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Abstract
This paper presents an accurate model for predicting different payload weights from 3DR SOLO drone acoustic emission.

The dataset consists of eleven different payload weights, ranging from 0 to 500 g with a 50 g increment. Initially, the

dataset’s drone sounds are broken up into 34 frames, each frame was about 5 s. Then, Mel-spectrogram and VGGish model

are employed for feature extraction from these sound signals. CNN network is utilized for classification, and during the

training phase, the network’s weights are iteratively updated using the Adam optimization algorithm. Finally, two

experiments are performed to evaluate the model. The first experiment is performed utilizing the original data (before

augmentation), while the second used the augmented data. Different payload weights are identified with a potential

accuracy of 99.98%, sensitivity of 99.98%, and specificity of 100% based on experimental results. Moreover, a com-

prehensive comparison with prior works that utilized the same dataset validates the superiority of the proposed model.

Keywords Mel-spectrogram � Payload weight detection � CNN � VGGish model � Audio segmentation

1 Introduction

Unmanned aerial vehicles (UAVs), usually referred to as

drones, have become very popular in recent years because

of their ability to capture high-quality images, access dif-

ficult locations, and provide stability [1, 2]. Drones are

being extensively utilized across various industries,

including military and security, agriculture, construction,

weather forecasting, mapping, monitoring, and surveil-

lance. The potential for drones to revolutionize package

delivery is also being explored. Furthermore, efforts have
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been made to enhance food production management and

agricultural monitoring using drones [3].

Alongside their positive applications, drones can also be

employed maliciously. An alarming incident exemplifying

this misuse involved a group of drones launching a military

attack on oil pumping stations in Saudi Arabia [4]. Fur-

thermore, drones have been utilized for transporting illicit

or hazardous substances, posing a significant threat, par-

ticularly when used to transport explosive payloads. These

challenges necessitate the development of technologies

capable of identifying and preventing drone attacks [5, 6].

However, the deployment of anti-drone systems in urban

areas can negatively impact the applications of drones that

pose no risk. Therefore, the development of smart systems

capable of anticipating a drone’s intentions is crucial.

Various approaches have been explored to address the

challenge of detecting approaching drones, including radar

[7], radio frequency (RF) analysis [8], and sound analysis

[9].

Radar has been a popular technique for drone detection,

but traditional radars struggle to provide satisfactory results

due to the small radar cross section of UAVs and the heavy

and expensive detection radar required [10]. To overcome

these limitations, some radar technologies and cutting-edge

techniques, such as artificial intelligence, have been pro-

posed for drone detection [11, 12]. However, radar-based

detection is an active method that emits electromagnetic

signals, making it possible for adversaries to detect and

locate the radar.

Radio frequency-based approaches leverage the link

between the drone and the remote control to locate the

drone. Nevertheless, these techniques become ineffective

in the case of autonomous drones. Visual methods rely on

analyzing images captured by cameras to determine the

presence of drones. This analysis can be based on

appearance or movement, but it faces challenges in low

visibility conditions and distinguishing drones from birds

[13].

Recently, drone sound detection has garnered attention.

Determining whether a drone carrying a payload or not is a

crucial step to understanding its intentions. A loaded drone

may indicate a potentially hostile situation. Therefore, the

primary objective of this paper is to explore the possibility

of identifying whether a drone is loaded or unloaded and

estimate the weight of its payload by analyzing the audio

signals produced by the drone. Knowledge of a drone’s

payload can offer numerous benefits, particularly in terms

of operational effectiveness, safety, and adherence to legal

regulations.

To address this objective, this paper proposes a deep

learning-based technique for payload identification using

drone sound, combining the Mel-spectrogram and VGGish

model. The dataset employed in the paper comprises sound

recordings of a 3DR SOLO drone carrying payloads of 11

various weights, ranging from 0 to 500 g with a step size of

50 g. The model involves segmenting the drone sound

signal dataset into 34 segments, each lasting 5 s. Subse-

quently, a convolutional neural network (CNN) model is

trained using the Mel-spectrogram and VGGish model.

Mel-spectrograms capture frequency and intensity patterns

unique to each drone and are commonly employed in audio

signal analysis. In the end, the model is assessed through

two experiments. While the augmented data were used in

the second experiment, the original data (before augmen-

tation) is used in the first experiment. The results demon-

strate significant changes in the pitch of the drone’s sound,

induced by varying motor speeds with different payload

weights. By exploring and developing this deep learning-

based payload identification technique for drone sound.

This paper aims to contribute to the field of drone detection

and enhance operational effectiveness, safety, and com-

pliance in drone-related activities. This paper makes sev-

eral significant contributions in the field of drone payload

identification and weight estimation:

1. Reliable and Accurate Approach: The paper presents a

robust and precise methodology for distinguishing

between different drone payloads and accurately cal-

culating their specific weights by analyzing the audio

characteristics of drone sound. The proposed approach

offers a reliable means of payload identification.

2. Mel-Spectrogram-based Sound Analysis: The paper

leverages the Mel-spectrogram, a representation of

audio signals that closely aligns with human percep-

tion, to extract crucial audio characteristic data for

drone identification. This technique captures the

frequencies that are most relevant to human auditory

perception, enabling effective discrimination between

drone payloads.

3. Transfer Learning with VGGish Neural Network: The

paper employs transfer learning, specifically utilizing

the VGGish neural network for feature extraction, to

achieve exceptional performance in categorizing and

differentiating drone weights. By leveraging pretrained

models and fine-tuning them with the drone sound

dataset. The VGGish network proves highly effective

in accurately estimating the weight of a given drone

payload.

4. Impressive Accuracy: Extensive testing and experi-

mentation demonstrate the robustness of the proposed

approach. When distinguishing between 11 distinct

weights, the developed model achieves an outstanding

accuracy level of 99.75%. This high level of accuracy

signifies the effectiveness and reliability of the pro-

posed methodology.
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Overall, this paper provides a valuable contribution to

the field of drone payload identification and weight esti-

mation. The combination of Mel-spectrogram-based sound

analysis and transfer learning with the VGGish neural

network offers a reliable and accurate approach for dis-

tinguishing between different drone payloads and calcu-

lating their specific weights. The achieved accuracy levels

underscore the practical viability of the proposed method-

ology, with potential applications in various domains

where drone payload identification is crucial for opera-

tional efficiency, safety, and compliance.

The remainder of this paper is structured as follows. The

paper’s materials and methods are given in Sect. 2. The

results of the experiment are assessed in Sect. 3. Section 4

brings the model to a conclusion and future work.

2 Materials and methods

2.1 Materials

Accurately estimating the weight of a drone’s payload is

essential for optimizing flight operations, ensuring safety,

and maximizing efficiency. This section provides a com-

prehensive review of the existing related work that

addresses the challenging issue of estimating the weight of

drone payloads.

To our knowledge, the issue of estimating the weight of

a drone’s payload has been primarily addressed by [14, 15].

Seidaliyeva et al. [14] present a recent framework that

employs visual data to detect the presence of a payload on

a UAV. Their approach utilizes the YOLOv2 algorithm

applied to a dataset comprising images of a DJI Phantom 2

drone, captured with and without various payloads. By

leveraging visual cues, the framework determines whether

the UAV is carrying a payload or not. However, it is

important to note that this methodology relies on visual

data and may not be applicable in scenarios where the

sensing system is solely acoustic.

Similarly, Nguyen et al. [15] propose a technique that

does not rely on acoustic signals but instead utilizes an RF

sensing system to capture drone vibrations. From the

recorded data, they extract Mel-frequency cepstral coeffi-

cient (MFCC) features and employ an SVM classifier to

estimate the drone’s payload weight. The model reports an

accuracy of 96.27% in payload estimation. While this

methodology offers promising results, it is worth men-

tioning that it is not designed specifically for acoustic

sensing systems.

Although the methodologies discussed in [14] and [15]

may not directly apply to acoustic sensing systems, they

provide valuable insights and alternative approaches for

estimating drone payload weight using different data

sources. As such, these techniques complement the focus of

our explore and contribute to the broader understanding of

payload estimation in various sensing environments.

In addition, there are also several notable commercial

solutions in the field of estimating drone payload. One such

commercial solution is the Discovair G2 system [16],

which serves as a counter-UAS solution. Advanced digital

signal processing techniques are used by this system to

determine the azimuth and elevation of the target in real-

time utilizing a network of 128 linked microphones.

Although the primary focus of this system is not payload

estimation, its use of advanced acoustic sensing technolo-

gies demonstrates the potential for acoustic-based solutions

in drone-related applications.

Another noteworthy commercial solution is DroneShield

[17], which incorporates acoustic sensors as part of a multi-

sensor framework designed to create an anti-drone

Table 1 Summary of drone payload estimation methods

Reference Methodology Data source Accuracy Focus

Seidaliyeva et al.

[14]

Visual data & YOLOv2 algorithm Images of drone Not

specified

Detecting payload visually

Nguyen et al. [15] RF sensing, MFCC features, SVM classifier Drone vibrations 96.27% Estimating payload weight

Discover G2 [16] Acoustic sensing & and digital signal

processing

Microphone array Not

specified

Counter-UAS solution

DroneShield [17] Acoustic sensors & and multi-sensor

framework

Integrated sensors Not

specified

Anti-drone platform

Ctrl ? Sky Model

[18]

Multi-sensor system & counter-drone

solution

Combination of

sensors

Not

specified

Countering unauthorized drone

activities

Adel Ibrahim et al.

[19]

MFCC components & and SVM classifiers Audio signal 98% Identifying specific payload class
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platform. By integrating acoustic sensors with other sen-

sors, DroneShield aims to provide comprehensive drone

detection and mitigation capabilities.

Ctrl ? Sky [18] is another multi-sensor counter-drone

system that deserves mention. This solution offers the

ability to detect, track, and neutralize drones using a

combination of different sensors. While its primary focus is

on countering unauthorized drone activities, it highlights

the importance of multi-sensor approaches in accurately

identifying and monitoring drones.

These commercial solutions, including the Discover G2,

DroneShield, and Ctrl ? Sky contribute to the practical

application of drone payload estimation and demonstrate

the integration of acoustic sensors within multi-sensor

frameworks. While they may not directly address the

specific challenge of estimating payload weight, they pro-

vide valuable insights into the broader field of drone

sensing and counter-drone technologies.

Adel Ibrahim et al. [19] identified the specific payload

class that the drone was carrying with a minimum classi-

fication accuracy of 98% by utilizing the Mel-frequency

cepstral coefficients (MFCC) components of the audio

signal and using various support vector machine (SVM)

classifiers. It is noteworthy that these results were obtained

with an acquisition period of just 0.25 s. Table 1 highlights

various approaches and methodologies employed to tackle

drone payload algorithms.

2.2 Mel-spectrogram

Spectrograms play a vital role in sound analysis as they

provide crucial insights into the frequency of energy dis-

tribution over time. Serving as a commonly used repre-

sentation for audio data [20, 21], the spectrogram

characterizes the energy distribution across different fre-

quency bands. However, to better align with human audi-

tory perception, the Mel-scale was introduced by

Newmann et al., offering a nonlinear transformation from

the conventional linear frequency scale.

Mathematically, the Mel-scale frequency (fMel) of a

given frequency (fHz) is computed using Eq. (1). This

transformation allows the Mel-spectrum to capture acoustic

features more effectively, emphasizing perceptually rele-

vant information in the audio signal.

fMel ¼ 2595 log10 1 þ fHz

700

� �
ð1Þ

where fMel is the Mel-scale frequency of frequency fHz.

Creating the Mel-spectrum involves applying the Mel-

filter bank on the frequency domain of the signal, as

described by Eq. (2). The Mel-filter bank consists of tri-

angular window functions (H_k), and each filter is centered

at a specific point in the frequency domain. These filters

partition the signal into different frequency bands, emu-

lating the frequency selectivity of the human ear.

Fig. 1 Dataset components and

characteristics
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Hk mð Þ ¼

0 for m\f k � 1ð Þ
m� f k � 1ð Þ
f kð Þ � f k � 1ð Þ for f k � 1ð Þ�m� f kð Þ

f k þ 1ð Þ � m

f k þ 1ð Þ � f kð Þ for f kð Þ\m� f k þ 1ð Þ

0 for m[ f k þ 1ð Þ

8>>>>>>>><
>>>>>>>>:

ð2Þ

where Hk mð Þ is the triangular window function, m is the

number of filters and k ranges from 0 to m� 1. The Mel-

spectrum is then obtained by calculating the energy in each

frequency band using Eq. (3). This involves taking the

squared magnitude of the discrete Fourier transform (DFT)

coefficients and applying the corresponding triangular

window functions from the Mel-filter bank.

XMel xð Þ ¼
XN�1

m¼0

½jXðmÞj2Hk mð Þ� ð3Þ

In summary, the Mel-spectrum, derived using the Mel-

scale and Mel-filter bank, offers a perceptually meaningful

representation of audio data. Its application in sound

analysis, speech recognition, and other audio-related tasks

allows for a more accurate and human-centered interpre-

tation of the frequency energy distribution, enhancing our

understanding of acoustic characteristics in diverse audio

signals.

2.3 VGGish neural network model

The VGGish model, also known as VGGish Net, is a

widely used convolutional neural network (CNN) archi-

tecture, specifically referred to as VGGish 16 due to its

16-layer configuration [22]. It is a pretrained network that

offers multiple significant improvements that differentiate

it from previous models, leading to enhanced performance,

ease of use, and shorter training time.

One notable feature of VGGish is its use of smaller

convolutional filters, typically 3 � 3, which enables it to

achieve better generalization and reduces the risk of

overfitting during the training process. Additionally,

VGGISH’s hierarchical structure allows each layer to build

upon the features extracted from the previous layer, pro-

gressively learning more complex representations of the

input image.

Fig. 2 The architecture of the proposed model
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The first layer of VGGish receives the input image and

typically scales it to a fixed dimension of 224 � 224. The

model comprises 13 convolutional layers, each responsible

for extracting various features from the input image using

multiple filters. After each convolutional layer, VGGish

incorporates 5 max-pooling layers to down sampling the

feature maps, further reducing the spatial dimensions and

enhancing the network’s robustness.

The VGGish architecture can be represented as follows:

• Input: 224 � 224 RGB image

• Convolution Layer 1: Convolve input with multiple 3 �
3 filters, producing feature maps.

• Max-Pooling Layer 1: Reduce spatial dimensions of

feature maps.

• Convolution Layer 2: Convolve feature maps from the

previous layer with additional 3 � 3 filters.

• Max-Pooling Layer 2: Further down sample feature

maps.

• (Convolution and Max-Pooling layers continue up to

Convolution Layer 13 and Max-Pooling Layer 5,

respectively.)

• Fully Connected Layers: Flatten the final feature maps

and connect them to one or more fully connected layers

for classification.

• Output: Class probabilities or predictions.

The VGGish model’s versatility and remarkable per-

formance have led to its application in various domains,

such as audio signal classification [23–25] and drone

recognition [26–28]. Its robustness and adaptability make it

a powerful tool for image recognition and classification

tasks in different medical and computer vision applications.

2.4 Convolution neural network (CNN)

CNNs are a particular kind of deep neural network that is

commonly applied for analysis the of visual images. CNNs

can detect and categorize important features from images.

Their usages include drone and bird detection [29], image

examination used in medical [30, 31], and video recogni-

tion [32]. The CONV, activation, pooling, and batch nor-

malization layers are the stacked layers that make up a

CNN model. By using the CNN feature extraction

methodology, the number of features in a dataset decreases.

The two most important layers in CNN are the CONV and

FCN layers.

Convolution is the initial layer that is used to extract the

various characteristics from the input images. The feature

map, which is the result of this layer, gives information on

the image’s corners and edges. Later, further layers will get

this feature map to receive additional characteristics from

the input image. The mathematical equation of each feature

map in 1D-CNN is calculated by Eq. (4):

y ¼ l
Xn
i¼1

conv1D Toi þ bið Þ
 !

ð4Þ

where y is the input, music the activation function, n de-

notes the number of feature maps in the layer, xi denotes

the ith feature map, T denotes the trainable one-dimen-

sional convolutional kernel, oi is the output of the ith

neuron, bi denotes the bias of the ith feature map.

One of the most significant elements of the CNN model

is the activation function. They are used to identify and

approximate any kind of complex connection among net-

work variables. The ReLU is often utilized in the activation

Fig. 3 The architecture of the

proposed CNN
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function. Following a convolutional layer, the pooling

layer is frequently used. The primary objective of this layer

is to decrease the size of the convoluted feature map to

reduce computational expenses. Average and max pooling

are two examples of pooling processes. Another important

part of CNN is the dropout layer. The Dropout layer works

as a mask, reducing some neurons’ contributions to the

subsequent layer while keeping all other neurons

functioning. When the dropout layer is applied to an input

vector, some of its characteristics are reduced and some

hidden neurons are removed. Because they avoid the over-

fitting of the training data, dropout layers are crucial in

CNN training. Finally, a fully connected (FC) layer is fed

the output features from the dropout layer, which bases its

classification decision on the weights given to each feature

[33].

Fig. 4 Preprocessing results

Fig. 5 Mel-spectrum of drone audio signal a 0 g, b 250 g, and c 500 g
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2.5 Dataset description and characteristics

The dataset utilized in this paper focuses on the 3DR

SOLO drone, a medium-sized commercial UAV weighing

approximately 1.5 kg, inclusive of a 0.5 kg battery. The

drone boasts a maximum payload capacity of 700 g,

accounting for various accessories such as the 3DR Gimbal

weighing approximately 390 g. The dataset used in this

manuscript was collected by Savio et al. [19] and it is

available for download at [34], at https://github.com/cri-

lab-hbku/Drone-Payload. For data collection, a high-qual-

ity microphone was positioned at 7 m from the flying

drone, capturing the drone’s sound in an open outdoor

setting at a park in Doha, Qatar.

To investigate the impact of different payload weights

on the drone’s acoustic signature, a series of carefully

conducted experiments were carried out. Eleven different

payload weights were explored, ranging from 0 to 500 g,

with increments of 50 g as shown in Fig. 1. Each experi-

mental recording commenced when the drone achieved a

hovering state and concluded just before landing.

The dataset curated through these experiments consti-

tutes a valuable resource for analyzing the acoustic prop-

erties of the 3DR SOLO drone under various payload

configurations. The comprehensive range of payload

weights enables detailed exploration of the drone’s sound

characteristics, offering valuable insights for further

development in the domain of drone acoustics and payload

weight estimation.

2.6 The proposed detection of payload weight
of drones model

Three crucial construction phases are included in the pro-

posed model for drone payload identification based on the

Mel-spectrogram and CNN network as shown in Fig. 2.

The following are these phases:

1. Preprocessing Phase: A set of processing processes is

carried out in the first stage of this paper to segment the

entire audio. Each drone sound in the dataset is broken

up into 34 frames, each frame was about 5s.

2. Feature Extraction Phase: In the second stage, drone

features are extracted using spectrogram data and the

VGG model. The spectrogram is a method for extract-

ing significant features from audio. It adjusts the

frequencies to make them more like what people can

hear.

3. Classification Phase: The drone payload categorization

process is the last step using the proposed CNN

contains 23 layers. The proposed CNN’s convolutional

layer, which is the first layer, is used to extract

important characteristics. The ReLU activation func-

tion is used after the convolutional layer to stop the

network’s computational complexity from increasing

exponentially. After each ReLU layer, batch normal-

ization layers are used to accelerate the network’s

learning.

2.6.1 Data preprocessing phase

The data preprocessing phase involves segmenting the

entire audio dataset of drone sounds into 34 frames, each

lasting around 5 s. This process is carried out to facilitate

further analysis and feature extraction for the development

of an accurate drone sound classification algorithm. By

dividing the continuous audio recording into non-overlap-

ping frames and generating individual audio files, the

algorithm ensures that the classifier can focus on specific

temporal characteristics and learn from diverse patterns in

the drone sounds, ultimately enhancing the model’s

robustness and generalization capability on unseen data.

Algorithm 1 describes the main procedure to generate 34

audio files.

Table 2 The details of

suggested CNN architecture
Layer Input size

Conv1d_1 32 � 3 � 4096

Layernorm_1 32 channels

Conv1d_2 64 � 3 � 32

Layernorm_2 64 channels

Conv1d_3 128 � 3 � 64

Layernorm_3 128 channels

Conv1d_4 256 � 3 � 128

Fc_1 1000

Fc_2 500

Fc_3 20

Fc_4 11

Table 3 Parameter value used

in optimizer
Parameter Value

Optimizer Adam

Learning rate 0.0001

metric Accuracy

Batch size 15

Epochs 100
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Fig. 6 Training progress for 11 classes
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Algorithm 1 Preprocessing Algorithm

2.6.2 Feature extraction phase

Feature extraction is a critical step in our system model for

avoiding model training errors, reducing computation time,

and improving model prediction accuracy. As a result, in

this paper, Mel-spectrogram and VGG learning model are

performed, as a features extractor to learn features from

input data as shown in Algorithm 2.

Table 4 Training parameters

Parameters Before augmentation After augmentation

Epoch 100 100

Maximum iteration 34,300 10,400

Iteration per Epoch 343 104

Training time (s) 3633 945
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Algorithm 2 Feature Extraction Algorithm

Table 5 Augmentation parameters

Augmentation

parameters

Value Meaning

Time stretch

probability

0.8 This determines the probability of time-stamping an audio sample. When the value is 0.8, there is an 80%

possibility that time stretching will be used

Speedup factor range 1.3,

1.4

This establishes the range of speed factors that can be used when extending time. When the factor is 1.3, the

audio will be accelerated by 30%, and when it is 1.4, it will be increased by 40%

Pitch shift

probability

1 This establishes the probability of using pitch shifting on a sample of audio. Two values are required: 0 or 1.

When the value is 0, pitch shifting is not used

Volume control

probability

0.8 This determines the probability that an audio sample will be subjected to volume control. When the value is 0.8,

the likelihood of volume control being used is 80%

Volume gain range [- 5,

5]

This indicates the range of volume gain (measured in decibels) that can be used when controlling volume. A

value of - 5 indicates a 5 dB drop in volume, and a value of 5 indicates a 5 dB raised volume

Add noise probability 1 This determines the probability of introducing noise into a sample of audio. If the value is 0, then no noise will

be added

Time shift

probability

0.8 This determines the probability of time-shifting an audio sample. A value of 0.8 indicates that time shifting is

applied with an 80% probability
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2.6.3 Convolution neural network structure

The feature extraction process involves transforming the

extracted features from the sound signals using a convo-

lutional neural network (CNN) to accurately classify and

detect various payload weights, as depicted in Fig. 3. The

CNN architecture consists of 5 convolution layers, 3 Max-

pooling layers, 1 average pooling layer, and 3 FC layers.

Following each convolutional layer, the ReLU is employed

as a nonlinear activation function. The softmax activation

function is utilized to define the output size of the final FC

layer. For optimization, the Adam optimizer is utilized, and

the loss function employed is the cross entropy. The

Table 7 Performance metrics of

the proposed model on different

payloads at 15 batch size

Payloads Accuracy Sensitivity Specificity Precision F1_score Kappa J-index

0 99.09 99.09 100 100 99.543 0.8143 0.9909

50 100 100 100 100 100 0.8304 1

100 100 100 100 100 100 0.81 1

150 98.92 98.93 99.908 98.925 98.925 0.8433 0.9883

200 100 100 99.907 99.038 99.517 0.8237 0.9907

250 100 100 100 100 100 0.8134 1

300 100 100 100 100 100 0.8236 1

350 100 100 100 100 100 0.8304 1

400 100 100 100 100 100 0.8066 1

450 100 100 100 100 100 0.8134 1

500 100 100 100 100 100 0.7913 1

Table 8 Performance metrics of

the proposed model on different

payloads at 50 batch size

Payloads Accuracy Sensitivity Specificity Precision F1_score Kappa J-index

0 99.091 99.09 100 100 99.543 0.81 0.99

50 100 100 100 100 100 0.83 1

100 100 100 100 100 100 0.81 1

150 97.849 97.849 99.908 98.913 98.378 0.84 0.9774

200 100 100 99.814 98.095 99.038 0.83 0.998

250 100 100 100 100 100 0.81 1

300 99.038 99.038 100 100 99.517 0.82 0.99

350 100 100 100 100 100 0.83 1

400 100 100 99.906 99.13 99.563 0.806 0.999

450 100 100 100 100 100 0.813 1

500 100 100 100 100 100 0.791 1

Table 9 The average metrics of

the proposed model on different

batch size

Batch size Accuracy Sensitivity Specificity Precision F1_score

15 99.83 99.82 99.98 99.81 99.82

50 99.66 99.63 99.97 99.65 99.64

200 99.75 99.72 99.97 99.73 99.72

Table 6 Performance metrics of proposed model for before and after

augmentation

Parameters Before augmentation (%) After augmentation (%)

Accuracy 99.83 99.98

Sensitivity 99.82 99.98

Specificity 99.98 100

Precision 99.81 99.98

F1_score 99.82 99.98
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training and verification of the models are performed for 50

epochs with a batch size of 100.

3 Results and discussion

The metrics for examination and the experiment’s findings

are given in this section. Every experiment is run on a

computer with an 8th generation Intel� CoreTM i7, 16 GB

RAM, a 64-bit of Windows 11, and MATLAB 2022b.

70% of the dataset in the entire experiment was used for

the training phase, 15 for validation and the remaining

15% was used for testing.

3.1 Performance metrics

The effectiveness of experimental results is evaluated using

a variety of measures, including recall, F-measure, accu-

racy, and precision. The following are the definitions of the

metrics:

Precision ¼ TP

TP þ FP
ð7Þ

Recall ¼ sensitivity ¼ TP

TP þ FN
ð8Þ

F1 � Score ¼ 2TP

2TP þ FP þ FN
ð9Þ

Accuracy ¼ TP þ TN

TP þ TN þ FN þ FP
ð10Þ

Specificity ¼ TNR ¼ TN

TN þ FP
ð11Þ

sub � index index ¼ Specificity þ sensitivity � 1 ð12Þ

kappa ¼ Accuracy � random Accuracy

1 � random Accuracy
ð13Þ

where

RandomAccuracy

¼ ðTN þ FPÞðTN þ FNÞ þ ðFN þ TPÞðFP þ TPÞ
ðTP þ TN þ FP þ FNÞ2

ð14Þ

where FP; FN;TP and TN is the False Positive, False

Negative, True Positive, and True Negative, respectively.

Another parameter known as the area under curve

(AUC) is also measured. AUC runs from [0, 1], and the

closer it is to one, the better the suggested model is at

recognizing drone weight.

3.2 Evaluation

The dataset undergoes several preprocessing steps, as

shown in Fig. 4. Start by dividing the audio data into 34

audio files, each of which is 5 s, using a periodic Hann

window of 25ms with a 75% window length overlap.

Figure 5 displays the Mel spectrum of the drone’s audio

signals when the drone carrying a 0g payload, 250 g and

finally 500g payload. The time domain of the signal is

shown on the x-axis, and the frequency domain is repre-

sented by the y-axis.

Fig. 7 The t-SNE illustration of feature for 11-class in test class
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According to the details presented in Table 2, the CNN

architecture proposed in this paper comprises a total of 5

convolutional layers, 3 normalization layers, and 4 FC

layers. For each convolutional layer, a 1 9 1 stride and

causal padding are applied to the input. The max pooling

layer, on the other hand, utilizes a 2 9 2 stride and zero

padding. To execute the classification task, the output size

of the final FC layer is followed by the application of the

softmax activation function. This design aims to achieve

effective feature extraction and enable the network to make

accurate predictions for the classification task at hand.

Adam is an optimization algorithm that can be used

instead of the traditional methods to update the weights of

the network iterative during the training data. As shown in

Table 3, different parameters are utilized for training our

model. The learning rate, also known as alpha, is 0.0001

and represents the proportion at which weights are modi-

fied. The number of samples we utilize in one epoch to

train a neural network is defined by the batch size, which is

15.

Figure 6 displays the training progress for 11 classes.

The first row displays the data before augmentation, and

the second row shows the data after augmentation. The

upper subplot in this figure displays the accuracy on the

training and validation set, while the lower subplot repre-

sents the training and validation loss. It is observed that the

accuracy appears steadily, and there is no overfitting

detected.

Table 4 displays the training parameters before and after

the augmentation, as well as the maximum iteration,

number of epochs, number of iterations, and training time.

Fig. 8 The confusion matrix of the proposed model in the test class
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Preprocessing step takes 65.15 s, feature extraction step

takes 45.72 s, and predict load takes 0.937 s.

On the input audio signal, a variety of audio augmen-

tation techniques are used, including pitch shifting, time

stretching, volume control, time shifting, and noise prob-

ability. Each audio sample is sequentially subjected to

augmentation techniques. Table 5 displays the augmenta-

tion parameters along with each augmentation’s value and

significance.

Table 6 displays the performance metrics of the sug-

gested model for both before and after augmentation.

Performance metrics have increased compared to before

augmentation, as this table indicates

Table 7 displays the results for each of the 11 classes at

15 batch sizes based on various performance criteria on

testing. All payloads attain 100% accuracy and sensitivity;

except for payloads 0 and 150 g achieve 99.09 and 98.92%

accuracy, respectively. Additionally, all payloads, except

for payloads of 150 g and 200 g, achieve 100% specificity

and precision. The potential scores for kappa are - 1

(lowest performance) to 1 (highest performance). The

J-index is the vertical distance between the ROC curve and

the equal line. The maximum value of the J-index is 1

(perfect test). The value of 0 indicates that there is no

agreement between the actual and classified classes. Kappa

ranges from - 1 to ? 1. A score of 1 denotes complete

agreement between the classes predicted by the model and

the actual classes

Based on a variety of performance metrics, Table 8

shows the results for each of the 11 classes at a batch size

of 50. Except for payloads 0, 150, and 300 g, all payloads

reach 100% for accuracy and sensitivity; these payloads

achieve 99.091, 97.849, and 99.038%, respectively.

Table 9 displays the proposed model’s average metrics

for various batch sizes. The lowest metrics are attained at

batch sizes of 50, while the best metrics are at batch sizes

of 15. The results achieve 99.83% accuracy, 99.82% sen-

sitivity, 99.98% specificity, and 99.82% F1-score at 15

batch sizes. Furthermore, as shown in Fig. 7, the collected

features are analyzed using t-SNE. The eleven classes are

addressed by the variation type 11 colors. It highlights that

our model yields higher evaluation metrics

Fig. 9 AUC curve for different payload weight

Table 10 Comparison of obtained average accuracy with different models

References Algorithm Accuracy (%)

Phuc et al. [15] MFCC &GMM SVM 96.27

Traboulsi et al. [35] LSTM& MFCC 87.5

Savio et al. [19] MFCC& Cubic SVM 98

Proposed model Mel-spectrogram& CNN 99.98
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Figure 8 depicts the proposed model’s confusion matrix.

The first row displays the data before augmentation, and

the second row shows the data after augmentation. The

graphic shows that the proposed model effectively classi-

fied the 11 payloads. Upon analysis of the provided data,

most of the few samples that came from recordings with

nearby payload weight classes are classified incorrectly. As

can be seen in Fig. 9, the AUC values for all payloads are

high overall, showing that the model can discern between

various weights with good accuracy.

As indicated in Table 10, to assess our model, the sug-

gested model is compared with other models. In [15], the

RF method for detecting and estimating drone load is

presented. The system tests 5 distinct drone models called

the Parrot, Phantom, Mavic, the Parrot Bebop 2, and the

Autel EVO. Each drone is equipped with weights ranging

between 0 and 400g. The drone is up to 200 m away from

the receiver when it is in flight. Mel-frequency cepstral

coefficient (MFCC) for feature extraction and Gaussian

mixture model SVM (GMM SVM) for classification allow

DroneScale to estimate drone load with an average accu-

racy of 96.27%. The model in [35] investigates the clas-

sification of a drone carrying a payload, obtaining 87.5%

accuracy using MFCC and a long short-term memory

(LSTM). Savio et al. [19] use the MFCC components of the

audio signal and several SVM classifiers to achieve an

approximate classification accuracy of 98% in the identi-

fication of the specific payload class transported by the

drone.

4 Conclusion and future work

This paper presents a novel and highly effective model for

accurately detecting various payload weights carried by a

3DR SOLO drone using sound data. Initially, the dataset is

segmented into 34 audio signals and employs the Mel-

spectrogram and VGGish model for feature extraction.

Then, the CNN network is used for classification, and the

Adam optimization algorithm is used to iteratively update

the network’s weights during the training phase. In the end,

two experiments are conducted to assess the model. While

the second experiment used the augmented data, the first

experiment used the original data (before augmentation).

Different payload weights are identified with a potential

accuracy of 99.98%, sensitivity of 99.98%, and specificity

of 100% based on experimental results. Furthermore, a

thorough comparison with previous research that made use

of the same dataset confirms the superiority of our sug-

gested model.

Overall, our paper contributes significantly to the field

of drone payload weight detection, providing an innovative

and reliable solution for this essential task. As the use of

drones continues to grow across various industries, the

ability to accurately detect payload weights becomes

increasingly vital for safety, regulatory compliance, and

operational efficiency. We hope that our findings will pave

the way for further advancements in this area, and that our

proposed model will serve as a solid foundation for future

investigation and practical applications.

Future work will explore the model’s efficacy in han-

dling heavier payloads across various drone models using

deep learning techniques. Diverse and extensive datasets

will be employed to enhance generalization capabilities.

Additionally, investigating alternative feature extraction

methods and network architectures will be pursued for

improved results. Our model significantly advances pay-

load weight identification from drone sound, providing a

stable and reliable solution for critical applications in

multiple industries. We anticipate our proposed model to

have a positive impact in real-world settings, and our future

investigations will further strengthen its applicability and

performance. In addition, we plan to incorporate additional

datasets from diverse drone models in our future work to

validate the model’s performance across a broader range of

scenarios.
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