
ORIGINAL ARTICLE

Exploring deep echo state networks for image classification: a multi-
reservoir approach

E. J. López-Ortiz1 • M. Perea-Trigo2 • L. M. Soria-Morillo2 • F. Sancho-Caparrini1 • J. J. Vegas-Olmos3

Received: 1 November 2023 / Accepted: 25 March 2024
� The Author(s) 2024

Abstract
Echo state networks (ESNs) belong to the class of recurrent neural networks and have demonstrated robust performance in

time series prediction tasks. In this study, we investigate the capability of different ESN architectures to capture spatial

relationships in images without transforming them into temporal sequences. We begin with three pre-existing ESN-based

architectures and enhance their design by incorporating multiple output layers, customising them for a classification task.

Our investigation involves an examination of the behaviour of these modified networks, coupled with a comprehensive

performance comparison against the baseline vanilla ESN architecture. Our experiments on the MNIST data set reveal that

a network with multiple independent reservoirs working in parallel outperforms other ESN-based architectures for this

task, achieving a classification accuracy of 98.43%. This improvement on the classical ESN architecture is accompanied by

reduced training times. While the accuracy of ESN-based architectures lags behind that of convolutional neural network-

based architectures, the significantly lower training times of ESNs with multiple reservoirs operating in parallel make them

a compelling choice for learning spatial relationships in scenarios prioritising energy efficiency and rapid training. This

multi-reservoir ESN architecture overcomes standard ESN limitations regarding memory requirements and training times

for large networks, providing more accurate predictions than other ESN-based models. These findings contribute to a

deeper understanding of the potential of ESNs as a tool for image classification.

Keywords ESN � GNN � Image classification � MNIST

1 Introduction

Deep Neural Network (DNN)-based models have become

the standard for solving many real-world problems [1–5],

including computer vision tasks [6, 7], due to their high

accuracy. However, their high computational and energy

requirements [8] make them resource-intensive to train,

highlighting the importance of exploring alternative mod-

els that can provide more sustainable solutions. One such

model is the echo state network (ESN) [9], a type of

recurrent neural network (RNN) that has gained popularity

due to its effectiveness in solving time series prediction

problems [10]. The lightness of the model, as well as its

fast training, makes it ideal for use on resource-constrained

devices, even without GPUs, which is difficult to achieve

with DNN-based models. Like traditional RNNs, ESNs

have an internal feedback matrix that allows them to store

information about previous states, making them well suited

& E. J. López-Ortiz

elortiz@us.es

M. Perea-Trigo

mptrigo@us.es

L. M. Soria-Morillo

lsoria@us.es

F. Sancho-Caparrini

fsancho@us.es

J. J. Vegas-Olmos

juanj@nvidia.com

1 Department of Computer Science and Artificial Intelligence,

Universidad de Sevilla, Avda. Reina Mercedes, SN,

41012 Sevilla, Sevilla, Spain

2 Department of Languages and Computer Systems,

Universidad de Sevilla, Avda. Reina Mercedes, SN,

41012 Sevilla, Sevilla, Spain

3 NVIDIA Corporation, NVIDIA, Hermon Building,

20692 Yokneam, Yokneam, Israel

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-09656-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0009-0008-0943-9032
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09656-4&domain=pdf
https://doi.org/10.1007/s00521-024-09656-4

to provide predictions based on both current inputs and

historical information.

Despite their success in predicting time series [11], their

potential to effectively capture spatial relationships in data

has been relatively understudied. This study aims to

investigate the ability of ESNs to handle pure spatial

information in image data, which has important implica-

tions for real-world applications. In particular, we seek to

assess the performance of ESNs in handling pure spatial

tasks using the MNIST and FashionMNIST data sets. This

thorough evaluation will offer insight into ESN’s capabil-

ities and limitations in image processing, guiding future

research in this field.

The main contributions of this article are the following:

1. Exploration of the vanilla ESN architecture in a

domain beyond time series, namely in an image

classification task. We study its behaviour for different

sets of hyperparameters and test the influence of each

of them on the performance of the architecture,

shedding light on its adaptability to spatial tasks.

2. Implementation and refinement of three established

ESN-based architectures. The modifications include

the integration of multiple output layers, tailoring these

architectures for best performance in an image classi-

fication task.

3. Evaluation of the aforementioned architectures in the

context of image classification, providing an analysis

of their performance and highlighting the advantages

of the parallel reservoir architecture over other ESN-

based architectures.

4. Advancement of the state of the art through the

application of ESNs for image classification, showcas-

ing a significant contribution to the field.

The remainder of this article is structured as follows:

Sect. 2 presents an overview of related works on ESN. In

Sect. 3, we detail our proposed ESN architectures for

image processing. Section 4 presents and analyses the

results of our experiments. Finally, Sect. 5 summarises our

findings and provides insights for future work.

2 Previous works

Echo state networks were initially introduced in the early

2000 s [9] as a type of recurrent neural network. The

inception of ESNs was motivated by the need to address

the challenges associated with training RNNs, whose

recurrent connections present complexities when attempt-

ing to apply backpropagation to large sequences.

The key feature of ESN is the use of a randomly gen-

erated sparse connectivity matrix in the recurrent layer and

a constant reaction of the network state to the input and its

previous states, allowing the network to capture complex

temporal dependencies while reducing the number of

trainable parameters in the network. The training of an

ESN can be summarised in four phases: initialisation,

reservoir computation, weight adjustment, and testing.

2.1 ESN architecture

2.1.1 Initialisation

The randomness with which both the input layer and the

reservoir are generated, generally using a normal or uni-

form distribution, is one of the factors influencing rapid

training of ESNs. However, initial randomness can some-

times lead to suboptimal results, so careful selection of

some parameters is necessary to achieve the desired results.

Factors such as the number of neurons, the density of the

connection, and the spectral radius of the connection

matrix all play a crucial role in determining the reservoir

behaviour, which subsequently affects the overall perfor-

mance of the network. Next, we will briefly discuss them to

understand their impact (see [12] for an extended expla-

nation of each hyperparameter):

• Number of Nodes: Having too many or too few nodes

can lead to poor results. The number of nodes

determines the size and complexity of the reservoir.

• Density: The ratio of connections between reservoir

nodes, also known as the connection density, can

greatly influence the performance of the network.

• Spectral Radius: Usually denoted by q. The spectral

radius of the connection matrix helps to avoid the

predictions of the network tend to infinity or zero when

the network works in recurrent mode.

• Input Scaling: Ensuring that the input data falls within a

suitable range for the network to process is crucial for

accurate predictions. It is usually referred to as c.

• Leaking Rate: The extent to which information from the

previous time-step is retained in the current time-step

plays an important role in the network’s performance. It

is usually called a.

• Regularisation coefficient: This hyperparameter helps

to prevent overfitting during the computation of the

weights of the output layer. Regularisation is especially

important when working with small data sets. Usually

denoted by b.

Optimising the hyperparameters of echo state networks

remains a challenging task. Various methods, such as

genetic algorithms (GA) [13], particle swarm optimisation

(PSO) [14], as well as gradient-based [15] or grid search

approaches, have been used to fine-tune the hyperparam-

eters and improve network performance.

Neural Computing and Applications

123

In this work, a grid search was used to observe the

response of the architecture to the different

hyperparameters.

2.1.2 Reservoir computation

During training, input sequences are fed into the network

and the activations of the reservoir neurons are computed.

These activations and inputs are then collected and stored

in a matrix, which is a historical record of the dynamic

behaviour of the network (as shown in Fig. 1). This matrix

is referred to as H for convenience. Upon completion of the

training phase, these data determine the weights of the

output layer. As a result, the performance of the ESN

model depends on the information contained in H, making

it a crucial element of the training phase.

The most commonly used approach to update states in

ESNs is the leaking-integration variation, introduced by

[16]. This approach updates the state of the network at each

time step using:

xt ¼ ð1� aÞxt�1 þ akðWin � ut þ W � xt�1Þ ð1Þ

In the given equation, the function k is typically chosen as

a sigmoid function, with the hyperbolic tangent function

being a commonly used example. If we let K represent the

size of the input and N denote the number of nodes in the

reservoir, the vector ut 2 RK denotes the input at time t,

and Win 2 RN�K represents the weights of the input layer.

The matrix W 2 RN�N is the adjacency matrix that

describes the connections between neurons (this structure is

commonly referred to as the reservoir) and xt�1 2 RN

represents the state of the neurons in the previous time step.

The parameter a 2 ½0; 1� controls the network sensitivity to

new inputs. A low value of a results in a less responsive

network to new inputs, tending to retain more information

about its previous state. On the other hand, a high value of

a leads to a network that responds more strongly to new

inputs. Since the calculation of new states is partly based

on the previous state of the network, each new state con-

tains an ‘‘echo‘‘ of the previous one. This is why these

networks are called echo state networks.

2.1.3 Finding the weights of the output Layer

In an ESN, the input layer and the reservoir work

together to generate a singular state that is highly depen-

dent on both the current input and the previous state of the

reservoir. During the training phase, these states are stored

in the matrix H, which is then used to calculate the weights

of the output layer. The task of the output layer is to

decipher the network response to inputs and to provide an

accurate output prediction. This is achieved by solving an

ordinary differential equation (ODE) system that relates the

network response to input data (stored in H) to the desired

output (Fig. 2).

The accuracy of the output layer is critical for the per-

formance of the ESN, as it directly impacts the network’s

ability to generate accurate predictions. A linear regression

algorithm is often used to train the output layer, which is

less computationally expensive than backpropagation. The

Tikhonov regularisation method (expressed in Eq. 2) is

frequently used for stability:

Wout ¼ ðH|H þ bIÞ�1H|Y ð2Þ

where Wout represents the output layer and H| is the

transpose of H, the regularisation coefficient, b, is typically
a small value between 10�4 and 10�10, and the target

vector is denoted by Y.

2.1.4 Testing

During the test phase, the ESN generates predictions for

novel input sequences. Each new input produces a reaction

Fig. 1 ESN. Basic architecture. Reservoir computing phase. The

symbol þþ is used to express a vector concatenation, while k is used to
express the computation of the new state. At each time t, the new

input causes a reaction in the state of the neurons, and this reaction,

together with the input that caused it, is stored in the H matrix

Neural Computing and Applications

123

of neurons within the network, and the output layer pro-

cesses the resulting state beside the input to produce a

prediction. Typically, this is the next step when working

with time series. Figure 3 illustrates the test phase in the

vanilla ESN architecture.

In some cases, the network takes each prediction as the

next input, allowing the ESN to work in a generative mode

(predicting sequences rather than just the next value in the

series).

2.2 ESN applications

In the context of neural networks, DNNs and ESNs rep-

resent two distinct approaches to learning through training.

In DNNs, a complex structure of layers of neurons con-

nected by edges is constructed. These networks are trained

by backpropagation to adjust the weights of the connec-

tions and improve the prediction accuracy. However, ESNs

comprise three fundamental components: the input layer, a

group of neurons organised in a graph-like structure (the

reservoir), and the output layer. The input layer and the

reservoir are generated randomly and their weights remain

unchanged during training. The learning process in ESN

focuses on only determining the set of weights for the

output layer though linear regression algorithm (which has

a lower complexity compared to backpropagation methods)

that enables accurate predictions of the input data.

In summary, while DNNs aim to fine-tune all network

weights during training, ESNs rely on a fixed and random

structure to make predictions, adjusting only the output

layer. In this way, ESN-based architectures offer a signif-

icant advantage over traditional DNNs, reducing the

training time and computation required and, consequently,

the size of data sets for training. The simplicity and

robustness of ESNs, with their short training times, low

resource consumption, and ability to approximate complex

system dynamics, have made them attractive for

researchers to apply in a wide range of scenarios. We can

find applications of ESN in diverse fields such as speech

recognition [17], natural language processing [18, 19],

control systems [20], anomaly detection [21], image clas-

sification [22], music generation [23], phone call prediction

[24] and bioinformatics [25].

Its popularity in recent years has led to several proposals

based on the original architecture [26]. In [27], three ESN-

based architectures were proposed and their ability to

generate states was investigated. These architectures are:

• deepESN, where a series of layers are generated and fed

with the output of the previous layer (Fig. 4a).

• deepESN-IA, similar to the previous one, but each layer

receives the original input along with the output of the

previous layer (Fig. 4b).

• groupedESN, where a series of reservoirs are generated

and work in parallel to produce a single state (Fig. 4c).

In some cases, ESNs have been used in combination

with other types of neural networks to improve their per-

formance. For example, in [28] an ESN was integrated with

a multi-layer perceptron (MLP) to address the task of

colour image segmentation. Similarly, [29] used a combi-

nation of long short-term memory (LSTM) and ESN to

control the temperature of an industrial hot-blast furnace.

The integration of ESN with convolutional neural networks

Fig. 2 ESN. Basic architecture. Regression with Tikhonov regular-

isation (expressed as s) is used to calculate the weights of the output

layer

Fig. 3 ESN. Basic architecture. Testing. In the test phase, each new input causes a response in the state of the neurons, and this response, together

with the input that caused it, is processed by the output layer to produce the final output

Neural Computing and Applications

123

(CNNs) has also been explored, as demonstrated in the

research conducted by [30], where the network was applied

to a solar energy prediction task.

ESNs have also been shown to be effective in image

processing, as evidenced by [31, 32], after transforming

images into temporal series. [33] also proposed a combi-

nation of ESNs with CNNs for image classification. A

summary of these works and their scopes can be seen in

Table 1.

Although, as a type of recurrent neural network, ESNs

excel at processing sequential data, research on their

capability to comprehend spatial relationships remains

limited. The purpose of this paper is to push ESNs beyond

their traditional use and to evaluate their performance in

scenarios devoid of temporal information. Specifically, we

investigate the network’s capacity in image classification,

where the emphasis shifts from temporal relationships to

spatial understanding. As our experimental phase will

demonstrate, this change makes certain network parame-

ters, typically crucial for generating echo states (e.g.,

leaking rate or spectral radius), less significant in this

context than in time series applications.

In the next section, we present a multi-reservoir echo

state network (MRESN) architecture based on group-

edESNs [27], which uses multiple reservoirs working in

parallel. Each reservoir is tasked with processing the entire

Fig. 4 Multi-Layer ESN-based architectures. a deepESN: The first

layer processes the input as in the vanilla ESN, and the other layers

receive the state of the previous reservoir as input. b deepESN-IA:

The first layer processes the input as in the vanilla ESN, the other

layers receive the state of the previous reservoir along with the

original input, c groupedESN: a group of reservoirs operate indepen-

dently as in vanilla ESNs, together they form a single state vector

Neural Computing and Applications

123

input image, allowing the network to capture a variety of

spatial features simultaneously. Unlike parallelESN [35],

which partitions the input and distributes it to the reser-

voirs, each reservoir in our proposed architecture processes

the entire image in a single step. This approach is remi-

niscent of using an ESN ensemble to determine the output,

but with the key difference that the ensemble information is

taken into account when finding the output layer weights,

allowing us to obtain high-dimensional state vectors while

significantly reducing training times without negatively

affecting network performance.

3 Multi-reservoir ESN (MRESN) architecture
for image classification

As we have seen, in ESNs hyperparameters have a direct

impact on the performance of the model. Although most of

these parameters strongly influence its behaviour when

analysing time series, they become less relevant when

trying to capture spatial relationships in images. In par-

ticular, as will be confirmed in the experimentation section,

the spectral radius or the leaking rate do not have a sig-

nificant impact on the results. This is because in this task

we do not have a sequence in which the points depend on

the previous ones, such as the benchmark signal Mackey

glass, etc. In our case, there is independence between the

different input examples, and they are analysed in a single

step, and therefore the echoes containing the states become

less relevant when analysing static data such as the image.

However, the number of nodes in the reservoir becomes

critical, and large reservoirs will be necessary to obtain

good results. The biggest drawback is that as we increase

the number of nodes in the reservoir, the computation

required to train the model increases, directly affecting

both the training time and the required memory space. The

simplicity in calculating the weights of an ESN is both an

advantage and a disadvantage because the larger the

Table 1 Previous work

overview
Work Architecture Target Context Metric

[17] ESN Classification Audio signal WER

[18] ESN Prediction Word sequences Cosine, AUC, ...

[19] ESN Classification Word sequences Error rate

[20] ESN Prediction Time series NMSE

[21] ESN Prediction Heart rate Error rate

[22] ESN Classification Image Error rate

[23] ESN Prediction Time series RMSE

[25] ESN Prediction Feature vector AUC

[28] ESN ? MLP Segmentation Image Accuracy

[29] ESN ? LSTM Prediction Time series RMSE, MAE

[30] ESN ? CNN Prediction Time series MAE, MAPE, ...

[31] ESN Classification Image Error rate

[32] ESN Predict./Classif Various Various

[33] ESN ? CNN Classification Images Error rate

[34] ESN Prediction Time series NRMSE

[35] ESN Classification Images Error rate

Fig. 5 groupedESN and

MRESN architecture. A

concatenation of each reservoir

state yields the final state, which

is stored in the H matrix during

the training phase

Neural Computing and Applications

123

number of nodes in the network, the larger the reservoir

(which will grow quadratically with respect to the number

of nodes) and the size of H, so the configuration of these

networks will be limited by the hardware resources used.

In this study, we implemented the three architectures

previously presented, making necessary modifications to

tailor them for an image classification task that involves

multiple output layers. Although deepESNs have been

shown to be very robust in the time series domain [34] and

even in real-world problems [36], they have not performed

well in the image classification task proposed in this work.

However, the parallel architecture allows us to achieve

high performance compared to ESNs.

Our MRESN architecture is based on groupedESN. It

uses multiple reservoirs that work in parallel, each pro-

cessing the entire input image. The high-dimensional state

vectors produced play a crucial role in preserving spatial

information and significantly reducing training times

compared to DNNs and even ESNs with the same number

of nodes. The process for generating the state of the

MRESN architecture is described by:

x i
t ¼ð1� aiÞx i

t�1 þ aikiðWi
in � ut þ Wi � x0Þ; i 2 ½1; r�

ð3Þ

xt ¼ðx 1
t ; x

2
t ; :::; x

r
t Þ 2 R

Pr

i¼1
jrij ð4Þ

where r is the total number of reservoirs. At each time step

t, the vector xt is obtained by concatenating the vectors,

x i
t , produced by each individual reservoir, Wi. This pro-

cess results in a final vector of size
Pr

i¼1 jrij. In the original
ESN architecture, the size of the reservoir scales quadrat-

ically with the number of nodes, resulting in a significant

increase in the memory footprint of the architecture when a

large number of nodes are used. In contrast, groupedESN,

parallelESN and MRESN require allocating the sum of the

Fig. 6 a One layer for all classes. b One layer per class

Fig. 7 MRESN architecture. The output layer is a matrix where each column is specialised in a particular class. Argmax or Softmax can be used

as the final layer

Fig. 8 a MNIST 3 mm b FashionMNIST

Neural Computing and Applications

123

squares of the nodes in each reservoir. As the number of

nodes in each reservoir is typically much smaller than that

required in the original architecture, the MRESN archi-

tecture exhibits a significantly reduced memory

requirement.

OESN ¼ n� n ð5Þ

OMRESN ¼
Xr

i¼1

ni � ni ð6Þ

where ni � n; for i ¼ 1; 2; :::; r.

Despite the differences in state computing, the training

phase of this architecture is similar to the original (see

Fig. 5).

Another aspect to consider in image classification tasks

is the independence among images from the data set.

Consequently, it would not be advisable to rely on previous

states of the network when processing a new image, which

could lead to unexpected network behaviours. To avoid

this, we use a zero vector x0 every time the network has to

process a new image, and before computing the final state

(which will be stored in the H matrix), a two-step initial

transient is used to warm up the network.

Similarly to the vanilla ESN architecture, we store each

input of the training set in the matrix H along with the

resulting state. Once the H matrix is ready, we calculate the

weights of the output layer in a single step using Tikhonov

regularisation. However, a key difference from the basic

architecture must be emphasised. Instead of using a target

vector consisting of the next step in the input series, a

target vector must contain the class of the image. This

modification enables the ESN to perform classification

tasks rather than prediction tasks (see Fig. 6a).

As suggested by [12], we can train specific output layers

for each class instead of using a single output layer to

decide the class of the image:

Wc
outs ¼ ðHTH þ bIÞ�1HTYc; c 2 ½1; 2; . . .; k� ð7Þ

In our experiments (MNIST and FashionMNIST), we will

have k ¼ 10. Training each output layer to specialise in a

particular class improves accuracy. It does not require

multiple passes through the data set and does not signifi-

cantly increase the training process, despite the increase in

k. We use the states already stored in the H matrix to train

these layers and compare them with different target vectors

derived from the original. These new target vectors are

binary, containing 1 when the example belongs to the class

we are training and 0 otherwise. In this way, we obtain

specialised output layers for each class that can accurately

decide whether the input belongs to a particular class or not

(see Fig. 6b).

When we have multiple output layers, we need a

mechanism to make a decision based on the output of the

specialised output layers, for example, a softmax layer that

takes the output of all the specialised output layers and

returns a probability distribution over the classes. The class

with the highest probability can then be chosen as the

predicted class for the input (see Fig. 7).

4 Methodology

In this section, we evaluate the performance of the pro-

posed architecture by conducting experiments on the

MNIST and FashionMNIST data sets. To measure the

effectiveness of our architecture, we will compare its

Fig. 9 Errors committed by networks with different values of a as the initial transient increases

Neural Computing and Applications

123

results with those obtained with the original ESN archi-

tecture. Our experimental setup involves testing various

parameters and configurations, and we conduct several

trials to obtain reliable results.

4.1 MNIST and FashionMNIST data sets

The MNIST and FashionMNIST data sets are both

commonly used benchmarks in image classification.

MNIST consists of greyscale images of handwritten digits

and is simple to use, making it a valuable benchmark for

assessing the performance and robustness of image clas-

sification models. FashionMNIST includes greyscale ima-

ges of clothing items instead of digits (see Fig. 8). Both

data sets contain training and testing sets, and each

example is associated with a label from a set number of

classes. Both data sets include ten classes. There is no

temporal relationship between the examples; they are

independent of each other.

4.2 Experimentation

We have selected Julia for all the implementations: [12] for

the original ESNs, and our own implementation for dee-

pESN, deepESN-IA and MRESN. These architectures are

trained and tested on the MNIST and FashionMNIST data

sets using the same experimental setup: 60,000 examples

for training and 10,000 for testing. Due to the poor results

obtained for this task with deepESN and deepESN-IA, we

focused on MRESN, which was compared to the vanilla

ESN architecture. The same range of hyperparameters was

tested for both architectures.

To ensure the robustness and reliability of our results,

we conduct each experiment several times using different

seeds to generate the random structures of the input layers

and reservoirs and report the average performance of the

architectures. Performance is evaluated using various

metrics, including classification accuracy, training time,

and memory usage.

Table 2 Range of hyperparameter values for grid search in vanilla

ESN

Parameter Minimum value Maximum value

N (Nodes) 5 � 102 5 � 103

Density 0.1 0.7

a 0.1 0.9

b 10�6 10�9

q 0.5 1.5

Fig. 10 Grid search Hyperparameters values

Neural Computing and Applications

123

All experiments are performed on a server equipped

with an AMD Ryzen 7 5800X 16-core processor, 64 Gb of

RAM, and an Nvidia GeForce RTX 4090 GPU card.

5 Results and discussion

One of the first questions that arose was whether it was

necessary to have an initial transient. When using an ESN

with leaky integrator [16] to analyse time series, it is

interesting to note that at the beginning of training, the

network has been tempered by a series of steps in which

information is allowed to circulate through the network, but

without registering these initial states in H. This allows

more coherent states to be stored in H as they lack the noise

that the cold start of the network can generate. In our case,

lacking the temporal component, what we have done is to

introduce the image into the network at each step and use

the generated state along with the image to generate the

next state. But is an initial transient necessary for this task?

Fig. 12 Influence of the a parameter on network performance

Fig. 11 Influence of the number

of nodes (N) on network

performance

Neural Computing and Applications

123

To answer this question, we conducted an experiment to

test how different values for the initial transient affect the

final result.

As a significantly influences the retention of information

from the previous state within the network, we performed

experiments with various networks, each assigned a value

of a 2 ½0:01; 0:1; 0:3; 0:5; 0:7; 0:9; 0:99�. Illustrated in

Fig. 9, the accuracy of these networks is observed as we

vary the initial transient. The maximum accuracy is

achieved by networks with a[0:3. These networks are

depicted in the bottom section of Fig. 9. Networks with

0:1� a� 0:3 exhibit a requirement for more initial tran-

sient steps to produce satisfactory results, as seen in the

middle of Fig. 9. Notably, networks with a ¼ 0:01 do not

reach the accuracy levels of other networks, even when

subjected to high initial transient values. In any case, for

networks with a sufficiently high value a, we can see that

two initial transient steps are sufficient to obtain good

results and that increasing this value would only lead to

networks with longer training and inference times. For this

reason, in this work we have chosen to set the value of the

initial transient to 2 and to test the behaviour of the

architecture by changing the rest of the parameters.

Once the initial transient value had been set, our next

experiment was to analyse the performance of a vanilla

ESN architecture with multiple output layers, one for each

class. We measured its effectiveness over a range of dif-

ferent parameter sets. Based on [12], we identified a

spectrum of possible values for each hyperparameter.

Although this study provides a set of values that generally

perform well, for specific problems and hyperparameters,

outliers have been employed with success. In our study, we

expanded the values suggested by the authors to explore

Fig. 13 Influence of the b parameter on network performance

Fig. 14 Influence of the density of the network on performance

Neural Computing and Applications

123

the limits of our grid search. The ranges we considered are

summarised in Table 2 and Fig. 10.

The influence of each hyperparameter on the final per-

formance of the network can be seen in Figs. 11–15.

Although these figures show the results obtained using

MNIST data set, the same trends are observed in Fash-

ionMNIST data set.

For this range of hyperparameters, the best results were

obtained with N ¼ 5000 nodes, with an error ranging from

0.0337 to 0.0345. This network performed best with dif-

ferent sets of hyperparameters. Initially, when a ¼ 0:7 and

density ¼ 0:5, the results were consistently favourable,

regardless of the values assigned to q and b (within the

dimension chosen in the grid search). Similarly, the mini-

mum error was also achieved when a ¼ 0:5, density ¼ 0:2,

and b 2 ½10�9; 10�6�, regardless of the specific value of q.
It should be noted that the hyperparameter space is extre-

mely rough and that different sets may work well for other

reservoirs. However, the results indicate that the parame-

ters leaking-rate (a), regularisation coefficient (b), density,
and spectral-radius (q) do not have a significant impact on

network performance. This is expected since q and a are

typically more relevant for time series data, where the

network needs to maintain a memory of previous states. In

our approach, the network has only two steps of initial-

transient before computing the final state, which reduces

the risk of the state converging to atypical values, so some

hyperparameters have little impact on the final results. On

the other hand, N has a significant impact on the

performance of the network. Increasing the number of

nodes (even beyond the maximum used in this grid search)

reduces the prediction error because the state vector

becomes larger and can encode more information about the

input.

The downside is that increasing N also increases the

time and memory required for training since it affects the

size of the structures used, especially H.

It should be noted that the number of nodes in the net-

work appears to be the critical factor in capturing spatial

relationships. This observation allows greater flexibility in

adjusting other hyperparameters, such as spectral radius

and leaking rate, in architectures designed for scenarios

involving spatial and temporal relationships, such as video

sequences.

After this exploration of the behaviour in vanilla ESNs,

we implemented the architectures proposed by [27] (see

Fig. 4) and enhanced their design by incorporating multiple

specialised output layers, customising them for a classifi-

cation task. We used an argmax layer as the final step. The

reservoirs and the input layer are randomly generated. We

fix a ¼ 0:7, but we give random values for q and k (input

scaling) to improve diversity. The range of hyperparame-

ters used for the networks can be found in Table 3. In our

first approach, we want to test if initial transient is relevant

in these architectures and fix this parameter to 0.

These networks were tested for depths ranging from 1 to

10 layers. However, neither deepESN nor deepESN-IA

yielded good results, and we observed that these results

Fig. 15 Influence of the q parameter on network performance

Table 3 Hyperparameters used

in deepESN and deepESN-IA
Nodes per layer Density Transient q a b c

2000 0.2 0 [0.5, 1.5] 0.7 10�8 [0.5, 1.5]

Neural Computing and Applications

123

worsened as we increased the number of layers in the

network (Fig. 16a and b). One possible explanation is that,

in these architectures, there is a linear modification of the

input data performed by the input layer of each ESN in the

hidden layers, causing the error to increase as we increase

the number of hidden layers. For example, if we replace the

input layers in the reservoirs located in the hidden layers

with an identity matrix that does not alter the input

received (that is, the state of the previous layer), the results

become more consistent (Fig. 16e and f). Anyway, lack of

initial transient does not help the network make better

predictions. As we will see later in the comparison, some

Fig. 16 a deepESN, b deepESN-IA, c deepESN with Identity matrix as Input Layer, d deepESN-IA with Identity matrix as Input Layer. e Same

as c but in a shorter range, f) Same as d but in a shorter range

Neural Computing and Applications

123

initial transient steps help the network perform better, but

this was not enough to match the accuracy of other ESN-

based models.

Although sequential architectures based on stacked ESN

layers may not provide optimal performance for this task,

the use of multiple ESNs in parallel proves to be a suc-

cessful approach. The MRESN approach allows us to

generate large state vectors and significantly reduce the

required training time compared to the conventional ESN

architecture. This time difference increases significantly

compared to the vanilla-ESN architecture, where training

times are significantly longer. Furthermore, the overall

performance of the MRESN network improves with the

same number of nodes compared to ESN or deepESN. The

multi-reservoir architecture provides a promising solution

to generate large state vectors while maintaining high

accuracy and reducing training times. Tables 4 and 5

compare the three implemented architectures and the

vanilla ESN in terms of execution time and accuracy,

respectively.

Our experiments demonstrated that the proposed archi-

tecture outperforms the original ESN architecture in terms

of classification accuracy on both data sets. Specifically,

the proposed architecture achieved 98.43% accuracy in the

MNIST data set, compared to 97.84% for the original ESN

architecture. In the FashionMNIST data set, the proposed

architecture achieved 89.12% accuracy, while the original

ESN architecture achieved 88.1%. Notably, the new

architecture not only performs better but also requires less

training time and memory for the used structures.

Finally, Table 6 presents a comparative analysis of 3

MRESN architectures, one with 20 reservoirs of 1000

nodes, one with 6 reservoirs of 1000 nodes and finally a

small network with 4 reservoirs of 500 nodes. These

architectures are compared with other architectures based

on ESN and DNN, focusing on two key metrics: accuracy

and number of trainable parameters. This comparison

provides insight into the effectiveness of the MRESN

architecture in achieving competitive levels of accuracy

while maintaining a manageable number of trainable

parameters across different r x N configurations. A graph-

ical representation of this table is shown in Fig. 17.

6 Conclusions

In this paper, we have investigated the behaviour of dif-

ferent ESN-based architectures and evaluated their per-

formance in the context of image classification. For the

basic architecture, we tested the network response under

various sets of hyperparameters and analysed different

modifications for deepESN-type networks.

Table 4 Global execution time
Model r x Nodes Time CPU Time GPU FPS CPU FPS GPU

ESN 1 x 20000 04:12:00 00:40:59 4.63 28.47

MRESN 20 x 1000 00:39:59 00:11:30 29.18 101.45

deepESN 10 x 2000 01:02:03 00:10:53 18.80 107.20

deepESN-IA 10 x 2000 01:29:55 00:12:29 12.97 93.46

ESN 1 x 15000 02:16:00 00:20:42 8.58 56.36

MRESN 15 x 1000 00:26:06 00:07:30 44.70 155.56

deepESN 8 x 2000 00:46:29 00:07:29 25.10 155.90

deepESN-IA 8 x 2000 01:09:03 00:08:39 16.90 134.87

ESN 1 x 10000 01:11:00 00:08:36 16.43 135.66

MRESN 10 x 1000 00:18:30 00:04:00 63.06 291.67

deepESN 5 x 2000 00:26:48 00:03:32 43.53 330.19

deepESN-IA 5 x 2000 00:39:58 00:04:09 29.19 281.12

ESN 1 x 6000 00:31:30 00:02:24 37.04 486.10

MRESN 6 x 1000 00:16:12 00:02:01 72.02 578.50

deepESN 3 x 2000 00:14:26 00:01:40 80.83 700.00

deepESN-IA 3 x 2000 00:21:54 00:02:03 53.27 569.11

ESN 1 x 2000 00:01:30 00:00:31 777.78 2258.06

MRESN 4 x 500 00:01:45 00:00:51 666.67 1372.55

deepESN 2 x 1000 00:01:36 00:01:12 729.17 977.22

deepESN-IA 2 x 1000 00:02:17 00:01:14 510.95 945.95

Bold values represent the best results achieved in terms of accuracy, number of trainable parameters, FPS

or time

Neural Computing and Applications

123

Building upon groupedESN, we introduced the MRESN

architecture for image classification. This architecture uses

multiple reservoirs that operate in parallel to capture pure

spatial relationships in images without transforming them

into time series. Our experiments on the MNIST data set

demonstrated that the MRESN architecture achieved a

classification accuracy of 98.43%, surpassing both the

classical ESN architecture and other state-of-the-art ESN-

based architectures, all while requiring less training time.

Unlike previous approaches that divide the image into

parts and allocate one slice to each reservoir, the MRESN

architecture processes the entire image in each reservoir.

This method uses the information of the ensemble to

determine the weights of the output layer, overcoming the

limitations of vanilla ESNs and providing more accurate

predictions. Furthermore, utilising a set of smaller reser-

voirs instead of a single large structure with many nodes

results in reduced training and testing times for the network

Table 5 Networks accuracy for

MNIST and FashionMNIST
Architecture Reservoirs (r) x Nodes MNIST FashionMNIST

ESN 1 x 20000 97.70 �0:10 88.70 �0:10

MRESN 20 x 1000 98.36 �0:07 89.13 �0:09

deepESN 10 x 2000 89.97 �0:011 69.20 �0:016

deepESN-IA 10 x 2000 96.63 �0:003 86.43 �0:003

ESN 1 x 15000 97.55 �0:04 88.48 �0:06

MRESN 15 x 1000 98.28 �0:03 89.10 �0:20

deepESN 8 x 2000 89.46 �0:013 68.03 �0:014

deepESN-IA 8 x 2000 96.78 �0:002 86.97 �0:003

ESN 1 x 10000 97.28 �0:15 88.36 �0:13

MRESN 10 x 1000 97.76 �0:30 88.45 �0:20

deepESN 5 x 2000 90.54 �0:014 69.42 �0:021

deepESN-IA 5 x 2000 97.07 �0:002 87.23 �0:003

ESN 1 x 6000 96.80 �0:10 87.84 �0:15

MRESN 6 x 1000 97.12 �0:04 87.50 �0:15

deepESN 3 x 2000 90.86 �0:009 69.58 �0:016

deepESN-IA 3 x 2000 97.01 �0:001 87.37 �0:003

ESN 1 x 2000 95.00 �0:14 86.44 �0:30

MRESN 4 x 500 96.64 �0:001 86.77 �0:13

deepESN 2 x 1000 83.95 �0:02 63.16 �0:02

deepESN-IA 2 x 1000 95.99 �0:003 82.59 �0:001

Bold values represent the best results achieved in terms of accuracy, number of trainable parameters, FPS

or time

Table 6 Architecture

comparison with other S.O.T.A.

methods

Architecture Trainable parameters Accuracy Work Year

Ensembled CNN [106 99.9% [37] SOTA 2020

CNN ? HVC 1:5x106 99.87 [38] 2023

ESN ? CNN 90000 99.25% [33] 2018

MRESN 20000 98.36% This work 2023

DNN-5 175180 97.2 [39] 2023

MRESN 6000 97.12% This work 2023

DNN-3 80568 97.0 [39] 2023

DNN-2 5500 96.4 [39] 2023

MRESN 2000 95.6% This work 2023

ParallelESN 1600 95.3% [35] 2021

ESN 2000 92.75% [22] 2022

DeepESN 400 86% [32] 2021

Bold values represent the best results achieved in terms of accuracy, number of trainable parameters, FPS

or time

Neural Computing and Applications

123

and significantly lowers the required disk space for model

execution.

Our results suggest that the proposed MRESN archi-

tecture can serve as a viable alternative for learning spatial

relationships in scenarios where energy efficiency and

training time are critical concerns. The MRESN architec-

ture holds promise for applications in image classification

tasks. Future research could explore its potential for gen-

eralisation to more complex data sets. Furthermore,

investigating the results when preprocessing data sets by

applying techniques such as data augmentation [40] or

feature extraction [41] could further enhance its utility.

In this study, we examine the response of the network to

different sets of hyperparameters and demonstrate that the

number of nodes within the network emerges as a critical

factor in capturing spatial relationships. This discovery

provides greater flexibility for adjusting other hyperpa-

rameters, such as spectral radius and leaking rate, in

architectures designed for scenarios that involve not only

spatial but also temporal relationships, as seen in video

sequences. This adaptability should allow these networks

to be optimised in various contexts without compromising

their ability to capture spatial relationships, a hypothesis

that we intend to test in our future work.

Acknowledgements This research has been partially funded by the

projects DISARM (PDC2021-121197-C21) and HORUS (PID2021-

126359OB-I00) funded by MCIN / AEI / 10.13039 / 501100011033,

by the ‘‘European Union NextGenerationEU/PRTR’’ and Project

ID2PPAC funded through the ECSEL framework program (Grant

agreement ID: 101007254). This research project is also supported by

the REPNIN?? network (RED2022-134355-T) within the frame-

work of the Spanish State Program to Promote Scientific and Tech-

nical Research and its Transfer, part of the Innovation Research Plan

2021-2023. NVIDIA also supported this investigation through the

donation of one NVIDIA A100 to our colleague Miguel A. Martinez-

del-Amor.

Funding Funding for open access publishing: Universidad de Sevilla/

CBUA.

Data availability The data sets used to train and evaluate these net-

works are publicly available at: (1)https://git-disl.github.io/

GTDLBench/datasets/mnist_datasets/. (2) https://www.kaggle.com/

datasets/zalando-research/fashionmnist. The code used in this work is

available in: https://github.com/enrloport/MR-ESN

Declarations

Conflict of interest The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Guo Y, Yu H, Ma L, Zeng L, Luo X (2023) Thfe: a triple-

hierarchy feature enhancement method for tiny boat detection.

Eng Appl Artif Intell 123:106271. https://doi.org/10.1016/j.

engappai.2023.106271

2. Lei Q, Guo Y, Ma L, Luo X (2023) Few-shot object detection via

instance-wise and prototypical contrastive learning. In: Chang S

(ed) The 35th international conference on software engineering

and knowledge engineering, SEKE 2023, KSIR virtual confer-

ence center, USA, July 1–10. KSI Research Inc., pp 685–690.

https://doi.org/10.18293/SEKE2023-129

3. Bhimavarapu U (2022) Irf-lstm: enhanced regularization function

in lstm to predict the rainfall. Neural Comput Appl

34(22):20165–20177. https://doi.org/10.1007/s00521-022-07577-

8

4. Sahin ME, Ulutas H, Yuce E, Erkoc MF (2023) Detection and

classification of Covid-19 by using faster r-cnn and mask r-cnn on

ct images. Neural Comput Appl 35(18):13597–13611. https://doi.

org/10.1007/s00521-023-08450-y

5. Raju ASN, Jayavel K, Rajalakshmi T (2023) An advanced

diagnostic colorectalcadx utilises cnn and unsupervised visual

explanations to discover malignancies. Neural Comput Appl

35(28):20631–20662. https://doi.org/10.1007/s00521-023-08859-

5

6. Beohar D, Rasool A (2021) Handwritten digit recognition of

mnist dataset using deep learning state-of-the-art artificial neural

network (ann) and convolutional neural network (cnn). In: 2021

International conference on emerging smart computing and

informatics (ESCI), pp 542–548. https://doi.org/10.1109/

ESCI50559.2021.9396870

7. Kaziha O, Bonny T (2019) A comparison of quantized convo-

lutional and lstm recurrent neural network models using mnist.

In: 2019 International conference on electrical and computing

Fig. 17 Relationship between accuracy and trainable parameters for

different models. Stars denote the MRESN architecture, while other

symbols represent models identified by their reference numbers in

Table 5

Neural Computing and Applications

123

https://git-disl.github.io/GTDLBench/datasets/mnist_datasets/
https://git-disl.github.io/GTDLBench/datasets/mnist_datasets/
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://github.com/enrloport/MR-ESN
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.engappai.2023.106271
https://doi.org/10.1016/j.engappai.2023.106271
https://doi.org/10.18293/SEKE2023-129
https://doi.org/10.1007/s00521-022-07577-8
https://doi.org/10.1007/s00521-022-07577-8
https://doi.org/10.1007/s00521-023-08450-y
https://doi.org/10.1007/s00521-023-08450-y
https://doi.org/10.1007/s00521-023-08859-5
https://doi.org/10.1007/s00521-023-08859-5
https://doi.org/10.1109/ESCI50559.2021.9396870
https://doi.org/10.1109/ESCI50559.2021.9396870

technologies and applications (ICECTA), pp 1–5. https://doi.org/

10.1109/ICECTA48151.2019.8959793

8. Coleman C, Narayanan D, Kang D, Zhao T, Zhang J, Nardi L,

Bailis P, Olukotun K, Ré C, Zaharia M (2017) Dawnbench: an

end-to-end deep learning benchmark and competition. Training

100(101):102

9. Jaeger H (2001) The ‘‘echo state’’ approach to analysing and

training recurrent neural networks-with an erratum note’. www.

researchgate.net

10. Kim T, King B (2020) Time series prediction using deep echo

state networks. Neural Comput Appl. https://doi.org/10.1007/

s00521-020-04948-x

11. Shahi S, Fenton FH, Cherry EM (2022) Prediction of chaotic time

series using recurrent neural networks and reservoir computing

techniques: a comparative study. Mach Learn Appl 8:100300.

https://doi.org/10.1016/j.mlwa.2022.100300

12. Lukoševičius M (2012) In: Montavon G, Orr GB, Müller K-R

(eds) A practical guide to applying echo state networks. Springer,

Berlin, Heidelberg, pp 659–686. https://doi.org/10.1007/978-3-

642-35289-8_36

13. Tian Z, Gao X, Li S, Wang Y (2015) Prediction method for

network traffic based on genetic algorithm optimized echo state

network. Jisuanji Yanjiu yu Fazhan/Comput Res Dev

52:1137–1145. https://doi.org/10.7544/issn1000-1239.2015.

20131757

14. Xue Y, Zhang Q, Neri F (2021) Self-adaptive particle swarm

optimization-based echo state network for time series prediction.

Int J Neural Syst 31:234. https://doi.org/10.1142/

S012906572150057X

15. Thiede LA, Parlitz U (2019) Gradient based hyperparameter

optimization in echo state networks. Neural Netw 115:23–29.

https://doi.org/10.1016/j.neunet.2019.02.001

16. Jaeger H, Lukoševičius M, Popovici D, Siewert U (2007) Opti-

mization and applications of echo state networks with leaky-

integrator neurons. Neural Netw 20(3):335–352. https://doi.org/

10.1016/j.neunet.2007.04.016. Echo State Networks and Liquid

State Machines

17. Shrivastava H, Garg A, Cao Y, Zhang Y, Sainath T (2021) Echo

state speech recognition.https://doi.org/10.48550/ARXIV.2102.

09114

18. Tong M, Bickett A, Christiansen E, Cottrell G (2007) Learning

grammatical structure with echo state networks. Neural Netw

20:424–432. https://doi.org/10.1016/j.neunet.2007.04.013

19. Cabessa J, Hernault H, Kim H, Lamonato Y, Levy YZ (2021)

Efficient text classification with echo state networks. In 2021

International joint conference on neural networks (IJCNN),

pp 1–8 https://doi.org/10.1109/IJCNN52387.2021.9533958

20. Salmen M, Plöger P (2005) Echo state networks used for motor

control. Robot Autom 18:1953–1958. https://doi.org/10.1109/

ROBOT.2005.1570399

21. Chen Q, Zhang A, Huang T, He Q, Song Y (2020) Imbalanced

dataset-based echo state networks for anomaly detection. Neural

Comput Appl. https://doi.org/10.1007/s00521-018-3747-z

22. Sun J, Li L, Peng H (2021) An image classification method based

on echo state network. In: 2021 International conference on

neuromorphic computing (ICNC), pp 165–170 https://doi.org/10.

1109/ICNC52316.2021.9607999

23. Krusna Lukosevicius M (2018) Predicting Mozart’s next note via

echo state networks. www.piano-midi.de

24. Bianchi FM, Scardapane S, Uncini A, Rizzi A, Sadeghian A

(2015) Prediction of telephone calls load using echo state network

with exogenous variables. Neural Netw 71:204–213. https://doi.

org/10.1016/j.neunet.2015.08.010

25. Guo X, Qian Y, Tiwari P, Zou Q, Ding Y (2022) Kernel risk

sensitive loss-based echo state networks for predicting thera-

peutic peptides with sparse learning. In: 2022 IEEE international

conference on bioinformatics and biomedicine (BIBM), pp 6–11 .

https://doi.org/10.1109/BIBM55620.2022.9994902

26. Sun C, Song M, Hong S, Li H (2020) A review of designs and

applications of echo state networks. http://arxiv.org/abs/2012.

02974

27. Gallicchio C, Micheli A, Pedrelli L (2017) Deep reservoir com-

puting: a critical experimental analysis. Neurocomputing. https://

doi.org/10.1016/j.neucom.2016.12.089

28. Souahlia A, Belatreche A, Benyettou A, Foitih Z, Benkhelifa E,

Curran K (2020) Echo state network-based feature extraction for

efficient color image segmentation. Concurr Comput Pract Exp

32:5719. https://doi.org/10.1002/cpe.5719

29. Yang Y, Zhao X, Liu X (2020) A novel exhaust gas temperature

prediction method of hot blast stove. In: 2020 39th Chinese

control conference (CCC), pp 5916–5921. https://doi.org/10.

23919/CCC50068.2020.9189443

30. Mustaqeem Ishaq M, Kwon S (2022) A cnn-assisted deep echo

state network using multiple time-scale dynamic learning reser-

voirs for generating short-term solar energy forecasting. Sustain

Energy Technol Assessm 52:102275. https://doi.org/10.1016/j.

seta.2022.102275

31. Schaetti N, Salomon M, Couturier R (2016) Echo state networks-

based reservoir computing for mnist handwritten digits recogni-

tion. In: 2016 IEEE intl conference on computational science and

engineering (CSE) and IEEE intl conference on embedded and

ubiquitous computing (EUC) and 15th intl symposium on dis-

tributed computing and applications for business engineering

(DCABES), pp 484–491. https://doi.org/10.1109/CSE-EUC-

DCABES.2016.229

32. Barredo Arrieta A, Gil-Lopez S, Laña I, Bilbao N, Del Ser J

(2022) On the post-hoc explainability of deep echo state networks

for time series forecasting, image and video classification. Neural

Comput Appl. https://doi.org/10.1007/s00521-021-06359-y

33. Tong Z, Tanaka G (2018) Reservoir computing with untrained

convolutional neural networks for image recognition. In: 2018

24th international conference on pattern recognition (ICPR),

pp 1289–1294. https://doi.org/10.1109/ICPR.2018.8545471

34. Hu R, Tang Z, Song X, Luo J, Wu E, Chang S (2021) Ensemble

echo network with deep architecture for time-series modeling.

Neural Comput Appl. https://doi.org/10.1007/s00521-020-05286-

8

35. Gardner SD, Haider MR, Moradi L, Vantsevich V (2021) A

modified echo state network for time independent image classi-

fication. Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/MWSCAS47672.2021.9531776

36. Dettori S, Matino I, Colla V, Speets R (2022) A deep learning-

based approach for forecasting off-gas production and con-

sumption in the blast furnace. Neural Comput Appl. https://doi.

org/10.1007/s00521-021-05984-x

37. An S, Lee M, Park S, Yang H, So J (2020) An ensemble of simple

convolutional neural network models for MNIST digit

recognition

38. Byerly A, Kalganova T, Dear I (2020) A branching and merging

convolutional network with homogeneous filter capsules. arXiv:

2001.09136v4

39. Pishchik E (2023) Trainable activations for image classification.

https://doi.org/10.20944/preprints202301.0463.v1

40. Saini D, Malik R (2021) Image data augmentation techniques for

deep learning-a mirror review. In: 2021 9th International con-

ference on reliability, infocom technologies and optimization

(trends and future directions) (ICRITO), pp 1–5. https://doi.org/

10.1109/ICRITO51393.2021.9596262

41. Cao X, Guo Y, Yang W, Luo X, Xie S (2023) Intrinsic feature

extraction for unsupervised domain adaptation. Inte J Web Inf

Syst 19(5/6):173–189. https://doi.org/10.1108/IJWIS-04-2023-

0062

Neural Computing and Applications

123

https://doi.org/10.1109/ICECTA48151.2019.8959793
https://doi.org/10.1109/ICECTA48151.2019.8959793
http://www.researchgate.net
http://www.researchgate.net
https://doi.org/10.1007/s00521-020-04948-x
https://doi.org/10.1007/s00521-020-04948-x
https://doi.org/10.1016/j.mlwa.2022.100300
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.7544/issn1000-1239.2015.20131757
https://doi.org/10.7544/issn1000-1239.2015.20131757
https://doi.org/10.1142/S012906572150057X
https://doi.org/10.1142/S012906572150057X
https://doi.org/10.1016/j.neunet.2019.02.001
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.48550/ARXIV.2102.09114
https://doi.org/10.48550/ARXIV.2102.09114
https://doi.org/10.1016/j.neunet.2007.04.013
https://doi.org/10.1109/IJCNN52387.2021.9533958
https://doi.org/10.1109/ROBOT.2005.1570399
https://doi.org/10.1109/ROBOT.2005.1570399
https://doi.org/10.1007/s00521-018-3747-z
https://doi.org/10.1109/ICNC52316.2021.9607999
https://doi.org/10.1109/ICNC52316.2021.9607999
http://www.piano-midi.de
https://doi.org/10.1016/j.neunet.2015.08.010
https://doi.org/10.1016/j.neunet.2015.08.010
https://doi.org/10.1109/BIBM55620.2022.9994902
http://arxiv.org/abs/2012.02974
http://arxiv.org/abs/2012.02974
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1002/cpe.5719
https://doi.org/10.23919/CCC50068.2020.9189443
https://doi.org/10.23919/CCC50068.2020.9189443
https://doi.org/10.1016/j.seta.2022.102275
https://doi.org/10.1016/j.seta.2022.102275
https://doi.org/10.1109/CSE-EUC-DCABES.2016.229
https://doi.org/10.1109/CSE-EUC-DCABES.2016.229
https://doi.org/10.1007/s00521-021-06359-y
https://doi.org/10.1109/ICPR.2018.8545471
https://doi.org/10.1007/s00521-020-05286-8
https://doi.org/10.1007/s00521-020-05286-8
https://doi.org/10.1109/MWSCAS47672.2021.9531776
https://doi.org/10.1007/s00521-021-05984-x
https://doi.org/10.1007/s00521-021-05984-x
http://arxiv.org/abs/2001.09136v4
http://arxiv.org/abs/2001.09136v4
https://doi.org/10.20944/preprints202301.0463.v1
https://doi.org/10.1109/ICRITO51393.2021.9596262
https://doi.org/10.1109/ICRITO51393.2021.9596262
https://doi.org/10.1108/IJWIS-04-2023-0062
https://doi.org/10.1108/IJWIS-04-2023-0062

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

	Exploring deep echo state networks for image classification: a multi-reservoir approach
	Abstract
	Introduction
	Previous works
	ESN architecture
	Initialisation
	Reservoir computation
	Finding the weights of the output Layer
	Testing

	ESN applications

	Multi-reservoir ESN (MRESN) architecture for image classification
	Methodology
	MNIST and FashionMNIST data sets
	Experimentation

	Results and discussion
	Conclusions
	Data availability
	References

