
ORIGINAL ARTICLE

Online learning of stable robust adaptive controllers design based
on data-dependent feedback linearization with application to rotary
inverted pendulum
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Abstract
This study introduces an online (supervised) learning method to design nonlinear auto-regressive moving average

(NARMA) controllers for feedback-linearized nonlinear single-input single-output (SISO) systems. The algorithm ensures

Schur stability of the overall closed-loop system and provides adaptiveness and robustness for the NARMA controllers.

The first stage of the method derives, in a data-dependent way, a feedback-linearized model of the nonlinear plant by using

its input and output sample pairs. The method’s second stage, which constitutes the novel part of the presented study, builds

up an online learning scheme for the linear auto-regressive moving average (ARMA) controller based on an already

learned feedback-linearized model of the nonlinear plant. During online supervised learning, ARMA parameters of the

feedback-linearized SISO plant model and the closed-loop ARMA model are computed by minimizing the plant identi-

fication and the closed-loop system tracking errors. Both errors are defined as ‘1;e, namely e-insensitive loss functions that
provide NARMA controller the robustness against noise and outliers. The proposed online learning control algorithm is

applied to a rotary inverted pendulum model and to a real rotary inverted pendulum setup. The tracking performance of the

developed controller is compared with those of the linear quadratic regulator and coupled sliding mode controller in terms

of mean square error.

Keywords Stable robust adaptive control � Feedback linearization � Learning controller � Coupled sliding mode control �
Rotary inverted pendulum

1 Introduction

Feedback linearization of nonlinear control systems is a

widely known control method applied to continuous-time

nonlinear plants that satisfy certain conditions such as

involutivity and being transformable into special canonical

forms like Brunovsky or normal form [1–4]. The feedback

linearization method is developed for discrete-time non-

linear systems too, both for affine [5] and non-affine sys-

tems [6]. By means of applying the artificial neural
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network (ANN) approach to the feedback linearization

domain, ANN-based feedback linearization control meth-

ods have been proposed as powerful strategies for the

control of the nonlinear systems in order to provide the

ability of learning and generalization from the real data

[6–14]. An approximate feedback linearization was

developed by means of multilayer perceptron (MLP) based

on a nonlinear state transformation providing local dif-

feomorphism conditions [8]. ANN-based control methods

generally construct nonlinear auto-regressive moving-av-

erage (NARMA) plant models learned from the plant’s

input and output and design NARMA-based neuro con-

trollers [6–10]. ANN-based feedback linearization methods

usually implement two separate ANN blocks, each of

which defines a nonlinear function to make the overall

feedback system with the newly defined input as linear

[6, 8, 9, 12]. The direct adaptive neural control scheme of

[11] can also be considered as a kind of implementation of

feedback linearization but with a radial basis function

neural network for an affine nonlinear multi–input–multi–

output system. The so-called Learning Feedback Lin-

earization (LFL) method proposed in [12] employs an

ANN-based NARMA model implementing input-to-state

feedback linearization blocks and then uses the conven-

tional PID controller for the overall feedback-linearized

control system.

On the other hand, several adaptive control methods

have been used in the literature [15–21] for controlling

nonlinear systems. The adaptive control method in [15]

uses ANN-based prediction of a reference trajectory and

the model-free adaptive controller simultaneously via the

feedback-linearized model of the nonlinear dynamics [15].

An inverse system-based adaptive nonlinear controller

employing ANN is developed in [16]. A model reference

adaptive control and its extension version are used together

for guaranteeing adaptive control parameters converge

[17]. The work in [18] introduces an adaptive ANN-based

control method having adaptation laws obtained from

input–output data for the control of inverted pendulum. An

output feedback-based adaptive ANN controller scheme is

developed in [19] for tracking control of switched non-

strict-feedback nonlinear systems. The proposed adaptive

control scheme is applied to the interconnected nonlinear

system with the global stability condition [20]. A kind of

inverse system approach is applied for an adaptive non-

linear controller design [22]. This study employs a Wiener-

type nonlinear controller model and a Hammerstein-type

nonlinear plant model such that the overall closed-loop

system becomes a linear system to which the online

learning ARMA controller design method of [23] is

applied.

The study presented in this paper proposes a new LFL

method that applies online learning NARMA controller

design methodology, originally developed in [23] for linear

SISO plants, to the input–output feedback-linearized non-

linear affine SISO systems. The online learning NARMA

controller design provides a Schur stable robust adaptive

control scheme that is formulated in this work as a data-

dependent robust solution to a system identification prob-

lem of a partially known system, i.e., the closed system.

Herein, the known part is the data-dependent LFL-based

identified plant model, whereas the unknown part is the

controller to be adjusted online. The scheme firstly

achieves the input–output feedback linearization of the

nonlinear plant via LFL, and then, the plant model is

identified as the combination of feedback linearization

block and nonlinear plant. The overall linearized plant

model parameters are computed by minimizing the plant

identification error. The determination of the ARMA con-

troller parameters is then performed by minimizing the

tracking error, which is considered as the closed-loop

system identification error, under Schur stability condi-

tions. Both error terms are defined as regularized e-insen-
sitive loss functions that provide robustness property

against to noise and disturbances, where the regularization

is used for the penalization of generalization error [23–25].

The main contributions of the developed control

scheme by which it differs from the related works existing

in the literature are listed as follows.

(i) The proposed control scheme relies on formulat-

ing both the plant identification and adaptive

controller design as supervised learning problems.

So, the proposed controller design gets benefit of

the data-dependent online learning by which the

closed-loop stability, adaptiveness, robustness,

and generalization ability can be embedded in

controller design process.

(ii) As one of the most distinguished features of the

proposed method, the controller design for track-

ing control purposes is described as an identifica-

tion problem of a partially known system where

the controller is the unknown part and the already

identified plant model is the known part. From this

point of view, the introduced supervised learning

scheme for the controller design is applied in a

direct way with no need to apply any preprocess-

ing such as finding an inverse system for the plant.

By means of this closed-loop system identification

framework, the closed-loop system stability is

ensured by imposing Schur conditions as linear

inequality constraints in tracking error minimiza-

tion. In the tracking error minimization procedure,

which is implemented by pattern/batch mode

minimization algorithms, the error is chosen as

regularized e-insensitive loss functions ‘1;e �; �ð Þ.
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Herein, being absolute for the error measures, i.e.,

‘1’ness, provides robustness against disturbances

and other outliers. The e-insensitiveness provides

robustness against noise, and immunization for the

model errors originated from the ANN-based LFL

approximation to the nonlinear plant. The regu-

larization term added to the loss functions makes

the controller model possess higher generalization

abilities. The regularize ‘1;e �; �ð Þ norm is used also

in the plant identification phase as the identifica-

tion error measure for building up a robust neural

network model of the plant with high generaliza-

tion ability.

(iii) The proposed method provides the possibility of

exploiting a linear ARMA controller for nonlinear

plants by means of deriving a linear (augmented)

plant model as a cascade of the LFL block and the

nonlinear plant via input–output feedback lin-

earization. The obtained linear closed-loop system

model allows for exploitation of the online ARMA

controller design method of [23] that is developed

for linear plants. In the method of this paper, both

the LFL block and linear ARMA controller are

determined in a data-dependent way by using

input–output data pairs measured from the non-

linear plant and the closed-loop system. It should

be noted that the data-dependent LFL scheme of

the proposed controller design method, which

yields an ANN-based LFL approximation, does

not require a known nonlinear plant model satis-

fying certain technical conditions such as involu-

tivity to which the standard procedure of feedback

linearization method valid for continuous-time

systems [1, 2, 26] is applied. With the underlying

learning abilities of ANN-based LFL approxima-

tion, the proposed data-dependent feedback lin-

earization learns an approximate but

acceptable linearized closed-loop system model.

Herein, the approximation error is indeed defined

in terms of the tracking and plant identification

errors to be minimized. The learning feedback

linearization scheme applied here is similar to the

linearization method of [12]. Both are data-

dependent feedback linearization. It means that

the feedback-linearized (augmented) plant model

is designed by learning in a supervised way. The

main differences between them are the following.

The method proposed in this paper is based on

input–output linearization, while the study in [12]

employs input-state linearization. On the other

hand, the method in [12] employs a conventional

PID whose parameters are learned by learning, so

it does not have the adaptiveness, robustness,

generalization ability and the guarantee for the

closed-loop stability described in (i)–(ii). In con-

trast, the method proposed in this paper has all

these features that are important, especially for

nonlinear control systems.

The most decisive aspect of this article’s main contri-

butions, which are described above, in terms of system

identification and control applications of artificial neural

networks is the definition of model identification and

controller design problems as supervised learning that runs

online. With the ‘‘learning of feedback linearization’’

proposed in this article, the study given in [23], which is

based on linear (ARMA) system identification and online

learning of ARMA controller parameters, has been exten-

ded to the method of supervised learning of linear ARMA-

based closed-loop system identification. This is achieved

by employing a learned feedback-linearized model of the

nonlinear plant. Thus, linear ARMA-based system identi-

fication, which is a widely studied method not only in

control area but also in time-series analysis, has been

extended to the identification and control of nonlinear

systems, where both system identification and controller

design have been defined as supervised learning schemes

that run online. In this sense, the paper has contributed to

the use of artificial neural networks and machine learning

in the field of system identification and control.

In short, the proposed controller design scheme is the

extension of the method of online learning ARMA con-

trollers developed in [23] for linear plants to nonlinear

affine plant cases with exploiting the method of learning

feedback linearization introduced in [12]. Preliminary

results of this study are partially published in the confer-

ence paper [27]. The method can be called in two ways:

stable robust adaptive ARMA controller for feedback-lin-

earized nonlinear plants or stable robust adaptive NARMA

controller for nonlinear plants. In the former case, LFL

block is considered as the front side block of the linearized

(augmented) plant model. In the latter, LFL block is con-

sidered as the backside block coming after the linear

ARMA controller to constitute a NARMA controller. Since

the LFL block is not a part of the plant such that it is just

used to transform the plant to a linear one by a linearization

feedback control, the LFL block is appropriate to be con-

sidered as a part of the controller so the developed con-

troller in this paper is preferred to be named as the

NARMA controller that consists of a linear ARMA block

cascaded by the LFL block. In the application part of this

study, to show its superiority, the developed LFL-based

stable robust adaptive NARMA controller is compared to

the linear quadratic regulator (LQR) of [28] and the cou-

pled sliding mode controller (SMC) [29, 30] in terms of

their tracking performances. As the nonlinear plant, the
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ROTary inverted PENdulum (ROTPEN) is chosen. The

experiments are conducted in two different modes: ROT-

PEN model is implemented in the software-in-the-loop

mode first, that is, the computer simulation. Then, the

developed method is applied for controlling a real ROT-

PEN plant in prototyping real-time simulation mode [31].

This paper is organized as follows. In Sect. 2, the devel-

oped LFL-based stable robust adaptive control scheme is

explained. In Sect. 3, the performances of the proposed

adaptive controller and the other controllers considered are

compared to each other for the ROTPEN simulation model

and a real ROTPEN plant. The conclusion and the possible

future directions are provided in Sect. 4.

2 Proposed LFL-based stable robust
adaptive control scheme

The proposed stable robust adaptive controller scheme,

which is shown in Fig. 1, is implemented in three stages as

follows. (1) A feedback-linearized plant model is con-

structed by an LFL block implemented with ANN that is

cascaded by the nonlinear plant. The cascade combination

of LFL block and the plant is identified as a linear ARMA

plant model by minimizing the augmented plant identifi-

cation error in (9). (2) The overall linear closed-loop sys-

tem model that provides Schur stability is identified as an

ARMA system model by minimizing the closed-loop sys-

tem identification error in (12). (3) The linear ARMA

controller parameters are calculated from the ARMA

parameters of the closed-loop system found in 2) by using

the augmented plant’s ARMA model parameters found in

1). These three stages might be followed from Fig. 1 in

identifying the operation in the 1st stage that yields

anf gNn¼1 and bnf gMn¼1 as the plant ARMA model parame-

ters, the operation in the 2nd stage that yields anf gbNn¼1 and

bnf gbMn¼1 as the closed-loop system ARMA model

parameters, and the operation in the 3rd stage that yields

f mf gPm¼1, cmf gRm¼1 and dmf gQm¼1 as the controller ARMA

model parameters.

2.1 LFL for the nonlinear plant

This subsection presents the rationale behind the aug-

mented plant model, which is the cascade of the LFL

nonlinear block and the SISO plant together with a state-

feedback architecture, by a linear ARMA model. For this

purpose, let us give a brief explanation of the input–output

feedback linearization method for time-invariant discrete-

time Single-Input Single-Output (SISO) affine plants [5].

Assume that the plant is defined in the following input–

output form.

ykþ1 ¼fn yk; . . .; yk�nþ1; uk�d; . . .; uk�d�mþ1
� �

þ gn yk; . . .; yk�nþ1; uk�d; . . .; uk�d�mþ1
� �

uk�dþ1

ð1Þ

Herein fn �ð Þ : Rn � Rm ! R and gn �ð Þ : Rn � Rm ! R

are infinitely many differentiable functions such that gn �ð Þ
has a multiplicative inverse. uk 2 R is the control input,

and yk 2 R is the output of the SISO system. m� n and d

stand for the relative degree of the system.

Defining a set of state variables as xki ¼ yk�iþ1 with i 2
1; 2; . . .; nf g and xknþi ¼ yk�m�dþi with

i 2 1; 2; . . .;mþ d � 1f g, the following state form is

obtained for the system defined in (1).

xkþ1
i ¼ xkiþ1 with i 2 1; 2; . . .; nf g
xkþ1
n ¼ fn xk

� �

þ gn xk
� �

xknþm

xkþ1
nþi ¼ xknþiþ1 with i 2 1; 2; . . .;mþ d � 2f g

xkþ1
nþmþd�1 ¼ uk

yk ¼ xkn

ð2Þ

For a system with relative degree one, i.e., d ¼ 1, we get

xkþ1
n ¼ fn xk

� �

þ gn xk
� �

uk: ð3Þ

So, the linearizing control input is obtained as

uk ¼
�fn xk

� �

þ vk

gn xkð Þ ð4Þ

where vk represents the reference, namely the desired

output at time k þ 1.

For a system with the relative degree d[ 1, the lin-

earizing control can be derived [5] as follows.

uk ¼
�fn T�1 zk

� �� �

þ vk

gn T�1 zk½ �
� � ð5Þ

where the invertible transformation zk ¼ T xk
� �

is defined

below.

Fig. 1 The proposed LFL-based adaptive control scheme (Color

figure online)
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zk ¼ zk11. . .z
k
1nz

k
1;nþ1. . .z

k
1;nþd�1z

k
21. . .z

k
2m

h iT

¼ xk1. . .x
k
nx

kþ1
n . . .xkþd�1

n xknþ1. . .x
k
nþm

� �T
ð6Þ

So, for an arbitrary relative degree d, the linearizing

feedback control is defined in terms of x and v as:

u ¼ c x; vð Þ ð7Þ

In this paper, the LFL block that is inspired by the well-

known input–output linearization methodology described

above. Since the proposed method in the paper learns LFL

block based on input–output data, an LFL block that pro-

vides an exact linearization from the newly defined control

input v to the system output y by means of a feedback

control u ¼ c x; vð Þ may not exist. In this sense, the LFL

block depicted in Fig. 1 does just define an approximate

linearization rather than an exact one. The LFL block used

for an approximate linearization is considered in this paper

as having the following (discrete time) linear ARMA

representation.

yk ¼
XN

n¼1
any

k�n þ
XM

n¼0
bnv

k�n ð8Þ

The LFL block of this paper is implemented by a

specific algebraic ANN, which has the universal approxi-

mation property, namely the feedforward MLP with a

single hidden layer shown in Fig. 2. ANN is trained with

the training sample set ðxsÞTvS
h iT

; u
s

� �S

s¼0

. Herein, xs

whose entries are defined in (2) in terms of the plant output

is the measured output at different time instants k. The LFL

block is identified by training the MLP to learn the above

given input–output samples in an offline manner with a

batch mode (Levenberg–Marquardt) backpropagation

algorithm.

Now, as expressed in SubSect. 2.2, the identification of

the augmented plant with an already learned LFL block can

be made based on the ARMA model of (8).

2.2 ARMA-based identification of augmented
plant

The ARMA model identification of the LFL-based aug-

mented plant is depicted in Fig. 3. The augmented (feed-

back-linearized) plant identification is formulated as the

minimization of the identification error in (9) that is defined

by e-insensitive loss function ‘1;e �; �ð Þ given in (10). In

contrast to the offline nature of the identification of LFL

block, the augmented plant is identified in an online (mini-

batch) mode. In this mode, the ARMA parameters of the

augmented plant are updated in time in accordance with the

minimization of the regularized identification error in (9)

for each time interval of k; k � K þ 1½ � where K is the

sliding window length.

1

K

XK�1

s¼0
‘1;e

yk�s
a ;

PN
n¼1 any

k�s�n

þ
PM

n¼0 bnv
k�s�n

� 	

þ k
a
b

























2

2
ð9Þ

Herein, e-insensitive loss function ‘1;e �; �ð Þ is a mea-

surement of the distance between the ðk � sÞth actual out-

put sample ysa of the plant and the ðk � sÞth output sample

of the linear ARMA model yk�s ¼
PN

n¼1any
k�s�n þ

PM
n¼0bnv

k�s�n of the augmented plant model where

N andM standing for the degrees of the ARMA model. As

given in [32], the e-insensitive (absolute value-based) loss

function and the regularizing term are defined below.

‘1;e ysa; y
s

� �

¼ ysa � ys
�

�

�

� if ysa � ys
�

�

�

�� e
0 if ysa � ys

�

�

�

�\e

�

ð10Þ

k
a
b

























2

2

¼ k
XN

n¼1
a2n þ

XM

n¼0
b2n

� 


ð11Þ

In the above given identification error, e-insensitiveness
is used for providing robustness against noise,

Fig. 2 The LFL is designed for the nonlinear plant during learning

phase

.

.
.
.

+
+ +-

Learning Feedback Linearization Block

Input Layer Output Layer
Hidden Layer

Input Weights Output Weights

LFL Nonlinear Plant

Nonlinear Plant

Fig. 3 ARMA plant identification of the augmented plant
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disturbances, and small modeling/approximation errors

Dy0s to the ARMA model. Herein, the modeling/approxi-

mation error Dy is considered as being additive to the

output y, which is inaccuracy in the assumption of that the

augmented plant model is exactly feedback linearizable by

means of the LFL block realized by MLP. The regular-

ization term in (11) is used to provide a smooth augmented

plant model by avoiding over-fitting, and so increasing the

generalization ability to respond well to the data unseen

before [23].

2.3 Learning ARMA controller as a closed-loop
system identification

The study presented in this paper considers the system

identification problem of the closed-loop system as a

controller design which is the only unknown part of the

system (Fig. 1). Once the ARMA parameters

anf gNn¼1; bnf gMn¼1

� �

of the augmented (linear) plant model

are identified, the linear closed-loop system’s ARMA

parameters anf gbNn¼1; bnf gbMn¼1

� �

are learned in an online

manner, so are the ARMA controller parameters

f mf gPm¼1; cmf gRm¼1; dmf gQm¼1

n o

. The closed-loop system

identification error to be minimized by the online (mini-

batch mode) learning algorithm is indeed the regularized

tracking error given with e-insensitive loss function ‘1;e �; �ð Þ
in (12) that is defined for the time interval of k; k � Lþ 1½ �
where L is sliding window length.

1

L

XL�1

s¼0
‘1;e

yk�s
d ;

P
bN
n¼1 any

k�s�n

þ
P

bM
n¼0 bnr

k�s�n

0

@

1

Aþ k
a
b

























2

2

ð12Þ

Herein, e-insensitive loss function ‘1;e �; �ð Þ is a measure

of the distance between the ðk � sÞth desired output sample,

namely the reference, ysd of the plant and the ðk � sÞth

actual output sample yk�s ¼
P

bN
n¼0any

k�s�n þ
P

bM
n¼0bnr

k�s�n of the closed-loop system. bN and bM stand

for the degrees of the ARMA model. k
a
b

























2

2

is the regu-

larization term. The tracking error in (12) is minimized

under the Schur stability constraints

a0 [ . . .[ a2N�1 [ a2N [ 0 to ensure the stability of the

closed-loop system [23, 33].

As done in [9], the determination of the ARMA con-

troller parameters f mf gPm¼1; cmf gRm¼1; dmf gQm¼1

n o

from

already learned ARMA parameters anf gbNn¼1; bnf gbMn¼1

� �

of

the closed-loop system and the ARMA parameters

anf gNn¼1; bnf gMn¼1

� �

of the augmented (linear) plant model

is performed by means of the following straightforward

algebraic derivations.

By choosing a0 ¼ �1 without losing the generality, (8)

can be written in the implicit form of (13).
XN

n¼0
any

k�n
a þ

XM

n¼0
bnv

k�n ¼ 0 ð13Þ

Assume that the controller (colored as the green block in

Fig. 1) admits the following ARMA representation.

vk ¼
XP

m¼1
fmv

k�m þ
XR

m¼0
cmr

k�m þ
XQ

m¼0
dmy

k�m

ð14Þ

Herein, vk is the output signal of the controller, rk is the

reference signal that is aimed to be tracked by the plant,

and cm; dm; fm denote the controller parameters. With the

choice of f0 ¼ �1, then (14) is written in the implicit form

of (15).
XP

m¼0
fmv

k�m þ
XR

m¼0
cmr

k�m þ
XQ

m¼0
dmy

k�m ¼ 0

ð15Þ

(16) is obtained by taking the weighted sum of (13) with

weights fm.,

X
P

n¼0

fm
XN

n¼0
any

k�m�n
a þ

XP

n¼0
fm

XM

n¼0
bnv

k�m�n ¼ 0

ð16Þ

Substitution of the expression for vk in (14) into (16),

(17) is obtained.

0 ¼
XP

n¼0
fm

XN

n¼0
any

k�m�n
a þ

XM

n¼0
bn

XM

n¼0
bn

XQ

m¼0
dmy

k�m�n �
XR

m¼0
cmr

k�m�n
h i

ð17Þ

(17) can be simplified by introducing new parameters

an, bn as below.

yk ¼
XN̂

n¼0
any

k�n þ
XM̂

n¼0
bnr

k�n ð18Þ

Herein bN =: max Pþ N;M þ Qf g, and bM ¼: M þ R

might be chosen for different values of P;N;R;M andQ.

Without loss of generality, one can assume that P ¼ N ¼
R ¼ M ¼ Q and bN ¼ bM . Then, the controller parameters

f mf gPm¼1; cmf gRm¼1; dmf gQm¼1

n o

can be calculated from the

below given Diophantine.
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ao ¼1þ a0f0 � b0d0

ai ¼
Xi

j¼0
ajfi�j �

Xi

j¼0
bjdi�j for i 2 1; 2; . . .;Nf g

for i 2 N þ 1;N þ 2; . . .; 2Nf g

bi ¼�
Xi

j¼0
bjci�j for i 2 0; 1; 2; . . .;Nf g

bi ¼�
XN

j¼i�N
bjci�j for i 2 N þ 1;N þ 2; . . .; 2Nf g

ð19Þ

3 Simulations and experimental results

The proposed LFL-based stable robust adaptive controller

is tested on the ROTPEN model and on a real ROTPEN

setup. The performances of LQR, SMC, and the developed

controller are compared as the balance controllers in terms

of the settling time, overshoot percentage, and mean square

error (MSE) of tracking errors. Each balance controller

algorithm is used with an energy-based swing-up algo-

rithm. Controller signals in all experiments are saturated

�
þ12 V : The effect of e-insensitive loss functions of the

proposed controller is investigated for the tracking error

minimization under with and without measurement noise

and disturbance for ROTPEN.

3.1 Experiment 1: ROTPEN model

The ROTPEN system is one of the most popular plants

used in the field of the nonlinear control. The ROTPEN

system model has one input and two outputs. Therefore, the

ROTPEN might be represented as a single-input multiple-

output (SIMO) system. Hence, the control signal is

composed of summing of two controllers used for h and /
borrowed from [34]. Either the pendulum angle or the

angular position of the arm might be chosen as the output

to be controlled. Some parameters of the dynamical system

model are shown in a 3D diagram of ROTPEN in Fig. 4.

The total force might be written in terms of Newton’s

second law for ROTPEN system and dynamical model is

given in (20) where h and / stands for the pendulum angle

and the rotating arm angle, respectively, soutput ¼ KtðVm �
Km

_/Þ=Rm is used for torque control equation of the dc

motor [35]. The ROTPEN system parameters are borrowed

from [34] (See Table 1).

Arm
Pendulum

DC Motor

x

y

Fig. 4 ROTPEN 3-D simplified diagram

€/ tð Þ ¼
rlpMp cos h tð Þð Þ 	 Jp cos h tð Þð Þ sin h tð Þð Þ _/ tð Þ

� 
2

þglpMp sin h tð Þð Þ
� �

J2p sin
2 h tð Þð Þ þ JpJeq � r2l2pMp2 cos2 h tð Þð Þ

�
Jp rlpMp sin h tð Þð Þ _h tð Þ

� 
2

þ2Jp _/ tð Þ
� 


cos h tð Þð Þ sin h tð Þð Þ _h tð Þ
� 


� soutput

� �

J2p sin
2 h tð Þð Þ þ JpJeq � r2l2pMp2 cos2 h tð Þð Þ

€h tð Þ ¼
Jp cos h tð Þð Þ sin h tð Þð Þ _/ tð Þ

� 
2

þglpMp sin h tð Þð Þ
� �

	 Jp sin
2 h tð Þð Þ þ Jeq

� �

J2p sin
2 h tð Þð Þ þ JpJeq � r2l2pMp2 cos2 h tð Þð Þ

�
Jp rlpMp sin h tð Þð Þ _h tð Þ

� 
2

þ2Jp _/ tð Þ
� 


cos h tð Þð Þ sin h tð Þð Þ _h tð Þ
� 


� soutput

� �

J2p sin
2 h tð Þð Þ þ JpJeq � r2l2pMp2 cos2 h tð Þð Þ

ð20Þ
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By defining

x1 tð Þ ¼ / tð Þ; x2 tð Þ ¼ _/ tð Þ; x3 tð Þ ¼ h tð Þ; x4 tð Þ ¼ _h tð Þ

and then employing forward Euler approach, a discrete

time approximation of a state-space form of the differential

equation system in (20) can be obtained with DT ¼
tkþ1 � tk in the following form

xkþ1
1 ¼xk1 þ DT 	 xk2
xkþ1
2 ¼xk2 þ DT 	 a� bð Þ
xkþ1
3 ¼xk3 þ DT 	 xk4
xkþ1
4 ¼xk4 þ DT 	 q� rð Þ

ð21Þ

Herein a; b; q; and r are defined as:

a ¼
rlpMp cos xk3

� �

	 Jp cos xk3
� �

sin xk3
� �

xk2
� �2þglpMp sin xk3

� �

h i

J2p sin
2 xk3
� �

þ JpJeq � r2l2pMp2 cos2 xk3
� �

b ¼
Jp rlpMp sin xk3

� �

xk4
� �2þ2Jp xk2

� �

cos xk3
� �

sin xk3
� �

xk4
� �

� soutput
h i

J2p sin
2 xk3
� �

þ JpJeq � r2l2pMp2 cos2 xk3
� �

q ¼
Jp cos xk3

� �

sin xk3
� �

xk2
� �2þglpMp sin xk3

� �

h i

	 Jp sin
2 xk3
� �� �

þ Jeq
� �

J2p sin
2 xk3
� �

þ JpJeq � r2l2pMp2 cos2 xk3
� �

r ¼
rlpMp cos xk3

� �

rlpMp sin xk3
� �

xk4
� �2þ2Jp xk2

� �

cos xk3
� �

sin xk3
� �

xk4
� �

� soutput
h i

J2p sin
2ðxk3Þ þ JpJeq � r2l2pMp2 cos2 xk3

� �

It should be noted that the obtained discrete-time plant

model in (21) is linear in the input variable soutput, so it

constitutes an affine model with relative degree 1 as a

special case of the input–output model in (1) that means

that the feedback linearization method presented in (2–8)

for discrete-time nonlinear affine systems is applicable to

control one of the outputs of the ROTPEN. In the appli-

cation presented in the paper, the pendulum angle ðx3 ¼ hÞ
is chosen as the output to be controlled. For a realistic

control, the rotating arm angle ðx1 ¼ /Þ, which is the

second output of the ROTPEN, is to be controlled simul-

taneously. As for the balance controller part in Fig. 5, the

developed LFL-based stable robust adaptive controller is

exerted to control the pendulum angle of the ROTPEN

properly. Owing to the reference arm angle assumed as

constant, e.g., rk/ ¼ 0, the SIMO system might be

Table 1 Definitions of

ROTPEN plant model

parameters and their values

Symbol Definitions (unit) Value

Km Electromotive torque constant of the motor (V=ðrad=sÞ) 0.0333

g Gravity acceleration (kgm2) 9.81

Beq Arm viscous damping (Nms=radÞ 0

Bp Pendulum viscous damping (Nms=radÞ 0

Kt Motor torque constant (NmÞ 0.0333

Rm Armature resistance of the motor (X) 8.7

Vm Motor input voltage (Volt) 0–24

Marm Mass of rotary arm kgð Þ 0.08

Mp Mass of the whole pendulum ‘‘link and weight included’’ ðkg) 0.027

r Length of rotary arm ðm) 0.0826

lp Length of inverted pendulum mð Þ 0.153

Jeq Inertia rotary of rotary arm ðkgm2) 0.000368

Jp Inertia rotary of inverted pendulum ðkgm2) 0.000698

, 

ROTPEN
LFL based 
NARMA

Controller

PD Controller

+
+

+
-

Fig. 5 LFL-based NARMA controller and ROTPEN block diagram
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transformed into a SISO system depicted as a cascade

control scheme borrowed from [36]. Herein, the rotating

arm angle / is controlled by a PD controller. Following the

cascade control structure outlined in [36] and referring to

Fig. 5, PD controller parameters were calculated using

LQR technique [28] as Kp ¼ �1, and Kd ¼ �1:2688 for

our case. The PD controller parameters are set to negative

values. Thus, the balance control of the rotary inverted

pendulum is achieved with the control signal generated by

the developed LFL-based stable robust adaptive controller

for hk in Fig. 5 [37]. In light of the cascaded control

technique, it would be noted that the control of pendulum

angle h is not affected by the speed of the inner loop,

because it responds quite faster than the outer loop [38].

The validity of the above approach of controlling a

single output of a SIMO system by considering it as a SISO

system for the considered output relies on the following

fact. A SIMO system is reduced to a SISO system for the

considered output if this output is associated with the slow

dynamics of the system such that the fast dynamics are

asymptotically stable so tending to the fixed reference

points after their relatively short transient periods. For the

ROTPEN, this can be seen that when fast dynamics asso-

ciated with the rotating arm angle x1 ¼ /ðtÞ is settled

down, so is its change x2 ¼ _/ tð Þ, the slow dynamics

determined by the last two recursions of (21) in terms of
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Fig. 6 a The tracking performance of the developed controller for

pendulum angle h and b developed controller’s control signal

0 2 4 6 8 10
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
lo
se

d
Lo

op
P
ar
am

et
er
s

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10
Time (s)

-4000

-2000

0

2000

4000

6000

8000

C
on

tro
lle

rP
ar
am

et
er
s

c0
c1
c2
c3
c4
c5
d0
d1
d2
d3
d4
d5

6 6.5 7 7.5 8
-500

0

500

                                            (b)

                                            (c)

0 2 4 6 8 10
Time (s)

-300

-200

-100

0

100

200

300

P
la
nt

P
ar
am

et
er
s

a0
a1
a2
a3
a4
b0
b1
b2
b3
b4
b5

0 0.5 1

-100
0

100
200

4 4.5 5
-0.2

0

0.2

(a)

Fig. 7 a Time evolutions of the plant (an,bn), b the closed-loop

(an;bn), and c the controller parameters (cn; dn)
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the pendulum angle x3 ¼ hðtÞ and its change x4 ¼ _h tð Þ
becomes to constitute an affine nonlinear SISO system.

In controlling the pendulum angle by the developed

data-dependent feedback linearization method, (9) and (12)

might be rewritten as (22) and (23), respectively.

1

K

XK�1

s¼0
‘1;e

hk�s
a ;

PN
n¼1 anh

k�s�n

þ
PM

n¼0 bnv
k�s�n

� 	

þ k
a
b

























2

2
ð22Þ

1

L

XL�1

s¼0
‘1;e

rk�s
h ;

P
bN
n¼1 anh

k�s�n

þ
P

bM
n¼0 bnrh

k�s�n

0

@

1

Aþ k
a
b

























2

2

ð23Þ

An energy-based swing-up algorithm is initially used for

the balance control of the pendulum angle ðhÞ at the upright
position. So, the pendulum angle is kept in a nearly linear

range of �0:2618 rad and 0:2618 rad. The swing-up

algorithm computes total energy of the system to use it as a

feedback variable, so the pendulum total energy is driven

to the upright position for reaching the linear range.

Energy-based swing-up controller algorithm is given as in

(24) [35, 39].

uswing ¼ sat#g l E � Edð Þsign _h cos hð Þ
� 
h i

ð24Þ

where uswing is control signal, l is tunable design param-

eter, E is total energy of the system, Ed is total energy of

upright position, and a linear function sat#g saturates uswing
control signal at �

þ#g which # is a design parameter and g

is the gravity acceleration for limiting maximum acceler-

ation of pivot. If the initial condition of h is chosen as

�3:14 rad and the upright position is chosen as 0 rad for h,
the potential and kinetic energy of the algorithm might be

defined as Ep ¼ Mpglpð1þ cosðhÞÞ and Ek ¼ 1
2
Jp _h

2
;

respectively, according to chosen positions, so total energy

becomes E ¼ Ep þ Ek ¼ Mpglp 1þ cos hð Þð Þ þ 1
2
Jp _h

2
: The

potential energy is 0 when pendulum is at �3:14rad and

Ed ¼ 2Mpglp ¼ 0:081J when pendulum is at the upright

position. The # and l are chosen as 1 and 2:5, respectively,

for the ROTPEN model [28, 39]. The swing-up algorithm

is run when out of the linear range while a balance con-

troller algorithm is run in the linear range via switching

mechanism. During all experiments, the pendulum angle h
is plotted as mod h tð Þ; 2pð Þ � p [28].

After the pendulum has swung up, the proposed adaptive

LFL-based NARMA controller takes its place and is

applied to control the ROTPEN model as shown in Fig. 5.

LFL-based NARMA controller, depicted in Fig. 5, consists

Table 2 MSE performance of plant model identification (22) and

tracking error (23) with and without noise for different

e�insensitiveness

e MSE (with noise) MSE (without noise)

0 6:5664� 10�4 3:8650� 10�4

0.0001 5:8711� 10�4 5:2671� 10�4

0.001 6:0399� 10�4 3:8702� 10�4

0.01 6:3071� 10�4 3:9192� 10�4

0.1 5:1436� 10�4 4:3383� 10�4
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Fig. 8 ROTPEN plant model performance evaluation of controllers

Table 3 Comparison of the controller performances in terms of MSE

Controller MSE

LQR 6.5817 9 10-4

Coupled SMC 5.2586 9 10-4

LFL-based NARMA 3.8650 9 10-4

Table 4 Comparison of settling time and overshoot percentage per-

formances of the controllers

Controller Settling time (s) Overshoot percentage (%)

LQR 1.296 - 16

Coupled SMC 1.71 - 9.3

LFL-based NARMA 2.1 0

Table 5 Comparison of performances of the controllers in the pres-

ence of measurement noise and disturbance

Controller MSE

LQR 7.8364 9 10-4

Coupled SMC 6.4334 9 10-4

LFL-based NARMA (epsilon = 0.1) 5.1436 9 10-4
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of an adaptive ARMA controller and a LFL block as pre-

sented in Fig. 1. Here, the LFL block is identified in an

offline manner using x kð Þ and vk as input and uk as output

by a suitable MLP-ANN that possesses 2 hidden layers in

the ‘‘feedforwardnet’’ structure and each of these layers has

10 neurons as described in Sect. 2.1. This MLP-ANN

training has an epoch number of 1000 and 9 s of elapsed

time. Besides, for the sliding window mode of the LFL-

based NARMA controller, also called online (mini-batch)

mode, the identification window of the plant model and the

identification window of the control loop are taken as

K ¼ 5, L ¼ 30, respectively, in (22) and (23). These loss

functions are minimized so that N ¼ M ¼ 5, bN ¼ bM ¼ 10

by using the stochastic gradient descent algorithm bor-

rowed from [40], and the sampling time is set to 0:001s

during the simulation studies. Herein, the learning rate of

stochastic gradient descent is 0.01 for minimization pro-

cesses. As a result of minimization, feedback-linearized

plant parameters a; b and closed-loop system parameters

a; b are found, these parameters are evaluated by using (19)

in an online manner along the sliding window to calculate

the adaptive ARMA controller cm; dm. To test the tracking

performance h angle of the proposed controller, rkh ¼ 0rad

is chosen for h and rk/ ¼ 0rad. Initial value of h is chosen

as - 3.14 rad and initial value of / is chosen as 0 rad.

The results of tracking performance and time evolutions

of the developed LFL-based adaptive controller with

swing-up algorithm and developed LFL-based adaptive

controller signal are depicted for the reference signals in

Fig. 6a and b, respectively. As seen from Fig. 6a, the

developed controller works well for the balance tracking

performance. Time evolutions of the LFL-based linear

plant model, the closed-loop, and the controller parameters

are illustrated for the constant reference signal as 0 rad in

Fig. 7. The value of regularization term as k ¼ 0:05 is

found as the most appropriate value out of the set

0; 10�2; 5� 10�2; 10�1
� �

for the online mode in order to

limit the norm of both plant and controller parameters for

better generalization.

To test the robustness performance of the proposed

LFL-based adaptive controller, a white noise that has a 2

dB ‘‘SNR’’ is applied to the control signal vk in (14) and a

40 dB ‘‘SNR’’ is applied to pendulum angle h via SIMU-

LINK with ‘‘awgn’’ function. The performances of the

tracking error for balance control (23) are presented with

different e-insensitiveness values in terms of the MSE

results with and without noise given in Table 2 where MSE

¼ 1
S

PS
i¼1 e

2 ið Þ defined in terms of S number of samples and

e ið Þ error signal. The eligible e-insensitiveness of the

tracking error might be used as 5:1436� 10�4 and

3:8650� 10�4 in terms of MSE with and without noise,

respectively.

To compare the tracking performance of the proposed

adaptive controller, LQR controller [28] and coupled SMC

[29, 30] are applied to ROTPEN plant model. LQR design

is based on the state feedback control signal u ¼ �Kkx

where x is N � 1 column vector and Kk is 1� N row

vector. The goal is to find an optimum u value that mini-

mizes a quadratic cost function as J ¼
R1
0
ðxTQxþ

uTRuÞdt where Q is chosen as

Q11 0 0 0

0 Q22 0 0

0 0 Q33 0

0 0 0 Q44

2

6

6

4

3

7

7

5

that should be a positive semi definite matrix and R is a

scalar for x= [/;h; _/; _h] of the linearized model of ROTPEN

from [35]. The simulations are implemented with the

parameters given in Table 1 and initial conditions of x ¼
½0;�3:14; 0; 0�:Q and R are chosen as

Table 6 Comparison of performances of the controllers in the pres-

ence of parameter uncertainties

Controller MSE

LQR 6:6802 x 10�4

Coupled SMC 5:5816 x 10�4

LFL-based NARMA 5:4007 x 10�4

Fig. 9 ROTPEN real setup and V-DAQ data acquisition card
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1 0 0 0

0 1162 0 0

0 0 0:913 0

0 0 0 13

2

6

6
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7
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and 1, respectively, so that Kk is found as

�1; 57:0528;�1:3636; 6:8465½ �.
As for the coupled SMC [29, 30], (20) might be written

as

€/ tð Þ ¼ f/ / tð Þ; h tð Þ; _/ tð Þ; _h tð Þ
� 


þ g/ / tð Þ; h tð Þð Þu

€h tð Þ ¼ fh / tð Þ; h tð Þ; _/ tð Þ; _h tð Þ
� 


þ gh / tð Þ; h tð Þð Þu
ð25Þ

and sliding surface s is chosen as coupled sliding surface as

follows

s ¼ sh þ kus/ ð26Þ

where sh is sliding surface for pendulum angle, s/ is sliding

surface for rotary arm angle and state-dependent ku ¼

kcosðhðtÞÞ which has a ku constant coupling parameter in

the following form

sh ¼ _hðtÞ þ chhðtÞ ð27Þ

s/ ¼ _/ðtÞ þ c//ðtÞ ð28Þ
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Fig. 10 a The tracking performance of the developed controller for

pendulum angle h and b developed controller’s control signal
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Fig. 11 a Time evolutions of the plant (an, bn), b the closed-loop

(an;bn) and c the controller parameters (cn; dn)
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where ch and c/ are positive coefficients. The control

law of the coupled SMC (usmc) might be given as follows

usmc

¼
� f h þ ch _hðtÞ þ ku f / þ c/ _/ðtÞ

� 
� 


� ksign sð Þ � _kus/

gh þ kug/

ð29Þ

where k is a positive design parameter and
_ku is time

derivative of ku. c/,ch, k, and ku were chosen as 7.5, 1.5, 3,

and - 0.35, respectively.

Comparisons of the tracking performances of the

developed controller and the other two controllers consid-

ered are given in Fig. 8 LFL-based NARMA controller

provides good performance in terms of MSE as shown in

Table 3. The overshoot percentage of the proposed con-

troller is observed as 0 rad, and it is less than the other

controllers’ overshoot percentage values. The settling time

of the proposed controller is computed as 2.1 s according to

%2 criterion gives a good response as shown [41] in

Table 4. The proposed controller performance might be an

acceptable performance during the transient behavior

because it avoids the swinging motion visible in the

zoomed area in Fig. 8 observed in other controllers.

To compare the performance of the controllers in the

presence of measurement noise and disturbance, white

noise which has a 2 dB ‘‘SNR’’ is applied to the control

signal of LQR, coupled SMC and the developed controllers

and a 40 dB ‘‘SNR’’ is applied to pendulum angle h of them
via SIMULINK with ‘‘awgn’’ function. The obtained

results are given in Table 5 where LFL-based controller

provides the minimum MSE value. In addition to the noise

and disturbance analysis, ten separate simulations are

conducted to evaluate controller performance under

parameter uncertainties. In each run, ± 5% uncertainty is

randomly added to both pendulum mass ðMpÞ and length

ðlpÞ of the ROTPEN system, simulating deviations from the

nominal model. Table 6 presents the average MSE values

across these ten trials. The proposed LFL-based controller

with its adaptive manner seems to perform slightly better

than the coupled SMC and outperforms LQR since the

proposed controller achieves the lowest overall MSE as

shown in Table 6. Furthermore, the achievement of per-

formance close to coupled SMC, which is known for its

robustness to parameter uncertainties, underscores the

significant strength of the proposed method.

3.2 Experiment: real ROTPEN Setup

Real ROTPEN setup is an example of a well-known under-

actuated mechanical system [34, 42–45]. Incompletely

driven mechanical systems are widely used in the field of

robotics, and the main feature of these systems is that they

have fewer actuators than degrees of freedom [46]. The

inverted pendulum possesses unstable and nonlinear

dynamical behaviors inherently. Another important feature

that makes the rotary inverted pendulum more interesting is

that it forms the basis of many new technologies such as

seismometers, humanoid robots, unmanned air vehicles,

and rockets. The real ROTPEN setup consists of mechan-

ical design, data acquisition card, and software. The

mechanical design of the pendulum is made by SolidWorks

software. A direct current motor Maxon DC-max

B773D74C44771 is used to rotate the ROTPEN arm hor-

izontally. The pendulum is connected to the pendulum arm

by the pivot. Thus, the pendulum will be able to oscillate

easily. AVAGO HEDM-5505-j06 two-channel 1024 reso-

lution encoder is located on the shaft. This encoder is used

to measure the angle of the pendulum with the horizontal
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Fig. 12 ROTPEN real plant performance evaluation of the controllers

Table 7 Comparison of the controller performances in terms of MSE

Controller MSE

LQR 32x10�4

Coupled sliding mode 34x10�4

LFL-based NARMA 9:0344x10�4

Table 8 The evaluations of settling time and overshoot percentage in

terms of the controller’s performance

Controller Settling time (s) Overshoot percentage (%)

LQR 5.412 - 13

Coupled sliding mode 6.43 - 8.7

LFL-based NARMA 5.174 - 2.6

Neural Computing and Applications

123



plane and to implement the control system. The end of the

L-shaped pendulum arm is mounted on the shaft of the dc

motor. Due to the circular rotation of the motor shaft, the

pendulum arm can be moved clockwise and counter-

clockwise. The angle of the arm is calculated with the

encoder mounted on the motor. A rotating arm in a hori-

zontal axis and a rotating pendulum which is mounted on

arm, in a vertical plane take part in the rotary inverted

pendulum [42–44]. The final version of the successful

ROTPEN setup is given in Fig. 9. For ROTPEN setup, the

encoder reading for h angle is set to be the same as the

simulation,�3:14rad initial condition as updown position

and 0rad as upright position. Theta encoder is set to 0rad

for initial condition. The proposed controller is tested on

ROTPEN real plant via real-time desktop interface of

SIMULINK environment [47].

To test the tracking performance of the proposed

adaptive controller, it is used together with the swing-up

algorithm described in the subSect. 3.1. The feedback-

linearized plant model and the closed-loop system model

have N ¼ M ¼ 5, and bN ¼ bM ¼ 10 degrees, respectively.

For the online sliding window mode, the plant model

identification window and the closed-loop identification

window are taken as K ¼ 5, L ¼ 30 for (22) and (23),

respectively. The loss functions are minimized with the

stochastic gradient descent algorithm borrowed from [40],

and the sampling time is chosen as 0.001 s. In order to test

tracking performance hangle of the proposed controller,

rkh ¼ 0rad is chosen for hangle (pendulum upright posi-

tion). Herein, the parameters initial values are determined

for the online mode after running a batch mode. k ¼ 0:05 is

found the best as the regularization term out of the set

0; 10�2; 5� 10�2; 10�2; 10�1
� �

. The results of tracking

performance and time evolutions of the developed LFL-

based adaptive controller and its signal are depicted for the

reference signal in Fig. 10a and b, respectively. Time

evolutions of the proposed LFL-based adaptive controller

for the considered plant, closed-loop, and the developed

controller parameters are depicted in Fig. 11a, b, and c,

respectively.

In order to compare the performance of the LQR, cou-

pled SMC, and the proposed controllers are applied to

ROTPEN real plant. The comparison of the performances

of the controllers is given in Fig. 12. LFL-based NARMA

controller provides lower error than the other controllers

according to the MSE error as shown in Table 7. Accord-

ing to Table 8, the overshoot percentage of the proposed

controller is observed as - 2.6% which is better than the

other controllers. The 5.174 s settling time of the proposed

controller that is found for the proposed controller is better

than the other controllers.

4 Conclusions

This paper proposes a novel data-dependent NARMA

controller for nonlinear affine systems. The controller

parameters are adaptively learned using a sliding window

approach. It builds on a previous work for linear systems

[23] by extending it to nonlinear affine systems based on

the data-dependent implementation of input–output feed-

back linearization. Firstly, the offline input–output feed-

back linearization is cascaded to the nonlinear plant to

form a linear augmented plant. Subsequently, an online

identification process takes place within the sliding win-

dow, modeling both the augmented plant, and the overall

closed-loop system as linear ARMA models. The controller

parameters are determined by considering Schur stability

constraints during the closed-loop identification phase,

guaranteeing the stability of the entire control system.

Furthermore, the e-insensitive ‘1;e �; �ð Þ loss function,

employed for minimizing identification and tracking errors

in the online learning algorithms, contributes to the

NARMA controller’s robustness against noise, distur-

bances, and modeling errors.

The rationale behind the usage of the proposed data-

dependent control method based on the artificial neural

networks-based approximate feedback linearization lies on

the following facts. (1) Not all of the plants have well-

defined realistic mathematical models that reflect the

effects of all intrinsic nonlinearities, noise, disturbances,

and parameter changes. So, there is a need to develop and

implement data-dependent control methods that work with

measurement data. (2) Usage of learning algorithms pro-

vides ways to determine the parameters of the identification

model and also the controller model’s parameters in an

offline and also online manner. (3) Artificial neural net-

works with their universal approximation properties pro-

vide good candidates with the features such as being

realistic, robust, and adaptive both for plant identification

and controller models. (4) The performance of the data-

dependent nonlinear controller design methods is generally

lower than those of the linear ones. So, employing the

feedback linearization first and then applying a data-de-

pendent linear controller design method might be a viable

approach that is also followed in the presented work.

The proposed NARMA controller is tested on a simu-

lated ROTPEN model and on a real setup for angular

pendulum position. Its performance is compared to those of

LQR and coupled SMC. The proposed NARMA controller

is observed to be superior in comparison with the other two

controllers in terms of overshoot percentage and tracking

performance in MSE.

The application of the developed NARMA controller is

by no means restricted to ROTPEN and has the potential of

Neural Computing and Applications

123



being used for controlling a large class of SISO nonlinear

plants. As future works, the NARMA controller

scheme developed for nonlinear SISO plants can be

extended into multi–input–multi–output plants which

might be non-affine. Developing methods for automatic

determination of the sizes of sliding windows in online

learning of the parameters of the augmented plant model

and controller and investigation of the effects of the sliding

window sizes in the tracking performance of the proposed

NARMA controller are among possible future research

subjects.
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