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Abstract
Categorical features appear in datasets from almost every practice area, including real estate datasets. One of the most

critical handicaps of machine learning algorithms is that they are not designed to capture the qualitative nature of the

categorical features, leading to sub-optimal predictions for the datasets with categorical observations. This study focuses on

a new fuzzy regression functions framework, namely hierarchical fuzzy regression functions, that can handle categorical

features properly for the regression task. The proposed framework is benchmarked with linear regression, support vector

machines, deep neural networks, and adaptive neuro-fuzzy inference systems with real estate data having categorical

features from six markets. It is observed that the proposed method produces better prediction performance for real estate

price prediction than the benchmark methods in a wide variety of real estate markets. Since we provide all the required

software codes to implement the proposed hierarchical fuzzy regression functions framework, our approach offers prac-

titioners a readily applicable, high-performing tool for real estate price prediction and other regression problems involving

categorical independent features.

Keywords Categorical features � Deep learning � Market segmentation � Neural networks � Real estate valuation �
Support vector machines

1 Introduction

Real estate, one of the indispensable assets of the economy,

directly affects many areas, from the financial to the legal

systems. For the development of economies and sustain-

able growth, the most accurate pricing of real estate is

crucial. Many economic activities, such as real estate

trading, mortgage loans, investment, balance sheet and

taxation, depend on real estate prices [1, 2]. Inaccuracy in

property price predictions may result in unsuitable invest-

ment decisions [3].

The biggest obstacle in accurate real estate valuation is

the heterogeneous structure of real estate data [4]. Highly

variable characteristics of the real estate market make it

challenging to predict real estate values. Real estate data-

sets include categorical (mostly binominal and nominal)

and discrete and continuous (interval scale) features. For

example, while the number of rooms is a discrete mea-

surement in the interval scale, the price of a property is a

continuous measurement in the interval scale. On the other

hand, whether a property is furnished or not is a binary

categorical observation and property type is a nominal

categorical observation.

As detailed in Sect. 2, there are many different

approaches to the property value/price prediction problem

in the literature. The hedonic model used for price pre-

diction is based on multiple linear regression [5]. Machine

learning (ML) methods such as support vector machines

(SVMs) [6] and artificial neural networks (ANNs) [7] are

proposed to improve the hedonic model’s performance.

Fuzzy methods are also introduced for property price
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prediction problems. The most frequently used fuzzy

approaches are fuzzy neural networks (FNNs) and the

adaptive neuro-fuzzy inference system (ANFIS) [8, 9]. The

hybrids of these methods with clustering approaches are

employed to segment the real estate market for improved

price prediction empirically.

The main shortfall of the methods in the literature is that

they are not designed to process the categorical features to

preserve their categorical nature [10, 11]. Although there

are attempts to improve methods against the existence of

categorical features through using different encoding

strategies at the data preprocessing step, the gain in pre-

diction performance over the standard implementation is

unclear [10]. Most methods process categorical features as

discrete measurements in the interval scale. If not paired

with suitable approaches, this results in a significant loss of

accuracy that translates into economic loss by sub-optimal

decisions based on the predictions, disregarding the fea-

tures’ categorical nature. Another issue with the recent

literature is the lack of reproducibility due to not providing

the software codes for implementing the proposed methods

in practice. This limits the applicability of the methods in

real estate price prediction and leaves practitioners with

sub-optimal methods.

To tackle these problems, first, we aim to develop a

method that can handle both interval scale and categorical

features and provides us with a lower magnitude of pre-

diction error and lower variability in prediction error than

the frequently used methods. We propose a fuzzy regres-

sion functions (FRF) approach designed to handle cate-

gorical measurements along with interval-scale

observations. The proposed approach involves a step that

assigns a membership value to each property to represent

each property’s degree of belonging to each spatial seg-

ment based on hierarchical clustering with the generalized

Minkowski distance of [12]. This feature of our approach

relaxes the requirement of expert knowledge for segmen-

tation and is able to handle categorical information. The

generalized Minkowski distance is also employed in other

steps of FRFs to handle categorical features accurately. We

develop all the required computer codes to implement

HFRFs in R software and make them available for imme-

diate implementation through the Internet.

The proposed FRF approach, namely hierarchical fuzzy

regression functions (HFRFs), is applied to real estate

datasets from six different markets worldwide to predict

real estate prices. The performance of the proposed HFRFs

is assessed in terms of the magnitude of the absolute pre-

diction error and the amount of variability in the prediction

errors. We benchmark the performance of HFRFs with

ANFIS, deep neural networks (DNNs), linear regression,

and SVMs using the six real estate datasets. Since DNN is a

multi-layered version of ANN, we do not consider ANNs

separately in this study. HFRFs demonstrate a considerable

extent of improvement in real estate prediction perfor-

mance. The computational cost of the proposed approach is

assessed and found suitable for larger-scale valuation sys-

tems. The contributions of this study are: i) An FRF

approach that handles categorical and interval-scale fea-

tures accurately is proposed to predict real estate values.

HFRFs are not only limited to real estate datasets. It is

readily applicable to any dataset with categorical and

continuous features for regression problems. ii) We relax

the requirement of expert knowledge for segmentation by

using hierarchical clustering that captures segmentation

information straightforwardly. iii) A comparison of

HFRFs, SVMs, ANFIS, linear regression, and DNNs for

the real estate values prediction is presented. Thus, infor-

mation on the performance of the benchmarking methods is

also evaluated in this study. iv) Due to the suitable com-

putational cost of HFRFs, we provide practitioners with a

method that can be applied to online valuation systems or

large-scale prediction problems.

The rest of the article is organized as follows: Sect. 2 is

devoted to the literature review. Section 3 presents data-

sets, descriptive analysis results, the details of FRFs and

the proposed HFRF approach, and the goodness-of-fit

measures. Section 4 demonstrates the performance and

computational cost comparison of the proposed HFRF

approach with benchmark methods. Section 5 concludes

the article with discussions and recommendations.

2 Literature review

In the real estate market, a common approach to reducing

data variability is to cluster the observations into more

homogeneous sub-markets [13, 14]. The idea that housing

markets should be divided into clusters according to certain

characteristics and that these clusters should be included in

the price prediction process is an approach advocated in the

real estate literature [4, 15, 16]. Performing market seg-

mentation prior to pricing model estimation avoids aggre-

gation bias and ensures accurate parameter estimation and

strong model fit [17, 18].

In the real estate market, a sub-market is a cluster in

which pricing and related property characteristics differ

from another sub-market [15]. It is argued that each sub-

market should have its own unique price models [19].

Considering that the coefficient estimates will be biased in

a single model representing the whole market, the model

estimates for each sub-market are expected to have better

pricing performance than an aggregated model [20].

Identifying sub-markets not only improves price prediction

accuracy but also helps researchers better model temporal

and spatial changes in prices, helps lenders accurately
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assess credit risk, and reduces home buyers’ search costs

[4].

In order to identify housing market segmentation, two

basic approaches are used: a priori information (experi-

ence-oriented) classification and data-driven methods. In a

priori classification, sub-markets are constructed using

expert insights into spatial divisions such as administrative

areas, socio-economic characteristics, census tract, zip

code districts, and physical features [5, 21–23]. Although a

priori information classification is intuitive and straight-

forward, the method is relatively inadequate in terms of

accuracy, precision, and objectivity [24]. It is also

demonstrated by [25] that market segmentation using

administrative boundaries might not be effective in mass

appraisal. Expert opinions for segmentation in the same

area cannot be used as a widely accepted solution, given

the fact that real estate agents may differ in their judgment

[20]. As [4] emphasize, consumers are guided by the

relationship between price and general characteristics as

well as the location of the properties when searching for a

home. In contrast, data-driven methods are more objective

and accurate and reflect the spatial and temporal dynamics

of the real estate market [26].

In recent years, studies have focused on the empirical

segmentation of the real estate market using various sta-

tistical and machine learning methods to overcome the

arbitrariness and subjectivity of a priori information clas-

sification. Principal Component Analysis (PCA), factor

analysis, and clustering methods are applied to identify

sub-markets as data-driven approaches. Market segmenta-

tion is performed based on property type, structural fea-

tures, neighborhood features, spatial features, or a

combination of them. To explain the economic meaning of

sub-market segmentation, spatial attributes and economic

characteristics of properties are often used for clustering

[27, 28]. Watkins [22] use PCA to identify structurally

differentiated market segments by obtaining the most

common components in the housing stock. Then, the

hedonic regression equation is estimated separately for

each sub-market. Using PCA to identify sub-markets made

significant progress with the use of cluster analysis. Clus-

tering, as an unsupervised learning problem, is used to

separate data samples into clusters without needing any

prior knowledge of partitioning. Various crisp and fuzzy

clustering algorithms also used in the literature to identify

housing sub-markets [27, 29–31].

Machine learning methods are used to identify, interpret,

and analyze hugely complicated data structures and pat-

terns. When machine learning techniques are utilized

appropriately, they provide fast and reliable results and

become a tremendous tool that assists decision-making

processes [32]. Intelligent automatic valuation systems for

real estate have been designed using various methods and

models for mass appraisal in a certain area. When expert

algorithms are compared to ML methods in predicting

property values, ML methods outperform expert algorithms

for Poland data [33].

Since SVMs can capture the nonlinear relationship

patterns in regression tasks, they are suitable for the price

prediction problem. Other optimization algorithms, such as

genetic algorithms or particle swarm optimization, are used

to find optimal parameter settings for SVM implementation

for real estate price prediction [6, 34]. Another mainstream

ML algorithm, ANN is also widely employed to predict

real estate values. ANNs capture the nonlinear behavior of

input variables well. Mach [35] compares the performance

of ANNs with multiple regression modeling and observes a

similar performance for Poland data. Cetkovic et al. [7]

implement ANNs for France, the Czech Republic, and

Lithuania using backpropagation with economic and social

variables. They observe a satisfactory prediction perfor-

mance with ANNs. Some of the variables considered in this

study, such as gross domestic product (GDP), GDP per

capita at market prices, and foreign direct investment, have

high variations. ANNs with backpropagation are improved

by employing a genetic algorithm for optimization, pro-

ducing better prediction performance for the Chinese

market [36]. In addition to ANNs, other ML methods, such

as ElasticNet and XGBoost, are recently employed to

predict real estate prices. But ANNs outperform both

ElasticNet and XGBoost for Italy datasets [37]. A recent

review of ANN and ML methods for real estate price

prediction in comparison with the hedonic model is pre-

sented by [38]. We consider an improved and more gen-

eralized version of ANNs, namely DNNs, in this study.

Lee [11] highlights the importance of considering the

nature of the categorical independent features and the

weakness of neural networks in processing categorical

features and proposes using entity embedding techniques in

natural language processing to improve the performance of

neural networks. The entity embedding technique leads to

market segmentation for prediction using only one model.

This is an important consideration since most real estate

pricing applications include categorical features.

Overall, ML methods are promising for real estate price

prediction and perform better than conventional regression-

based models. However, their weaknesses include a lack of

an explanation of the mechanism behind the predictions

[11] and poor handling of categorical predictors [11].

Different encoding strategies such as one hot, CatBoost,

Helmert, target, and ordinal encoding are used for cate-

gorical features at the data preprocessing step to improve

the performance of ML methods [10]. Although the per-

formance of different methods is compared under these

encodings, the performance gain with encoding against the

straightforward implementation is unclear.
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In the fuzzy domain, FNNs are the most used technique

for real estate value prediction dating back to the end of the

1990 s [39, 40]. Artificial neural networks are criticized

due to their black-box nature and low generalization

capacity due to overfitting [8, 40]. The hedonic price theory

is used along with the FNNs. The straightforward imple-

mentation of FNNs involves getting crisp inputs, fuzzifying

them, calculating fuzzy inference rules by using an ANFIS

and defuzzifying the output with centroid defuzzification.

Liu et al. [40] get promising results and good generaliza-

tion capability with this approach. Guan et al. [41] consider

an ANFIS approach to property valuation for the US data

and compare the accuracy of their ANFIS approach to

multiple regression modeling. The ANFIS approach per-

forms slightly worse than a multiple regression approach

for the US data. Note that [41] dataset includes categorical

variables such as basement type, wall type, and garage

type. However, according to descriptive statistics reported

in the article, these categorical features are treated as

interval-scale measurements after coding. As a neural

network-based method, ANFIS does not handle categorical

features accurately. This can be the reason for getting

better performance from the multiple regression approach.

This result highlights the importance of using methods that

can handle categorical features in property price prediction.

Shi et al. [31] use the Fuzzy k-means (FKM) clustering

method in housing market segmentation, and predictions in

each cluster are obtained using ANFIS. This study con-

cludes that data-driven market segmentation improves the

accuracy of price prediction. Kusan et al. [42] propose a

fuzzy logic model for property price prediction in Turkey.

Their model is based on a wide range of continuous and

categorical variables and shows a satisfactory performance

in the presence of categorical variables. Sarip et al. [9]

provide a comparison of ANN, ANFIS, and fuzzy least-

squares regression (FLSR) methods in the predictions of

property prices through simulation-based experiments. In

the simulation experiments, some categorical variables are

included. As a result, FLSR is identified as a promising

method for property valuation. Grid partitioning and sub-

tractive clustering are considered along with ANFIS to

create optimum fuzzy rule base sets for forecasting house

selling prices [43], and ANFIS with grid partitioning was

found promising for forecasting house prices. There are

also attempts to build automated valuation systems for real

estate using fuzzy rule-based systems [44–46]. However,

whether these systems distinguish the categorical nature of

the categorical predictors is not clarified.

The previously introduced FRF approaches by [47–49]

aim to improve the FRF method against the outliers in

interval-scale features. The methods proposed in these

studies are not recommended when categorical features are

in the dataset; hence, they are unsuitable for real estate

price prediction. However, the current study specifically

focuses on developing an FRF approach that provides

better prediction accuracy for datasets with both interval-

scale and categorical (nominal and/or ordinal) features.

Overall, most studies in the literature do not treat cate-

gorical variables differently from interval-scale measure-

ments, resulting in the loss of accuracy in the real estate

price prediction. This is the main limitation of the literature

we address in this study.

3 Datasets and methods

3.1 Data description

Six diverse real estate datasets from Russia, Georgia (the

USA), Taiwan, Riga (Latvia), Sao Paulo (Brazil), and

Victoria (Australia) are considered in this study. The data

sources are available in Table 1.

The datasets contain continuous and categorical pre-

dictors with varying sample sizes. Table 2 contains infor-

mation about each dataset’s features and the sample size.

Since there are duplications and zero-variance features in

the datasets given by the original data sources, we applied a

preprocessing step. The resulting datasets are available at

https://github.com/haydarde/HFRF. The type of categorical

predictors is given in brackets in the first column of

Table 2. The names of some predictors are changed to

group them into one name across the datasets. We consider

the location of each property by latitude and longitude

information. The sale price is log-transformed to reduce the

large range caused by the local currencies for datasets

1, 2, 4, 5, and 6. Since the Taiwan data have the unit area

price, log-transformation is not applied. The most common

features across the datasets are the total area and the

number of rooms, seen in 4 and 5 out of 6 datasets,

respectively. Out of 21 predictors, we have 2 nominal

categorical, 5 binary, 7 discrete and 7 continuous predictors

across the datasets. Thus, it is crucial to have methods that

handle binary and nominal categorical features sufficiently.

Box plots of log-sale price for each dataset are displayed

in Fig. 1. The triangle in each box indicates the mean log-

sale price, while the horizontal line in each box shows the

median log-sale price. All datasets have almost similar log-

sale price distributions. The variation of log-sale prices is

the least for Victoria, while it is the highest for Russia. The

Sao Paulo and Victoria datasets are slightly right-skewed

with high sale prices.

The box plots of the log-total area for Georgia, Riga,

Russia, and Sao Paulo datasets are given in Fig. 2. While

properties in Georgia have the highest variation in total

area with a right-skewed distribution, the Russia dataset

has the lowest variation in total area. The Sao Paulo dataset

Neural Computing and Applications

123

https://github.com/haydarde/HFRF


is notably right-skewed with properties with very large

total areas.

The histograms of the number of rooms for Georgia,

Riga, Russia, Sao Paulo, and Victoria datasets are given in

Fig. 3. All distributions of the number of rooms are right-

skewed, except for Victoria, which has a left-skewed

distribution.

The bar plots of the categorical predictors in Russia,

Georgia, Riga, Sao Paulo, and Victoria datasets are given

in Fig. 4. All the categorical variables except the swim-

ming pool and elevator predictors for Sao Paulo are highly

imbalanced. In addition to having categorical predictors in

the dataset, their imbalancedness adds another level of

challenge to accurate modeling. A sufficient model should

handle imbalanced categorical variables successfully in

this case.

Table 1 Datasets and web links

to data sources
Dataset Source

1. Russia https://www.kaggle.com/mrdaniilak/russia-real-estate-20182021

2. Georgia (US) https://www.kaggle.com/yellowj4acket/real-estate-georgia

3. Taiwan https://www.kaggle.com/quantbruce/real-estate-price-prediction?

select=Real?estate.csv

4. Riga (LV) https://www.kaggle.com/trolukovich/riga-real-estate-dataset

5. Sao Paulo (BR) https://www.kaggle.com/argonalyst/sao-paulo-real-estate-sale-rent-april-2019

6. Victoria (AU) https://www.kaggle.com/ruizjme/realestate-vic-sold

Table 2 Features, sample size,

number of predictors, and

number of categorical predictors

in each dataset

Feature Dataset

1 2 3 4 5 6

Latitude x x x x x x

Longitude x x x x x x

Log of price in local currency x x x x x x

Total area x x o x x o

Kitchen area x o o o o o

Number of rooms x x o x x x

Apartment floor x o o x o o

Number of stories o o x x o o

Property type (Nominal categorical) o o o o o x

Building type (Nominal categorical) x o o x o o

Number of bathrooms o x o o x x

Age o x x o o o

In new construction (Binary) x o o o o o

Number of parking spaces o x o o x x

Pool (Binary) o x o o x o

Spa (Binary) o x o o o o

Distance to train station o o x o o o

Condition (Nominal categorical) o o o x o o

EnSuites o o o o x o

Condominium expenses o o o o x o

Elevator (Binary) o o o o x o

Furnished (Binary) o o o o x o

Number of predictors 8 9 5 8 12 6

Number of categorical predictors 2 2 0 2 3 1

Sample size 4990 5678 414 2448 4634 386

In the table, ‘x’ and ‘o’ indicate whether the corresponding feature exists in the dataset or not, respectively.

Dataset: 1. Russia, 2. Georgia (US), 3. Taiwan, 4. Riga (LV), 5. Sao Paulo (BR), 6. Victoria (AU)
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3.2 Fuzzy regression functions

The FRF technique is originally developed by [50]. Baser

and Demirhan [47] introduced the SVMs into the FRFs to

enhance their performance for regression. Then, the noise

cluster approach of [51] is used along with SVMs and

ANNs within FRF to improve the robustness of FRFs

against the outliers for regression [48]. This approach is

called FRF with a noise cluster (FRFN). Then, [49] mod-

ified FRFNs by implementing robust clustering methods in

the FRFN approach, yielding a modified FRFN approach

(MFRFN) to further robustify FRFNs against the outliers in

the dataset. MFRFN demonstrates a promising estimation

accuracy for wind speed estimation [52]. In the time series

setting, FRFs provide robust forecasting results against the

outliers as well [53, 54]. However, no categorical predictor

Fig. 1 Box plots of log-sale

price for each dataset

Fig. 2 Box plots of the

logarithm of the total area for

Georgia, Riga, Russia, and Sao

Paulo datasets
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is considered in any of these works. In this study, we

develop an FRF model, namely the hierarchical fuzzy

regression functions (HFRF) model, that runs efficiently

when binary, multi-class nominal, ordinal and/or interval-

scale predictors are in the data.

The objective function to minimize in FRF implemen-

tation is

f ðl; m;XÞ ¼
Xn

i¼1

Xc

k¼1

gk;iðlk;i; dk;iÞ; ð1Þ

where c is the number of clusters, n is the sample size,

Xn�ð‘þ1Þ is the matrix of ‘ independent predictors and the

dependent feature, lk;iðxi; mÞ ¼ lk;i 2 ½0; 1�;
P

i lk;i ¼
18k ¼ 1; . . .; c shows membership values, dk;iðxi; mkÞ ¼ dk;i
is the Euclidean distance between the cluster centers and

observations as the inner product norm:

dk;i ¼ jjxi � vkjj; ð2Þ

with the ‘� 1 vector of cluster centers, vkðxiÞ ¼ vk,

k ¼ 1; . . .; c. In Eq. (1), the function gk;ið�Þ indicates the

clustering method. For the fuzzy c-means (FCM) cluster-

ing, lk;i is defined in Eq. (3),

lk;i ¼
�Xc

l¼1

�
dk;i
dl;i

�2=ðm�1Þ��1

ð3Þ

with the degree of fuzziness m[ 1:1, and the center of

cluster k is defined in Eq. (4):

mk ¼
Pn

i¼1 l
m
k;ixiPn

i¼1 l
m
k;i

; ð4Þ

and gk;ið�Þ function is given in Eq. (5):

gk;iðlk;i; dk;iÞ ¼ lmk;id
2
k;i; k ¼ 1; . . .; c: ð5Þ

The FRF implementation includes two stages: the fuzzy

clustering stage with the training dataset and the fuzzy

inference stage with the output of the fuzzy clustering stage

on the testing dataset. Learning similarities between

observations happens at the clustering stage as it captures

the clusters created by the similarities of observations in

the data dataset. This corresponds to the segmentation in

the real estate valuation domain. Then, the membership

values based on the distance between the observations and

cluster centers are added to the training dataset as another

predictor, and an SVM model is fitted at the inference

stage. The fitted SVM model is then used to generate

predictions with the test data at the last stage of FRFs [49].

Fig. 3 Histograms of the number of rooms for Georgia, Riga, Russia, Sao Paulo, and Victoria datasets
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However, FRFs rely on the Euclidean distance, which is

not an appropriate distance measure for the categorical

features.

3.2.1 Hierarchical fuzzy regression functions

It is clear that when some of the predictors are categorical,

using the Euclidean distance between the cluster centers

and observations from the categorical predictors is

unsuitable [12, 55]. The distance is used twice in FRFs.

First, it is used at the clustering stage, and then, the dis-

tance between cluster centers and observations is fed into

the inference stage. Therefore, using a distance metric

suitable for mixed data types is crucial. One can either

transform all categorical features into binary by dummy

coding and use a distance for binary variables or use a

Minkowski distance by considering the categorical vari-

ables with integer coding [12, 55, 56]. Considering that our

FRF method consists of SVM implementation, keeping the

variables numerical rather than binary is more beneficial.

The accuracy of the clustering algorithm at the first

stage of FRFs significantly impacts the overall perfor-

mance of the FRF implementation. Therefore, the cluster-

ing algorithm of the first stage needs to be suitable for

mixed data types and less time-consuming as there are two

stages of implementation. Specifically, capturing the sim-

ilarity among the observations is also important for real

estate valuation. Considering these characteristics, a hier-

archical clustering algorithm is suitable by employing the

generalized Minkowski distance of [12].

To handle nominal, binary, ordinal, and interval-scale

features with FRFs, we consider using hierarchical

Fig. 4 Bar plots of the categorical variables for Russia, Georgia, Riga, Sao Paulo, and Victoria datasets
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clustering with the generalized Minkowski distance [12] at

the first stage of FRFs and calculate the generalized Min-

kowski distances between observations and centers from

the hierarchical clustering to feed additional data to the

inference stage in the HFRF framework.

For two vectors z ¼ ðziÞT and y ¼ ðyiÞT ; i ¼ 1; . . .; n in

Rn, the Minkowski distance is defined as in Eq. (6):

dpz;y ¼
�Xn

i¼1

jzi � yijp
�p

: ð6Þ

The generalized version of the Minkowski distance is

defined by [12] for continuous, discrete, quantitative,

qualitative, and structural data types. However, since we

are working with continuous, discrete, nominal, and ordinal

data types, we establish a simpler form of it based on the

observed ranges of the x and y, which is less time-con-

suming in implementation.

Let Xn�k ¼ ðxijÞ; i ¼ 1; . . .; n; j ¼ 1; . . .; ‘, where n is the

number of observations, and k is the number of features, be

the data matrix and Rj denote

• The absolute range of the column vectors of X,

jmaxðxjÞ � minðxjÞj when xj is in interval scale (con-

tinuous or discrete), and

• The number of levels, LðxjÞ when xj is composed of

nominal or ordinal measurements.

Then, the generalized Minkowski distance of order p

between two observation vectors xi and xr is defined in

Eq. (7):

dpirðXÞ ¼
�X‘

j¼1

�
jxij � xrjj=Rj

�p
	p
: ð7Þ

We run hierarchical clustering at the clustering stage of

HFRF with the distance matrix Dp ¼ ðdpirÞ; i; r ¼ 1; . . .;

bc � nc, where b�c shows the floor function and c is the

proportion of the training sample, and obtain cluster center

mHk ¼ ðmHkjÞ; j ¼ 1; . . .; ‘ for each cluster k ¼ 1; . . .; c. Then,

we compute the membership values of observation vectors

to the clusters with Eq. (8):

lHp;k;i ¼
�Xc

l¼1

�P‘
j¼1

�
jxij � mHkj j=Rj

�p
P‘

j¼1

�
jxij � mHlj j=Rj

�p
	2p=ðm�1Þ��1

: ð8Þ

The membership values from Eq. (8) are merged with the

observation matrix of each cluster, CkðXk
..
.
lHp;k;iÞ and fuzzy

regression functions for each cluster, fkðCk; bkÞ, are fitted

using SVMs with radial kernel to get the parameter esti-

mates b̂k. The b̂k vectors are used to create fitted values of

each observation vector, ŷk ¼ ðŷk;iÞ; i ¼ 1; . . .; bc � nc in the

training sample. Then, the fitted values in the training set

are calculated as the weighted averages of the fitted values

with weights corresponding to the membership values:

ŷi ¼
Xc

k¼1

ŷk;il
H
p;k;i=

Xc

k¼1

lHp;k;i: ð9Þ

For the observations in the test sample, we calculate

Eqs. (7) and (8) with observations xi; i ¼ bc � nc þ 1; . . .; n

and find the predictions using the fitted SVM model’s

parameter estimates b̂k for each cluster. Then, the final

predictions are calculated using Eq. (9) for the observations

xi; i ¼ bc � nc þ 1; . . .; n.

The workflow of HFRF is given in Fig. 5. Compared to

the flow of FRF implementation, we employ the hierar-

chical clustering with the generalized Minkowski distance

to find the cluster centers and then utilize the generalized

Minkowski distance for the membership degrees of the

observation to the clusters. This improvement makes FRFs

applicable for datasets that include categorical and interval-

scale observations. The hierarchical clustering with the

generalized Minkowski distance provides us with clusters

of market segmentation, and the distance between obser-

vation to the clusters relates each real estate to the

segments.

3.3 Goodness-of-fit measures

In order to assess the prediction performance of the models,

root-mean-squared error (RMSE) and mean absolute error

(MAE) are used as defined in Eq. (10):

RMSE ¼
�XN

i¼1

ðx̂i � xiÞ2=N

�0:5

and MAE ¼ 1

N

XN

i¼1

jx̂i � xij;

ð10Þ

where j � j shows absolute value, xi is the observed value in

either training or test sets of size N, x̂i is the corresponding

prediction by a model, and �x is the mean of either training

or test set. The scaled versions of RMSE and MAE, namely

rRMSE and rMAE, are obtained by dividing them by �x in

Eq. (11):

rRMSE ¼ RMSE=j�xj and rMAE ¼ MAE=j�xj: ð11Þ

rRMSE and rMAE provide an assessment independent of

each market’s price level.

RMSE and MAE handle prediction errors differently

and need to be considered simultaneously for a compre-

hensive evaluation of the models. MAE measures the

average absolute difference between the observed and

predicted values to depict the average magnitude of the

model’s error. On the other hand, RMSE measures the

variation in the errors, showing the degree of divergence of

the errors. It inflates quicker than MAE for larger errors.

The mean magnitude of error needs to be considered
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simultaneously with the errors’ degree of variation to see if

the model generates consistently low errors or not. The

rescaled versions of MAE and RMSE, rMAE and rRMSE,

are also considered since MAE and RMSE are not directly

comparable across different markets due to different price

levels. However, although the rescaled versions are com-

parable for multiple markets, they do not reflect the actual

magnitude of error for individual markets. Therefore, we

investigate both regular and rescaled versions of MAE and

RMSE in this study.

4 Results

We implement the proposed HFRF, DNN [57], ANFIS

[58], SVMs with the linear and radial kernels (SVM-Lin

and SVM-Rad) [59] and linear regression (LinReg) [60]

methods with the six real estate datasets presented in

Sect. 3.1 to assess the performance of the proposed HFRFs

and benchmark it with ANFIS, DNN, SVMs with the linear

and radial kernels and linear regression methods, which are

frequently applied to tackle the real estate pricing problem

in the literature.

All methods are run with hyperparameter tuning via

tenfold cross-validation with 80% ðc ¼ 0:8Þ training and

20% test splits. The natural logarithm of real estate prices

is used in all methods due to the skewed nature of price

data for all datasets except Taiwan data, showing the unit

area price differently from others. No transformation is

applied to the predictors.

4.1 Hyperparameter tuning

The DNN implementation consists of three dense layers

with dropout rates subject to tuning. The first dense layer

has an L2 regularizer with a regularization factor of 0.0001.

The activation function of the first layer is tuned up con-

sidering soft sign and RELU activation functions. The next

two layers have RELU activation. The alpha parameter of

all RELU activation functions is tuned considering 0.05

and 0.1. The last two layers have He normal initializers.

The dropout rate of each layer is tuned by using 0.05, 0.1,

and 0.15. The number of units in each layer is tuned by

considering 15, 25, and 40. Batch size is tuned with 32, 64,

and 128. 200 epochs are run with an early callback monitor

based on the mean absolute error. Table 3 shows the final

combinations of parameters after the hyperparameter tun-

ing for all datasets.

The ANFIS models are fitted using the Caret and FRBS

R packages [61, 62]. In the ANFIS implementation, min

and max functions are used as t-norm and s-norm opera-

tors, respectively. The Zadeh implication function is used

Fig. 5 Flowchart of the HFRF implementation
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[61, 62]. Five layers are considered for forward stage [62]:

i) Fuzzification with Gaussian membership function. ii)

Inference using the t-norm operator. iii) Calculate the ratio

of rules’ strength. iv) Estimate parameters. v) Calculate

overall output using the sum operator. The least squares

method is used for parameter estimation in the backward

stage. The step size of the gradient descent is set as 0.01. A

hyperparameter tuning effort for ANFIS implementation

requires examining 405 combinations of t-norm, s-norm,

and implication functions. While the computational cost of

tuning is 3.4 days for the smallest dataset, Dataset 3, it

inflates to 962.1 days, or 2.6 years, for the largest dataset,

Dataset 2. Therefore, the same setting is used across the six

regions.

SVMs are also implemented using the Caret package.

The linear and radial basis kernels are considered. The

regularization parameter C is tuned against RMSE for the

linear kernel. For the radial basis kernel, C and r param-

eters are tuned against RMSE by random search with 20

replications. The resulting optimal values of C and r are

given in Table 4 for each dataset.

HFRFs are run by the R implementation of Fig. 5 with

the codes developed by the authors at https://github.com/

haydarde/HFRF. The hierarchical clustering algorithm

needs the number of clusters as the essential input. The

number of clusters for each dataset is determined based on

the silhouette (SIL) index [63]. The degree of fuzziness is

tuned considering m ¼ 1:5; 2; 2:5; 3 for each dataset. The

order of generalized Minkowski distance is tuned through

p ¼ 1:1; 1:2; 1:5; 1:75; 2; 2:25; 2:5. After the tune-up, the

final values of the number of clusters (c), the degree

fuzziness (m), and the order of generalized Minkowski

distance (p) used for HFRFs are given for each dataset in

Table 5. The C and r parameters of SVM-Rad at the

inference stage of HFRFs are tuned against RMSE under

each cluster for each dataset by random search with 20

replications. Table 6 shows the optimal values of C and r
for each dataset and the number of clusters shown in

Table 5. For each dataset, only c rows of Table 6 are filled

with the values of corresponding C and r hyperparameters.

4.2 Prediction performance

Table 7 presents the RMSE, rRMSE, MAE, and rMAE

results of HFRF, DNN, SVM, and ANFIS methods for all

datasets. The rescaled error measures rRMSE and rMAE

help assess the variation and magnitude of errors in test sets

independent of different price ranges across different

countries considered in the study. In terms of rMAE, the

proposed HFRFs produce the minimum absolute error for

real estate price prediction for all datasets. This implies that

HFRFs provide us with the lowest magnitude of error in the

predicted prices. A useful method is also desired to provide

predictions with low variability in addition to the low

magnitude of error. Regarding the variation in the errors of

price prediction, HFRFs have the lowest variation in price

predictions. Only for the Taiwan dataset, SVM-Rad pro-

duces a very close rRMSE to HFRF. DNN has the second-

best rRMSE for Russia, and SVM-Rad has the second-best

rRMSE for other datasets. While ANFIS performs poorly

among the considered methods, the hedonic model, Lin-

Reg, closely follows SVM-Lin.

Since we apply log-transformation on price data for

modeling and neutralize the impact of the mean price in

each of the considered real estate markets by reporting the

Table 3 Implementation

parameters for DNNs after the

hyperparameter tune-up

Dataset Dropout 1 Dropout 2 Dropout 3 Units Activation Alpha Batch size

1 0.05 0.1 0.05 40 Softsign 0.1 128

2 0.15 0.1 0.05 40 RELU 0.05 128

3 0.05 0.05 0.15 40 Softsign 0.05 32

4 0.05 0.05 0.05 40 Softsign 0.1 32

5 0.1 0.15 0.05 25 RELU 0.1 32

6 0.05 0.15 0.1 25 RELU 0.1 64

Table 4 Implementation parameters for SVM-Rad after the hyper-

parameter tune-up

Dataset 1 2 3 4 5 6

r 0.086 0.541 0.023 0.027 0.211 0.446

C 5.492 0.827 20.986 50.340 130.426 11.699

Table 5 Implementation parameters for HFRFs for each dataset after

the hyperparameter tune-up

Dataset

1 2 3 4 5 6

Number of clusters (c) 2 2 5 3 6 3

Fuzziness degree (m) 3 1.5 1.5 1.5 3 3

Order of generalized

Minkowski distance (p)

1.1 1.1 1.1 1.1 1.25 1.1
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scaled error measures, the real magnitude of the improve-

ment by HFRFs is not quite clear in Table 7. To assess the

magnitude of the gain by HFRFs, we find the percent

improvement by HFRFs over the second-best model in

terms of MAE and report the impact of the percent gain in

terms of the average price in each of the considered mar-

kets in Table 8.

The improvement in the magnitude of prediction error

by the proposed HFRF method ranges between 3.8% in the

Russian market and 12.5% in the Sao Paulo market across

the compared markets. The proposed HFRF produces price

predictions with 6.3% less error than the runner-up method

in the Georgia market. This corresponds to a 19,312 USD

improvement in the price predictions’ margin of error for

Georgia, USA, an 11,340 USD better prediction for Sao

Paulo, BR, or a 47,418 USD improvement for Victoria,

AU. Overall, the proposed HFRF method provides us with

significant advancement in the magnitude of real estate

price prediction.

Table 9 shows the gain in the variability of the predic-

tion errors by the HFRF method for all datasets based on

rRMSE. In terms of rRMSE, the HFRF method is superior

to all benchmark methods. The gain in rRMSE is very

close to SVM-Rad only for the Taiwan dataset. For Riga,

Georgia, Sao Paulo, and Victoria datasets, the gain in the

variability of the prediction errors varies between 7% and

14.1%. The lowest gain of 2.8% is recorded for the vari-

ability of the prediction errors in the Russian market.

HFRFs are proposed to handle categorical variables

better in a dataset with categorical and interval-scale

measurements. First, having a 7.7% improvement with the

Taiwan dataset that has only interval-scale variables

implies that HFRF is a promising method even if there is

no categorical variable in the datasets. This is a desired

feature of HFRFs. However, we do not observe such a

significant improvement in the variability of the prediction

errors by the HFRF for the Taiwan dataset. This can also be

attributed to not having any categorical variable in this

dataset. The least improvement, 3.8%, is seen in the Russia

dataset. This dataset has a large sample size and has only 1

categorical variable. In comparison, the Sao Paulo dataset

has a similar sample size but 3 categorical variables, and

HFRF provides a 12.5% improvement in the error magni-

tude and a 14.1% improvement in the prediction errors’

variability. As we have more categorical variables in a

dataset, we can expect better gains in performance with

HFRFs. When the number of categorical variables is low

with a small-to-moderate sample, such as in the Victoria

dataset, the gain with HFRFs is also very promising: 10.9%

in error magnitude and 12.1% in error variability.

Figure 6 shows actual and predicted log-sale prices with

HFRF for all locations. The 45-degree lines in Fig. 6 dis-

play the perfect case of prediction. Generally, HFRF pre-

dictions align well with the 45-degree line for all locations.

However, we observe outliers for some locations. For

Victoria, we have one property located far from the main

body of observations in the scatter plot. Since this point is

an outlier in the test set and is located in the direction of the

trend, we can conclude that HFRF consistently produces a

large prediction for this high-priced property. So, HFRF

learns from similar observations in the training set to

produce a high price prediction for this property. Another

notable observation from Fig. 6 is from the Taiwan market.

Only one property price is significantly underestimated by

HFRF, which is the only significant underestimation by

HRFRF in all six markets. This observation is located on

top of the main cluster of the points in the scatter plot for

Taiwan. Since this property is located in the same region as

other top-priced properties in the Taiwan market, we do not

anticipate a measurement error for this data point. The

reason for HFRF’s underestimation is that this property is a

single-story dwelling, while other high-priced ones have

more than 6 stories.

Table 6 Implementation parameters for SVM-Rad under HFRFs for each cluster associated with each dataset after the hyperparameter tune-up

Cluster Dataset

1 2 3 4 5 6

r C r C r C r C r C r C

1 0.026 19.125 0.297 3.290 0.188 104.48 0.168 6.194 0.014 736.60 0.022 387.47

2 0.158 20.163 0.043 12.797 0.018 164.35 0.041 20.886 0.013 2.717 0.235 43.109

3 0.122 1.467 0.154 16.738 0.016 382.14 0.758 84.653

4 0.133 3.166 0.058 533.18

5 0.006 443.73 0.117 8.381

6 0.142 10.767
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4.3 Computation time

Figure 7 shows the run times of a single run of the top three

methods, HFRF, SVM-Rad, and DNN, with the sample

size and number of predictors in each dataset to assess the

applicability of the proposed HFRFs in practice. All runs

are done with a MacBook Pro computer with an Apple M1

Max chip and 64 GB memory. When there is a hyperpa-

rameter tuning effort, the run times in Fig. 7 need to be

multiplied by the size of the tuning grid. Among the top

three methods, HFRFs are most impacted by increased

sample size and the number of predictors. For small-to-

moderate samples, such as Taiwan and Victoria datasets,

the run time of HFRFs is very close to SVM-Rad and

DNNs. However, there is a notable difference between

HFRFs and SVM-Rad for large samples such as Georgia or

Sao Paulo. On the other hand, for Riga data, which is a

moderate sample, HFRF has a better run time. Overall, the

reported run times for HFRF have no negative impact on

the method’s applicability in practice.

5 Conclusion

This study develops a method that performs satisfactorily

for the regression task in the presence of categorical and

interval-scale measurements in the dataset and particularly

focuses on implementing the method for real estate price

prediction. Real estate price prediction is one of the

important application areas where categorical and interval-

scale measurements appear in the dataset. Most machine

learning methods, especially distance-based methods,

cannot handle the non-numerical information contained in

the categorical variables and treat them as numerical,

resulting in reduced performance. To propose a solution to

this issue, we consider using generalized Minkowski dis-

tance along with the hierarchical clustering, as introduced

by [12], in the fuzzy regression functions method of [47]

with support vector machines (SVMs) to handle the cate-

gorical variables better. This approach leads to the pro-

posed hierarchical fuzzy regression functions (HFRF)

method. SVMs with radial kernel function are implemented

at the inference stage of HFRFs to train the model. SVMs

are trained with training data and the membership degree of

each observation to the clusters created by the hierarchical

clustering with the generalized Minkowski distance. The

clustering stage captures the information about similarities

between observations. Specifically, it corresponds to mar-

ket segmentation in the property price prediction problem.

Since it is done within HFRFs without requiring user input,

it relaxes the requirement for expert knowledge in seg-

mentation. SVMs’ parameters are hyper-tuned for each

dataset and cluster under the HFRF implementation to

achieve the optimum performance for each market

segment.

The HFRF method is applied to real estate pricing

datasets from six diverse markets from different countries.

The error magnitude and variability in prediction with

HFRFs are benchmarked against linear regression, SVMs

and adaptive neuro-fuzzy inference system (ANFIS)

Table 7 Goodness-of-fit results of HFRF, DNN, SVM, and ANFIS

methods for all datasets

Dataset Method RMSE rRMSE MAE rMAE

1

Russia

HFRF 0.4265 0.0280 0.3105 0.0204

LinReg 0.4999 0.0328 0.3776 0.0248

SVM-Lin 0.5014 0.0329 0.3741 0.0246

SVM-Rad 0.4416 0.0290 0.3226 0.0212

DNN 0.1925 0.0288 0.3244 0.0213

ANFIS 1.8742 0.1230 1.6501 0.1083

2

Georgia

(US)

HFRF 0.3815 0.0302 0.2706 0.0214

LinReg 0.4792 0.0379 0.3463 0.0274

SVM-Lin 0.4788 0.0379 0.3439 0.0272

SVM-Rad 0.4195 0.0332 0.2887 0.0228

DNN 0.2363 0.0385 0.3486 0.0276

ANFIS 2.2381 0.1771 2.0092 0.1590

3*

Taiwan

HFRF 9.8183 0.2604 4.6825 0.1242

LinReg 11.0845 0.2939 6.6302 0.1758

SVM-Lin 11.0197 0.2922 6.3163 0.1675

SVM-Rad 9.8423 0.2610 5.0716 0.1345

DNN 107.1802 0.2745 5.9782 0.1585

ANFIS 21.4033 0.5676 17.2708 0.4580

4

Riga

(LV)

HFRF 0.3246 0.0292 0.2379 0.0214

LinReg 0.4115 0.0370 0.3133 0.0282

SVM-Lin 0.4157 0.0374 0.3121 0.0281

SVM-Rad 0.3491 0.0314 0.2490 0.0224

DNN 0.1515 0.0350 0.2910 0.0262

ANFIS 2.5659 0.2307 2.4072 0.2165

5

Sao Paulo

(BR)

HFRF 0.2425 0.0186 0.1779 0.0137

LinReg 0.3419 0.0262 0.2686 0.0206

SVM-Lin 0.3401 0.0261 0.2551 0.0196

SVM-Rad 0.2907 0.0223 0.2032 0.0156

DNN 0.0796 0.0217 0.2147 0.0165

ANFIS 1.0980 0.0843 0.8318 0.0639

6

Victoria

(AU)

HFRF 0.2908 0.0217 0.2192 0.0163

LinReg 0.4138 0.0308 0.3314 0.0247

SVM-Lin 0.4128 0.0307 0.3079 0.0229

SVM-Rad 0.3308 0.0246 0.2461 0.0183

DNN 0.2113 0.0342 0.3311 0.0247

ANFIS 1.5203 0.1132 1.4438 0.1075

Bold font indicates the best method, and italic font shows the second-

best method in terms of rRMSE and rMAE. *Price per unit area
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Table 8 Percent gain in the

magnitude of absolute error by

HFRFs against the second-best

method for each dataset and the

impact of the gain on average

price

Dataset 1 2 3 4 5 6

Russia Georgia Taiwan Riga Sao Paulo Victoria

(RUB) (USD) (TWD) (LVL) (BRL) (AUD)

Gain with HFRF 3.8% 6.3% 7.7% 4.4% 12.5% 10.9%

Avr. Price 4,130,406.2 307,735.5 37.710* 67,555.0 453,893.7 676,831.3

Gain in Avr. Price 154,908.8 19,312.4 2.893* 3000.6 56,587.7 74,066.2

Approx. USD gain 1601 19,312 0.091* 4645 11,340 47,418

The currency of each market is noted in brackets. Avr average. *Price per unit area

Table 9 Percent gain in the variability of the prediction error by HFRFs against the second-best method for each dataset

Dataset 1 2 3 4 5 6

Russia Georgia Taiwan Riga Sao Paulo Victoria

Gain with HFRF 2.8% 9.1% 0.2% 7.0% 14.1% 12.1%

Fig. 6 Scatter plots of actual

and predicted log-sale prices

with HFRF for all locations. The

red 45-degree line indicates a

perfect match between

predictions and actual

observations
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methods that are frequently used for real estate price pre-

diction. In addition to these methods, deep neural networks

(DNNs) are also considered in benchmarking as they are

more general versions of ANNs with multiple layers. We

can summarize the overall conclusions and recommenda-

tions of this study as follows:

• The HFRF method produces 3.9% to 12.1% less

prediction error than the second-best-performing SVMs

with the radial kernel function (SVM-Rad).

• The variation in the prediction errors is improved

between 2.8% and 13.3% for the datasets including at

least one categorical variable. However, we did not

record an improvement in the variability of prediction

errors when there is no categorical variable.

• While SVM-Rad is the second-best-performing method,

DNNs produce a close performance to them. However,

ANFIS and linear regression methods do not deliver

satisfactory real estate price prediction performance;

hence, these methods are not recommended for use in

practice. Consistent with the literature [41], linear

regression methods perform better than ANFIS.

• Performance gain with HFRFs depends on the sample

size and the number of categorical variables. This

translates into the balance between the amount of

categorical information and the total information in the

sample. As the weight of categorical information

increases, HFRFs are expected to provide more gain

in performance.

• The computation time of HFRFs is sensitive to the

sample size and the number of predictors. However, this

does not pose a problem with the applicability of the

HFRFs on large samples in a reasonable time frame.

• HFRFs are strongly recommended when any categor-

ical variable is in the dataset for regression tasks.

HFRFs are still beneficial in the absence of any

categorical variables in data. However, this study does

not observe any gain in the variability of prediction

errors by HFRF when there is no categorical variable in

the dataset.

The study’s main limitation is that the conclusions given

here are limited within the scenarios resembled by the

considered datasets. However, since the datasets are from

six different markets with a sufficient variety of sample

sizes, number of predictors, and number of categorical

variables, there is no concern about the generalizability of

the results.

The real estate price prediction datasets can also include

outlier observations. Since we do not focus on the outlier

problem in this study, we do not offer any conclusions on

the performance of HFRF in the presence of outliers.

Considering outliers in the presence of mixed predictor

types is a future study.
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33. Trawiński B, Telec Z, Krasnoborski J, Piwowarczyk M, Talaga

M, Lasota T, Sawiłow E (2017) Comparison of expert algorithms

with machine learning models for real estate appraisal. In: 2017

IEEE international conference on innovations in intelligent sys-

tems and applications (INISTA), pp 51–54. IEEE

Neural Computing and Applications

123

https://github.com/haydarde/HFRF
https://github.com/haydarde/HFRF
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0042098013482502
https://doi.org/10.1177/0042098013482502
https://doi.org/10.1108/JERER-08-2018-0035
https://doi.org/10.1108/JERER-08-2018-0035
https://doi.org/10.1177/0042098008098641
https://doi.org/10.1177/0042098008098641
https://doi.org/10.1111/j.1540-6229.2007.00188.x
https://doi.org/10.1111/j.1540-6229.2007.00188.x


34. Gu J, Zhu M, Jiang L (2011) Housing price forecasting based on

genetic algorithm and support vector machine. Expert Syst Appl

38(4):3383–3386

35. Mach Ł (2017) The application of classical and neural regression

models for the valuation of residential real estate. Folia Oeco-

nomica Stetinensia 17(1):44–56

36. Sun Y (2019) Real estate evaluation model based on genetic

algorithm optimized neural network. Data Sci J 18(36):1–9.

https://doi.org/10.5334/dsj-2019-036

37. Rampini L, Cecconi FR (2021) Artificial intelligence algorithms

to predict Italian real estate market prices. J Prop Invest Financ

40(6):588–611. https://doi.org/10.1108/JPIF-08-2021-0073

38. Aminuddin AJ, Maimun NHA (2022) A review on the perfor-

mance of house price index models: Hedonic pricing model vs

artificial neural network model. Int J Account 7(39):53–63

39. Bagnoli C, Smith H (1998) The theory of fuzzy logic and its

application to real estate valuation. J Real Estate Res

16(2):169–200

40. Liu J-G, Zhang X-L, Wu W-P (2006) Application of fuzzy neural

network for real estate prediction. In: International symposium on

neural networks, pp 1187–1191. Springer, Berlin

41. Guan J, Zurada J, Levitan A (2008) An adaptive neuro-fuzzy

inference system based approach to real estate property assess-

ment. J Real Estate Res 30(4):395–422
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