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Abstract
Renewable energy sources and hydroelectric power generation in large parts of the electricity market are crucial as

environmental pollution worsens . Utilizing meteorological data from the region, where the Hirfanlı Dam is located, this

study employs machine learning (ML) and introduces a novel hybrid Genetic Grey Wolf Optimizer (GGW0)-based

Convolutional Neural Network/Recurrent Neural Network (CNN/RNN) regression technique to predict hydroelectric

power production (PP). In the first section of the study, various ML techniques SVR (Support Vector Regression), ELM

(Extreme Learning Machine), RFR (Random Forest Regression), ANN (Artificial Neural Networks) and WKNNR

(Weighted K-Nearest Neighbor) are presented with the Principal Component Analysis (PCA) method and the minimum–

maximum method in the normalization of the features. A novel GGWO and CNN/RNN model)-Long Short-Term Memory

(LSTM) regression technique is introduced in the second section. GGWO is used to select features, while the proposed

CNN/RNN-LSTM model is employed for feature extraction and prediction of PP. The study demonstrates that the ELM

algorithm in Method I outperforms other ML models, achieving a correlation coefficient (r) of 0.977 and the mean absolute

error (MAE) of 0.4 with the best feature subset. Additionally, the proposed CNN/RNN hybrid model in Method II yields

even better results, with r and MAE values of 0.9802 and 0.314, respectively. The research contributes to the field of

renewable energy prediction, and the results can aid in efficient decision making for electricity generation and resource

management.
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1 Introduction

The combination of excessive population growth, uncon-

trolled depletion of natural resources and global warming,

which contributes to climate change, has heightened the

likelihood of uncertainty in the natural environment and

disrupted ecological balance. The surge in population

growth is directly linked to an escalating demand for food

and energy. The same reason can be attributed to the

uncontrolled removal of natural resources and the trans-

formation of forest lands into agricultural or industrial land.

Increasing imports in the energy sector also trigger the

price increase per liter of gasoline, diesel, coal and fossil

fuels. For this reason; the search for an alternative energy

source has become extremely important and extremely

necessary to maintain the energy security of the population.

Solar energy, wind energy, geothermal and hydro energy or

flowing water are the most appropriate alternatives to the

existing energy source. All these energy sources can be

infinite and renewed. Hydroelectric is one of the main

renewable energy sources due to its low cost and its

potential to rapidly respond to the highest demand load on

electricity and its potential [1]. In addition, hydroelectric is

a very clean source of energy and uses only water. Water

can also be used for other purposes after producing elec-

trical energy. Hydroelectric is currently considered to be

the largest renewable source of electricity in the world.

Traditionally, it is a cheap and clean source of electricity.

However, renewable energy often has various properties

that cause uncertainties in renewable energy power sys-

tems. Therefore, the prediction of renewable energy is an
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important way to cope with this problem [2]. Machine

learning is a data-oriented process used to create a smart

result. The basic steps of machine education include data

collection and preprocessing, feature selection and extrac-

tion, model selection and model verification.

Machine learning (ML) techniques contribute to the use of

these accumulated data and become increasingly important

in various fields of science, finance and industry [1, 3].

Several studies were conducted based on the forecasting of

the dam’s inflow and the application of an operating reser-

voir model to calculate the generation of hydropower [4–7].

Dehghani et al. In their study, they combined the Grey Wolf

Optimization (GWO) method with an adaptive neuro-fuzzy

inference system (ANFIS) to predict hydropower genera-

tion. The results of this paper showed that the GWO-ANFIS

method could satisfactorily predict hydropower generation,

while ANFIS failed in nine input–output combinations [7].

Condemi et al. proposed a methodology for estimating

hydropower capacity and feature summarization mecha-

nisms (such as principal component analysis and feature

grouping techniques) using machine learning (ML) regres-

sion techniques. They showed how ML regression tech-

niques can be used to model the relationship between

meteorological and climatic variables and hydroelectric

generation using water tanks. In the study, MLP shows the

best results in the problemwith 0.2593 and 0.2128 TWH root

mean square error and mean absolute error [8]. Another

study was carried out by Al Rayess and Keskin, which pre-

sents the results of Machine Learning Techniques for short-

term estimation of the amount of energy produced by Gen-

eral CirculationModels (GCMS) data by theAlmusDamand

Hydroelectric Power Plant in Tokat, Turkey [9]. The results

show that the correlation value of the gradient-enhanced tree

model is equal to 0.717, indicating that the gradient-en-

hanced tree model is the most successful model for the

available data. Li et al. in their study, they explore the

potential of a GA-SVM (Genetic algorithms-support vector

machine (SVM)) estimation model to accurately predict

short-term power generation energy from small hydroelec-

tric resources [10]. This article concludes that the GA-SVM

model is a very potential candidate for estimating small

hydroelectric (SHP) short-term power generation energy.

This article presents a study on the prediction of

hydroelectric plant production using ML and a novel

hybrid Genetic Grey Wolf Optimizer (GGWO)-based

Convolutional Neural Network/Recurrent Neural Network

(CNN/RNN)-Long Short-Term Memory (LSTM) regres-

sion techniques and an overview of the study is given

Fig. 1. According to meteorological data, a hydroelectric

power production (PP) is determined by the amount of

electricity that can be produced while taking into account

the level of water in its reservoir.

The article’s remaining sections are organized as fol-

lows: Chapter 2 describes the data collection process, the

dataset used, the two main methods of prediction used:

Method I (Machine Learning Algorithms) and Method II

(CNN/RNN Hybrid Method) and evaluation metrics. In

Chapter 3, the study focuses on the application of machine

learning algorithms to predict hydroelectric power pro-

duction. The feature selection process using PCA (Princi-

pal Component Analysis) and the performance metrics of

various machine learning models are discussed. In addition

proposed CNN/RNN hybrid method for power production

prediction in this section. The feature selection using the

GGWO (Grey Wolf Optimizer) method is explained, and

the parameters of the deep learning models (CNN and

LSTM) are detailed. The findings of the study from both

Method I and Method II are presented and analyzed in

Chapter 3. The evaluation metrics for each prediction

approach are compared, and the strengths and weaknesses

of each method are discussed in Chapter 5. Chapter 6

provides a comprehensive conclusion, summarizing the

key findings of the study.

The suggested methods include contributions below:

• The used dataset’s feature which has time series of the

feature is selected with the Principal Component

Analysis (PCA) method by using the minimum–max-

imum method in the normalization of the features,

• In the study, the prediction process firstly ML tech-

niques; SVR (Support Vector Regression), ELM

(Extreme Learning Machine), RFR (Random Forest

Regression), ANN (Artificial Neural Networks),

WKNNR (Weighted K-Nearest Neighbor),

• In the study, the data are also predicted with the help of

the new proposed hybrid Genetic Grey Wolf Optimizer

(GGW0)-based Convolutional Neural Network/Recur-

rent Neural Network (CNN/RNN)-Long Short-Term

Memory (LSTM) regression techniques,

• Within the scope of the study, correlation coefficient

(r), coefficient of determination (also known as R-

squared or R2), mean square error (MSE) and its rooted

variant (RMSE), mean absolute error (MAE) and their

normalized equivalents (RRMSE, RMAE)) values are

obtained,

• Comparative presentation of existing studies in the

literature is provided.

2 Material and methods

This study predicts the electrical power production as well

as the net head value representing the net water height of

the Hirfanlı dam (this value is the primary component used

for electricity production). In this part, dataset, data
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preprocessing, used algorithms and evaluation metrics are

introduced.

2.1 Dataset

The final determinant of a region’s hydropower potential is

typically related to water scarcity, which is in turn affected

by precipitation and/or snowmelt, temperature and solar

radiation. Therefore, it is evident that meteorological

events have the greatest impact on the electrical generation

of the hydroelectric power production (HEPP). However,

there is no direct correlation between these variations in

meteorological conditions and HEPP capacity. This indi-

cates that it takes some time for precipitation to turn into

water that can be used in the HEPP after it occurs [8].

Furthermore, the impact of meteorological events over

time might not be consistent.

The Hirfanlı Dam-HEPP, a dam constructed for flood

control, energy generation and irrigation purposes between

1953 and 1959, is chosen as the study’s sample plane. It is

situated on the Kızılrmak River in Kaman/Kırşehir, Tur-
key. Hirfanlı HEPP, whose image and location in Turkey

are shown in Fig. 2, is the second-largest HEPP in Kırşehir
and produces 400 GWh of energy annually. It is located in

Türkiye and has an installed capacity of 128 MWe. The

total electrical power generation capacity of a HEPP is

determined by the amount of electricity that can be pro-

duced based on the amount of water that is available and,

consequently, the information on its net head, and the

amount of water inlet originates from natural sources.

Starting from this perspective, Kaman Meteorology

Directorate and Hirfanlı HEPP collected meteorological

data and data on power production over a 15-year period,

from 1 January 2007 to 31 December 2021, and the author

organized the data to produce an original dataset. There are

many different working variables because all meteorolog-

ical and electrical generation data are determined daily.

Two government organizations (Kaman/Kırşehir Weather

Directorate and Hirfanlı Hydropower Station) have pro-

vided and verified these historical data. The dataset used in

Fig. 1 An overview of the study
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this study comprises valuable information from Table 1,

encompassing essential meteorological features such as the

highest, lowest and average air temperatures, as well as

details regarding precipitation type, amount and intensity,

spanning 15 years (365 days each year). In total, there are

64 variables captured daily over the entire period. This

extensive dataset allows for a comprehensive analysis of

factors influencing changes in water availability and elec-

tricity production in the region. By analyzing such a vast

amount of data (350,400 data points in total), researchers

gain a deeper understanding of the intricate relationships

between meteorological variables and their impact on

water resources and energy generation.

2.2 Data preprocessing

Data preprocessing tasks can significantly increase classi-

fication accuracy, depending on the domain and language,

according to extensive experimental analyses. In addition

to improving classification accuracy, it also has many other

advantages like improved performance, smaller data sets

and faster training cycles. When using data mining, it is not

always appropriate to use raw data. When the value ranges

of the variables in the data set differ from one another,

normalization techniques are used. The pressure of vari-

ables with large mean and variance on other variables can

be increased as a result of the variables’ significantly dif-

ferent means and variances, which can have an impact on

accuracy and performance. To standardize the impact of

each variable on the results, numerical data are normalized

using normalization methods in data mining [11, 12]. Data

are linearly normalized using the minimum-to-maximum

approach. In other words, neither the magnitude nor the

difference between the two values changes. The range of

values after normalization is typically 0 to 1; minimum

represents the lowest value that a data point can accept, and

maximum represents the highest value that a data point can

accept [13]. The minimum–maximum normalization pro-

cedure is carried out for the data used in this study during

the data preprocessing stage. The values are derived from

Eq. (1) for the minimum–maximum model.

_x ¼ xi � xmin

xmax � xmin

ð1Þ

_x: Normalized data, xi: Input value, xmax: Largest number in

input, xmin: Smallest number in the input.

2.3 Feature selection

Feature selection and Principal Component Analysis (PCA)

are common techniques used in machine learning regres-

sion tasks to improve model performance and reduce the

impact of overfitting. Feature selection involves selecting a

subset of the most informative features from a dataset,

while discarding redundant or irrelevant features. This can

help to reduce the dimensionality of the data and improve

Fig. 2 An overview of the study
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Table 1 Descriptive information of daily meteorological and power production parameters for Hirfanlı HEPP

# Feature Unit Range Notation

Meteorological Features

1 Highest Air Temperature �C (- 9.2) to (37.4) HAT

2 Lowest Air Temperature �C (- 15.3) to (22.2) LAT

3 Average Air Temperature �C (- 12.1) to (32.7) AAT

4 Sunshine Duration h (0)–(13.5) SD

5 Average Wind Direction – (9.7)–(359.6) AWD

6 Average Wind Speed m/s (0.7)–(9.0) AWS

7 Highest Wind Speed m/s (1.9)–(23.2) HWS

8 Maximum Wind Time h (0)–(23.6) MWT

Precipitation Features

9 Precipitation Amount mm 0–33.6 PA

10 Type of Precipitation – 1–8 TOP

11 Snow Thickness mm (0)–(22.0) ST

Evaporation and Water Features

12 Open Surface Evaporation Amount mm (5)–(99) OSE

13 Water Evaporating from the Plant m3 (0)–(1.292.550) WEP

14 Average Humidity % (5.0)–(99.0) AH

15 Water for Drinking and Use m3 (0)–(5000) WDU

16 Leakage and Other Water Losses m3 (86.400)–(1.527.289) LOWL

17 Total Water Consumption 1000 m3 (91.4)–(16.928) TWC

18 Total Incoming Water m3 (35.455)–(8.930.447) TIW

19 Flow Rate of Incoming Water m3/s (0.41)–(103.36) FRIW

20 Lake Level at 00:00 m (842.12)–(844.88) LL

21 Volume Difference in the Lake (þ/�) 1000 m3 (- 10.270) to (6.460) VDL

Pool Water Features

22 Pool Water Temperature �C (2.1)–(22.6) PWT

23 Maximum Pool Water Temperature �C (12.4)–(34.8) MXPT

24 Minimum Pool Water Temperature �C (1.1)–(18.2) MNPT

25 Lake or Pool Level (Average) m (744.32)–(844.9) LPL

26 Leaving Water Level (Average) m (783.1)–(786.35) LWL

HPP Features

27 Power Plant Internal Consumption kWh (745.1)–(746.1) PPIC

28 Internal Consumption kWh (60)–(26.360) IC

29 Ratio of Water to Energy m3/kWh (0)–(8.12) RWE

30 Energy Consumed Water m3 (0)–(15.857.879) ECW

31 Net Head m (40.48)–(60.22) NH

32 Power Production MWh (5000)–(2149 000) PP

Generator Performance Features (4 Generator)

33 Generator Working Time h (2.321)–(7.275) GWT GR1–4

34 Uptime Since Last Revision h (80.08)–(298.92) USLR GR1–4

35 Unit Fault Stop h (0)–(1) UFS GR1–4

36 Switchboard Failed Stop h (0)–(1) SWFS GR1–4

37 System Fault Stop h (0)–(0.03) SFS GR1–4

38 Maintenance Downtime h (0)–(1) MD GR1–4

39 Normal Downtime h (0)–(1.04) ND GR1–4

40 Power Supplied From Output (4 Lines) 1000 MWh (1008)–(35.488) PSFO1–4

41 Output Feeders (11 Feeders) 1000 MWh (1,130)–(725.630) OF1–11

42 Power from the Feeders (5 Feeders) 1000 MWh (19.992)–(763.756) PFF1–5
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the speed and accuracy of the model. PCA, on the other

hand, involves transforming the original features into a new

set of uncorrelated features, called principal components

that capture the most variance in the data. This can also

help to reduce the dimensionality of the data while

retaining as much information as possible. A multivariate

system with many variables that are related to one another

is transformed by PCA into a system with new variables

that, despite being less numerous and not related to one

another as linear functions, can best explain the overall

change of the prior system [14]. It is a method of multi-

variate statistical analysis. This technique transforms

n features into m distinct features.

2.4 Algorithms

In essentially, classification is a technique, whereby certain

judgments or predictions are made after learning and

interpreting the information that is available, and the data

are then divided into classes with labels based on those

properties. There are many different fields, where the

classification task is employed. Different algorithms are

used by machine learning to solve issues. Various factors,

including the nature of the problem, the quantity of vari-

ables and the kind of model, affect the algorithm that is

employed [15–17]. The results of the study are obtained

using 5 different machine learning algorithms, which are

SVR (Support Vector Regression), ELM (Extreme Learn-

ing Machine), RFR (Random Forest Regression), ANN

(Artificial Neural Networks), and WKNNR (Weighted

K-Nearest Neighbor). The selected machine learning (ML)

techniques (SVR, ELM, RFR, ANN, WKNNR) in the

study are chosen based on their suitability for the predic-

tion task of hydroelectric power production (PP) using

meteorological data. Each technique has its strengths and

advantages, making them valuable candidates for this

specific regression problem.

2.5 Grid search

Machine learning models contain crucial parameters. Each

method has its own set of parameters. These variables have

a big impact on how well the model works. As a result, it is

crucial to know the values of the parameters. The grid

search method is one way to determine which parameter

has what value so that the best model can be created. This

approach involves processing each possible value for each

parameter one at a time, calculating success and identifying

the parameter values that are most appropriate. Hyperpa-

rameter fine-tuning can be done in the form of manual

search, grid search, random search [18] and Bayesian

optimization [19, 20]. The results of the grid search used to

perform a thorough search and fine-tuning of all possible

combinations of the specified hyperparameters are pre-

sented in this section.

2.6 Cross-validation

Cross-validation is a statistical technique used to assess the

performance and generalization capability of a machine

learning model [20]. It involves dividing the available data

into multiple subsets, or ‘‘folds,’’ and using these folds for

training and testing the model in a rotation [21]. The basic

idea behind cross-validation is to ensure that the model’s

performance is evaluated on different subsets of data to

obtain a more reliable estimate of its effectiveness. In our

study, classification is carried out using the tenfold cross-

validation technique, and the results are reported.

2.7 Evaluation methods

Various metrics are utilized to assess the performance of

predicting operations. Error values that are high indicate

poor prediction accuracy. Some of the evaluation criteria

that are used to determine the prediction error rate and

accuracy are discussed in this section.

R ¼
P

ðxi � xÞðyi � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

ðxi � xÞ2
P

ðyi � yÞ2
q ð2Þ

R = correlation coefficient, xi = quantities of the vari-

able of x, x = mean of the quantities of x-variable, yi =

values of the variable y-variable, y = mean of the quantities

of y-variable

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðbyi � yiÞ2

r

ð3Þ

Table 1 (continued)

# Feature Unit Range Notation

43 Compensator Consumption (5 unit) MWh (73.830)–(293.930) CC C1–5
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RMSE = root mean squared error, n: number of data

points, byi = the predicted values, yi = the observed values

MSE ¼ 1

n

Xn

i¼1
ðyi � byiÞ2 ð4Þ

MSE = mean squared error, n = number of data points,

byi = the predicted values, yi = the observed values

MAE ¼
Pn

i¼1 yi � byij j
n

ð5Þ

MAE = mean absolute error, n = number of data points,

byi = the predicted values, yi = the observed values.

3 Experimental results

The dataset obtained in this study is applied to machine

learning (Method I) and deep learning (Method II) algo-

rithms. For the Method I study, feature selection is per-

formed for the features used in the dataset and analyzed in

five different machine learning models. In the Method II, a

novel GGWO and CNN/RNN model)-Long Short-Term

Memory (LSTM) regression technique is introduced. Fea-

ture selection is done by using GGWO, and the proposed

CNN/RNN-LSTM model is used for feature extraction and

prediction of power production (PP).

3.1 Method I: prediction with machine learning
algorithms

In this study, the net head value representing the net water

height of the Hirfanlı dam (this value is the main compo-

nent used for electricity generation) and the electrical

power production are predicted. Within the scope of this

study, the results are obtained by using machine learning

and deep learning techniques separately. While 80% of the

dataset is used for the training phase, 20% is used for the

testing phase. For the test data, the data of 2011, 2016 and

2021 are chosen randomly. In this section, the feature

matrix is reduced from the related variable in numbers 1 to

13 using the PCA method in Table 2. Input variables

selected for PP prediction are given in Table 2. As his-

togram plots of the dataset, Fig. 3 also displays the fre-

quency of some features.

In this study, the grid search method is employed for

hyperparameter tuning, which is a systematic approach to

finding the optimal combination of hyperparameters for a

machine learning model. The goal of hyperparameter tun-

ing is to enhance the model’s performance by finding the

parameter values that yield the best results on the valida-

tion set. Table 3 presents the specific parameter values used

in the grid search. The grid search involves defining a set of

possible values for each hyperparameter and then exhaus-

tively searching through all possible combinations of these

values. For each combination, the model is trained and

evaluated using a predefined performance metric. By using

the grid search method, researchers can efficiently explore

a wide range of hyperparameter configurations to identify

the optimal ones that lead to improved model performance.

Figure 4 displays the correlation between the features

and the class label in the dataset. Upon examination, it

becomes evident that there exists a strong correlation

between the features NH, PWT and TOP, and the class

label (PP). The high correlation observed between NH,

PWT and TOP with the class label (PP) indicates that these

features hold significant predictive power for determining

the class label. In other words, variations in NH, PWT and

TOP are closely associated with changes in the class label

(PP), making them valuable indicators for the classification

task. The results of ELM, which is the best classifier used

in the study, are presented. The Power Production (GWh)

vs Power Production prediction (GWh) graph for the ELM

is given in Fig. 5. The importance of the features for the

ELM model is shown in Fig. 6.

Within the scope of the study, correlation coefficient (r),

coefficient of determination (also known as R-squared or

R2), mean square error (MSE) and its rooted variant

(RMSE), mean absolute error (MAE) and their normalized

equivalents (RRMSE, RMAE)) values are obtained and the

values obtained with the PCA method and without using

the PCA method are given in Table 4. According to the

MAE, MSE, RMSE, MAPE and R2 metrics of the five

machine learning algorithm models tested for the predic-

tion of Hirfanlı hydroelectric power production, the most

successful result is obtained with the ELM algorithm

model. When the ELM algorithm is used in the estimation

process using the PCA method, the r, R2, RMSE and MAE

values are obtained as 0.977, 0.955, 0.56 and 0.40,

Table 2 Selected features after using PCA method

# Feature Notation

1 Highest air temperature HAT

2 Volume difference in the lake (þ/�) VDL

3 Type of precipitation TOP

4 Precipitation amount PA

5 Open surface evaporation Amount OSE

6 Sunshine duration SD

7 Temperature of the pool water PWT

8 Maximum temperature of the pool water MXPT

9 Net head NH

10 Ratio of water to energy RWE

11 Energy consumed water ECW

12 Snow thickness ST

13 Average humidity AH

Neural Computing and Applications

123



respectively, and they are the values with the best results.

When Table 4 is examined, RMSE and MAE values are

obtained as 0.56 and 0.4, respectively. In the literature,

MSE and MAE values below 0.4 TWh are considered very

good values and predictions over 1 TWh are regarded as

being very poor [18]. The study highlights the importance

of evaluating machine learning models using multiple

metrics and comparing the results with actual values. The

study also suggests that combining feature selection tech-

niques such as PCA with machine learning algorithms can

lead to improved prediction accuracy and reduced com-

putational time.

3.2 Method II CNN/RNN hybrid method

3.2.1 Feature selection-based Grey Wolf Optimizer
and genetic algorithm

Feature Selection (FS) is a popular and complex research

area in various domains, such as machine learning, data
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mining and pattern recognition. It involves the identifica-

tion of significant and informative attributes from a dataset,

which is a crucial step in various applications, including

predictive data analysis [22]. While FS is an attractive

research topic, it also presents challenges that researchers

must address to achieve accurate and efficient results. The

authors have outlined three primary objectives of utilizing

feature selection in classification [22]. Firstly, it aims to

simplify the process of feature extraction, which can be a

complex and time-consuming task. Secondly, it seeks to

enhance the accuracy of classification models by selecting

the most informative features that are relevant to the task at

hand. Finally, feature selection is implemented to improve

the reliability of performance estimation, ensuring that the

classification model is producing consistent and depend-

able results. These objectives demonstrate the value and

significance of feature selection in classification tasks

across a range of domains.

Grey Wolf Optimizer (GWO): The proposed Grey Wolf

Optimization algorithm imitates the social and hunting

behavior of grey wolves. Grey wolves are divided into

alpha, beta, delta and omega social groups. Because the

wolf group obeys its rules, the alpha group is the dominant

species. Secondary grey known as beta class support alpha

in making decisions. The lowest ranking grey wolves are

represented by Omega. A wolf is referred to as a delta if it

does not fall under one of the aforementioned species.

Along with their social interactions, grey wolves have an

intriguing social behavior called group hunting. The phases

of containing, hunting and attacking prey are the GWO’s

main components [23, 24].

The feature selection problem involves selecting a

subset of features to be used in a model [22]. To achieve

this, researchers often represent potential subsets as binary

strings of the same length as the total number of features.

Each bit in the string indicates whether a corresponding

feature is included or excluded from the subset. A value of

‘1’ indicates that the feature is selected, whereas a ‘0’

indicates exclusion. To model the social hierarchy of

wolves, researchers typically use a system in which the

most dominant wolves are considered alpha (a) and

responsible for making decisions. Beta (b) wolves assist

alpha in decision making and provide feedback. Delta (d)
wolves act as scouts and control the actions of omega (x)
wolves, which must obey all other wolves. In the GWO

(Grey Wolf Optimizer) algorithm, alpha, beta and delta

wolves lead the hunting process while omega wolves

Table 3 The hyperparameters of the used models

Model Hyperparameters Hyperparameter selection Power production

SVR Filter 1 [50, 80, 100, 200, 300, 400] 200

Filter 2 [40, 50, 60, 70, 80] 60

Filter 3 [20, 10, 30, 5] 10

Batch size [25, 50, 100, 400] 100

Activation function ReLU

Epochs [1000, 1200, 300, 400, 700] 400

Optimization algorithm Adam

SVR Kernel RBF

ELM Hidden Neuron [20, 30, 40, 50] 40

Activation Function log, tanh tanh

Learning Rate [0.005, 0.01, 0.1] 0.1

ANN Activation Function ReLU

Optimization Algorithm Adam

Hidden Layer Structure [1, 2, 3] 3

Number of neurons [N, 2N, 3N] 2N

Batch Size [1,10] 10

RFR The tree’s maximum depth [5, 8, 10, 20, 25] 10

The tree number of the forest [50, 100, 150, 200, 400, 600, 800] 100

The minimum sample number for separating an internal node [2, 4, 6, 8, 10] 8

The feature number of considering for the best separation [‘auto’, ‘log2’, ‘sqrt’] auto

WKNNR Number of neighbors [5, 10, 20, 30, 50, 100] 20

The algorithm that utilized for computing the nearest neighbor [‘auto’, ‘kd_tree’, ‘ball_tree’] auto
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follow their lead [22]. The distance separating each wolf

from the prey Eq. (6):

D
!¼ C:

�!
Xp
�!ðtÞ � X

!ðtÞ
�
�
�

�
�
� ð6Þ

C
!¼ 2 a!r2

! ð7Þ

where X
!

and Xp
�!

denote the position vectors of the prey

and a wolf, respectively, and t represents the current iter-

ation. The coefficient vector C
!

is computed following the

Eq. (7), and r2
! is a random vector with values between 0

and 1 [25].

X
!

t þ 1ð Þ ¼ Xp
�!

tð Þ � A
!
:D
! ð8Þ

A
!¼ 2 a!r1

!� a! ð9Þ

Within the optimization process, A
!

represents a coef-

ficient vector, and its elements, denoted as a! gradually

decrease linearly from 2 to 0. Additionally, the vector r1
! is

composed of random values falling within the interval [0,

1] and they are given in Eqs. (8) and (9). In the GWO

algorithm, the alpha, beta and delta wolves act as leaders,

guiding the omega wolves to move toward the optimal

position [25]. To calculate the new position of a wolf

mathematically, a specific formula is used.

X
!

t þ 1ð Þ ¼ X
!

1 þ X
!

2þX
!

3

3
ð10Þ

At a given iteration t in the GWO algorithm, the posi-

tions of the three best wolves in the swarm are identified

and denoted as X
!

1, X
!

2 and X
!

3. These wolves are used in

a specific formula to determine the new position of each

wolf in the pack. The movement pattern of wolves when

|A| is less than 1 or greater than 1 is visually illustrated in

Fig. 7.

The Genetic Algorithm considers the life adventure of

living things. The good generations keep their lives, but the

bad generations cannot save their lives and perish. The

genetic algorithm acts within the framework of these

principles. It is used in solving constrained problems,

where there is no clear solution where the modeling pro-

cess cannot be done mathematically [26]. In recent times,

certain researchers have focused on solving the feature

selection problem by employing genetic algorithms in a

wrapper model approach. This method involves using

genetic algorithms to search through all potential subsets of

features in order to determine a set that can optimize the

Fig. 4 The correlation coefficient matrix of the predictor parameters

for the daily meteorological data (The abbreviations of the parameter

names are outlined in Table 2)

60 70 80 90 100 110 120 130 140 150
60

70

80

90

100

110

120

130

140

150

E
le

ct
ri

ca
l P

ow
er

 P
ro

du
ct

io
n 

Pr
ed

ic
tio

n 
(G

W
h)

Electrical Power Production (GWh)

Data
Fit
Y=T

y = 1x+ 0.19
R = 0.9772

R2 = 0.955

Fig. 5 Power Production (GWh) vs Power Production prediction

(GWh) graph for the ELM model (inset: red line indicates the least

square regression (y = mx ? c), where y is the prediction and x is the
real data, additionally r is the coefficient of the correlation)

NH
ECW

VDL PA
RW

E ST AH
OSE

TOP SD
M

XPT
PW

T
HAT

0.08

0.10

0.12

0.14

0.16

0.18

0.20

R
el

at
iv

e 
Im

po
rt

an
ce

Features

Fig. 6 Importance of the features for ELM model prediction

Neural Computing and Applications

123



accuracy of a given learning algorithm for prediction [22].

By exploring the entire feature space, the wrapper model

can identify the most informative and relevant features,

leading to enhanced predictive performance. The use of

genetic algorithms in feature selection highlights the

importance of advanced techniques in data analysis and the

potential for significant improvements in predictive mod-

eling [22, 27].

In the study, the GGWO method suggested by Kihel and

Chouraqui is used for feature selection [22]. This approach

extends to metaheuristics combination, where various bio-

inspired hybrid methods are utilized to solve feature

selection problems. One such method is the GGWO, which

combines the capabilities of GA and GWO algorithms to

achieve optimal results. In the GGWO approach, the pop-

ulation of grey wolves is randomly initialized with either a

bit 1 or 0, and each wolf’s fitness is evaluated using K-NN.

The best, second-best and third-best solutions are desig-

nated as alpha, beta and delta, respectively. The position of

the wolf is then updated by applying the crossover between

X1, X2 and X3, resulting in improved feature selection

performance. This hybridization approach demonstrates the

potential for combining multiple techniques to enhance the

efficiency and effectiveness of feature selection algorithms.

Xðt þ 1Þ ¼ CrossoverðX1;X2;X3Þ ð11Þ

After initializing the population of grey wolves, their

fitness is evaluated, and the positions of alpha, beta and

delta are updated. The algorithm iterates until a stopping

criterion is reached, which is typically the maximum

number of iterations. Once the iterations are complete, the

optimal feature subset is selected as the alpha solution.

This process involves evaluating the fitness of each wolf

and updating the positions of the alpha, beta and delta

solutions in each iteration. By repeating this process, the

algorithm can identify the most effective feature subset for

the given problem. The use of the alpha solution as the

optimal feature subset highlights the importance of

selecting the best performing solution to achieve superior

feature selection results. GGWO reduces the feature matrix

from the closely related variable in numbers 1 to 9 in this

section, and the features selected after using GGWO are

given in Table 5. Table 6 shows the parameters which are

selected by grid search methods.

Convolutional Neural Networks (CNN): A CNN is a type

of model that is used for image recognition, and is char-

acterized by its ability to detect complex patterns in video

frame images through nonlinearity [28]. By adjusting

various hyperparameters, it becomes possible to represent

complex patterns in a high-dimensional space. CNNs

consist of several key components, including convolutional

layers, pooling layers, a dense network and a softmax layer

which generates the output [29]. Each of these components

plays an important role in enabling the CNN to effectively

Table 4 The testing performance metrics of the used ML algorithms

SVR RFR ANN ELM WKNNR

PCA

enable

PCA

disable

PCA

enable

PCA

disable

PCA

enable

PCA

disable

PCA

enable

PCA

disable

PCA

enable

PCA

disable

r 0.965 0.973 0.973 0.968 0.966 0.969 0.977 0.957 0.966 0.935

R2 0.931 0.947 0.947 0.937 0.933 0.939 0.955 0.916 0.933 0.874

RMSE 1.427 0.976 0.988 1.154 1.286 1.025 0.56 1.598 1.325 2.328

MAE 1.019 0.697 0.706 0.824 0.919 0.732 0.400 1.141 0.946 1.663

RRMSE 30.00 37.60 3850 28.28 47.14 25.14 23.02 25.19 44.60 47.27

RMAE 34.80 43.62 44.660 32.81 54.68 29.16 26.70 29.22 51.74 54.83

Fit time (s) 3.19 18.09 0.81 0.77 0.12 1.162 2.67 18.93 11.81 0.84

Mean fit time

(s)

361.77 153.28 0.79 0.84 1.53 1.04 15.50 18.65 0.17 0.12

Test time 0.008 0.005 0.020 0.154 0.005 0.005 0.030 0.024 0.029 0.044

Table 5 Selected features after using GGWO

# Feature Notation

1 Highest air temperature HAT

2 Volume difference in the Lake (?/-) VDL

3 Type of precipitation TOP

4 Precipitation amount PA

5 Open surface evaporation amount OSE

6 Sunshine duration SD

7 Temperature of the pool water PWT

8 Net head NH

9 Snow thickness ST
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recognize patterns within images. The proposed CNN

parameters are detailed in Table 7. Input data in the form

of time series of 2 dimensions of 16 cores, then maximum

pooling is made. In the second, 32 core and maximum

pools are made of 3-dimensional output tensors, the second

evolution layer. Then the third evolution layer was 4

dimensions of 64 cores and maximum pool layer, then 128

core and maximum pool in the last evolution 5 dimensions.

All maximum pooling layers received a maximum value

with 2 dimensions. The data from CNN are applied to RNN

in the form of a one-dimensional time series.

Recurrent Neural Network (RNN): A Recurrent Neural

Network (RNN) is a type of neural network that processes

data sequentially, relying on its ability to retain a memory

of the preceding sequence in order to learn effectively [30].

The name ‘‘recurrent’’ stems from the fact that the output

from each time step is used as input for the subsequent

step, building upon the output of the previous step by

remembering it. By doing so, RNNs can capture long-term

dependencies that exist within the training data.

Long Short-Term Memory (LSTM): LSTM, which is a

variation of RNN, is utilized for generating captions from a

range of video frames and images [28]. This is because

LSTM is a highly effective sequence translation model that

consists of numerous memory blocks known as cells. These

cells are responsible for manipulating and retaining

sequences using various categories of gates. One of the key

benefits of using LSTM is that it helps overcome the

vanishing gradient problem that can hinder the training of

RNN models. As a result, LSTM has proven to be a highly

useful tool for generating captions from visual data.

Figure 8 depicts the hybrid CNN/RNN model approach

that has been put forward. This approach consists of four

main components, as outlined in the diagram. Firstly, the

feature vectors are generated by extracting features from

video/images using a CNN and converting them into input

dimensions. Secondly, a model is generated and used to

provide a sequence through an RNN. Thirdly, semantic

captioning is performed on the generated sequences. The

evolution layer, LSTM recurrent layer and dense layer are

the three types that make up the core layer. In order to

Table 7 CNN parameters

Layer type Output shape Parameter

Conv1D_1 (None,111, 16) 1568

MaxPooling1D_1 (None,55, 16) 0

Conv1D_2 (None,55, 32) 17,073

MaxPooling1D_2 (None,26, 32) 0

Conv1D_3 (None,26, 64) 46,254

MaxPooling1D_3 (None,13, 64) 0

Conv1D_4 (None,13, 128) 114,675

MaxPooling1D_4 (None,7, 128) 0

Flatten (None,896) 0

Dropout (None,896) 0

Total parameters: 254,182
Fig. 7 The movement vectors’ behavior is influenced by the value of

|A|. [25]

Table 6 The hyperparameters

of deep learning models
Model Hyperparameters Hyperparameter selection Power production

Filters 16 16

CNN Kernel size 2 2

Activation function log, tanh tanh

Hidden layer neuron number 16

Hidden layer activation tanh

Output layer neuron number 1

RNN Output layer activation function linear

Loss function MSE

Optimizers Adam

Learning rate 0.001

Maximum iteration number 2000
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extract properties, the input data sequence is first used as

input into two subsequent evolution layers. The LSTM

layer is then introduced to the resulting attribute map, and

the three active LSTM gates are used to thoroughly learn

about complex addictions. The gate of forgetting

specifically removes irrelevant or unnecessary information

from earlier cell conditions. The entrance gate stores the

useful new information during the entrance.

Additionally, signals from the cell status are filtered

before being passed through the output passage and sent to

the following state. The processed temporal data are used

as input layers for non-linear transformation. The results of

the predictions are then generated after the information

obtained is reflected in the output space. Finally, the pro-

posed model is evaluated using a variety of metrics, while

also taking into account the data distribution and cross-

validation. Figure 9 demonstrates Power Production

(GWh) vs Power Production prediction (GWh) graph for

the CNN/RNN hybrid model.

According to the MAE, MSE, RMSE, MAPE and R2

metrics of proposed deep learning model tested for pre-

diction of Hirfanlı hydroelectric power production, the

most successful result is obtained with proposed deep

learning model when comparing as Table 8. When pro-

posed deep learning model is used in the prediction process

and the r, R2 and MAE values are obtained as 0.9802,

0.961 and 0.314, respectively, and they are the values with

the best results. Below are some examples of the literature

studies. These studies in Table 9 are compared to the

evaluation of the parameters compared to the models that

we proposed better results than other methods.

Fig. 8 Structure of the hybrid CNN/RNN model

60 70 80 90 100 110 120 130 140 150
60

70

80

90

100

110

120

130

140

150

E
le

ct
ri

ca
l P

ow
er

 P
ro

du
ct

io
n 

Pr
ed

ic
tio

n 
(G

W
h)

Electrical Power Production (GWh)

Data
Fit
Y=T

y = 1x+ 0.03
R = 0.9802

R2 = 0.961

Fig. 9 Power Production (GWh) vs Power Production prediction

(GWh) graph for the CNN/RNN hybrid model (inset: red line

indicates the least square regression (y = mx ? c), where y is the

prediction and x is the real data, additionally r is the coefficient of the
correlation)
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Table 9 The testing

performance metrics of the used

ML and hybrid deep learning

techniques

REF Algorithm/method Performance of the models

[8] SVR R = 0.6886 RMSE = 1.0982 MAE = 0.9028

ELM R = 0.6983 RMSE = 1.2165 MAE = 0.9519

REG R = 0.3803 RMSE = 4.234 MAE = 2.9688

MLP R = 0.9735 RMSE = 0.2593 MAE = 0.2128

[31] CNN-SVR 0.968 (PP) RMSE =[ 0.378

[32] ANN (BR) R = 0.73

MSE =[1.43 9 104

ANN (SCG) R = 0.76 MSE = 7.42 9 105

[33] ANN R = 0.89

[34] ANN (BR) R =[0.94 MAPE = 12.41% MAE = 450

ANN (LM) R =[0.91 MAPE = 17[.05% MAE = 593

[35] Stepwise multiple regression R2 = 0.753

[36] Deep Feed Forward Neural Network R = 0.507

[37] SVR R = 0.87 MAPE = 9.7%

GPR R = 0.92 MAPE = 4.5%

MLR R = 0.60 MAPE = 46.1%

PR R = 0.67 MAPE = 35.7%

[38] Random forest R = 0.90 NMAE = 0.17 NRMSE = 0.2

[39] ANN R = 0.77

[40] BP-ANN 0.87 RMSE = 17.06 MAE = 10.23

RBF-ANN 0.91 13.60 7.92

LSTM 0.92 12.14 7.01

ELM 0.91 12.75 7.59

ABC-ELM 0.95 9.99 5.75

Our study ELM R = 0.977 RMSE = 0.56 MAE = 0.4

CNN-LSTM R = 0.9802 RMSE = 0.42 MAE = 0.314

Table 8 The testing performance metrics of the used ML and hybrid deep learning techniques

SVR RFR ANN ELM WKNNR CNN/

RNN
PCA

enable

PCA

disable

PCA

enable

PCA

disable

PCA

enable

PCA

disable

PCA

enable

PCA

disable

PCA

enable

PCA

disable

r 0.965 0.973 0.973 0.968 0.966 0.969 0.977 0.957 0.966 0.935 0.9802

R2 0.931 0.947 0.947 0.937 0.933 0.939 0.955 0.916 0.933 0.874 0.961

RMSE 1.427 0.976 0.988 1.154 1.286 1.025 0.56 1.598 1.325 2.328 0.42

MAE 1.019 0.697 0.706 0.824 0.919 0.732 0.400 1.141 0.946 1.663 0.314

RRMSE 30.00 37.60 3850 28.28 47.14 25.14 23.02 25.19 44.60 47.27 21.51

RMAE 34.80 43.62 44.660 32.81 54.68 29.16 26.70 29.22 51.74 54.83 22.2

Fit time (s) 3.19 18.09 0.81 0.77 0.12 1.162 2.67 18.93 11.81 0.84 0.11

Mean fit

time (s)

361.77 153.28 0.79 0.84 1.53 1.04 15.50 18.65 0.17 0.12 0.10

Testing time 0.008 0.005 0.020 0.154 0.005 0.005 0.030 0.024 0.029 0.044 0.004

Neural Computing and Applications

123



4 Discussion

The objective of this study is to develop a predictive model

for hydropower production using various machine learning

and deep learning techniques. The research also delves into

methodologies for constructing predictive models, under-

scoring the significance of feature selection approaches.

Feature selection is crucial as it reduces the number of

features, thereby minimizing learning time and improving

prediction accuracy. The study utilizes meteorological data

from the years 2007 to 2021, adjusting and normalizing

outliers for estimating hydroelectric power plant produc-

tion. The dataset is then split into 80% for training and 20%

for testing. Model performance is assessed using metrics

such as MAE, MSE, RMSE, MAPE and R2, with the PCA

method employed in the analysis of algorithm results.

According to metrics including MAE, MSE, RMSE,

MAPE and R2, the ELM algorithm produced the best

results among five different machine learning techniques

for estimating hydroelectric capacity. Additionally, a novel

technique is introduced, combining the Genetic Grey Wolf

Optimizer (GGWO) with a Convolutional Neural Network/

Recurrent Neural Network (CNN/RNN) model using Long

Short-Term Memory (LSTM) for regression analysis. This

approach involves utilizing GGWO for feature selection to

reduce dataset dimensionality, followed by applying the

CNN/RNN-LSTM model for feature extraction and pre-

diction. The authors demonstrate the effectiveness of their

proposed technique through experiments on real-world

datasets, highlighting superior performance compared to

other state-of-the-art techniques. Table 8 summarizes the

results across all metrics for both machine learning algo-

rithms and deep learning models. Future research avenues

for this technique include exploring alternative optimiza-

tion algorithms for feature selection besides GGWO.

Additionally, investigating the impact of dataset size on the

technique’s performance and exploring different architec-

tures for the CNN/RNN-LSTM model could provide

valuable insights. Moreover, extending the technique to

incorporate other data types, such as time series or image

data, and applying it to diverse domains like finance or

healthcare would contribute to evaluating its performance

in various applications.

5 Conclusion

This study focuses on predicting power production at the

Hirfanlı dam using machine learning (ML) and deep

learning (DL) techniques. Two distinct methods were

employed: Method I utilized various ML algorithms with

feature selection through the PCA method, while Method II

introduced a CNN/RNN-LSTM hybrid model with feature

selection based on the Grey Wolf Optimizer (GGWO) and

Genetic Algorithm (GA). The study incorporated the ten-

fold cross-validation method and employed grid search for

hyperparameter adjustments. In Method I, five ML models

are utilized, with the Extreme Learning Machine (ELM)

algorithm emerging as the most successful. It achieved a

correlation coefficient (r) of 0.977 and a coefficient of

determination (R2) of 0.955 with the best feature subset.

Additionally, ELM demonstrated a mean absolute error

(MAE) of 0.4, indicating high precision in power produc-

tion prediction. Method II introduced the CNN/RNN-

LSTM hybrid model, surpassing all ML models from

Method I. This model demonstrated exceptional prediction

accuracy with a correlation coefficient (r) of 0.9802 and a

coefficient of determination (R2) of 0.961. Moreover, the

CNN/RNN-LSTM model achieved a MAE of 0.314,

highlighting its robustness and reliability in power pro-

duction forecasting. In conclusion, this research provides

valuable insights into renewable energy prediction, par-

ticularly in hydroelectric power production. ML and DL

techniques, coupled with advanced feature selection

methods, offer a robust framework for accurate and effi-

cient power production forecasting. Future work should

address factors such as data availability, model general-

ization across different dam systems, and the potential

impact of external factors on power production. Addi-

tionally, exploring the integration of real-time data and

considering the dynamic nature of environmental condi-

tions could enhance the model’s predictive capabilities.

These considerations are crucial for refining the models

and ensuring their applicability in diverse operational

scenarios. The outcomes of this study lay the foundation

for future research in renewable energy prediction, inspir-

ing the development of more sophisticated models for other

energy sources and addressing the identified limitations.
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