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Abstract
The goal of a speech-to-image transform is to produce a photo-realistic picture directly from a speech signal. Current

approaches are based on a stacked modular framework that suffers from three vital issues: (1) Training separate networks is

time-consuming, inefficient and the convergence of the final generative model depends on the previous generators; (2) The

quality of precursor images is ignored; (3) Multiple discriminator networks need to be trained. We propose an efficient and

effective single-stage framework called Fusion-S2iGan to yield perceptually plausible and semantically consistent image

samples on the basis of spoken descriptions. Fusion-S2iGan introduces a visual?speech fusion module (VSFM), with a

pixel-attention module (PAM), a speech-modulation module (SMM) and a weighted-fusion module (WFM), to inject the

speech embedding from a speech encoder into the generator while improving the quality of synthesized pictures. The PAM

module models the semantic affinities between pixel regions and by assigning larger weights to significant locations. The

VSFM module adopts SMM to modulate visual feature maps using fine-grained linguistic cues present in the speech vector.

Subsequently, the weighted-fusion model (WFM) captures the semantic importance of the image-attention mask and the

speech-modulation module at the level of the channels, in an adaptive manner. Fusion-S2iGan spreads the bimodal

information over all layers of the generator network to reinforce the visual feature maps at various hierarchical levels in the

architecture. A series of experiments is conducted on four benchmark data sets: CUB birds, Oxford-102, Flickr8k and

Places-subset. Results demonstrate the superiority of Fusion-S2iGan compared to the state-of-the-art models with a multi-

stage architecture and a performance level that is close to traditional text-to-image approaches.
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1 Introduction

The task of speech-to-image generation aims to automati-

cally yield photo-realistic and semantically consistent

photographs directly from given speech signals. In recent

years, this topic has drawn rapidly growing interest from

multidisciplinary communities. It can be potentially used in

a wealth of real-world applications, such as creating novel,

visually interesting photos providing ideas for visual

artists, photograph editing according to the spoken

description, generating new data in machine learning [1],

when augmentation is needed in training, e.g.,, classifier,

and helping disabled persons produce pictures.

The availability of a speech-to-image transform would

allow for an AI system to check the visual implications of a

spoken narrative.

We think that research on synthetic-image generation

directly from speech audio may provide a way of looking

into the problems that the human brain is confronted with

when forming a visual association on the basis of speech

input. Note that in this task, an intermediate textual rep-

resentation can be avoided (learning to read text happens at

a much later stage, in children). In traditional AI, the

abstract symbolic nature of text is considered to be an

essential property and the pinnacle of intelligent informa-

tion processing. However, the assumption that decoded

speech (‘recognized text’) is a necessity for image

& Zhenxing Zhang

z.zhang@rug.nl

Lambert Schomaker

l.r.b.schomaker@rug.nl

1 Bernoulli Institute, University of Groningen, Groningen, The

Netherlands

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-09618-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2887-9873
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09618-w&amp;domain=pdf
https://doi.org/10.1007/s00521-024-09618-w


generation has not been proven. From the point of view of

deep machine learning, there is no strict necessity to rely

on an intermediate symbolic text code. Vectorial repre-

sentations may also be suitable for abstract representations,

as has been shown extensively in recent years [2].

The task of speech-to image generation has a variety of

advantages over text-to-image synthesis [3, 4], whose goal

is to produce high-resolution image samples semantically

aligning with input natural-language descriptions.

Firstly, spoken language may play a more advanced role

in controlling and directing an image-generation process

than the text modality. Compared to encoded text, speech

signals contain, in addition to the pertinent phonemes, rich

characteristics that can be roughly divided into timbre,

prosody, rhythm, intonation, stressed components, etcetera

[5, 6]. Prosody allows speakers to express the attitude and

emotional states, providing key non-verbal cues that help

the listener to understand the spoken description [7]. For

instance, when a person says: ‘There is a fire’ in a neutral

or falling intonation, it is probable that the fire is not big.

However, if the speaker says the same sentence in a sharp

intonation, then it may be more likely that this is a case of a

large, risky fire. The example shows that text alone may not

be sufficient to convey subtleties of the speaker’s intention.

It is possible to introduce non-verbal cues, e.g.,, emotional

features, for conditional-image synthesis. Incorporating

prosody information into the design of picture-generation

systems can also be beneficial in applications, where users

can influence desired photographs by adjusting the into-

nation of the speech probe. Since current text-to-speech

synthesis models with deep-learning techniques allow for

prosody modulation [8], synthesizing pictures on the basis

of emotional features and linguistic information of speech

signals should be feasible.

Secondly, the auditory modality is the most commonly

used and natural way for humans to communicate infor-

mation with each other in daily life, while written-form

language is more slow and elaborate. For these reasons,

compact speech-to-image generation systems may become

interesting in comparison to a pipeline of a speech-recog-

nizer followed by a standard text-to-image algorithm.

Thirdly, there are about 3500 languages lacking

orthography or written form [9], which makes it impossible

to train a text-to-image synthesis model for these languages

and thus text-to-image systems cannot benefit these popu-

lations. Since acquiring speech signals is relatively easy

and not limited by languages, an adequate speech-to-image

generation architecture can be designed for these popula-

tions. This may be interesting in language research in the

humanities. The presence of such tools would allow for an

immediate inspection of the correspondence between spo-

ken description and the generated image, by subjects and

scholars.

In summary, spoken descriptions are suitable to

explicitly and accurately describe an image using linguistic

and emotional information, and researching speech-to-im-

age synthesis has practical and scientific implications.

Nevertheless, speech-to-image generation remains a con-

siderably challenging cross-modal task. Different from

textual descriptions, a speech signal is not discrete but

continuous, lacking regular breaks between words, i.e., the

spaces in the written-form text. This characteristic will

make it difficult for the model to grasp the linguistic

information of spoken captions of photographs and pictures

while learning the corresponding embeddings.

We are not the first to attempt to translate speech signals

into high-resolution pictures directly. For example, Li et al.

[10] introduced a multi-stage speech-to-image GAN

architecture to produce photo-realistic pictures semanti-

cally correlated with the input spoken description. In order

to better capture the linguistic information, the researchers

adopted a well-trained image encoder as a ‘teacher’ to train

the speech encoder from scratch. Wang et al. [9] designed a

new speech-embedding network (SEN) to obtain the

speech vector. Furthermore, a relation-supervised densely-

stacked generative model is developed to yield high-quality

photographs.

These speech-to-image GAN models adopt a multi-stage

framework (see Fig. 1a), where several generators and

discriminators are employed to produce visually plausible

samples. Although this architecture has now acquired

promising results in the speech-to-image generation task,

there still exist three vital problems. First, this framework

entails training separate networks and is therefore ineffi-

cient as well as time-consuming [4]. Even worse, it is

difficult for the final generator to output perceptually

realistic photographs when the earlier generator networks

do not converge to a global optimum [3, 11–13]. Second,

the quality of the outputs of the previous generator net-

works [14] is ignored by this architecture. Contextual

vectors are not used to enhance and modulate the visual

feature maps in the generator for precursor images, which

comprises up-sampling operations and convolutional layers

[3]. Third, several discriminator networks are required to

be trained.

In recent years, we have proposed two novel single-

stage text-to-image GAN models, i.e., DTGAN [3] and

DiverGAN [4], to address the above-mentioned issues of a

multi-stage architecture. Both DTGAN and DiverGAN are

capable of adopting a single generator/discriminator pair to

produce photo-realistic and semantically correlated image

samples on the basis of given natural-language descrip-

tions. In DTGAN, dual-attention models, conditional

adaptive instance-layer normalization and a new type of

visual loss were presented. In DiverGAN, the sentence-

level attention models introduced in DTGAN were
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extended to word-level attention modules, to better control

an image-generation process using word features. More-

over, we proposed to insert a dense layer into the pipeline

to address the lack-of-diversity problem present in current

single-stage text-to-image GAN models. Inspired by these

previous works and aiming to address the limitations of a

stacked framework, our research introduces a visual?-

speech fusion module and incorporates several effective

loss functions. These advancements collectively contribute

to a novel single-stage speech-to-image architecture.

Looking at recent publications on text-to-image gener-

ation [15–17], it is clear that this field has become a

thriving area of research. Despite the significant progress

made by models like the OpenAI ’Dall-E 2’ [16] and the

stable diffusion model [15] in producing high-quality

images, these achievements often come at the cost of

requiring billions of images and hundreds of GPU hours for

training [15]. Additionally, generating images based on

speech descriptions with these models necessitates the

extra step of translating speech into text. In contrast, our

model offers a direct approach to generating images from

speech, while being trained on smaller data sets. This

highlights the potential for efficient and effective image

generation directly from speech inputs, even with limited

training data and using a common single-GPU platform.

The contributions of this paper can be summarized as

follows:

• We present a novel effective and efficient single-stage

architecture called Fusion-S2iGan (see Fig. 1b) for

speech-to-image transforms, which is capable of pro-

ducing high-quality and semantically consistent pic-

tures only using a generator/discriminator pair.

• A visual?speech fusion module (VSFM) is designed to

effectively feed the speech information from a speech

encoder to the neural network while improving the

quality of generated photographs. More importantly, we

spread the bimodal information over almost all layers of

the generator. This allows for an influence of the speech

over features at various hierarchical levels in the

architecture, from crude early features to abstract late

features.

• To the best of our knowledge, we are the first to apply

(1) the hinge loss, (2) deep attentional multimodal

similarity model (DAMSM) loss and (3) matching-

aware zero-centered gradient penalty (MA-GP) loss in

speech-to-image generation, which are beneficial for

the convergence and stability of the generative model.

• Extensive experiments are carried out on four bench-

mark data sets, i.e., CUB bird [18], Oxford-102 [19],

Flickr8k [20] and Places-subset [21]. The experimental

results suggest that the proposed Fusion-S2iGan has the

capacity to yield better pictures than current multi-stage

speech-to-image GAN models such as StackGAN??

[22], Li et al. [10] and S2IGAN [9].

• We explore how far can current single-stage text-to-

image methods be used for the speech-to-image trans-

form task, which is depicted in Sect. 5.4.3.

Fig. 1 The comparison between the stacked framework and the

proposed architecture. The multi-stage pipeline (a) entails training

separate generators to obtain high-quality samples. The presented

Fusion-S2iGan (b) is capable of producing visually plausible pictures

only employing a single generator/discriminator pair. In (a), G0-G2

are generators and D0-D2 are discriminators. In (b), B0-B6 are the

dual-residual speech-visual fusion blocks discussed in Sect. 4, and

G and D are the generator network and discriminator network,

respectively
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The remainder of this paper is organized as follows. Sec-

tion 2 reviews related works. In Sect. 4, the architecture of

the proposed Fusion-S2iGan is introduced in detail. In

Sect. 4.2, we elaborate on the presented visual?speech

fusion module. Experimental settings are discussed in

Sect. 5 and results are reported in Sects. 5.2, 5.3 and 5.4.

Section 6 draws the conclusions.

2 Related works

In this section, research fields related to our work are

described, including CGAN in text-to-image generation

and speech-audio-to-image synthesis.

2.1 CGAN in text-to-image generation

Text-to-image generation aims to automatically produce

visually plausible and semantically consistent image sam-

ples, given natural-language descriptions. Many text-to-

image synthesis approaches are built upon the original

conditional generative adversarial network (cGAN) [23]

due to its appealing performance. A cGAN-based text-to-

image synthesis architecture is composed of a generator

and a discriminator, that are trained to competing goals.

The generator model takes a random latent vector and

textual vectors as the inputs while outputting the corre-

sponding photograph, attempting to approximate the text-

conditioned data distribution. In the meantime, the dis-

criminator network learns to separate the real text-image

pair from the fake text-image pair. We roughly group them

into two categories in terms of the number of the generators

and the discriminators they use.

2.1.1 Multi-stage models

Zhang et al. [22] suggested employing several generators

and discriminators to boost image quality and semantic

relevance while presenting the first multi-stage text-to-

image generation framework named StackGAN. Stack-

GAN serves as a strong basis for the future research. Xu

et al. [24] proposed to incorporate a spatial-attention

module into the design of a stacked architecture, in order to

better bridge the semantic gap between vision and lan-

guage. Qiao et al. [25] developed MirrorGAN that intro-

duced an image-to-text model to ensure that synthesized

pictures are semantically related to given textual descrip-

tions. Zhu et al. [14] built DMGAN where a dynamic-

memory module is applied to enhance the image quality in

the initial stage. CPGAN [26] designed a memory structure

to parse the produced image in an object-wise manner and

introduced a conditional discriminator to promote the

semantic alignment of text-image pairs.

2.1.2 Single-stage methods

Reed et al. [27] were the first to use a single generator/

discriminator pair to yield samples on the basis of natural-

language descriptions. However, the resolution of gener-

ated pictures is limited owing to the unstable training

process as well as the lack of an effective structure. Tao

et al. [28] developed a matching-aware zero-centered gra-

dient penalty loss to help stabilize the training and improve

the image quality of a single-stage text-to-image GAN

model. Zhang et al. [3] presented DTGAN, in which dual-

attention models, conditional adaptive instance-layer nor-

malization and a new type of visual loss are designed to

generate perceptually realistic images only using a single

generator/discriminator pair. Zhang et al. [4] proposed

DiverGAN inserting a dense layer into the pipeline to

address the lack-of-diversity problem present in current

single-stage text-to-image GAN models. Zhang et al. [29]

introduced linear-interpolation and triangular-interpolation

techniques to explain the single-stage text-to-image GAN

model. Moreover, a Good/Bad data set was created to

select successfully generated images and corresponding

good latent codes.

2.2 Speech-audio-to-image synthesis

With the recent rapid advances in generative-adversarial

networks (GANs) [30] and conditional GANs (cGANs)

[23], speech-to-image generation has made promising

advances in image quality and semantic consistency when

given speech-audio signals as inputs. Various studies

focused on synthesizing images conditioned on the sound

of music. Chen et al. [31] made the first attempt to use the

cGAN to produce samples on the basis of music audio. In

addition, an image-to-sound network is introduced to syn-

thesize music according to instrument pictures. Hao et al.

[32] presented a unified architecture (CMCGAN) for

audio-visual mutual synthesis. Specifically, CMCGAN

incorporated audio-to-visual, audio-to-audio, visual-to-au-

dio and visual-to-visual networks into the pipeline for

cyclic consistency and better convenience.

Some publications tried to reconstruct a facial pho-

tograph from a short audio segment of speech. Duarte et al.

[33] proposed an end-to-end speech-to-face GAN model

called Wav2Pix, which has the ability to synthesize diverse

and promising face pictures according to a raw speech

signal. Oh et al. [34] developed a reconstructive speech-to-

face architecture named Speech2Face that contains a voice

encoder and a pre-trained face decoder network. The

encoder is used to extract face information from the given

speech and the decoder aims to reconstruct a realistic face

sample.
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Different from the above approaches, several papers

aimed at translating a spoken description of an image into a

high-quality picture directly. Li et al. [10] attempted to

apply a multi-stage speech-to-image GAN model to yield

perceptually plausible pictures semantically correlated with

input speech-audio descriptions. To better acquire the

speech embedding, the researchers used a well-trained

image encoder as a ‘teacher’ to train the speech encoder

from scratch. Wang et al. [9] proposed S2IGAN where a

speech-embedding network (SEN) was designed to obtain

the spoken vector and a matching loss and a distinctive loss

were presented to train SEN. In addition, a relation-su-

pervised densely-stacked generative model is introduced to

produce high-resolution images.

This paper focuses on solving the task of speech-to-

image synthesis. In contrast to previous works, our

approach aims to generate high-quality images from spo-

ken descriptions, leveraging only a single generator/dis-

criminator pair.

3 Preliminaries

3.1 Conditional generative adversarial network
(CGAN)

A CGAN is an advanced version of the GAN, using con-

ditional contexts, such as class labels, textual descriptions,

and low-resolution images, in combination with random

code as the inputs for G. G yields samples that are corre-

lated with the given conditional contexts, and the aim of D

is to distinguish the real pair (x, c) from the fake pair

(G(z, c), c). Specifically, the objective V(G, D) of a CGAN

can be formulated as follows:

min
G

max
D

VðG;DÞ ¼ Ex� pdataðxÞ logDðx; cÞ½ �þ

Ez� pzðzÞ;c� pcðcÞ logð1� DðGðz; cÞ; cÞÞ½ �
ð1Þ

where pcðcÞ is the distribution of c.

The goal of speech-to-image generation is to yield

perceptually plausible samples that are semantically cor-

related with the linguistic content of input spoken

descriptions. Mathematically, let fðIi; SiÞgni¼1 represent a

suite of n image-spoken caption pairs for training, where Ii
indicates an image and Si ¼ ðs1i ; s2i ; :::; ski Þ refers to a set of

k speech-audio descriptions of Ii. The generator of a

speech-to-image GAN model aims to synthesize a high-

resolution and semantically related picture Îi on the basis

of a speech signal si randomly picked from Si. In the

meantime, the discriminator is trained to separate the real

image-speech pair ðIi; siÞ from the fake image-speech pair

ðÎi; siÞ.

3.2 Scaled dot-product attention

In general, an attention function takes a query qi 2 Rd and

a set of key-value pairs as the inputs, and then generates a

weighted sum of the values. The weight assigned to each

value is determined by a softmax function applied to the

dot product between the query and all keys. The method for

computing attention weights can be defined as follows:

Attentionðqi;K;VÞ ¼ Softmax
Dðqi;KTÞ

ffiffiffi

d
p

� �

V ð2Þ

where Dð�Þ represents the dot-product operation and Soft-

max denotes the softmax function.

K ¼ ðk1; k2; :::; knÞ; ki 2 Rd, and V ¼ ðv1; v2; :::; vnÞ; vi 2
Rd are the keys and the values, respectively. 1

ffiffi

d
p refers to the

scaling factor.

4 The proposed approach

In this section, we discuss the overall architecture of

DiverGAN, which can be seen in Fig. 2. After that, a

module called visual?speech fusion module (VSFM) is

presented as a means of efficiently and effectively com-

bining visual feature maps with the global speech embed-

ding, resulting in high-resolution images. Subsequently, we

describe the loss functions used to train our network.

4.1 Overall architecture

The overall framework of Fusion-S2iGan for a speech-to-

image transform is presented in Fig. 2. The architecture

only consists of a generator and a discriminator. Next, we

introduce these two components one by one.

4.1.1 Generator

The generator is able to project a speech signal into a

photo-realistic and semantically consistent picture, shown

in Fig. 2a. More specifically, the generator network is

composed of a dense layer transforming a latent code to the

initial feature map and seven dual-residual speech-visual

fusion blocks modulating the visual feature map with the

spoken vector derived from a speech encoder. The speech

encoder is employed to learn the semantic representation

and conceptual meaning of a given spoken description that

capture the discriminative visual details [35].

The designed dual-residual speech-visual fusion block

(see Fig. 2c) contains two effective and efficient
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visual?speech fusion modules (VSFM) (see Fig. 2d) as

well as a suite of ReLU activation functions and convo-

lutional layers. Each VSFM comprises Batch Normaliza-

tion (BN) [36], a pixel-attention module (PAM), a speech-

modulation module (SMM) and a weighted-fusion module

(WFM). The dual-residual speech-visual fusion block

allows us to easily enhance model capacity by effectively

increasing the number of layers, while also stabilizing the

training process by maintaining more original features than

cascade structures. Benefiting from such dual-residual

speech-visual fusion blocks, the generator network has the

ability to yield high-quality pictures. The process of syn-

thesizing photographs on the basis of a speech signal is

formulated as follows:

h0 ¼ F0ðzÞ ð3Þ

h1 ¼ FDual
1 ðh0; sÞ ð4Þ

hi ¼ FDual
i ðhi�1 "; sÞ for i ¼ 2; 3; :::; 7 ð5Þ

o ¼ Gcðh7Þ ð6Þ

where z is a latent vector randomly sampled from the

normal distribution, F0 is a dense layer, s is the speech

embedding from a speech encoder, FDual
i is the presented

dual-residual speech-visual fusion block and Gc is the last

convolutional layer. The details of the proposed

visual?speech fusion module will be discussed in

Sect. 4.2.

4.1.2 Discriminator

The architecture of the discriminator network comprises an

image encoder, a pre-trained speech encoder and a condi-

tional discriminator network, depicted in Fig. 2b. The

choice of the hyper-parameters in the discriminator is

based on our earlier work [3], but textual features are

replaced with speech embeddings. To be specific, the

image encoder is constructed with one convolutional layer

with strides 1 kernel size 3 padding 1 followed by six

adaptively successive residual blocks. Each block consists

of two convolutional layers, where the first layer with

strides 2 kernel size 4 padding 1 is used to reduce the

Fig. 2 The overall framework of the proposed Fusion-S2iGan. FC is a

dense layer, Conv is a convolutional layer, ReLU is a ReLU activation

function and BN is a Batch-Normalization operation. Additionally,

Residual Block and Fusion Module refer to the presented dual-

residual speech-visual fusion block (see (c)) discussed in Sect. 4.1.1

and visual?speech fusion module (see (d)) discussed in Sect. 4.2,

respectively. Furthermore, PAM, SMM and WFM in (d) represent the
pixel-attention module, speech-modulation module and weighted-

fusion module, respectively, discussed in Sect. 4.2. Note that we do

not plot the up-sample layers between Residual Blocks in (a) due to

the limited space

Neural Computing and Applications

123



dimension to half of the input feature map and the second

one with strides 1 kernel size 3 padding 1 aims to further

distill image features. After each convolutional layer,

Leaky-ReLU activation [37] with a slope of 0.2 is utilized

to help the training. The number of filters for residual

blocks are 64 128 256 512 1024 1024, respectively. In

order to stabilize the learning, we incorporate a residual

connection into each block. In the process of training, a

picture is fed into the image encoder to extract the image

features (1024, 4, 4) which are combined with the spoken

vector from the speech encoder as the joint embeddings,

with a dimension of (2048, 4, 4). After that, the joint fea-

tures are passed through the conditional discriminator to

gain the final conditional score, which is utilized to

determine whether the input image-spoken caption pair is

real or fake.

4.2 Visual1speech fusion module

It is widely known that the semantic relationships between

the visual content of photographs and images and the

corresponding conditional contexts, e.g.,, class labels and

textual descriptions, play a significant role in an image-

generation process. However, this correlation will be more

complicated for speech-to-image synthesis, since the

speech signal is long and continuous, lacking word

boundaries, i.e., the spaces in natural-language descrip-

tions. It is thus very difficult to model the affinities between

the linguistic content of spoken descriptions and the visible

objects. Moreover, word-level modulation modules fail to

fuse spoke information and visual feature maps due to the

continuity of speech signals. In this case, a crucial problem

is most clearly present for researchers: how to effectively

inject the information from a spoken probe into a neural

network which has a large 2D color image as its output?

The input speech signal needs to be converted to the

global speech vector similar to the sentence embedding [3]

and then can be made to modulate feature maps in the

network. In this section, we develop an effective and effi-

cient visual?speech fusion module (VSFM) to facilitate

the visual feature maps with the global speech embedding

and yield high-resolution pictures.

4.2.1 Overall architecture

The framework of the proposed visual?speech fusion

module is shown in Fig. 2d. Given an intermediate feature

map F 2 RC�H�W and the speech vector s 2 RD from a

speech encoder as inputs, the process of the VSFM is

composed of three steps:

1. The VSFM first applies Batch Normalization (BN) [36]

on F, acquiring a new feature map F0 2 RC�H�W . This

may help stabilize the learning of the conditional

generative adversarial network (cGAN) and accelerate

the training process.

2. F0 2 RC�H�W is refined using the pixel-attention

module (PAM) Mp and speech-modulation module

(SMM) Ms, respectively.

3. The VSFM effectively fuses their outputs MpðF0Þ 2
RC�H�W and MsðF0; sÞ 2 RC�H�W using the weighted-

fusion module (WFM) Mf . Meanwhile, a residual

connection is employed to get the final enhanced result

F00 2 RC�H�W .

Note that we spread the bimodal information of the VSFM

over all layers of the generator network. This allows for an

influence of the speech over features at various hierarchical

levels in the architecture, from crude early features to

abstract late features. The overall process of the VSFM can

be formulated as follows:

F0 ¼ BNðFÞ ð7Þ

F00 ¼ F0 þMf ðMpðF0Þ;MsðF0; sÞÞ ð8Þ

where BN indicates a Batch-Normalization operation. The

details of PAM, SMM and WFM will be described in the

following subsections.

4.2.2 Pixel-attention module (PAM)

Pictures and photographs consist of visual pixels which are

considerably significant for image quality. Learning the

long-range contextual dependency of each position of a

picture is essential for producing perceptually plausible

samples. However, convolutional operations can only grasp

local relationships between spatial contexts and thus fail to

‘see’ the entire image field. Hence, the pixel-attention

module (PAM) is introduced to effectively model the

spatial affinities between visual pixels and enable crucial

and informative positions to receive more attention from

the generator.

Figure 3 illustrates the process of the pixel-attention

module (PAM). For a feature map F0 2 RC�H�W , we first

feed it into a 3� 3 convolutional layer followed with BN

and a ReLU function to reduce the channel dimension to

RC=r�H�W . This may integrate and strength the visual

feature map across the channel and spatial directions.

Subsequently, we use a 1� 1 convolutional layer followed

with the sigmoid function to process the features to obtain

the pixel-attention map PA 2 R1�H�W . Mathematically,

PA ¼ rðf 1�1
1 ðReLUðBNðf 3�3

0 ðF0ÞÞÞÞÞ ð9Þ

where f is a convolutional layer, ReLU is the ReLU func-

tion and r is the sigmoid function. We conduct a matrix

multiplication between the original feature map F0 2
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RC�H�W and the spatial-attention map PA 2 R1�H�W to

acquire the refined result. Specifically,

MpðF0Þ ¼ F0 � PA ð10Þ

where � is the element-wise multiplication.

4.2.3 Speech-modulation module (SMM)

An adequate modulation method needs to be developed to

ensure the semantic consistency and quality of synthesized

photographs [4]. To this end, the speech-modulation

module (SMM) is introduced to inject the features derived

from the speech signal into the network at the proper points

in the network architecture.

Inspired by [28], SMM facilitates the visual feature map

using detailed linguistic cues captured from the speech

embedding s. To be specific, we adopt two dense layers to

project s into the linguistic cues WA 2 RC�1�1 and

BA 2 RC�1�1. After that,WA and BA are employed to scale

and shift F0. The process of SMM can be defined as

follows:

WA ¼ MLPðReLUðMLPðsÞÞÞ ð11Þ

BA ¼ MLPðReLUðMLPðsÞÞÞ ð12Þ

MsðF0Þ ¼ F0 �WAþ BA ð13Þ

where MLP is a fully-connected perceptron layer and

MsðF0Þ is the output from SMM.

4.2.4 Weighted-fusion module (WFM)

We do not simply fuse the attended and enhanced visual

feature maps from PAM and SMM using an addition or

element-wise multiplication, since pixels and speech sig-

nals refer to two very different modalities and need to be

combined in a more advanced manner. Here, we propose

an efficient weighted-fusion module (WFM) to highlight

the discriminative and significant regions in an adaptive

manner and produce high-quality image samples.

The detailed structure of the weighted-fusion module

(WFM) is depicted in Fig. 4. For the outputs MpðF0Þ and

MsðF0; sÞ from PAM and SMM, respectively, we perform

an element-wise addition between them as a first step,

acquiring an intermediate feature map IF 2 RC�H�W . In

the next step, IF is used to compute the final weights for

both MpðF0Þ and MsðF0; sÞ. More specifically, we employ

global-average pooling (GAP) to process IF to aggregate

holistic and discriminative information, thereby obtaining a

channel-feature vector IF0 2 RC�1�1. Subsequently, we

feed IF0 into two fully-connected perceptron layers, in

which the first one is to compress and integrate the channel

features and the other aims to recover the channel dimen-

sion and capture the semantic importance of the image-

attention mask and the speech-modulation module at the

level of the channels. After that, we apply a softmax

function across the channel dimension to get the contex-

tually channel-aware weight matrix WF 2 RC�2. After-

ward, WF is split into two separate channel-wise weight

matrices WF1 2 RC�1 and WF2 2 RC�1. Mathematically,

IF ¼ MpðF0Þ þMsðF0; sÞ ð14Þ

IF0 ¼ GAPðIFÞ ð15Þ

WF ¼ softmaxðMLPðGELUðMLPðIF0ÞÞÞÞ ð16Þ

WF ¼ ½WF1;WF2� ð17Þ

where GAP is the global-average pooling and GELU is the

Gaussian Error Linear Unit (GELU) [38]. WF1 and WF2

are resize into RC�1�1 and applied to MpðF0Þ and MsðF0; sÞ
to get the final fusion result. It is denoted as follows:

Mf ðF0; sÞ ¼ WF1 �MpðF0Þ þWF2 �MsðF0; sÞ ð18Þ

4.3 Objective function

An adversarial loss is employed to match generated sam-

ples to input speech signals. Inspired by [4], we utilize the

hinge objective [39] for stable training instead of the

Fig. 3 Overview of the introduced pixel-attention module, which

aims to assign larger weights to discriminative and informative pixels.

BN and ReLU refer to Batch Normalization and a ReLU activation

function, respectively. 1� 1 conv and 3� 3 conv indicate the 1� 1

and 3� 3 convolutional operation, respectively
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vanilla GAN objective. The adversarial loss for the dis-

criminator is defined as follows:

LD
adv ¼Ex� pdata maxð0; 1� Dðx; sÞÞ½ �

þ 1

2
Ex� pG maxð0; 1þ Dðx̂; sÞÞ½ �

þ 1

2
Ex� pdata maxð0; 1þ Dðx; ŝÞÞ½ �

ð19Þ

where s is a given spoken caption, ŝ is a mismatched

speech-audio description, x is the real image from the

distribution pdata and x̂ is the synthesized sample from the

distribution pG,

To enhance the image quality and semantic consistency

of produced pictures, we adopt the matching-aware zero-

centered gradient penalty (MA-GP) loss [28] for the dis-

criminator, which applies gradient penalty to real images

and input spoken descriptions. The MA-GP Loss is for-

mulated as follows:

LM ¼ Ex� pdata ð rxDðx; sÞk k2þ rsDðx; sÞk k2Þ
p� �

ð20Þ

For the generator, we apply an adversarial loss and a deep

attentional multimodal similarity model (DAMSM) loss

[24] to train the network.

5 Experiments

In this section, a variety of quantitative and qualitative

evaluations are conducted to validate the effectiveness of

the presented Fusion-S2iGan in yielding visually realistic

and semantically consistent images. The evaluations are

carried out on two synthesized spoken caption-image data

sets, namely Oxford-102 [19] and CUB bird [18], as well as

two real spoken caption-image data sets, namely Flickr8k

[20] and Places-subset [21]. Specifically, we describe the

details of experimental settings in Sect. 5.1. Afterward, our

proposed Fusion-S2iGan is compared with previous

CGAN-based approaches for text-to-image generation

using the synthesized data sets in Sect. 5.2. In Sect. 5.3, a

similar comparison is performed using the real speech data

sets. Subsequently, an analysis of the individual contribu-

tions from different components of our Fusion-S2iGan is

conducted in Sect. 5.4.

5.1 Experimental settings

Datasets To evaluate the proposed Fusion-S2iGan, we

perform extensive experiments on two synthesized spoken

caption-image data sets and two real spoken caption-image

data sets, which are employed by Li et al. [10] and

S2IGAN [9].

• CUB bird [18]. The CUB data set includes a total of

11,788 images, which is divided into 8,855 training

pictures and 2,933 testing pictures. Each picture is

accompanied by 10 natural-language descriptions. To

evaluate the task of speech-to-image generation, Li

et al. [10] and S2IGAN [9] transform textual descrip-

tions to spoken captions utilizing a text-to-speech

method such as Tacotron 2 [40].

• CUB bird [18]. The CUB data set includes a total of

11,788 images, which is divided into 8,855 training

pictures and 2,933 testing pictures. Each picture is

accompanied by 10 natural-language descriptions. To

evaluate the task of speech-to-image generation, Li

et al. [10] and S2IGAN [9] transform textual descrip-

tions to spoken captions utilizing a text-to-speech

method such as Tacotron 2 [40]. Oxford-102 [19].

The Oxford-102 data set is composed of 8,189 pictures,

in which 5,878 pictures belong to the training set and

the other 2,311 pictures are used for testing. Each

picture contains 10 textual descriptions, which are

transformed to speech signals in the same way as the

CUB data set.

• Flickr8k [20]. The Flickr8k data set is a more

challenging data set comprising 8,000 scene pictures

and each image is paired with 5 real spoken

Fig. 4 Overview of the proposed weighted-fusion module, which

effectively combines the outputs from the pixel-attention module

(PAM) and speech-modulation module (SMM) in an adaptive

manner. MpðF0Þ and MsðF0; sÞ denote the result of PAM and SMM,

respectively. GAP, MLP and GELU represent the global-average

pooling, fully-connected perceptron layer and Gaussian Error Linear

Unit (GELU) [38], respectively. WF1 and WF2 are the channel-aware

weight matrix. Mf ðF0; sÞ is the final refined result
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descriptions collected by [41]. We split the Flickr8k

data set according to S2IGAN [9].

• Places-subset [21] The Places-subset data set is a subset

of the Places Audio Caption data set [42, 43], which

encompasses real spoken captions of pictures from the

Places 205 data set [21]. It contains a total of 13,803

image-spoken caption pairs belonging to 7 categories,

which are divided into 10,933 training paired data and

2,870 testing paired data.

In summary, two synthesized spoken caption-image data

sets and two real spoken caption-image data set are adopted

to evaluate the proposed Fusion-S2iGan.

Implementation details For the speech encoder, follow-

ing the structure of S2IGAN [9], we use two 1-D convo-

lution blocks, two bidirectional gated recurrent units

(GRUs) and a self-attention module to obtain the speech

embedding. To better capture the semantic representation

of spoken descriptions on the Places-subset data set, we

replace the Inception-V3 [44] pre-trained on ImageNet [45]

in S2IGAN with the ResNet [46] trained on Places 205

[21]. Following the settings of S2IGAN [9], the dimension

of the speech vector is set to 1024. The training of Fusion-

S2iGan is based on our earlier work [3]. Specifically, we

utilize the Adam optimizer [47] with b1 ¼ 0:0 and b2 ¼
0:9 to train the networks. Furthermore, we follow the two

timescale update rule (TTUR) [48] and set the learning

rates for the generator and the discriminator to 0.0001 and

0.0004, respectively. We set the batch size to 32. We

implement Fusion-S2iGan adopting PyTorch [49]. All the

experiments are conducted on a single NVIDIA Tesla

V100 GPU (32 GB memory).

Evaluation metrics We verify the effectiveness of

Fusion-S2iGan by computing the following four exten-

sively employed evaluation metrics:, i.e., the inception

score (IS) [50], Fréchet inception distance (FID) [44] score,

mean Average Precision (mAP) and R(ecall)@50 [9],

which are used by S2IGAN [9]. The first two are to assess

the diversity and perceptual quality, and the last two are to

measure the semantic relevancy between synthesized

samples and their spoken descriptions.

• Inception score (IS) [50]. The IS is obtained by

computing the KL divergence between the conditional

class distribution and the marginal class distribution.

The synthesized pictures are divided into multiple

groups and the IS is calculated on each group of

photographs, then the average and standard deviation of

the score are reported. Higher IS demonstrates better

quality and diversity among the generated images [4].

• Fréchet inception distance (FID) [44]. The FID calcu-

lates the Fréchet distance between the distribution of

generated images and the distribution of true data. A

lower FID score means that the generated pictures are

closer to the corresponding real pictures.

• Mean average precision (mAP) and R(ecall)@50 [9].

The mAP and R(ecall)@50 are speech-image retrieval

metrics, introduced by S2IGAN to measure the seman-

tic relevancy for the synthesized and real speech data

sets, respectively. Higher mAP or R@50 suggest better

semantic consistency.

It should be noted that standard deviation on performances

cannot be given for all metrics reported (FID and mAP).

This is due to the fact that we wanted the measurements to

be comparable with other studies. However, given the size

of the test sets: N ¼ 30k for the CUB data set and N ¼ 10k

for the Oxford-102 data set, we expect the measurements to

be fairly reliable. As a comparative illustration: In case of a

measured accuracy of 0.80 and a data set of N ¼ 30k, at

a ¼ 0:01, the confidence band would span 0.794 to 0.806,

i.e., a deviation of just 0.75%.

5.2 Results on the synthesized speech datasets

5.2.1 Quantitative results

We compare Fusion-S2iGan with previous single-stage

[4, 28, 53] and multi-stage [9, 10, 14, 22, 24, 25, 51, 52]

cGAN-based methods in text-to-image generation and

speech-to-image transforms on the CUB and Oxford-102

data sets. The IS, FID and mAP of Fusion-S2iGan and

other compared approaches on the CUB and Oxford-102

data sets are shown in Table 1. Note that the reported

scores in Table 1 are based on the results presented in these

publications. We can see that Fusion-S2iGan achieves the

best scores on speech-to-image synthesis, significantly

improving the IS from 4.29 to 4.82 on the CUB data set and

from 3.69 to 3.81 on the Oxford-102 data set, reducing the

FID from 14.50 to 13.74 on the CUB data set and from

48.64 to 40.08 on the Oxford-102 data set and increasing

the mAP from 9.04 to 11.49 on the CUB data set and from

13.40 to 17.72 on the Oxford-102 data set. Notably,

Fusion-S2iGan performs better in speech-to-image gener-

ation than both DM-GAN [14] in text-to-image generation

on the CUB data set, as seen from an improvement of the

IS from 4.75 to 4.82 and DTGAN [3] doing text-to-image

synthesis on the Oxford-102 data set, here improving the IS

from 3.77 to 3.81. The experimental results suggest that

Fusion-S2iGan is capable of yielding perceptually plausi-

ble pictures with higher quality and better diversity than

state-of-the-art speech-to-image transform models and

many text-to-image approaches.
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5.2.2 Qualitative results

In addition to quantitative experiments, we carry out

qualitative comparison on the CUB and Oxford-102 data

sets, which is presented in Fig. 5. Note that in order to

visualize the synthesized images of S2IGAN [9], we utilize

the public code1 to train the network from scratch due to

the lack of available pre-trained models. It was noted that

the contrast of the generated images was dull for the

S2IGAN code, as given. By enhancing brightness and

contrast, this problem could be solved. However, we found

this is only needed for human evaluation: On 20 selected

images,2 the IS score for S2IGAN was the same for the raw

(grayish) output and the enhanced output samples. As can

be seen in Fig. 5a, the shape of birds produced by Attn-

GAN [24] and S2IGAN [9] (2nd, 3rd, 6th and 8th column)

is strange, the image details are lost (2nd, 3rd, 5th, 6th and

7th column) and the backgrounds are blurry (1st, 3rd, 6th

and 8th column). However, Fusion-S2iGan yields more

clear and photo-realistic samples than AttnGAN and

S2IGAN, which demonstrates the effectiveness of our

architecture. For example, the birds synthesized by Fusion-

S2iGan have a more clear shape and richer color distri-

butions compared to AttnGAN and S2IGAN in the 2nd,

3rd, 6th, 7th and 8th column. Furthermore, as shown in the

1st, 2nd, 4th, 6th and 8th column, Fusion-S2iGan produces

visually plausible birds with more vivid details than Attn-

GAN and S2IGAN.

The qualitative results of DTGAN [3], S2IGAN [9] and

Fusion-S2iGan on the Oxford-102 data set are illustrated in

Fig. 5b, suggesting that Fusion-S2iGan is able to adopt a

single generator/discriminator pair to produce high-reso-

lution pictures that correspond well to the given speech-

audio descriptions. For instance, Fusion-S2iGan yields

perceptually realistic flowers with a more vivid shape than

DTGAN and S2IGAN in the 1st, 2nd, 6th, 7th and 8th

column. In addition, as shown in the 3th, 4th, 5th and 6th

column, the flowers generated by Fusion-S2iGan have

more clear details and richer color distributions than

DTGAN and S2IGAN.

The above experimental results indicate that Fusion-

S2iGan equipped with the dual-residual speech-visual

fusion blocks has the ability to effectively inject the speech

information into the generator network and generate high-

quality photographs.
1 https://github.com/xinshengwang/S2IGAN.
2 https://zenodo.org/record/7014899#.YwN-xHZByUk.

Table 1 The IS, FID and mAP

of previous text-to-image and

speech-to-image approaches

and Fusion-S2iGan on the CUB

and Oxford-102 data sets

Datasets Methods Input IS " FID # mAP "

CUB StackGAN?? [22] text 4.04±0.05 26.07 7.01

AttnGAN [24] Text 4.36±0.03 23.98 -

MirrorGAN [25] Text 4.56±0.05 - -

ControlGAN [51] Text 4.58±0.09 - -

SDGAN [52] Text 4.67±0.09 - -

DM-GAN [14] Text 4.75±0.07 16.09 -

DF-GAN [28] Text 4.86±0.04 19.24 -

DTGAN [53] Text 4.88±0.03 16.35 -

DiverGAN [4] Text 4.98±0.06 15.63 -

Classifier-based [9] speech 3.68±0.04 43.76 -

Li et al. [10] Speech 4.09±0.04 18.37 -

StackGAN?? [22] Speech 4.14±0.04 18.94 8.09

S2IGAN [9] Speech 4.29±0.04 14.50 9.04

Fusion-S2iGan Speech 5.06±0.09 13.09 12.12

Oxford-102 StackGAN?? [22] Text 3.26±0.01 48.68 -

DF-GAN [28] Text 3.71±0.06 - -

DTGAN [53] Text 3.77±0.06 - -

DiverGAN [4] Text 3.99±0.05 - -

Classifier-based [9] Speech 3.30±0.06 64.75 -

Li et al. [10] Speech 3.23±0.05 54.76 -

StackGAN?? [22] Speech 3.69±0.08 54.33 12.18

S2IGAN [9] Speech 3.55±0.04 48.64 13.40

Fusion-S2iGan Speech 3.81±0.08 40.08 17.72

The best results of speech-to-image generation are in bold
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5.2.3 Human evaluation

To evaluate the image quality and semantic consistency of

StackGAN?? [22], S2IGAN [9] and our Fusion-S2iGan,

we conduct a human test on the CUB and Oxford-102 data

sets. We selected 100 pictures randomly from each data set.

Then, we provided the same spoken captions to users and

asked them to choose the best sample synthesized by the

three approaches based on image details and the corre-

sponding speech description. In addition, we computed the

final scores based on the judgment of two judges to ensure

fairness. The results are shown in Fig. 6. We can see that

our presented Fusion-S2iGan performs better than Stack-

GAN?? and S2IGAN on both data sets, particularly on

the CUB data set, This indicates the effectiveness of our

approach.

5.3 Results on the real speech datasets

In addition to the synthesized speech data sets, we also

evaluate Fusion-S2iGan on the challenging real speech

data sets, i.e., Flickr8k and Places-subset data sets, from

both quantitative and qualitative perspectives.

Fig. 5 Qualitative comparison of AttnGAN [24], DTGAN [3] conditioned on the textual descriptions, S2IGAN [9] and Fusion-S2iGan on the

basis of the speech signals on the CUB and Oxford-102 data sets. The spoken descriptions are shown above the images
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5.3.1 Quantitative results

Table 2 reports the IS, FID and R@50 of Fusion-S2iGan

and other compared approaches on the Flickr8k and Places-

subset data sets. It can be observed that Fusion-S2iGan

performs better than S2IGAN by notably enhancing the IS

from 8.72 to 11.70 on the Flickr8k data set and from 4.04

to 5.05 on the Places-subset data set, reducing the FID from

93.29 to 70.80 on the Flickr8k data set and from 42.09 to

25.68 on the Places-subset data set and improving the

R@50 from 16.40 to 34.95 on the Flickr8k data set and

from 12.95 to 28.37 on the Places-subset data set. Notably,

Fusion-S2iGan obtains a remarkably lower FID in speech-

to-image synthesis than AttnGAN doing text-to-image

generation on both data sets, which demonstrates that the

distribution of the samples synthesized by our model is

closer to the real data distribution. Specifically, Fusion-

S2iGan reduces the FID from 84.08 to 70.80 on the

Flickr8k data set and from 35.59 to 25.68 on the Places-

subset data set while increasing the IS from 4.59 to 5.05 on

the Places-subset data set. We can also see that Fusion-

S2iGan gets a lower R@50 score than AttnGAN on both

data set. The reason for this may be that speech signals lack

regular breaks between words, i.e., the spaces in the writ-

ten-form text.

5.3.2 Qualitative results

For qualitative comparison, we visualize the pictures pro-

duced by Fusion-S2iGan and S2IGAN and corresponding

ground-truth images on the Flickr8k and Places-subset data

sets in Fig. 7, which suggests that Fusion-S2iGan is cap-

able of yielding photo-realistic and semantic-consistency

photographs when given speech signals. For example, in

terms of complex-scene generation, Fusion-S2iGan gener-

ates visually plausible dogs with more vivid details and

more clear backgrounds than S2IGAN in the 1st, 5th, 6th

and 8th column. We can also observe that Fusion-S2iGan

synthesizes a man surfing on the realistic sea waves (2nd

column), two clear persons standing on the beach (3rd

column), a plausible football player in red and a reasonable

background (4th column) and a running girl (4th column),

whereas S2IGAN yields unclear objects (1st, 2nd, 4th, 5th,

6th and 8th column) and blurry backgrounds (4th and 7th

column). Furthermore, it can be seen that the number of the

objects produced by Fusion-S2iGan is correct in the 1st,

2nd, 3rd, 5th, 6th, 7th and 8th column.

As can be seen in Fig. 7b, Fusion-S2iGan produces

promising and high-quality complex-scene pictures, i.e., a

realistic bedroom (1st column), plausible kitchens (2nd and

8th column), high-quality living rooms (3rd and 5th col-

umn), visually promising dining rooms (4th and 7th col-

umn) and a photo-realistic hotel room (6th column),

although the Places-subset data set is very challenging.

However, some examples generated by S2IGAN (1st, 4th,

6th, 7th and 8th column) are not plausible. For instance, the

shape of the beds is not clear (1st and 6th column) and the

color distribution is rough (4th and 8th column).

The above analysis indicates that Fusion-S2iGan has the

capacity to achieve very good results on the real speech

Fig. 6 Human test results (ratio of 1st) of StackGAN?? [22],

S2IGAN [9] and our Fusion-S2iGan on the CUB and Oxford-102 data

sets

Table 2 The IS, FID and R@50

of AttnGAN [24] based on the

textual descriptions, Li et al.,

StackGAN?? [22], S2IGAN

[9] and Fusion-S2iGan

conditioned on the spoken

captions on the Flickr8k and

Places-subset data sets

Datasets Methods Input IS " FID # R@50 "

Flickr8k AttnGAN [24] Text 12.37±0.41 84.08 50.40

StackGAN?? [22] Speech 8.36 ±0.39 101.74 16.40

S2IGAN [9] Speech 8.72±0.34 93.29 16.40

Fusion-S2iGan Speech 11.70±0.45 70.80 34.95

Places-subset AttnGAN [24] Text 4.59±0.51 35.59 33.85

Li et al. speech - 83.06 -

StackGAN?? [22] Speech 3.78±0.35 47.94 8.87

S2IGAN [9] Speech 4.04±0.25 42.09 12.95

Fusion-S2iGan Speech 5.05±0.10 25.68 28.37

The best results of speech-to-image generation are in bold
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data sets due to the effective speech-visual fusion module

and loss functions.

5.3.3 Human evaluation

To further assess the image quality and semantic consis-

tency of StackGAN??, S2IGAN, and our proposed

Fusion-S2iGan, we perform a human test on the Flickr8k

and Places-subset data sets using the identical process as in

Sect. 5.2.3. Figure 8 shows that our approach significantly

performs better than StackGAN?? and S2IGAN on both

data sets, demonstrating the superiority of our proposed

Fusion-S2iGan.

5.4 Ablation/substitution tests of the proposed
approach

In order to evaluate the effectiveness of different compo-

nents in Fusion-S2iGan, we perform a series of substitution

tests on the CUB, Oxford-102 and Flickr8k and Places-

subset data sets. Ablation usually refers to the removal of

processing steps and evaluating the effects on performance.

Fig. 7 Qualitative comparison of S2IGAN [9] and Fusion-S2iGan

conditioned on the speech signals on the Flickr8k and Places-subset

data sets. Ground-truth images are shown above the samples produced

by S2IGAN and the spoken descriptions are presented above the

ground-truth images
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Here, however, the word ‘substitution’ is more appropriate,

referring to the in-place replacement of a network module

by another variant. In the evaluation we used 30k sample

images for the CUB data set and 10k samples for the

Oxford-102 data set in order to obtain reliable performance

estimates.

5.4.1 Effectiveness of the pixel-attention module (PAM)

To validate the effectiveness of the introduced pixel-at-

tention module (PAM), we investigate the performance of

Fusion-S2iGan with other attention modules on the CUB

and Oxford-102 data sets. Specifically, we replace the

PAM in the visual?speech fusion module (VSFM) using

the bottleneck attention module (BAM) [54], polarized

self-attention (PolarizedAttn) [55] and contextual trans-

former attention (CoTAttn) [56], respectively. The com-

parison results are depicted in Table 3. We can see that

PAM outperforms BAM, PolarizedAttn and CoTAttn by

increasing the IS by 0.12 on the CUB data set and 0.06 on

the Oxford-102 data set, reducing the FID by 0.33 on the

CUB data set and 1.16 on the Oxford-102 data set and

enhancing the mAP by 0.75 on the CUB data set and 0.44

on the Oxford-102 data set. The results demonstrate that

PAM can improve the quality and semantic relevancy of

produced pictures, relative to the other methods.

5.4.2 Effectiveness of the weighted-fusion module (WFM)

To further prove the benefits of the proposed weighted-

fusion module (WFM), we conduct a substitution test on

fusion methods. We replace WFM with the element-wise

addition and multiplication operations, respectively.

Table 4 reports the quantitative results on the CUB and

Flickr8k data sets. It can be observed that WFM performs

better than both addition and product operations, signifi-

cantly improving the IS from 4.68 to 4.82 on the CUB data

set and from 10.23 to 11.70 on the Flickr8k data set,

reducing the FID from 15.25 to 13.74 on the CUB data set

and from 78.03 to 70.80 on the Flickr8k data set and

increasing the mAP from 11.11 to 11.49 on the CUB data

set and the R@50 from 30.82 to 30.95 on the Flickr8k data

set. The above analysis suggests the effectiveness of the

presented WFM in comparison to plain additive or product-

based weighing.

5.4.3 Effectiveness of the visual1speech fusion module
(VSFM)

To verify the effectiveness of the developed visual?speech

fusion module (VSFM) and investigate how far can current

single-stage text-to-image algorithms be used for speech-

to-image generation, we explore the results of Fusion-

S2iGan with the sentence-visual fusion modules in

DTGAN [3] and DFGAN [28] on the CUB and Oxford-102

data sets. The results of the substitution study are displayed

in Table 5. We can see that the VSFM achieves the best

score, notably increasing the IS by 0.42 on the CUB data

set and 0.23 on the Oxford-102 data set, reducing the FID

by 3.00 on the CUB data set and 8.29 on the Oxford-102

data set and increasing the mAP by 3.29 on the CUB data

set and 1.40 on the Oxford-102 data set.

It can also be observed that DTGAN does not obtain

promising performance on the speech data sets. The reason

behind this result may be that the dual-attention module in

Fig. 8 Human test results (ratio of 1st) of StackGAN?? [22],

S2IGAN [9] and our Fusion-S2iGan on the Flickr8k and Places-subset

data sets

Table 3 Substitution study on

pixel-attention modules
Datasets CUB Oxford-102

Evaluation Metrics IS " FID # mAP " IS " FID # mAP "

BAM [54] 4.35±0.04 16.23 10.32 3.62±0.09 42.72 16.35

PolarizedAttn [55] 4.68±0.04 14.33 10.74 3.75±0.07 44.20 16.42

CoTAttn [56] 4.70±0.05 14.07 10.53 3.75±0.06 41.24 17.28

PAM 5.06±0.09 13.09 12.12 3.81±0.08 40.08 17.72

BAM, PolarizedAttn and CoTAttn refer to the bottleneck attention module [54], polarized self-attention

[55] and contextual transformer attention [56], respectively. PAM indicates the introduced pixel-attention

module. The best results are in bold
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DTGAN is not suitable for processing the continuous

speech signals and modeling the semantic relationships

between vision and speech. The above experimental results

indicate that with the VSFM, Fusion-S2iGan is able to

yield high-resolution pictures semantically aligning with

the input speech-audio descriptions.

5.4.4 Effectiveness of the number of fusion modules
in the residual-structure

To evaluate the impact of different number of the fusion

modules in the dual-residual speech-visual fusion block,

we compare the results of a fusion module (single-module)

and two fusion modules (dual-module) on the Flickr8k and

Places-subset data sets, as shown in Table 6. We can

observe that the proposed dual-residual speech-visual

fusion block outperforms the block with a single module on

both data set, which validates the effectiveness of the dual-

residual structure.

6 Conclusion

In this paper, we propose a unified, novel end-to-end

speech-to-image transform architecture named Fusion-

S2iGan. Fusion-S2iGan is able to only use a generator/

discriminator pair to project a speech signal into a high-

quality picture directly. Fusion-S2iGan adopts a new and

effective visual?speech fusion module (VSFM) to modu-

late the visual feature maps with the speech information

and boost the resolution of produced samples. More sig-

nificantly, Fusion-S2iGan spreads the bimodal information

over all layers of the generative model. This allows for an

influence of the speech over features at various hierarchical

levels in the architecture, from crude early features to

abstract late features. The hinge objective, deep attentional

multimodal similarity model (DAMSM) loss and match-

ing-aware zero-centered gradient penalty (MA-GP) loss are

introduced to stabilize the training of the conditional gen-

erative adversarial network (cGAN). Fusion-S2iGan is

evaluated on four public data sets, i.e., CUB bird, Oxford-

102, Flickr8k and Places-subset, outperforming current

speech-to-image methods. Moreover, we explore whether

Table 4 Substitution test on

fusion methods
Datasets CUB Flickr8k

Evaluation Metrics IS " FID # mAP " IS " FID # R@50 "

Addition 3.70±0.04 29.11 2.7 9.53±0.37 100.83 5.98

Product 4.68±0.04 15.25 11.11 10.23±0.36 78.03 30.82

WFM 5.06±0.09 13.09 12.12 11.70±0.45 70.80 34.95

Addition and Product represent the element-wise addition and product operation, respectively. WFM

denotes the proposed weighted-fusion module. The best results are in bold

Table 5 Substitution study on

the visual?speech fusion

module (VSFM)

Datasets CUB Oxford-102

Evaluation Metrics IS " FID # mAP " IS " FID # mAP "

DTGAN [53] 4.18 ±0.04 24.70 4.92 3.15±0.04 52.67 13.87

DF-GAN [28] 4.40 ±0.03 16.74 8.20 3.58±0.07 48.37 16.32

VSFM 5.06±0.09 13.09 12.12 3.81±0.08 40.08 17.72

DTGAN and DF-GAN refer to the sentence-visual fusion module in DTGAN [3] and DF-GAN [28],

respectively. VSFM denotes the presented visual?speech fusion module. The best results are in bold

Table 6 Effect of the number of

fusion modules in the dual-

residual speech-visual fusion

block

Datasets Flickr8k Places-subset

Evaluation Metrics IS " FID # mAP " IS " FID # mAP "

single-module 10.39±0.34 81.62 32.37 5.02±0.06 41.67 24.00

dual-module 11.70±0.45 70.80 34.95 5.05±0.10 25.68 28.37

Single-module and dual-module indicate the residual structure with a single fusion module and two fusion

modules, respectively. The best scores are in bold
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current text-to-image approaches are effective for a speech-

to-image transform. Furthermore, our presented VSFM is a

general fusion module, and can be easily integrated into

current speech-to-image frameworks to improve image

quality and semantic consistency. More significantly, our

developed architecture overcomes the issues presenting in

the existing multi-stage speech-to-image algorithms, and

can serve as a strong basis for developing better speech-to-

image generation models. In the future, we will investigate

how to inject the emotional features derived from the

speech signal into the speech-to-image synthesis pipeline

and how to combine speech signals with other conditional

contexts, e.g.,, sketches, to control the produced pictures.

We focus on producing natural-scene pictures from spoken

descriptions. However, it is intriguing and attractive to

study image generation from other domains such as artistic

fonts, drawings, cartoons, sketch and paintings, since they

play a significant role in humans’ daily life.
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