proposed approach is

found as a promising algorithm in solving UFLP.

The rest of this paper is organized as follows: Related

literature review for UFLP, research gaps and potential

applications are given in Sect. 2. The proposed solution

approach and developed procedures are presented in

Sect. 3. Experimental study and concluding remark are

reported in Sects. 4 and 5, respectively.

2 UFLP and related studies

2.1 A formal introduction for UFLP

UFLP [2] is one of the most commonly studied location

science problems, and it forms a basis for a variety of

related models used in supply chain design. As discussed

before, the aim in UFLP is to determine a set of facilities

among a certain candidate locations so as to minimize the

total cost, which is the sum of facility opening costs and

transportation costs between the opened facilities and

demand points (customers). More formally, UFLP can be

formulated as follows:

Minimize
XN

i¼1

XM

j¼1

cijxij þ
XN

i¼1

f iyi ð1Þ

XN

i¼1

xij ¼ 1j ¼ 1; . . .;M ð2Þ

xij � yi i ¼ 1; . . .;Nj ¼ 1; . . .;M ð3Þ

xij 2 0; 1f g i ¼ 1; . . .;Nj ¼ 1; . . .;M ð4Þ

yi 2 0; 1f g i ¼ 1; . . .;Nj ¼ 1; . . .;M ð5Þ

In these formulations, Eq. (1) represents the objective

function to be minimized. In Eq. (1), N is the number of

potential facility locations, M is the number of demand

points, f i is the facility opening cost associated to ith point,

cij is the cost occurring between facility point i and the

demand point j. Equation (2) ensures that all demands are

satisfied. Equation (3) provides that customers can be

assigned only to opened facilities. Accordingly, Eqs. (4)

and (5) impose sign restrictions on decision variables. The

binary variable yi denotes whether the facility i is opened

or not. If the candidate facility at location i is opened, the

decision variable yi takes value of 1; otherwise, it takes

value of 0. The other binary variable xij takes value of 1 if

the jth demand point is assigned to facility i; otherwise, it

takes value of 0.

2.2 Related studies

To the best of our knowledge, Balinski [3] first introduces a

mathematical model for UFLP. Later, Efroymson and Ray

[4] report a modification on this model and develop a

branch and bound algorithm. Next, Khumawala [5] pro-

poses a more efficient branch and bound algorithm. By

Neural Computing and Applications

123

using ascent and adjustment procedures, Erlenkotter [6]

introduces the dual based branch and bound algorithm.

Subsequently, by rearranging the primal–dual version of

the algorithm developed by Erlenkotter [6], Korkel [7]

proposes a more efficient algorithm in terms of required

time.

Since UFLP is shown to be an NP-hard problem [8],

various metaheuristic solution methods are reported as

well. Al-Sultan and Al-Fawzan [9] present an approach that

is based on Tabu search (TS) algorithm to solve the UFLP.

Ghosh [10] studies the performance of generic local search,

TS and complete local search with memory. Ghosh [10]

proves that both of these approaches offer effective ways

of generating high-quality solutions for large-scaled

instances. In 2006, Şevkli and Güner [11] develop a par-

ticle swarm optimization (PSO) algorithm to solve UFLP.

Two years later, Wang et al. [12] and Güner and Şevkli

[13] propose a PSO to solve UFLP. Next, Kiran [14]

implements a bio-inspired algorithm for UFLP. A con-

structive algorithm is employed by Montoya-Torres et al.

[15]. According to the reported results, the proposed

algorithm can be considered as an efficient approach in

solving UFLP. Tsuya et al. [16] use another bio-inspired

algorithm to solve UFLP. Later, de Armas et al. [17] solve

the stochastic extension of UFLP. Subsequently, Bayka-

soglu et al. [18] present a binary weighted superposition

attraction algorithm to solve UFLP. Ozsoydan [19] pro-

poses a modified swarm-based intelligence algorithm to

solve a set of binary optimization problems including

UFLP. Ozsoydan [20] and Golcuk and Ozsoydan [21]

implement modifications of a bio-inspired algorithm,

namely grey wolf optimization algorithm to solve UFLP.

One year later, Sonuç [22] proposes another bio-inspired

metaheuristic algorithm that is further extended so as to be

capable of handling binary optimization problems. Authors

adopt the UFLP as the benchmarking suite. Zhang et al.

[23] propose an evolutionary algorithm to solve UFLP. In

one of the recent studies, Alidaee and Wang [24] propose a

genetic algorithm (GA) hybridized by TS to solve unca-

pacitated location problem, which is a natural generaliza-

tion of the UFLP. The authors report promising results. In

another recent study, Kaya [25] introduces a binary mod-

ification of a swarm-based optimizer that is driven by a bio-

inspired algorithm. The proposed algorithm exhibits a

favorable performance in solving UFLP. Zhou et al. [26]

propose an improved GA and the authors address a real-life

application in oil and gas fields. Lately, Soltanpour et al.

[27] report efficient and promising algorithms for UFLP.

The authors carry out the same analysis also for uncertain

problem environment that includes uncertain data. Jiang

and Zhang [28] propose an improved adaptive differential

evolution (DE) algorithm for solving UFLP. It is shown by

the computational results that the proposed approach

outperforms other compared swarm-based algorithms. In a

recent study, Baş and Yildizdan [29] propose a novel

binary arithmetic optimization algorithm for UFLP. The

authors adopt logic gates to deal with continuous variables,

since, as reported, the canonical form the adopted algo-

rithms is proposed for continuous spaces. Finally, in

another recent work, Aslan and Pavone [30] propose

another binary extension of a metaheuristic algorithm,

namely vortex search algorithm for solving UFLP. As

reported in that study, authors adopt several versions of

transfer functions.

There exist numerous FPA studies in the literature. Due

to space limitation, only closely related ones are reported

here. In 2015, Dubey et al. [31] propose a hybrid FPA with

a time-varying fuzzy selection methodology for wind in

integrated multi-objective dispatch. In the same year,

Rodrigues et al. [32] propose a binary modification for FPA

by using a sigmoid transfer function. The authors test their

approach on a binary optimization problem, namely feature

selection problem, which is a well-known problem in

machine learning domain. Dahi et al. [33] report a sys-

tematic evaluation study that addresses the efficiency of

mapping techniques. The authors propose binary variants

of FPA so as to evaluate the principal mapping techniques

existing in the literature. Next, Nabil [34] presents a

modified FPA, which is called opposition-based learning

FPA. This algorithm qualitatively and quantitatively ana-

lyzes FPA with the proposition of various extensions.

Abdel-Baset et al. [35] propose a hybridized FPA to solve

constrained optimization problems. In same year, Draa [36]

proposes some new extensions for FPA by employing

opposition-based learning, modified global search and local

search procedures explicitly. Zhou et al. [37] report dis-

crete greedy FPA that is based on the integration between

pollen discarding behavior and order-based crossover to get

global pollination process. Ozsoydan and Baykasoglu [38]

analyze the effects of various switching probability char-

acteristics that directly affects the success of FPA. In one

of the recent studies, Song et al. [39] hybridize DE with

FPA to solve global optimization problems. The reported

results by the authors demonstrate the efficiency of the

proposed approach which points out the potential of FPA.

Another similar approach is adopted by Mellal et al. [40] to

deal with combined heat and power economic dispatch

problem, which is shown to be a constrained optimization

problem. Finally, in a recent study, Feng et al. [41] propose

a binary hybrid artificial hummingbird with FPA for fea-

ture selection in Parkinson’s disease diagnosis. The authors

adopt a sigmoid transfer function to deal with binary

decision variables.

Neural Computing and Applications

123

2.3 Research gaps, motivation and potential
extensions

As stated above, the related literature for UFLP includes

both swarm-based methods and trajectory-based (vector-

based) algorithms. These methods are further hybridized in

some studies. Swarm-based algorithms include both bio-

inspired algorithms and well-known metaheuristics such as

GA and DE. In this regard, to the best of our knowledge,

the performance of FPA, which has been shown to be

promising in numerous optimization problems, has not

been tested on UFLP yet. Moreover, it is apparent from the

related literature that UFLP and its extensions are quite

open to real-life application studies. Thus, the proposed

modified FPA along with all reported extensions and pro-

cedures is tested on UFLP in this study.

Secondarily, it is obvious from the reported related lit-

erature that, all metaheuristic algorithms adopt either var-

ious transfer functions or some modifications of these

functions particularly while using swarm-based and bio-

inspired metaheuristic algorithms. As mentioned earlier,

this approach results in spatial distance problem, which is

not a desirable circumstance for an optimization algorithm.

Moreover, it is worth stressing that this undesirable issue

applies also for various binary optimization problems. In

other words, the mentioned spatial distance problem does

not apply only for UFLP. Accordingly, spatial distance

issue can be considered as a common drawback while

solving binary optimization problems by using swarm-

based algorithms that work on real-valued vectors. There-

fore, the proposed approach in the present study has

numerous potential extensions and applications for various

binary optimization problems such as variants of the

famous knapsack problems, feature selection or different

facility location problems. Moreover, it is clear the pro-

posed approach can be extended to numerous other meta-

heuristic algorithms that make use of real-valued vectors

such as FPA. Accordingly, the next section is devoted to

developed solution approaches.

3 Proposed solution approach

3.1 The canonical FPA

FPA [1] is a metaheuristic algorithm that is inspired by the

pollination process of flowers. There are numerous

flowering plants in nature, and there exist many different

means of pollination to achieve the purpose of reproduc-

tion. In general, pollination methods can take two forms,

namely self-pollination and cross-pollination. Cross-polli-

nation (biotic) depends on living beings such as insects and

birds at long distances. This type of pollination represents

global search in FPA. Self-pollination (abiotic) on the other

hand takes place at a shorter distance and this inspires local

search process of FPA. To sum up, as global search and

local search, FPA has two main and simple mechanisms.

According to a switching probability, algorithm either

switches from global to local or from local to global search.

Before diving into details of the developed procedures,

the canonical FPA is presented first. In the global search

procedure of FPA, solution vectors implement Lévy flight,

following the best-found position. Thus, the movement

pattern resembles living beings like bees and insects. As

the second procedure of FPA, self-pollination takes place

as random changes on solution vectors. One can put control

on these search patterns via a parameter referred to as

switch probability that is denoted by p 2 ð0; 1Þ. While

greater values of p encourages global search, smaller val-

ues yield to more frequent use of local search. More for-

mally, all movements of FPA are formulated in the

following equations:

xtþ1
i ¼ xti þ Lðg� � xtiÞ ð6Þ

L� kC kð Þsin pk=2ð Þ
ps1þk

; ðs � s0 [0Þ ð7Þ

xtþ1
i ¼ xti þ rðxtj � xtkÞk 6¼ j ð8Þ

where g�, xti, L and r represent the best solution found by

the algorithm, the ith solution vector at the tth iteration, the

Lévy distribution and a random variable, respectively.

Equation (6) here represents the global pollination, while

Eq. (8) is the local pollination. Equation (7) is employed

along with Eq. (6) and C kð Þ represents the standard gamma

function. For a better understanding of the mechanisms of

the canonical FPA, a pseudocode is presented by Algo-

rithm 1.

Neural Computing and Applications

123

Algorithm 1. A pseudocode for the canonical FPA

3.2 Proposed modifications

It is clear that the canonical FPA is proposed for real-

valued optimization problems. Thus, adopting this algo-

rithm to binary domains might require some additional

mapping procedures such as employing transfer functions

and most of these procedures make use of probability

distributions. It further means that two binary vectors

derived from the same real-valued vector do not neces-

sarily have to be same. This undesirable circumstance

brings about spatial distance between these vectors.

Therefore, although such transfer functions are commonly

used in numerous studies, their performances tend to be

poor in most cases. In this regard, the present paper adopts

some evolutionary operators in order to use them in the

notion on FPA so as to overcome spatial distance issue.

3.2.1 Solution encoding

The proposed modification adopts the binary encoding

technique. Solution vectors in this technique are of size n,

which represents the number of candidate locations to open

facilities for the corresponding problem instance. If a bit

takes a value of one, then it means that the corresponding

facility is opened. Otherwise, the corresponding locus of

the solution vector points out that the regarding facility is

not opened. All bits (loci) of a solution vector take only

binary values and are never changed to a real values

throughout iterations. Finally, it is worth stressing that the

initial population that includes only binary solution vectors

is generated at random. The rest of the details are presented

in the following.

3.2.2 Uniform-based xover for inheritance

As mentioned earlier, one of the notable advantages of FPA

is that it has a small number of parameters. One of the

parameters used in FPA is the switching probability that is

denoted by p (Algorithm 1, line: 5), and this parameter

defines the search characteristic by putting control on the

transitions between global and local search procedures. If p

is increased, FPA tends to exploit around the best-found

solution. Lower values for p on the other hand yield to

making use of randomly selected solution vectors from the

population more frequently. It is clear that according to

Eqs. (6–8), these procedures cannot be directly used in

binary domains, since, a vector-based operation that uses

Eqs. (6–8) very likely results in a continuous vector

regardless of the input vectors. This further means that

solution vectors that are generated as random binary vec-

tors in the initial population are not guaranteed to remain as

binary vectors throughout search. Although transfer func-

tions might come in handy at this point, performance of the

optimizer might suffer from the spatial distance issue that

is previously mentioned. Therefore, in the present study, a

uniform-based xover, which exhibits loci exchanges, is

adopted to inherit information between individuals [19].

In this procedure, any ith solution vector in population

undergoes a uniform-based xover with a parent vector that

is either a random vector or the best-found solution vector.

Neural Computing and Applications

123

For each dimension of solution vectors, a random number

rand 2 ð0; 1Þ is generated and it is compared to a user-

supplied parameter xOverProb 2 ð0; 1Þ. If

rand� xOverProb, allele of the corresponding locus is

inherited from the ith vector. Otherwise, it is inherited from

the parent vector, which probably yields to change of the

corresponding bit. Thus, one can conclude that lower val-

ues of xOverProb results in dampening the changes on the

bits. In other words, inertia is encouraged by using lower

values of xOverProb. Greater values on the other hand

yield to changes for the related loci.

An illustration of this procedure is presented by Fig. 1.

As one can see from this figure, solution vectors are of size

10 bits. Thus, 10 rand values are to be generated. Let’s

assume that these random numbers appear to be 0.50, 0.10,

0.80, 0.70, 0.05, 0.90, 0.15, 0.45, 0.75, and 0.80, for each

dimension, respectively. Given that xOverProb is set to be

equal to 0.60, new solution vector, denoted by offspring, is

generated as given in this figure.

It should be noted that the values of p and xOverProb

should be carefully chosen. Since, greater values of p and

lower values of xOverProb yield to a greater exploitation

of the best-found solution. It is clear that overuse of this

solution vector might yield to premature convergence and

local optima issues. On the contrary, lower values of p and

greater values of xOverProb yield a more random and

slower search that might also result in poor convergence.

Thus, it can be concluded that both of these parameters

simultaneously affect the search characteristic of the pro-

posed FPA modification.

3.2.3 Bit-flip mutations to avoid local optima

Subsequent to xover operations discussed above, a bit-flip

mutation is performed. The aim here is to introduce

diversity so as to avoid local optima problems. In this

procedure, randomly selected bits of a solution vector are

flipped. It is clear that greater number of flipped bits

introduce greater level of diversity. This becomes useful

whether the population loses diversity. Lower level of

mutation on the other hand yields to a better exploitation of

the found regions; however, continuous use of lower level

of mutation might result in loss of diversity and a slower

search, where local optima issues might arise. Therefore,

an adaptive mutation that encourages the number of

mutations at earlier iterations and discouraging mutation

gradually over iterations is adopted [20]. In other words,

this procedure [18, 19, 21] provides a greater level of

diversity at earlier iterations along with a decreased level

of mutation toward the end of the search so as to encourage

exploitation. Thus, local optima and premature conver-

gence problems are aimed to be avoided while providing a

more intensified search over iterations.

This procedure is formulated by Eq. (9), where

stepSizet 2 ½1; n� and / 2 ð0; 1Þ denote the step size at the

tth iteration and the severity of the decrement, respectively.

Step size in this formulation represents a variable in order

to evaluate the number of bits (mutSizet) that undergo

mutation operation at the tth iteration. Obviously, Eq. (9)

yields to a continuous variable; however, the number of

bits to mutate is a discrete value variable. Therefore, a

ceiling function (Eq. 10) is used to determine the number

of bits to mutate at the tth iteration. Subsequently, a

number of randomly selected mutSizet bits of a solution

vector at the tth iteration is flipped, which means that it is

flipped to 1 if it is 0 or it is flipped 0 if it is 1.

Both stepSize1 and / are user-supplied parameters.

Greater values of / induce steeper decrements in step size,

whereas smaller values yield to a smoother decrement. A

pseudo code and an illustration for the mentioned mutation

operator for stepSize1=30 are presented by Algorithm 2 and

Fig. 2, respectively. Moreover, a tabular form of some

mutSizetþ1 values with respect to various stepSize1 and /
parameters are presented in Table 1. Finally, bringing all

modifications together, a pseudocode for the proposed

binary FPA (bFPA) is presented by Algorithm 3.

stepSizetþ1 ¼ stepSizet � e�t=ðtþ1Þ 	 /	 stepSizet ð9Þ

mutSizetþ1 ¼ dstepSizetþ1e ð10Þ
Algorithm 2. A pseudocode for the mutation operator

Fig. 1 Uniform-based xover

Neural Computing and Applications

123

Algorithm 3. A pseudocode for the proposed bFPA

1: initialize FPA population of solution vectors
2: evaluate fitness values (), =

3: while (<) // is the maximum number of generations

4: calculate and

5: for =

6: if <

7: offSpring= xOver(, g*)

8: else
9: offSpring= xOver(,) // ≠

10: end if
11: offSpring=mutation(offspring,)

12: evaluate offSpring
13: update it if necessary
14: end for
15: update the global best solution g* if necessary
16: end while
17: // is any solution vector randomly selected from the population.

It is clear that the proposed FPA modification denoted

by bFPA can be distinguished from the standard FPA in

two ways. First, the proposed modification is capable of

handling binary spaces without any auxiliary procedures

such as transfer functions. By making use of the evolu-

tionary operators in FPA notion, this issue is overcome

intrinsically. Secondarily, by using the discussed mutation

procedure, bFPA has a further convergence capability that

also enables avoiding local optima. Moreover, binary

solution vectors that undergo xover operations are guar-

anteed to remain as binary vectors also subsequent to this

mutation procedure, since, this procedure exhibits only bit-

flip operations on loci, which already have binary values.

4 Experimental study

4.1 Calibration of parameters

All tests are performed on a computer with an i5-4590 CPU

and 32 GB of RAM. Maximum number of iterations

(maxIt) is used as the termination criterion. In accordance

with the related literature, the parameters maxIt and pop-

ulation size (popSize) are fixed to 1000 and to the number

Fig. 2 An illustration of various step size settings

Table 1 A tabular illustration of

mutSizet values for various
mutation parameters

stepSize1=50 stepSize1=20

/=0.0025 /=0.0050 /=0.0075 /=0.0010 /=0.0025 /=0.0050
iterations (t) mutSizet mutSizet

1 50 50 50 20 20 20

50 47 44 41 20 19 18

100 43 37 32 19 18 15

250 33 22 15 17 14 9

500 22 9 4 15 9 4

750 14 4 1 12 6 2

900 11 3 1 11 5 1

950 10 2 1 11 4 1

1000 9 2 1 10 4 1

Table 2 Attributes of the used UFLP instances

Problem ID Size (facilities 	 customers) Optimum solution value

cap71 16 	 50 932,615.750

cap72 16 	 50 977,799.400

cap73 16 	 50 1,010,641.450

cap74 16 	 50 1,034,976.975

cap101 25 	 50 796,648.437

cap102 25 	 50 854,704.200

cap103 25 	 50 893,782.112

cap104 25 	 50 928,941.750

cap131 50 	 50 793,439.562

cap132 50 	 50 851,495.325

cap133 50 	 50 893,076.712

cap134 50 	 50 928,941.750

Neural Computing and Applications

123

of candidate facility locations (n) for the related instance,

respectively.

As another parameter, xOverProb represents inertia.

According to the preliminary tests, it is observed that better

results can be obtained when xOverProb is fixed to 0.20.

Therefore, this parameter is used as 0.20 for all tests. As

discussed before, there exist two additional parameters that

define the mutation characteristic in the proposed approach.

They are denoted by / and stepSize1, which represent the

speed of decrement in step-sizing function and the initial

step size, respectively. With respect to the preliminary tests

again, it is observed that / ¼ 0.0025 and stepSize1 ¼ 0.10

	 n yield to more promising results. Therefore, the

parameters / and stepSize1 are fixed to 0.0025 and 0.10 	
n, respectively, for all tests. The final parameter to be

calibrated is the switching probability of FPA that is

denoted by p. This parameter is fixed to 0.75 for all tests,

which is close to the value proposed by Yang [1].

4.2 Computational results

The performance of the bFPA is tested by using UFLP

benchmarking instances obtained from OR-Lib (http://peo

ple.brunel.ac.uk/*mastjjb/jeb/orlib/files/). The related

attributes of these instances are presented in Table 2.

Moreover, as presented by the same table, optimum solu-

tions for the instances in this benchmark suite are known

and available.

Instances here can be categorized into three categories

as small-scaled, medium-scaled and large-scaled problems

that include 16, 25 and 50 facilities, respectively. All

obtained results are given by Table 3, and the values in this

table are calculated over 30 independent replications. The

rows best, mean, worst, std. and hit in this table represent

the best-found solution by the proposed algorithm, mean

over all replications, worst-found solution, standard

deviance of the best-found solutions over all replications

and the number of replications that the best-known solution

is found, respectively. Moreover, in order to analyze the

effects of the adopted mutation procedure, bFPA is addi-

tionally tested without mutation operation. This modifica-

tion is referred to as bFPAnm in the rest of the paper.

The first section of Table 3 includes small-scaled

instances of size 16 	 50. According to these results, most

of the algorithms exhibit competitive performances. It is

clear that particularly more recently published algorithms

such as ABCbin, bWSA, PSO, prioGWO, learnGWO,

prLeGWO and the proposed algorithm bFPA are capable of

finding the most promising hit values in these instances. It

is also clear that GWO occasionally misses to find the most

promising hit values in some instances such as cap72 and

cap73. CPSO exhibits a similar performance with GWO in

terms of finding the most promising hit values. Finally, a

notable finding in this section of Table 3 is that bFPAnm

achieves the most naı̈ve results for the small-scaled

instances of UFLP. This finding also points out the effi-

ciency of the adopted mutation procedure, which is

employed by bFPA.

Results of the medium-scaled instances of size 25 	 50

point out that the difference in performances of all com-

pared algorithms become more apparent as the problem

scale increases. It is apparent that the proposed algorithm

bFPA achieves the best-known solutions in all replications

for all instances of the medium-scaled benchmarks. bFPA

is followed by prLeGWO, which is capable of achieving a

hit value of 26 in cap103. The algorithm prLeGWO is

followed by learnGWO, which shows a better performance

in comparison with the rest of the compared algorithms.

CPSO shows an adequate performance in some instances

such as cap102 and cap104. However, it cannot achieve the

optimum solution in any replications of the remaining

medium-scaled instances. Moreover, bFPAnm is also not

capable of finding the mentioned optimum solutions in any

replications of the medium-scaled problems as well.

Additionally, its standard deviance value is found far

greater than that of the CPSO’s. This finding points out

some possible local optima issues. Therefore, one can

conclude that the adopted mutation operator contributes to

the performance of bFPA also in medium-scaled instances.

Difference between the compared algorithms become

even more apparent in the large-scaled instances of size 50

	 50. Except for the instance cap133, where the proposed

algorithm achieves a hit value of 26, bFPA is able to find

the best-known solutions in all replications in the remain-

ing instances of the same size. This can be considered as a

remarkable performance since the closest algorithm in

terms of hit values, prLeGWO is clearly outperformed by

the proposed algorithm. In parallel, bFPA is found as

superior to the rest of the algorithms in the large-scaled

instances in regard to the hit values. Similarly, the standard

deviance values of all compared algorithms for cap133

point out that the proposed algorithm exhibits a more

robust performance in this instance. Moreover, the standard

deviation values obtained by the proposed algorithm bFPA

are often better than those found by other algorithms.

Finally, it is clear that bFPAnm exhibits the most naı̈ve

performance also in the large-scaled instances of UFLP.

Standard deviance values, which are found as the far

greatest values among those of all compared algorithms’,

point out possible local optima issues also in these

instances.

Convergence plots of bFPA and bFPAnm for all

instances are depicted by Fig. 3. The rows in this fig-

ure correspond to the small-scaled, medium-scaled and

large-scaled instances, respectively. Data points in these

Neural Computing and Applications

123

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

Ta
bl
e
3

C
o
m
p
u
ta
ti
o
n
al

re
su
lt
s

A
lg
o
ri
th
m
s

In
st
an
ce
s
(f
ac
il
it
ie
s
	

d
em

an
d
p
o
in
ts
)

1
6
	

5
0

2
5
	

5
0

5
0
	

5
0

ca
p
7
1

ca
p
7
2

ca
p
7
3

ca
p
7
4

ca
p
1
0
1

ca
p
1
0
2

ca
p
1
0
3

ca
p
1
0
4

ca
p
1
3
1

ca
p
1
3
2

ca
p
1
3
3

ca
p
1
3
4

C
P
S
O

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
8

7
9
6
,6
4
8
.4
4

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

7
9
5
,2
9
1
.8
6

8
5
1
,4
9
5
.3
3

8
9
3
,0
7
6
.7
1

9
2
8
,9
4
1
.7
5

m
ea
n

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

w
o
rs
t

9
3
4
,1
9
9
.1
4

9
8
3
,7
1
3
.8
1

1
,0
1
2
,6
4
3
.6
9

1
,0
4
5
,3
4
2
.2
3

8
0
2
,4
5
7
.2
3

8
5
7
,3
8
0
.8
5

8
9
9
,4
2
4
.9
1

9
4
4
,3
9
4
.8
3

8
0
4
,5
4
9
.6
4

8
6
5
,6
6
7
.1
6

9
0
9
,9
0
8
.7

9
5
1
,8
0
3
.2
5

st
d

5
6
2
.2
3

1
3
2
4
.3

7
0
2
.1
3

2
1
2
4
.5
4

1
4
8
0
.7
2

1
0
1
5
.6
4

1
6
9
5
.7
9

3
8
4
2
.6
4

2
4
2
9
.5
4

4
2
9
7
.0
7

4
2
1
0
.9
3

6
6
1
9
.0
5

h
it

2
5

2
5

2
2

0
.0
0

0
.0
0

1
0

0
.0
0

1
8

0
.0
0

0
.0
0

0
.0
0

7

A
B
C
b
in

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
8

7
9
6
,6
4
8
.4
4

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6

8
5
1
,4
9
5
.3
3

8
9
3
,0
7
6
.7
1

9
2
8
,9
4
1
.7
5

m
ea
n

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

w
o
rs
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
8

7
9
6
,6
4
8
.4
4

8
5
4
,7
0
4
.2
0

8
9
4
,0
0
8
.1
4

9
2
8
,9
4
1
.7
5

7
9
4
,9
1
0
.6
4

8
5
1
,6
3
6
.7
0

8
9
5
,4
0
7
.9
3

9
2
8
,9
4
1
.7
5

st
d

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

8
5
.6
7

0
.0
0

1
0
6
5
.7
3

2
1
3
.2
8

5
6
1
.3
4

0
.0
0

h
it

3
0

3
0

3
0

3
0

3
0

3
0

2
5

3
0

6
1
4

5
3
0

b
W
S
A

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,6
4
8
.4
3

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6

8
5
1
,4
9
5
.3
2

8
9
3
,0
7
6
.7
1

9
2
8
,9
4
1
.7
5

m
ea
n

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

N
a

w
o
rs
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
7
,5
0
8
.7
2

8
5
4
,7
0
4
.2
0

8
9
5
,0
2
7
.1
8

9
2
8
,9
4
1
.7
5

7
9
8
,4
4
9
.0
3

8
5
2
,2
5
7
.9
7

8
9
4
,8
0
1
.1
6

9
3
4
,5
8
6
.9
7

st
d

0
.0
0

0
.0
0

0
.0
0

0
.0
0

3
8
0
.4
3

0
.0
0

4
7
0
.9
5

0
.0
0

1
0
2
5
.7
8

2
5
1
.6
5

5
0
1
.9
1

1
0
1
6
.1
4

h
it

3
0

3
0

3
0

3
0

2
2

3
0

1
0

3
0

6
2
3

7
2
6

P
S
O

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,6
4
8
.4
3

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

8
0
3
,8
2
6
.0
1

8
7
9
,7
8
5
.4
6

9
2
1
,6
0
8
.0
3

9
4
4
,3
3
5
.6
8

m
ea
n

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
9
,0
0
6
.3
7

8
5
7
,1
1
5
.0
1

8
9
6
,2
2
6
.9
9

9
3
3
,7
4
6
.3
5

8
1
7
,9
7
6
.1
8

8
8
9
,8
8
9
.9
3

9
4
3
,2
1
6
.7
6

1
,0
0
2
,8
0
4
.3
3

w
o
rs
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

8
0
1
,7
6
9
.3
8

8
6
0
,5
7
3
.8
1

9
0
0
,4
0
6
.7
6

9
4
1
,8
7
1
.3
1

8
2
4
,7
5
1
.4
3

8
9
6
,9
3
5
.5
3

9
5
7
,9
7
5
.8
5

1
,0
3
5
,3
7
3
.8
8

st
d

0
.0
0

0
.0
0

0
.0
0

0
.0
0

1
0
8
5
.4
8

1
2
6
8
.6
3

1
7
6
3
.8
8

3
3
5
8
.7
3

4
5
4
5
.6
8

4
6
9
7
.1
1

9
1
6
3
.9
4

1
9
,1
0
2
.2
0

h
it

3
0

3
0

3
0

3
0

1
2

3
2

0
0

0
0

G
W
O

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,6
4
8
.4
3

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6

8
5
1
,4
9
5
.3
2

8
9
3
,0
7
6
.7
1

9
2
8
,9
4
1
.7
5

m
ea
n

9
3
2
,6
1
5
.7
5

9
7
8
,0
5
6
.0
6

1
,0
1
0
,7
0
2
.6
3

1
,0
3
4
,9
7
6
.9
7

7
9
7
,1
2
3
.9
6

8
5
4
,8
3
0
.9
5

8
9
4
,0
8
3
.9
9

9
2
8
,9
4
1
.7
5

7
9
4
,6
0
6
.7
0

8
5
2
,0
3
4
.6
8

8
9
4
,0
8
8
.3
9

9
2
9
,7
1
6
.8
2

w
o
rs
t

9
3
2
,6
1
5
.7
5

9
8
1
,6
4
9
.3
5

1
,0
1
2
,4
7
6
.9
7

1
,0
3
4
,9
7
6
.9
7

7
9
9
,1
4
4
.6
8

8
5
5
,9
7
1
.7
5

8
9
5
,0
2
7
.1
8

9
2
8
,9
4
1
.7
5

7
9
7
,5
7
0
.3
0

8
5
4
,7
0
4
.2
0

8
9
6
,5
2
9
.7
1

9
3
5
,1
2
2
.7
0

st
d

0
.0
0

9
7
6
.7
6

3
3
5
.1
1

0
.0
0

7
7
2
.6
1

3
8
6
.7
6

4
8
0
.6
3

0
.0
0

1
2
9
2
.5
1

7
8
9
.9
4

1
0
0
6
.1
6

1
7
8
3
.3
1

h
it

3
0

2
8

2
9

3
0

1
9

2
7

2
0

3
0

1
1

1
3

5
2
0

p
ri
o
G
W
O

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,6
4
8
.4
3

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6

8
5
1
,4
9
5
.3
2

8
9
3
,0
7
6
.7
1

9
2
8
,9
4
1
.7
5

m
ea
n

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,9
6
3
.8
7

8
5
4
,7
8
8
.7
0

8
9
4
,1
0
2
.7
6

9
2
8
,9
4
1
.7
5

7
9
4
,1
8
7
.9
1

8
5
1
,7
3
5
.8
1

8
9
3
,9
2
5
.9
0

9
2
9
,6
1
2
.3
2

w
o
rs
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
7
,5
0
8
.7
2

8
5
5
,9
7
1
.7
5

8
9
5
,0
2
7
.1
8

9
2
8
,9
4
1
.7
5

7
9
6
,6
6
2
.9
2

8
5
3
,4
1
9
.1
3

8
9
5
,0
4
9
.6
6

9
3
4
,5
8
6
.9
7

st
d

0
.0
0

0
.0
0

0
.0
0

0
.0
0

4
2
1
.6
5

3
2
1
.5
8

4
5
9
.7

0
.0
0

1
0
0
0
.7
9

4
4
6
.0
2

5
8
7
.9
3

1
6
9
9
.9
2

h
it

3
0

3
0

3
0

3
0

1
9

2
8

1
5

3
0

1
5

1
7

6
2
1

le
ar
n
G
W
O

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,6
4
8
.4
3

8
5
4
,7
0
4
.2

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6

8
5
1
,4
9
5
.3
2

8
9
3
,0
7
6
.7
1

9
2
8
,9
4
1
.7
5

m
ea
n

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,8
4
9
.1
7

8
5
4
,7
0
4
.2

8
9
4
,0
1
6
.0
5

9
2
8
,9
4
1
.7
5

7
9
4
,7
4
9
.6
3

8
5
2
,2
2
9
.9
3

8
9
4
,3
9
0
.1
1

9
2
9
,8
3
4
.2
9

w
o
rs
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
7
,5
0
8
.7
2

8
5
4
,7
0
4
.2

8
9
4
,8
0
1
.1
6

9
2
8
,9
4
1
.7
5

7
9
8
,3
3
8
.4
5

8
5
5
,0
0
5
.5
7

8
9
7
,5
4
8
.7
6

9
3
4
,5
8
6
.9
7

st
d

0
.0
0

0
.0
0

0
.0
0

0
.0
0

3
7
0
.0
8

0
.0
0

4
0
6
.5
4

0
.0
0

1
4
7
6
.0
5

1
2
1
2
.1
9

1
2
1
4
.5
2

1
7
8
6
.9
7

h
it

3
0

3
0

3
0

3
0

2
3

3
0

2
0

3
0

1
0

1
6

5
2
0

p
rL
eG

W
O

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,6
4
8
.4
3

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6

8
5
1
,4
9
5
.3
2

8
9
3
,0
7
6
.7
1

9
2
8
,9
4
1
.7
5

m
ea
n

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,6
4
8
.4
3

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1

9
2
8
,9
4
1
.7
5

7
9
3
,7
8
1
.4
4

8
5
1
,6
1
6
.9
0

8
9
3
,7
1
7
.0
0

9
2
8
,9
4
1
.7
5

w
o
rs
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7

7
9
6
,6
4
8
.4
3

8
5
4
,7
0
4
.2
0

8
9
4
,8
0
1
.1
6

9
2
8
,9
4
1
.7
5

7
9
4
,3
7
3
.4
1

8
5
3
,5
2
5
.5
2

8
9
4
,8
0
1
.1
6

9
2
8
,9
4
1
.7
5

st
d

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
6
0
.7
9

0
.0
0

4
2
6
.8
8

4
2
9
.3
5

5
7
1
.4
5

0
.0
0

h
it

3
0

3
0

3
0

3
0

3
0

3
0

2
6

3
0

1
8

2
6

1
0

3
0

b
F
P
A
n
m

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7
5

7
9
7
,5
8
2
.2
8

8
5
9
,3
2
6
.9
1

8
9
5
,2
7
5
.6
8

9
3
2
,9
8
5
.3
2

8
0
4
,0
1
6
.8
8

8
9
0
,7
9
6
.2
7

9
2
7
,9
2
6
.4
7

1
,0
0
7
,3
0
1
.1
7

m
ea
n

9
3
6
,8
4
3
.2
1

9
8
2
,6
1
7
.0
5

1
,0
1
4
,5
2
4
.7
5

1
,0
4
4
,6
5
2
.8
7

8
0
5
,0
0
5
.6
7

8
6
6
,3
1
3
.3
0

9
0
8
,8
1
3
.7
4

9
5
2
,3
5
4
.9
2

8
2
6
,8
4
3
.1
5

9
0
8
,1
9
3
.5
4

9
7
2
,1
9
6
.3
7

1
,0
7
0
,1
0
2
.1
4

w
o
rs
t

9
5
2
,2
1
1

9
8
9
,6
3
6
.7
3

1
,0
2
1
,9
2
7
.0
4

1
,0
6
1
,1
4
0
.7
5

8
1
4
,5
3
7
.9
6

8
8
4
,4
9
0
.8
7

9
3
5
,6
8
4
.7
6

9
8
5
,1
3
8
.1
0

8
4
0
,3
7
7
.4
6

9
3
1
,2
5
8
.3
1

1
,0
1
4
,9
8
4
.7
5

1
,1
1
8
,5
4
8
.9
2

Neural Computing and Applications

123

plots represent mean results of the related iteration over all

replications. As one can see from this figure, bFPA exhibits

a better convergence particularly in small-scaled and

medium-scaled instances in comparison with bFPAnm. It is

clear from these plots that results given by Table 3 can be

achieved also by using smaller values for maximum

number of iterations. However, one should note that in

such a case, the parameters of the step-sizing function

(Eqs. 9–10) should be recalibrated according to the used

maximum number of iterations parameter. Moreover, one

can put forward that bFPAnm suffers from premature

convergence and local optima issues, whereas bFPA which

uses the proposed mutation operator exhibits a more ade-

quate convergence pattern. This also validates that the

mentioned mutation procedure contributes to the perfor-

mance of the proposed algorithm bFPA.

All findings point out the efficiency of the proposed

algorithm bFPA. However, in order to demonstrate whether

significant improvements are achieved by this algorithm, a

further statistical test is crucially required. Therefore, the

next subsection is devoted to the statistical demonstrations.

4.3 Statistical analysis

Generally, either parametric or nonparametric statistical

tests can be used when comparing multiple algorithms.

However, for safe use parametric tests, the requirements

for the independence, normality and homoscedasticity

should be met, which is not the case in the present study

[42]. In cases, where these assumptions cannot be

achieved, nonparametric tests can be used. Accordingly,

nonparametric tests are employed in this study. In this

regard, Friedman test is applied first to demonstrate whe-

ther at least a single pair of algorithms shows significant

difference in terms of hit values. One should note that since

bFPAnm is used only to demonstrate the efficiency of the

adopted mutation procedure, the results of bFPAnm are not

included in this analysis.

The results of the Friedman test and obtained average

ranks, where the best performing algorithm is assigned by

the 1st rank for the related instances, are given by Table 4.

As one can see from this table bFPA achieves the best

average rank. According to the p-value of this test, which is

adjusted for ties, the null hypothesis H0 that is based on the

equivalence of medians should be rejected for the signifi-

cance level a=0.10. This shows that at least one pair of

algorithms is significantly different from each other. Thus,

a further analysis to find the significantly different algo-

rithms should be conducted.

Since the aim of this study is to demonstrate the effi-

ciency of the proposed algorithm bFPA, a 1 	 N design

rather than N 	 N, is adopted. In other words, bFPA is

compared to all remaining algorithms according to theTa
bl
e
3
(c
o
n
ti
n
u
ed
)

A
lg
o
ri
th
m
s

In
st
an
ce
s
(f
ac
il
it
ie
s
	

d
em

an
d
p
o
in
ts
)

1
6
	

5
0

2
5
	

5
0

5
0
	

5
0

ca
p
7
1

ca
p
7
2

ca
p
7
3

ca
p
7
4

ca
p
1
0
1

ca
p
1
0
2

ca
p
1
0
3

ca
p
1
0
4

ca
p
1
3
1

ca
p
1
3
2

ca
p
1
3
3

ca
p
1
3
4

st
d

4
2
5
9
.8
8

2
8
0
8
.7
8

3
4
4
9
.0
3

7
4
4
5
.9
1

4
4
2
8
.5
4

5
4
0
3
.4
4

8
2
2
2
.9
0

1
1
,9
4
9
.7
6

6
7
5
0
.5
7

1
2
,4
0
8
.1
1

2
0
,4
9
6
.4
4

3
2
,1
3
4
.5
4

h
it

5
5

2
3

0
0

0
0

0
0

0
0

b
F
P
A

b
es
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7
5

7
9
6
,6
4
8
.4
3
8

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1
3

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6
3

8
5
1
,4
9
5
.3
2
5

8
9
3
,0
7
6
.7
1
3

9
2
8
,9
4
1
.7
5

m
ea
n

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7
5

7
9
6
,6
4
8
.4
3
8

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1
3

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6
3

8
5
1
,4
9
5
.3
2
5

8
9
3
,1
7
0
.7
6
6

9
2
8
,9
4
1
.7
5

w
o
rs
t

9
3
2
,6
1
5
.7
5

9
7
7
,7
9
9
.4
0

1
,0
1
0
,6
4
1
.4
5

1
,0
3
4
,9
7
6
.9
7
5

7
9
6
,6
4
8
.4
3
8

8
5
4
,7
0
4
.2
0

8
9
3
,7
8
2
.1
1
3

9
2
8
,9
4
1
.7
5

7
9
3
,4
3
9
.5
6
3

8
5
1
,4
9
5
.3
2
5

8
9
3
,7
8
2
.1
1
3

9
2
8
,9
4
1
.7
5

st
d

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
4
3
.8
9

0
.0
0

h
it

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

3
0

2
6

3
0

Neural Computing and Applications

123

average ranks over all instances. One crucial issue here is

the possibility of losing control on the family-wise error

rate while comparing the algorithms [42]. To avoid this, the

Bonferroni procedure is employed as a post-hoc test. In this

context, the z-scores, unadjusted p-values and adjusted p-

values according to the Bonferroni procedure are given in

Table 5.

According to the unadjusted p-values of Table 5, the

proposed algorithm is found as significantly better than

CPSO, PSO, GWO, prioGWO and learnGWO in terms of

hit values for the significance level a = 0.10. According to

the adjusted p-values on the other hand, bFPA is found as

significantly better than CPSO, PSO and GWO. In other

words, although the proposed algorithm shows the most

promising performance according to Tables 3 and 4,

Table 5 points out that there is not enough statistical evi-

dence to demonstrate the significant difference between

Fig. 3 Convergence plots of bFPA and bFPAnm

Table 4 Results of Friedman test

Algorithms Overall avg. ranks

CPSO 8.625

PSO 7.125

GWO 5.875

prioGWO 4.625

learnGWO 4.583

bWSA 4.375

ABCbin 4.125

prLeGWO 3.000

bFPA 2.667

p-value (adjusted for ties) 0.000

Decision on H0 Reject H0

Table 5 Pairwise comparisons and post hoc test results

bFPA vs z-score Unadjusted p-values Adjusted p-values

CPSO 5.329 0.000 (?) 0.000 (?)

PSO 3.988 0.000 (?) 0.000 (?)

GWO 2.870 0.004 (?) 0.033 (?)

prioGWO 1.752 0.079 (?) 0.639 (*)

learnGWO 1.714 0.086 (?) 0.692 (*)

bWSA 1.528 0.127 (*) 1.000 (*)

ABCbin 1.304 0.192 (*) 1.000 (*)

prLeGWO 0.298 0.766 (*) 1.000 (*)

Neural Computing and Applications

123

bFPA and the remaining algorithms prioGWO, learnGWO,

bWSA, ABCbin and prLeGWO.

4.4 Complexity analysis

Computational cost of the proposed algorithm is analyzed

in terms of the worst case scenario. As can be seen from the

pseudocode given by Algorithm 3, execution time of bFPA

is based on the parameters maxIt, popSize and n. Since, the

uniform-based crossover loops on the dimensions of the

solution vectors of popSize and step-sizing function does

not require additional inner loops. Thus, execution time

complexity of this algorithm can be represented by

O(maxIt 	 popSize	 n) [19, 43], which also applies for

the standard FPA. It further means that developed proce-

dures do not increase the complexity of the standard FPA.

Finally, brining all things together, one can conclude

that the proposed FPA modification denoted by bFPA

exhibits a promising performance in solving UFLP, which

may have a great variety of potential real-life applications.

As reported, this algorithm does not use transfer functions

that result in spatial distance. Instead, it makes of evolu-

tionary operators such as xover and mutation. As statisti-

cally verified, this clearly contributes to the performance of

the proposed algorithm. Moreover, according to the results

of Table 2, it is apparent that the adopted mutation operator

clearly contributes to the efficiency of bFPA. Otherwise, as

demonstrated by the experimental study, potential local

optima issues might emerge. Although bFPA brings about

apparent advantages in solving UFLP, it has some draw-

backs such as additional parameter calibration. Since

mutation and xover operators require user-supplied

parameters, decision makers need to carefully define these

parameter values.

5 Conclusion

The present study introduces a modified flower pollination

algorithm (FPA) to solve one of the well-known facility

location problems, namely the uncapacitated facility loca-

tion problem (UFLP). Since UFLP is a binary optimization

problem, FPA, which is introduced to solve optimization

problems in continuous domains, is modified for binary

domains first. In this context, some operators such as

crossover and mutation that are borrowed from evolution-

ary algorithms are adopted in the modified FPA. By using

the proposed crossover operator, FPA is able to run in

binary domains without employing additional auxiliary

procedures such as transfer functions. Next, proposed

binary bit-flip mutation is further enhanced by making use

of an adaptive step-sizing procedure that introduces greater

level of diversity at earlier iterations and encourages

intensification toward the end of search. Thus, while pre-

mature convergence and local optima problems at earlier

iterations are avoided, a more intensified search around the

found promising regions is conducted.

All available benchmarking data is solved by the pro-

posed algorithm and the obtained results are compared to

those of the promising and competitive algorithms’ that are

lately reported in the related literature. According to the

experimental study, the proposed algorithm is found as a

promising algorithm. Moreover, appropriate statistical tests

are conducted to demonstrate whether significant

improvements are achieved. Results of the statistical tests

show that the proposed algorithm brings about significant

improvements over some of the existing algorithms. What

is more, as reported in this study, any additional compu-

tational burden is not required by the proposed FPA

modification. Nevertheless, one of the drawbacks of the

proposed algorithm is that it makes use of two additional

parameters, which needs to be calibrated in the proposed

step-sizing function. Thus, it brings about an additional

effort in parameter calibration stage.

The simplicity and efficiency of FPA deserves a further

research. Since the proposed modification runs on binary

populations, evaluating the population diversity by using

hamming distance metric is quite practicable. In this

regard, analyzing the effects of avoiding loss of diversity

procedures along with the employed procedures in various

binary optimization problems is scheduled as a future

work. Moreover, the proposed algorithm in the present

study can easily be extended to various binary optimization

problems, of which the solution vectors can be represented

as binary strings. Therefore, one can conclude that the

proposed binary FPA and the proposed mutation operator

can intrinsically be adapted to various binary optimization

problems such as capacitated facility location problem, 0–1

knapsack problem, feature selection, assignment problems

and their numerous extensions. Nevertheless, one should

note that parameter calibration for these algorithms should

be precisely carried out.

Funding Open access funding provided by the Scientific and Tech-

nological Research Council of Türkiye (TÜBİTAK). No funds,

grants, or other support was received.

Data availability All data generated or analyzed during this study are

included in this hyper link: http://people.brunel.ac.uk/mastjjb/jeb/

info.html

Declarations

Conflict of interest The authors declare they have no financial

interests. The authors have no relevant financial or non-financial

interests to disclose.

Neural Computing and Applications

123

http://people.brunel.ac.uk/mastjjb/jeb/info.html
http://people.brunel.ac.uk/mastjjb/jeb/info.html

Human participants and/or animals None.

Informed consent None.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Yang XS (2012) Flower pollination algorithm for global opti-

mization. In: Durand-Lose J, Jonoska N (eds) Lecture notes in

computer science, vol 7445, Springer, Berlin, Heidelberg,

pp 240–249 https://doi.org/10.1007/978-3-642-32894-7_27

2. Cournuejols G, Nemhauser GL, Wolsey LA (1990) The unca-

pacitated facility location problem, discrete location theory. Lect

Note Artif Int 1865:119–171

3. Balinski ML (1965) Integer programming: methods, uses, com-

putations. Manage Sci 12(3):253–313. https://doi.org/10.1287/

mnsc.12.3.253

4. Efroymson M, Ray TL (1966) A branch-bound algorithm for

plant location. Oper Res 14(3):361–368. https://doi.org/10.1287/

opre.14.3.361

5. Khumawala BM (1972) An efficient branch and bound algorithm

for the warehouse location problem. Manage Sci 18(12):B-718.

https://doi.org/10.1287/mnsc.18.12.B718

6. Erlenkotter D (1978) A dual-based procedure for uncapacitated

facility location. Oper Res 26(6):992–1009. https://doi.org/10.

1287/opre.26.6.992

7. Korkel M (1989) On the exact solution of large-scale simple plant

location problems. Eur J Oper Res 39(2):157–173. https://doi.org/

10.1016/0377-2217(89)90189-6

8. Johnson DS, Garey MR (1979) Computers and intractability: A
guide to the theory of NP-completeness. WH Freeman.

9. Al-Sultan KS, Al-Fawzan MA (1999) A tabu search approach to

the uncapacitated facility location problem. Ann Oper Res

86:91–103. https://doi.org/10.1023/A:1018956213524

10. Ghosh D (2003) Neighborhood search heuristics for the unca-

pacitated facility location problem. Eur J Oper Res

150(1):150–162. https://doi.org/10.1016/S0377-2217(02)00504-0

11. Sevkli M, Guner AR (2006) A continuous particle swarm opti-

mization algorithm for uncapacitated facility location problem.

In International workshop on ant colony optimization and swarm
ıntelligence, Springer, Berlin, Heidelberg, pp 316–323. https://

doi.org/10.1007/11839088_28

12. Wang D, Wu CH, Ip A, Wang D, Yan Y (2008) Parallel multi-

population particle swarm optimization algorithm for the unca-

pacitated facility location problem using openMP. In 2008 IEEE

congress on evolutionary computation pp 1214–1218. https://doi.

org/10.1109/CEC.2008.4630951

13. Guner AR, Sevkli M (2008) A discrete particle swarm opti-

mization algorithm for uncapacitated facility location problem.

J Artif Evolut Appl. https://doi.org/10.1155/2008/861512

14. Kiran MS (2015) The continuous artificial bee colony algorithm

for binary optimization. Appl Soft Comput 33:15–23. https://doi.

org/10.1016/j.asoc.2015.04.007

15. Montoya-Torres JR, Aponte A, Rosas P (2011) Applying GRASP

to solve the multi-item three-echelon uncapacitated facility

location problem. J Oper ResSoc 62(2):397–406

16. Tsuya K, Takaya M, Yamamura A (2017) Application of the

firefly algorithm to the uncapacitated facility location problem.

J Intell Fuzzy Syst 32(4):3201–3208. https://doi.org/10.3233/

JIFS-169263

17. de Armas J, Juan AA, Marquès JM, Pedroso JP (2017) Solving

the deterministic and stochastic uncapacitated facility location

problem: from a heuristic to a simheuristic. J Oper Res Soc

68(10):1161–1176. https://doi.org/10.1057/s41274-016-0155-6

18. Baykasoglu A, Ozsoydan FB, Senol ME (2018). Weighted

superposition attraction algorithm for binary optimization prob-

lems. Oper Res: 1–27. https://doi.org/10.1007/s12351-018-0427-

9

19. Ozsoydan FB (2019) Artificial search agents with cognitive

intelligence for binary optimization problems. Comput Ind Eng

136:18–30. https://doi.org/10.1016/j.cie.2019.07.007

20. Ozsoydan FB (2019) Effects of dominant wolves in grey wolf

optimization algorithm. Appl Soft Comput 83:105658. https://doi.

org/10.1016/j.asoc.2019.105658

21. Golcuk İ, Ozsoydan FB (2020) Evolutionary and adaptive

inheritance enhanced grey wolf optimization algorithm for binary

domains. Knowl-Based Syst 194:105586. https://doi.org/10.1016/

j.knosys.2020.105586

22. Sonuç E (2021) Binary crow search algorithm for the uncapaci-

tated facility location problem. Neural Comput Appl

33(21):14669–14685. https://doi.org/10.1007/s00521-021-06107-

2

23. Zhang F, He Y, Ouyang H, Li W (2023) A fast and efficient

discrete evolutionary algorithm for the uncapacitated facility

location problem. Expert Syst Appl 213:118978. https://doi.org/

10.1016/j.eswa.2022.118978

24. Alidaee B, Wang H (2022) Uncapacitated (Facility) location

problem: a hybrid genetic-tabu search approach. IFAC-Paper-

sOnLine 55(10):1619–1624. https://doi.org/10.1016/j.ifacol.

2022.09.622

25. Kaya E (2022) BinGSO: galactic swarm optimization powered by

binary artificial algae algorithm for solving uncapacitated facility

location problems. Neural Comput Appl 34(13):11063–11082.

https://doi.org/10.1007/s00521-022-07058-y

26. Zhou J, Wang X, Zhang L, Zhou X, Jing S, & Liang G (2022). An

improved genetic algorithm for the uncapacitated facility location

problem and applications in oil and gas fields. In Journal of

physics: conference series (Vol. 2224, No. 1, p. 012134). IOP

Publishing. https://doi.org/10.1088/1742-6596/2224/1/012134

27. Soltanpour A, Alizadeh B, Baroughi F (2023) Efficient algo-

rithms for uncapacitated facility location problem on uncertain

environments. Iran J Oper Res 14(1):118–132

28. Jiang N, Zhang H (2023) Improved adaptive differential evolu-

tion algorithm for the un-capacitated facility location problem.

Open J Appl Sci 13(5):685–695. https://doi.org/10.4236/ojapps.

2023.135054

29. Baş E, Yildizdan G (2024) A new binary arithmetic optimization

algorithm for uncapacitated facility location problem. Neural

Comput Appl 36(8):4151–4177. https://doi.org/10.1007/s00521-

023-09261-x

30. Aslan M, Pavone M (2024) MBVS: a modified binary vortex

search algorithm for solving uncapacitated facility location

problem. Neural Comput Appl 36(5):2573–2595. https://doi.org/

10.1007/s00521-023-09190-9

31. Dubey HM, Pandit M, Panigrahi BK (2015) A biologically

inspired modified flower pollination algorithm for solving

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-32894-7_27
https://doi.org/10.1287/mnsc.12.3.253
https://doi.org/10.1287/mnsc.12.3.253
https://doi.org/10.1287/opre.14.3.361
https://doi.org/10.1287/opre.14.3.361
https://doi.org/10.1287/mnsc.18.12.B718
https://doi.org/10.1287/opre.26.6.992
https://doi.org/10.1287/opre.26.6.992
https://doi.org/10.1016/0377-2217(89)90189-6
https://doi.org/10.1016/0377-2217(89)90189-6
https://doi.org/10.1023/A:1018956213524
https://doi.org/10.1016/S0377-2217(02)00504-0
https://doi.org/10.1007/11839088_28
https://doi.org/10.1007/11839088_28
https://doi.org/10.1109/CEC.2008.4630951
https://doi.org/10.1109/CEC.2008.4630951
https://doi.org/10.1155/2008/861512
https://doi.org/10.1016/j.asoc.2015.04.007
https://doi.org/10.1016/j.asoc.2015.04.007
https://doi.org/10.3233/JIFS-169263
https://doi.org/10.3233/JIFS-169263
https://doi.org/10.1057/s41274-016-0155-6
https://doi.org/10.1007/s12351-018-0427-9
https://doi.org/10.1007/s12351-018-0427-9
https://doi.org/10.1016/j.cie.2019.07.007
https://doi.org/10.1016/j.asoc.2019.105658
https://doi.org/10.1016/j.asoc.2019.105658
https://doi.org/10.1016/j.knosys.2020.105586
https://doi.org/10.1016/j.knosys.2020.105586
https://doi.org/10.1007/s00521-021-06107-2
https://doi.org/10.1007/s00521-021-06107-2
https://doi.org/10.1016/j.eswa.2022.118978
https://doi.org/10.1016/j.eswa.2022.118978
https://doi.org/10.1016/j.ifacol.2022.09.622
https://doi.org/10.1016/j.ifacol.2022.09.622
https://doi.org/10.1007/s00521-022-07058-y
https://doi.org/10.1088/1742-6596/2224/1/012134
https://doi.org/10.4236/ojapps.2023.135054
https://doi.org/10.4236/ojapps.2023.135054
https://doi.org/10.1007/s00521-023-09261-x
https://doi.org/10.1007/s00521-023-09261-x
https://doi.org/10.1007/s00521-023-09190-9
https://doi.org/10.1007/s00521-023-09190-9

economic dispatch problems in modern power systems. Cogn

Comput 7(5):594–608. https://doi.org/10.1007/s12559-015-9324-

1

32. Rodrigues D, Yang XS, de Souza AN, Papa JP (2015) Binary

flower pollination algorithm and its application to feature selec-

tion. In: Yang XS (eds) Recent advances in swarm intelligence

and evolutionary computation, Studies in computational intelli-

gence, vol 585. Springer, Cham pp 85–100. https://doi.org/10.

1007/978-3-319-13826-8_5

33. Dahi ZAEM, Mezioud C, Draa A (2016) On the efficiency of the

binary flower pollination algorithm: application on the antenna

positioning problem. Appl Soft Comput 47:395–414. https://doi.

org/10.1016/j.asoc.2016.05.051

34. Nabil E (2016) A modified flower pollination algorithm for global

optimization. Expert Syst Appl 57:192–203. https://doi.org/10.

1016/j.eswa.2016.03.047

35. Abdel-Baset M, Hezam IM (2015) An effective hybrid flower

pollination and genetic algorithm for constrained optimization

problems. Adv Eng Technol Appl Int J 4:27–27

36. Draa A (2015) On the performances of the flower pollination

algorithm-Qualitative and quantitative analyses. Appl Soft

Comput 34:349–371. https://doi.org/10.1016/j.asoc.2015.05.015

37. Zhou Y, Wang R, Zhao C, Luo Q, Metwally MA (2019) Discrete

greedy flower pollination algorithm for spherical traveling

salesman problem. Neural Comput Appl 31(7):2155–2170.

https://doi.org/10.1007/s00521-017-3176-4

38. Ozsoydan FB, Baykasoglu A (2019) Analysing the effects of

various switching probability characteristics in flower pollination

algorithm for solving unconstrained function minimization

problems. Neural Comput Appl 31(11):7805–7819. https://doi.

org/10.1007/s00521-018-3602-2

39. Song H, Bei J, Zhang H, Wang J, Zhang P (2024) Hybrid algo-

rithm of differential evolution and flower pollination for global

optimization problems. Expert Syst Appl 237:121402. https://doi.

org/10.1016/j.eswa.2023.121402

40. Mellal MA, Khitous M, Zemmouri M (2023) Combined heat and

power economic dispatch problem with binary method using

flower pollination algorithm and differential evolution. Electrc

Eng 105(4):2161–2168. https://doi.org/10.1007/s00202-023-

01801-x

41. Feng L, Zhou Y, Luo Q (2024) Binary hybrid artificial hum-

mingbird with flower pollination algorithm for feature selection

in parkinson’s disease diagnosis. J Bionic Eng. https://doi.org/10.

1007/s42235-023-00478-z

42. Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical

tutorial on the use of nonparametric statistical tests as a

methodology for comparing evolutionary and swarm intelligence

algorithms. Swarm Evolut Comput 1(1):3–18. https://doi.org/10.

1016/j.swevo.2011.02.002

43. Al-Betar MA, Awadallah MA, Faris H, Aljarah I, Hammouri AI

(2018) Natural selection methods for grey wolf optimizer. Expert

Syst Appl 113:481–498. https://doi.org/10.1016/j.eswa.2018.07.

022

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1007/s12559-015-9324-1
https://doi.org/10.1007/s12559-015-9324-1
https://doi.org/10.1007/978-3-319-13826-8_5
https://doi.org/10.1007/978-3-319-13826-8_5
https://doi.org/10.1016/j.asoc.2016.05.051
https://doi.org/10.1016/j.asoc.2016.05.051
https://doi.org/10.1016/j.eswa.2016.03.047
https://doi.org/10.1016/j.eswa.2016.03.047
https://doi.org/10.1016/j.asoc.2015.05.015
https://doi.org/10.1007/s00521-017-3176-4
https://doi.org/10.1007/s00521-018-3602-2
https://doi.org/10.1007/s00521-018-3602-2
https://doi.org/10.1016/j.eswa.2023.121402
https://doi.org/10.1016/j.eswa.2023.121402
https://doi.org/10.1007/s00202-023-01801-x
https://doi.org/10.1007/s00202-023-01801-x
https://doi.org/10.1007/s42235-023-00478-z
https://doi.org/10.1007/s42235-023-00478-z
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.eswa.2018.07.022
https://doi.org/10.1016/j.eswa.2018.07.022

	Evolution inspired binary flower pollination for the uncapacitated facility location problem
	Abstract
	Introduction
	UFLP and related studies
	A formal introduction for UFLP
	Related studies
	Research gaps, motivation and potential extensions

	Proposed solution approach
	The canonical FPA
	Proposed modifications
	Solution encoding
	Uniform-based xover for inheritance
	Bit-flip mutations to avoid local optima

	Experimental study
	Calibration of parameters
	Computational results
	Statistical analysis
	Complexity analysis

	Conclusion
	Data availability
	Open Access
	References

