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Abstract
The photovoltaic system has been widely integrated into electrical power grids to produce clean and sustainable energy

sources. Precisely modeling of PV systems is crucial to simulate and asset the performance of such power system.

Modeling of PV system is a challenge because the characteristic curve of current and voltage is nonlinear and has unknown

parameters due to insufficient data points in manufacture’s data sheet. This work proposes generalized normal distribution

optimization based on neighborhood search strategies (NSGNDO) to extract the parameter of single diode model (SDM),

double diode model (DDM), and PV module model (PVM). The root means square error (RMSE) is used as a performance

indicator. Two commercial PV models like RTC France solar cell and PWP201 are used to validate the ability of NSGNDO

to precisely estimated the PV system’s parameters. The results show the superiority of NSGNDO over competitive opti-

mization methods and can reduce the RMSE to 2.05296E-03 for PWP201 and to 9.8248E-04 for RTC France solar cell

which prove that NSGNDO can be used as competitor method to identify the parameters of PV solar system. The statistical

analysis shows the robustness of NSGNDO through statistical measurements and Wilcoxon rank test.’
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1 Introduction

Photovoltaic (PV) systems are widely utilized to produce

electric energy from solar energy [1]. As PV systems are

exposed to open-air environmental factors such as tem-

perature and global irradiance, which affect the efficiency

of solar energy, it is critical to precisely create current–

voltage models for managing the systems.

The current–voltage (IV) models primarily use two

basic forms namely single diode (SDM) and double diode

model (DDM). These models are extensively applied to

express the relation between current and voltage. The

correct and accurate parameters estimation of these models

provide accurate and reliable PV models.

Due to the varying unsteady environment, the process of

solar systems and the PV models’ parameters are com-

monly variable. Accurate estimation of the model param-

eters is very important. Hence, using efficient methods for

this task is required. Consequently, even if the meta-

heuristic algorithms for the estimation of PV model

parameters produced good results, additional studies are

required to develop more efficient techniques that can

produce better solutions.

An essential phase of improving the efficiency of PV

solar cells systems is the optimum design of these systems.

Therefore, performing reliable and accurate PV system

modeling enhance the system’s working characteristics

[2–4]. The modeling procedure can be divided into two

distinct stages. First, the mathematical modeling is done

first; then, extraction of system parameters comes next [5].
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Several PV solar cells systems models have nonlinear

characteristics. Single diode model (SDM) is the simplest

widespread model [6]. Also, the double diode model (DDM)

[7] and three-diode model (TDM) are significant ones in the

literature [2]. Some other models are less used as the multi-

diode model (MDM) [8] and the reverse double diode model

(RDDM) [9].

The SDM has smaller number of parameters and pro-

vides acceptable accuracy. The DDM model is introduced

later; however, it has seven parameters to calculate. The

three-diode model has ten parameters and is designed to

allow more accurate estimation and PV cell model

enhancement that is suitable for production [2].

Even with its complicated design, TDM is regarded as

the finest PV solar cell model. Precise PV system repre-

sentation is a challenging task that relies on mathematical

modeling and estimation of PV cell specifications. So when

the models are indirectly transcendent, the outcomes are

inappropriate, and this debility is hard to fix using tradi-

tional standard techniques [10].

Many studies have been recently used in the solar PV

systems. The main concern was to find a correctly esti-

mation of the PV system models parameters, i.e., finding

the best parameters of the solar cells as well as PV units to

develop precise I–V description curve and correctly design

the PV system. The PV parameter can be found by three

methodologies: (1) analytical [11], (2) numerical [12, 13],

and (3) metaheuristic [5]. The first technique use equations

that provide mathematical model of the system for fast

direct calculation of the PV parameters. It uses the three

key points of the I–V curves, i.e., the point of short circuit

current, open-circuit voltage, and the maximum power.

Analytical approaches are simple and fast, but the accuracy

is liable to deterioration if one of the key points is incor-

rectly specified.

Numerous analytical methods were used, such as the

Lambert method-based W- function. It was used for the

estimation of PV cells parameters of the SDM and DDM.

However, the numerical methods appeared to be more

accurate [14, 15]. Various numerical techniques were

introduced to find the PV parameter [16, 17]. Mares et al

found that numerical method appeared simple and accurate

to calculate the parameters of DDM [16].

Numerical methods used nonlinear algorithms, like

Newton–Raphson method [18, 19]. Nelder-Mead simplex

method [20] and conductivity method (CM) for parameters

calculation of the of the PV system [21]. Also, Two-step

linear least-squares (TSLLS) have been appeared to be

accurate in the estimation of the PV cell parameters [12].

Numerical approaches, requires continuous and differen-

tiable fitness function, hence will face some challenges in

parameter extraction of the PV cells. While numerical

methods outperform analytical methods in terms of

accuracy, the large number of parameters complicates the

extraction operation [16, 17, 22].

To overcome the drawbacks and challenges of the first

two techniques, metaheuristic methods have been used for

optimization of PV parameter estimation. Metaheuristic

optimization methods are recognized by their global search

and are capable of handling nonlinearity. Furthermore, the

gradient computation of the objective function and ini-

tializing constraints are not required [23].

Several metaheuristic optimization methods, such as the

genetic algorithm, are designated for estimating the

parameters of the PV cell [24]. For the genetic algorithm,

considerable flaws were found. The computation time and

the slow rate of convergence are big concerns.

Particle swarm optimization (PSO) is another meta-

heuristic method that was used to determine the parameters

of solar cells for the SDM and DDM models [25]. Also,

simulated annealing (SA) method was used to obtain the

parameters of the PV cell’s using the SDM and DDM models

[23].

Generalized normal distribution optimization (GNDO), a

new metaheuristic method, was used to extract parameters

from PV models. The most prominent aspect of GNDO is

that it only needs the population size and terminal condi-

tion to be defined and does not require any other explicit

controlling parameters. The method has a simple structure

and uses the traditional generalized normal distribution

formula to update the individual’s locations based on

population location information. GNDO has been applied

for parameter extraction of three photovoltaic models and

appeared to outperform the compared algorithms in terms

of efficiency and accuracy [26].

A dynamic self-adaptive and mutual comparison

teaching learning-based optimization (DMTLBO) outper-

forms the basic TLBO by improving its teacher and learner

stages. In the first stage, two teaching strategies were

proposed (differentiated/personalized) according to the

learning status. In the second stage, a new strategy was

introduced for learning. The learner can communicate and

learn with three learners selected randomly. DMTLBO

showed better convergence speed and accuracy [27].

Triple-phase teaching learning-based (TPTLBO) adds a

third phase (buffer phase) and uses a centroid approach to

update the location of middle learners, increasing the

exploitation and exploration; learners can select different

phases and conduct different methods for learning

according to their level of knowledge [28]. Additionally, to

improve the search capabilities, a dynamic control

parameter takes the role of the rand random parameter. The

results reveal that TPTLBO obtains greater performance in

terms of accuracy and reliability when tested through the

SDM, DDM, and TDM.
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Another approach used the Runge Kutta RUN method to

estimate the PV parameters. It uses root mean square error

(RMSE) by comparing calculated and measured current as

the optimization objective function. It significantly out-

performed other optimization methods such as the Hunger

Games Search (HGS), Chameleon swarm algorithm (CSA),

Tunicate swarm algorithm (TSA), Harris Hawk’s Opti-

mization (HHO), Sine–Cosine algorithm (SCA), and gray

wolf optimization (GWO). The algorithm was applied on

three solar cell models to extract their parameters (single,

double and triple diode models) [29].

Gradient-based optimizer (GBO) was used to find the

parameters of three common SC models, namely single,

double and three-diode models. It efficiently and precisely

estimate the parameters of these models [30]. A two flames

generation strategy is used to create two different types of

target flames for directing the moths flying in an improved

moths-flames optimization (IMFO) method. Furthermore,

two distinct strategies are used to adjust the moth’s posi-

tion. This uses probability to select one update strategy for

each month at each update, balancing exploitation and

exploration. IMFO was used to find the parameters of

single, double and PV module models. It indicates better

performance compared with other well established meth-

ods [31].

The tree growth method (TGA) was used to find the

parameters of solar cells and PV modules [32]. The

approach performed well for solar cells and typical PV

modules when using different diode models, including a

SDM, a DDM, and TDM models. The results of TGA tech-

nique provide an accurate and efficient estimation of the

parameters. Furthermore, the balance between intensifica-

tion and diversification of the TGA can be achieved by

tuning of the algorithm parameters.

The cuckoo search optimization (CSO) and some of its

variants were used for estimating parameter of PV cell

[33–35]. They are used to estimate parameters of (I) pho-

tovoltaic (PV) cell: SDM and DDM, and (II) PV module

which contains 36 diodes series connected PV cells [35].

Improved cuckoo search optimization (ICSO) and modi-

fied cuckoo search optimization (MCSO) techniques were

applied to estimate parameters of PV cell models. ICSO

applies random walk using adaptive step size coefficient.

While MCSO use communication mechanism between top

nests. Results show that step size improved the conver-

gence speed of the ICSO algorithm in contrast to CSO

algorithm that uses fixed step size. Compared to the CSO

and MCSO, ICSO accomplished minimum RMSE, higher

accuracy and reliability [35].

An improved queuing search optimization (QSO) algo-

rithm is proposed to overcome the nonlinearity of PV solar

cell and to extract optimal parameters’value [36]. The DE

algorithm is applied to every obtained solution in order to

increase the diversity of the populations. The authors

evaluate the algorithm using the manufacturer’s datasheet

TFST40 and MCSM. The practical and statistical finding

show the reliability and accuracy of the algorithm to find

the solution for PVM model.

To identify the unknown parameters in PV model and to

solve the nonlinearity behavior, Northern Goshawk opti-

mization algorithm (NGO) was introduced [37]. The algo-

rithm is applied to extract the parameters of triple diode

model (TDM) of the PV, module namely Photowatt-

PWP201, Kyocers KC200GT and Canadian solar CS65k-

280 M. The results reveal that NGO can dramatically

reduce the cost functions in terms of RMSE.

The atomic orbital search algorithm (AOS) was intro-

duced to extract the unknown parameters of RTC France

solar cell and PVM752 GaAs thin-film cell [38]. The

authors present decent basis technique to validate the

accuracy of extracting the unknown parameters. The

obtained results were compared to RMSE from other

methods, and the results show that the AOS can signifi-

cantly reduce the cost function compared to other methods

in the literature.

According to state-of-the art summarized in Table 1,

many metaheuristic techniques have been extensively used

to tackle the problem of parameters extraction of PV solar

cell. However, there is NO-Free-Lunch which demonstrate

that no singular method has the ability to address all

optimization problems, based on this fact, one algorithm

may have competitive performance on a specific kind of

problems, but there is no guarantee to perform well on

other problems. Therefore, to tackle the shorting coming of

the after mentioned techniques such as premature conver-

gence, poor global search, and complex computation time,

this work proposes NSGNDO to overcome the premature

convergence of the basic GNDO [26] and to prevent the

stuck in local optima.

In addition, the RMSE based on the extracted parameters

of PV solar cell has been widely used in the literature for

RTC France solar cell and Phowatt-PWP201 PV module.

This work employees RMSE as performance and compar-

ison indicator. This performance metric is calculated based

on the differences between the measured solar cell output

current and the estimated one at different measured volt-

ages (I–V characteristic curve).

The contribution of this work can be summarized as

follows

1. Local neighborhood search (LNS) strategy to improve

the exploitation and convergence rate.

2. Global neighborhood search (GNS) strategy to increase

the diversity of the population and prevent premature

trapped in local minima.
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The rest of the paper is organized as follows. Sections 2

and 3 demonstrate the mathematical modeling and for-

mulate the problem, respectively. The standard GNDO is

presented in Sect. 4 whereas Sect. 5 presents the proposed

NSGNDO. The numerical results and discussion are pre-

sented in Sect. 6. Finally, Sect. 7 concludes the paper and

presents the future work.

2 Mathematical modeling

Numerous mathematical models have been introduced to

demonstrate the characteristics of PV solar cells. The

standard models are single diode model (SDM), double

diode Model (DDM), and PV model. The most commonly

used model is the single diode model because of its sim-

plicity but its accuracy is not high enough. Therefore, the

double diode model as well as PV model are proposed to

enhance the efficiency of the solar cells. This section shows

the problem formulation, presents mathematical modeling

of three PV solar cells, and introduces objective function

formulation.

2.1 Single diode model

Figure 1a shows the equivalent circuit for SDM. It consists

of single diode and an independent current source in par-

allel. In addition to one series resistance Rs and a shunt

resistance Rsh, the output current (Io of the circuit is cal-

culated as follows

Io ¼ Iph � ID � Ish ð1Þ

Where Iph, ID, and Ish represent the current of the inde-

pendent current source, the diode current, and the current

Table 1 Various method for extracting PV model parameters

Refs. Method Data set Modeling Obj.Func Remark

[23] SA 57 mm diameter R.T.C France solar cell SDM, DDM,
PV

RMSE Simplifies the assumption for differentiability

and continuity need by other methods

[24] GA mono-crystalline (from Sanyo (HIT-215)),

multi-crystalline (from Kyocera (KC200GT)),

and thin-film (from Shell Solar (ST 40))

PVM AE Robustness and applicability to extract

parameters with wide range of temperature and

sola radiation

[25] PSO SDM RMSE Premature convergence

[26] GNDO R.T.C. France solar cells, Photowatt-PWP201 SDM, DDM,
PVM

RMSE Trapping in local optima and Slow convergence

rate

[27] DMTLBO R.T.C. France solar cells, Photowatt-PWP201,

STM6-40/36 module-STP6-120/36 module

SDM, DDM,
PVM

IAE Avoid premature convergence

[28] TPTLBO R.T.C France, Photowatt-PWP201, STM6-40/

36,STP6-120/36

SDM, DDM,
PVM

RMSE Reinforce exploitation and exploration using

buffer phase

[29] RUN R.T.C France SDM,
DDM,TDM

RMSE Robustness and convergence rates

[30] GBO R.T.C France SDM,
DDM,TDM

RMSE,
AE

Balance exploitation and exploration

[31] IMFO R.T.C France, Photowatt-PWP201 SDM,
DDM,PVM

RMSE Effectively search for global solution

[32] TGA R.T.C. France, PVM 752 GaAs thin-film cell,

Photowatt-PWP201, STE 20/100

SDM, DDM,
TDM

IAE, RE Balance between intensification and

diversification

[33] CS R.T.C France PV cell SDM IAE Simplicity and minimum number of tuning

parameters

[34] ImCSA Photowatt-PWP201, R.T.C France PV cell,

STP6-120/36-,STM6-40/36

SDM,
DDM,PVM

RMSE Aquasi-opposition based learning (QOBL) to

initialize the population and adaptive method

to balance exploitation and exploration

[35] ICS Photowatt-PWP201,R.T.C France PV cell SDM,
DDM,PVM

RMSE,
IAE

variants improved CSO to improve accuracy and

reliability

[39] QSO Photowatt-PWP201, STM6-40/36, STP6-120/36 SDM,
DDM,PVM

RMSE Integrate DE algorithm to increase the diversity

of the population

[40] NGO Photowatt-PWP201, Kyocers KC200GT,

Canadian solar CS65k-280 M

TDM IAE High precision

[41] AOS R..T.C France solar cell, PVM752 GaAs thin-

film cell

SDM, DDM,
TDM

RMSE,
SIAE

Precise formula for SDM
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of shunt resistance. The diode current IDis well defined by

Shockley equation as

ID ¼ Isd expðVm þ RsIm
nVt

Þ � 1

� �
ð2Þ

Where Isd, Vm, Im are the diode saturation current(A), the

measured voltage (V), and the measured current(A),

respectively. The diode ideality factor is n, and the thermal

voltage is represented by Vt and is calculated as

Vt ¼
K:T

q
ð3Þ

Where k represents the Boltzmann constant and equals

(1:3806503� 10�23 J/K), T is the temperature measured in

Kelvin, and q is the electron charge (1.60217646 � 10�19

C). The shunt resistance current is formulated as

Ish ¼
Vm þ Rs:Im

Rsh

ð4Þ

From Eqs. 1, 2, 3, and 4, the output current of the solar

cell can be calculated as

Io ¼ Iph � Isd exp
Vm þ RsIm

nVt

� �
� 1

� �
� Vm þ Rs:Im

Rsh

ð5Þ

In this equation, the unknown five parameters are X ¼(Iph,

Isd, Rs, Rsh, and n) which have to be optimized.

2.2 Double diode model

DDM is proposed to enhance the solar cell efficiency

through considering the influence of leakage current within

the depletion region. The equivalent circuit is shown in

Fig. 1b. The output current of this circuit Io is calculated by

Kirchhoff’s current law as follows

Io ¼ Iph � ID1 � ID2 � Ish ð6Þ

Io ¼ Iph � Isd1½expð
Vm þ RsIm

n1Vt
Þ � 1�

� Isd2½expð
Vm þ RsIm

n2Vt
Þ � 1� � Vm þ Rs:Im

Rsh

ð7Þ

Where Isd1, Isd2 are, respectively, the saturation currents (A)

of the diode 1 and diode 2. n1 and n2 are denote the ideality

of the diode 1 and diode 2, respectively. There are seven

unknown parameters within this model and have to be

identified X ¼(Iph, Isd1, Isd2, Rs, Rsh, n1 and n2).

2.3 PV module model

PVM module model is build based on the configuration of

SDM. It consists of a number of solar cells arranged in

series or/and parallel to increase the efficiency of the

energy solar cell. Ns describes the number of series cells,

and Np presents the number of parallel solar cells. The

modeling of the PV solar cell is described in Fig. 1c, and

the output current is calculated by the following

expression.

Io ¼ Iph:Np � Isd:Np½expð
Vm þ RsIm:Ns=Np

nVt
Þ � 1�

� Vm þ Rs:Im:Ns=Np

Rsh:Ns=Np

ð8Þ

Vt ¼
Ns:K:T

q
ð9Þ

The PVM model has five unknown parameters needed to be

optimized similar to SDM which are X ¼(Iph, Isd, Rs, Rsh,

and n).

3 Problem formulation

The extraction of the unknown parameters of different

solar cells models can be regard as optimization problem.

In order to measure the accuracy of the extraction process,

the objective function should emphasize the differences

between the measured current and the current calculated

using the estimated parameters.

Fig. 1 The equivalent circuits of SDM, DDM, and PV models
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The different algorithms settings substantially impact

the performance of metaheuristic algorithms, and therefore,

different performance indicators can be used to evaluate

the results from diverse aspects. Literature usually visual-

izes the accuracy of the extracted parameters against

experimental data. Based on the differences between sim-

ulation data and experimental data, some general and

objective functions are more suitable for evaluation and

comparing the algorithms.

The absolute error indicator (AE) is used to represent the

difference between the simulated data and the experimental

data. The mean absolute error (MAE) emphasizes the situ-

ation of the simulated data and the experimental data. The

sum squared error (SSE) measures the degree of change in

data between the simulated data and the experimental data

where the small value of SSE indicates that the simulated

data can describe the experimental data with a small error.

The root mean square error (RMSE) describes the degree

of dispersion of the simulated data and the experimental

data and gives an overall assessment. The Wilcoxon test

gives overall assessment from statistical perspectives. In

this work, the RMSE is used as the objective function [42]

and Wilcoxon test is used to evaluate performance.

According to Eqs. 5, 7, and 8, the error function for SDM,

DDM, and PV module model can be expressed as follows.

fSDðVm; Im;XÞ ¼ Im � Iph þ Isd½expð
Vm þ RsIm

nVt
Þ � 1�

þ Vm þ Rs:Im
Rsh

ð10Þ

X ¼(Iph, Isd, Rs, Rsh, and n)

fDDðVm; Im;XÞ ¼ Im � Iph þ Isd1½expð
Vm þ RsIm

n1Vt
Þ � 1�þ

Isd2½expð
Vm þ RsIm

n2Vt
Þ � 1� þ Vm þ Rs:Im

Rsh

ð11Þ

X ¼(Iph, Isd1, Isd2, Rs, Rsh, n1 and n2).

fPVðVm; Im;XÞ ¼ Im � Iph:Np

þ Isd:Np½expð
Vm þ RsIm:Ns=Np

nVt
Þ � 1�

þ Vm þ Rs:Im:Ns=Np

Rsh:Ns=Np

ð12Þ

X ¼(Iph, Isd, Rs, Rsh, and n).
In general, the objective function can be regarded as

follows

fRMSEðVm; Im;XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

f kd ðIkm;Vk
m;XÞ

s
ð13Þ

Where d denotes to single diode model, double diode

model, or PV module model, and n is the number of

benchmark current.

4 Generalized normal distribution
optimization

GNDO is a relatively new optimization algorithm intro-

duced by Zhang et al. in 2020 to extract the unknown

parameters of photovoltaic models with high accuracy. The

algorithm is inspired by the normal distribution model, and

the position of all individuals is considered as random

variables obeying normal distribution. Therefore, the

search process can be described by multiple normal dis-

tributions corresponding to the position of populations.

Moreover, GNDO searches the promising solution space

through two operators, namely local exploitation, and

global exploration.

4.1 Local exploitation

Local exploitation or local search aims to enhance the

solution found so far through searching the space around

the better solutions where the search space consists of the

current positions of all individuals, and the mean positions.

Therefore, generalized normal distribution model is built as

follows.

vti ¼ li þ di � g; i ¼ 1; 2; :::;N ð14Þ

where vti, li, di are the new position, generalized mean

position, the standard variance of the ith individual at time

t, and g is penalty factor. Moreover, these parameters care

calculated as follows

li ¼
1

3
ðxti þ xtbest þMÞ ð15Þ

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
½ðxti � lÞ2 þ ðxtbest � lÞ2 þ ðM � lÞ2�

r
ð16Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logðk1Þ

p
� cosð2pk2Þ if a� bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� logðk1Þ
p

� cosð2pk2 þ pÞ otherwise

(

ð17Þ

M ¼
PN

i¼1 x
t
i

N
ð18Þ

where a, b, k1, and k2 are random number between 0 and 1.

M, xtbest are the mean position of the current population and

the best current position, respectively, and N is the popu-

lation size.
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4.2 Global exploration

The global exploration searches for new regions to find

promising solutions. Three randomly selected individuals

are used to update the individual ith position as follows.

vti ¼ xti þ b� ðjk3j � v1Þ þ ð1� bÞ � ðjk4 � v2Þ ð19Þ

Where k3 and k4 are two random number between 0 and 1

drawn from normal distribution and the adjustment factor b
controls the information sharing between local and global

operators. Moreover v1, and v2 can be computed as follows.

v1 ¼
xti � xtp1 if f ðxtiÞ\f ðxtp1Þ
xtp1 � xti otherwise

(
ð20Þ

v2 ¼
xtp2 � xtp3 if f ðxtp2Þ\f ðxtp3Þ
xtp3 � xtp2 otherwise

(
ð21Þ

where xtp1, x
t
p2, and xtp3 are three randomly selected indi-

vidual from the current population.

Finally, GNDO introduces screening mechanism to keep

the better solution in the next generation as follows.

Algorithm 1 shows the steps of GNDO.

xtþ1
i ¼

vti if f ðvtiÞ\f ðxtiÞ
xti otherwise

�
ð22Þ

Algorithm 1. Standard GNDO

5 Enhanced GNDO with neighborhood
search (NSGNDO)

A common drawback of the most stochastic search algo-

rithm is Premature convergence. However, some trapped

individuals at local optima can contain the global mini-

mum. Therefore, searching the neighborhood of individuals

may find better solutions and lead to find the global solu-

tions. Based on this concept, many neighborhoods search

strategies are proposed to enhance both the exploration and

exploitation of some natural-inspired algorithms [39–41].

Inspired by the work done in [43], NSGNDO is presented

with two search strategies namely: local neighborhoods

search strategy (LNS) and global neighborhoods search

strategy (GNS). The former strategy improves the conver-

gence of the algorithms and makes it converge to near-

optimal solutions while the later one makes the algorithm

explores more feasible solutions in the search space.

5.1 Local neighborhoods search strategy

LNS improves the exploitation of the algorithm by

searching the neighborhood of individuals to accelerate the

algorithm’s convergence. Assume that, the individual

xi; i ¼ 1; . . .;N where N is the population size and the

individuals are organized in a circle topology as shown in

Fig 2. After each generation, the neighborhood of indi-

vidual xi is calculated based on the mean Euclidean dis-

tance between xi and every individual in the population as

follows

di ¼
PN

k¼1 dði;kÞ
N � 1

ð23Þ

Where N is the population size excluding individual xi, and

the d(i, k) is the Euclidean distance between xi and xj. The

individual xj is neighbor of xi if the distance d(i, k) is less

than r:di where r is the neighborhood radius and equal to 1.

Consequently, the position of individual xi is updated as

follows

Lxi ¼ r1xi þ r2pbesti þ r3v1 ð24Þ

v1 ¼
xa � xb if f ðxaÞ\f ðxbÞ
xb � xa otherwise

�
ð25Þ

Where pbesti is the previous best position of individual xi,

xa and xb are two randomly selected individuals from the

neighborhood of xi, a! ¼ b, and r1,r2 and r3 are three

random numbers generated from uniform distribution, and

r1þ r2þ r3 ¼ 1. Figure 2a demonstrates the local neigh-

borhood search mechanism.

The individual with large step may be easily trapped in

local minima. The LNS generates new solution near the

current one,which helps the algorithm to find better
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solution step by step. In general, LNS is helpful when the

local minimum is close to the global minimum.

5.2 Global neighborhood search strategy

The GNS is proposed to improve the exploration ability of

the standard GNDO by searching new promising region that

may contains feasible solutions. The trail position of

individual xi is generated as follows

gxi ¼ r4xi þ r5gbesti þ r6v2 ð26Þ

v2 ¼
xc � xd if f ðxcÞ\f ðxdÞ
xc � xd otherwise

�
ð27Þ

Where gbesti is the global best individual, xc and xd are two

randomly selected individuals from the entire population,

c! ¼ d. The variables r4,r5 and r6 are three random

numbers generated from uniform distribution, and

r4þ r5þ r6 ¼ 1. Figure 2b demonstrates the mechanism

of global neighborhood search. The GNS prevents the

individuals from trapped in local optima and pulls the

individuals toward new promising solutions.

Algorithm 2. NSGNDO

5.3 Process of NSGNDO

Algorithm 2 shows the pseudo code for the proposed

NSGNDO. Line 1 shows the input to the algorithm where

Max_FES denotes the maximum number of function

evaluations, N denotes the number of populations, and L

and U are the lower and upper limits for each variable. In

Line 2, the algorithm randomly initializes the populations.

For instance, to estimate a SDM’s parameters, each indi-

vidual Xi can be expressed as Xi ¼ ½x1; x2; x3; x4; x5; x6; x7�
corresponding to parameters’ values of the SDM which are

Iph, Isd1, Isd2, Rs, Rsh, n1, and n2; then, the algorithm

randomly initializes the swarm Xi according to lower and

upper limits based on Table 2. In Line 3, the best individual

Xbest, the local best individual Xpbest are calculated. From

Line 9 to Line 14, the algorithm performs either local

search or global search according to Eqs. 14 and 19,

respectively. In Line 15, the algorithm performs screening

mechanism between Xt
i and Xtþ1

i . From Line 16 to 21, the

algorithm performs either local search strategy using

Fig. 2 Neighborhood search strategies
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Eq. 24 or global search strategy using Eq. 26 according to

the value of pn. Line 23 selects the best individual using

screening mechanism among Xi, LX, and GX. From Line 23

to 27, the value of FEs, the best individual and the local

best individual are updated. In Line 29, the optimal/near-

optimal solution is obtained. Figure 3 sum up the whole

process of the NSGNDO and highlights the neighborhood

local search and neighborhood global search strategies.

5.4 The computation complexity of NSGNDO

Computation complexity is one of the most important

metrics to measure the running time for any algorithm

regardless of the hardware. According to Algorithm 2 and

the flowchart shown in Fig. 3, the complexity of NSGNDO

consists of the complexity for the basic GNDO plus the

complexity of LNS and GNS. The complexity of the GNDO

consists of comparing and updating the individuals based

on number of function evaluations. There are N individuals

position updates and there are N comparisons. Therefore,

the total complexity of the basic GNDO is

OðNDTmax þ NTmaxÞ. In the proposed NSGNDO, the cal-

culation for neighborhood is estimated on each iteration

from Eq. 23 and mentioned in Line 7 of Algorithm 2.

Therefore, the complexity of calculating the neighborhood

is NTmax. Therefore, the total complexity of the proposed

NSGNDO is OðNDTmax þ 2NTmaxÞ

6 Numerical results and discussion

The performance of the proposed NSGNDO has been vali-

dated through estimating the parameters of SDM, DDM, and

PVM models. The proposed NSGNDO is implemented using

MATLAB 2016a software on an Intel Core TM core i7 CPU

@ 2.90GHz, 16 GB RAM Laptop.

The simulation results are compared with real time data

obtained from [44] and presented in Table 10(see Appen-

dix A). This benchmark is widely used to evaluate different

optimization algorithms on estimating the parameters of

various solar cells. The experimental data for SDM, and

DDM were collected using R.T.C France solar cell with a

57 mm diameter commercial silicon under 1000 W/m2 at

33 C�. For the PVM model, the experimental data were

collected for Phowatt-PWP201 that consists of 36

polysilicon cells in series and the data were measured at

temperature 45 C�.
To have fair comparison between different algorithms,

the range of different parameters is shown in Table 2

[45–48]

The search range for each parameter is given in Table 2

for single diode model, double diode model, and PV

module model, respectively. In addition, the performance

of the proposed NSGNDO is evaluated against nine

sophisticated metaheuristic algorithms including GNDO

[26], SSA [49], TLBO [50], NNA [51], MBO [52], GA [53],

BSA [54], PSO [55], and CS [56]. For the sake of having

fair comparison, the number of function evaluation is set to

35,000, 45,000 and 35,000 for single diode model, double

diode model and PV module model. The population size is

set to 50 for all algorithms on SDM, DDM, and PV module

Table 2 The parameters range of the PV models

Parameter Single/Double diode Phowatt-PWP201

LB UB LB UB

Iph(A) 0 1 0 2

Isd, Isd1,Isd2(lA) 0 1 0 50

Rs(X) 0 0.5 0 2

Rsh(X) 0 100 0 2000

n1,n2,n2 1 2 1 50

Fig. 3 Flow chart of NSGNDO
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model, respectively. The control parameters of the com-

pared methods are the same as mentioned in their refer-

ences. The probability of conducting neighborhood search

is set to 0.6 as in [43]. Moreover, each algorithms run

independently 30 times on each test benchmark. The best

results are indicated by boldface.

6.1 Result analysis for single diode model

Table 3 shows the extracted parameters of SDM model and

the corresponding RMSE obtained by different methods. On

one hand, both the proposed NGNDO and the standard

GNDO are superior to other methods, and they can find the

best values of SDM’s parameters that achieve minimum

RMSE with value of 9.8602E-04. On the other hand, PSO

ranks second with RMSE’s value of 9.8630E-04.

Although NSGNDO and GNDO achieve the same RMSE,

NSGNDO can find the best values of the SDM’s parameters

with fewer number of function evaluations as indicated by

the convergence curve in Fig. 6a. The figure shows that

NGNDO has a fast convergence beginning from early

iterations compared to GNDO and can obtain the best mean

value of RMSE at 10,000 function evaluations. On contrast,

the GNDO can reach the best value of RMSE at the 30,000

function evaluations. Furthermore, Fig. 7a shows that

NSGNDO has better convergence than other methods for

SDM model.

In addition, Table 4 shows the worst, mean, median,

best, and Std of RMSE obtained by different methods. The

results demonstrate that NSGNDO has a small variation of

the results over different function evaluations compared to

other methods. In more detail, NSGNDO shows more sta-

bility as indicated by the minimum Std with value of

3.098E-17 compared to the basic GNDO which has Std

with value of 3.1269E-17.

Furthermore, to have competitive comparison between

the simulated results and the experimental data. Figure 4a

shows I–V characteristics curve for simulated current and

measured current against the measured voltage. The sim-

ulated currents are calculated using the values of parame-

ters obtained by applying NSGNDO whereas the measured

currents are obtained from [44]. The curve demonstrates

Table 3 The best solution

obtained by different algorithms

on single diode model

Algorithm IphðAÞ IsdðlAÞ RsðXÞ RshðXÞ n RMSE

CS 0.76071 0.38612 0.03581 62.44536 1.49931 1.0768E-03

PSO 0.76078 0.31906 0.03643 53.40907 1.47994 9.8630E-04

GWO 0.76116 0.41861 0.03541 57.13802 1.50782 1.1597E-03

NNA 0.76085 0.38089 0.03568 56.42245 1.49800 1.0406E-03

SSA 0.76078 0.33978 0.03617 54.70626 1.48630 9.9098E-04

SCA 0.77814 0.63440 0.03084 100.0000 1.54569 2.1923E-02

WOA 0.76001 0.39933 0.03569 62.31742 1.50291 1.2340E-03

BSA 0.76039 0.39431 0.03581 67.85568 1.50141 1.1263E-03

JAYA 0.76075 0.36859 0.03586 58.20751 1.49472 1.1489E-03

TLBO 0.76073 0.33611 0.03625 55.36187 1.48516 9.9267E-04

GNDO 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602E-04

NSGNDO 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602E-04

Table 4 Comparing the

statistical results obtained by

applying different algorithms on

single diode

Algorithm Worst Mean Median Best Std Rank

CS 1.6549E-03 1.2932E-03 1.2785E-03 1.0768E-03 1.4742E-04 4

PSO 1.7435E-03 1.2626E-03 1.2421E-03 9.8630E-04 1.9683E-04 3

GWO 4.5134E-02 6.8230E-03 3.0354E-03 1.1597E-03 1.0799E-02 8

NNA 4.8836E-03 2.1810E-03 2.2472E-03 1.0406E-03 6.6585E-04 6

SSA 1.0339E-02 2.7847E-03 2.0690E-03 9.9098E-04 2.2093E-03 7

WOA 5.0973E-02 1.4733E-02 5.5432E-03 1.2340E-03 1.7116E-02 9

BSA 1.5808E-03 1.4146E-03 1.4246E-03 1.1263E-03 1.0943E-04 5

JAYA 1.5832E-03 1.3976E-03 1.4602E-03 1.1489E-03 1.3291E-04 3

TLBO 1.5367E-03 1.1692E-03 1.1034E-03 9.9267E-04 1.5771E-04 2

GNDO 9.8602E-04 9.8602E-04 9.8602E-04 9.8602E-04 3.1269E-17 1

NSGNDO 9.8602E-04 9.8602E-04 9.8602E-04 9.8602E-04 3.0928E-17 1
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Fig. 4 I–V characteristics between the simulated current and

measured current obtained by NSGNDO
Fig. 5 Power characteristics between the simulated power and

measured power obtained by NSGNDO
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that the error between simulated currents and measured

current over different voltages are too small. The small

value of error gives more inference about the improvement

of NSGNDO results because of local and global neighbor-

hood search strategies. Similarly, P-V characteristic curve

shown in Fig. 5a demonstrates that the error between the

estimated power and the experimental power is very small.

To sum up, the local and global search strategies enable

NSGNDO to efficiently search for the promising values of

the SDM’s parameters and to identify the optimal values of

these parameters. The comparison between the simulated

currents, measured current as well as the comparison

between simulated power and the measured power give

more inference on the improvement of NSGNDO and its

search ability to find the best values of the parameters.

6.2 Result analysis for double model

Table 5 shows the values of DDM’s parameters extracted

using different methods. The value of RMSE shown in

tables indicates the error between the simulated currents

that was calculated using values of extracted parameters

and the measured current. The results demonstrates that the

proposed NSGNDO and the standard GNDO successfully

identify the best values of the DDM’s parameters that results

in minimum RMSE with value of 9.8248E–04 compared to

other methods. The TBLO method comes second with

RMSE of 9.8406E–04. Despite NSGNDO and GNDO have

similar performance as they achieve the same RMSE

NSGNDO converges to the minimum RMSE with fewer

number of function evaluations as demonstrated in Fig. 6b.

In addition, Fig. 7b demonstrates that NSGNDO can con-

verge to the best solutions with fewer number of iterations

compared to other methods.

Although the proposed NSGNDO and GNDO have similar

performance as they achieve the same RMSE, but NSGNDO

shows high stability over different function evaluations as

indicated by Std of value 1.2581E–06 compared to

1.4417E–06 for GNDO as demonstrated in Table 6 In

addition, TLBO comes in the third rank with 1.7644E–04

for the Std. To conclude, NSGNDO show high stability over

different function evaluations compared to other methods

because local and global search strategies help the algo-

rithm to find best parameters’ value in early function

evaluations and therefore, RMSE slightly variant over next

function evaluations.

Besides NSGNDO has a fast convergence rate, NSGNDO,

it also shows high consistence between the simulated cur-

rents and the extracted parameters. The I–V characteristics

curve in Fig. 4b demonstrates this consistence as the RMSE

between the simulated currents and corresponding mea-

sured current over different voltage is too small. Further-

more, the P-V characteristics shown in Fig. 5b also confirm

this consistence where the calculated power based on

simulated currents is too close the experimental power

shown in [44].

6.3 Result analysis for PV module model

Table 7 depicts the value of PVM’s parameters corre-

sponding to different methods. The RMSE values are used

to measure and compare the performance of each method.

The proposed NSGNDO shows a significant improvement in

the simulated current estimation as indicated by the mini-

mum RMSE. On one hand, the NSGNDO ranks first and

achieve 2.05296E–03 of RMSE compared to 2.42507E-03

for GNDO. On the other hand, PSO ranks third with

2.42508E-03 for RMSE.

In addition, NSGNDO obtains the value of the extracted

parameters for PVM with fewer number of function eval-

uations as demonstrated in Fig. 6c. The figure shows the

convergence curves for NSGNDO and GNDO with respect to

RMSE. The proposed NSGNDO has fast convergence at the

beginning of iteration compared to GNDO. However, both

Table 5 The best solution

obtained by different algorithms

on double diode model

Algorithm IphðAÞ Isd1ðlAÞ RsðXÞ RshðXÞ n1 Isd2ðlAÞ n2 RMSE

CS 0.76040 0.44135 0.03696 49.37162 1.92163 0.21049 1.44386 1.1714E–03

PSO 0.76079 0.88429 0.03700 56.02421 1.89986 0.16267 1.42552 9.8563E–04

GWO 0.76108 0.11171 0.03672 52.97190 1.41428 0.34555 1.61847 1.0038E–03

NNA 0.76067 0.56109 0.03764 65.08110 1.55541 0.00004 1.00007 1.1294E–03

SSA 0.76031 0.40553 0.03694 62.39025 1.68997 0.13885 1.42139 1.0476E–03

SCA 0.77850 0.97412 0.03278 67.93661 1.59976 0.00000 2.00000 1.3745E–02

WOA 0.76147 0.13062 0.03588 51.15127 1.81450 0.32886 1.48583 1.1046E–03

BSA 0.76034 0.36483 0.03608 63.56984 1.96800 0.31589 1.48189 1.0799E–03

JAYA 0.76035 0.00000 0.03690 60.30758 1.86654 0.29106 1.47064 1.1398E–03

TLBO 0.76080 0.39780 0.03659 54.31022 2.00000 0.26775 1.46517 9.8406E–04

GNDO 0.76078 0.74935 0.03674 55.48544 2.00000 0.22597 1.45102 9.8248E–04

NSGNDO 0.76078 0.74935 0.03674 55.48544 2.00000 0.22597 1.45102 9.8248E–04
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Fig. 6 The convergence curves obtained by NSGNDO and GNDO

Fig. 7 The convergence curves obtained by NSGNDO and other

methods
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algorithms in some iterations do not have any improvement

such as the function evaluations between 60 and 70 that is

because the search space becomes so large, and the algo-

rithms need to explore more regions to find the promising

solutions. Furthermore, Fig. 7c show that NSGNDO has a

better convergence rate compared to other methods.

Table 8 shows that stability of NSGNDO over function

evaluations starting from early function iteration as indi-

cated by Std value of 1.05495E-17.

Table 6 Comparing the

statistical results obtained by

applying different algorithms on

double diode

Algorithm Worst Mean Median Best Std Rank

CS 2.4027E–03 1.7887E–03 1.6904E–03 1.1714E–03 3.1573E–04 7

PSO 1.7656E–03 1.1930E–03 1.1378E–03 9.8563E–04 2.2159E–04 4

GWO 3.8226E–02 6.4731E–03 2.6616E–03 1.0038E–03 1.0229E–02 10

NNA 3.8352E–03 2.4791E–03 2.5461E–03 1.1294E–03 6.1567E–04 8

SSA 9.7356E–03 2.9353E–03 2.5206E–03 1.0476E–03 1.7203E–03 9

SCA 2.2287E–01 4.5453E–02 4.3139E–02 1.3745E–02 3.4900E–02 12

WOA 4.9473E–02 1.2591E–02 6.3015E–03 1.1046E–03 1.4568E–02 11

BSA 2.3961E–03 1.4923E–03 1.4542E–03 1.0799E–03 2.8213E–04 6

JAYA 2.3529E–03 1.5190E–03 1.4795E–03 1.1398E–03 2.4882E–04 5

TLBO 1.7247E–03 1.1536E–03 1.0984E–03 9.8406E–04 1.7644E–04 3

GNDO 9.8604E–04 9.8398E–04 9.8341E–04 9.8248E–04 1.4417E–06 2

NSGNDO 9.8602E–04 9.8298E–04 9.8249E–04 9.8248E–04 1.2581E–06 1

Table 7 The best solution

obtained by different algorithms

on PV module model

Algorithm IphðAÞ IsdðlAÞ RsðXÞ RshðXÞ n RMSE

CS 1.03002 3.471726 1.20221 1003.73179 48.63153 2.43826E–03

PSO 1.03050 3.490414 1.20103 984.77946 48.65177 2.42508E–03

GWO 1.02846 4.919824 1.16507 1665.22655 50.00000 2.61050E–03

NNA 1.03083 3.562420 1.19776 951.22432 48.73229 2.43094E–03

SSA 1.02998 3.862518 1.19009 1099.59362 49.04295 2.44223E–03

SCA 1.05613 4.906796 1.07158 309.98337 50.00000 1.45451E–02

WOA 1.02896 4.915705 1.16353 1484.24132 50.00000 2.61095E–03

BSA 1.03077 3.622361 1.19677 970.74965 48.79660 2.43386E–03

JAYA 1.03089 3.513686 1.20105 978.92376 48.67679 2.43598E–03

TLBO 1.03090 3.568359 1.19666 946.56232 48.73936 2.43469E–03

GNDO 1.03051 3.482263 1.20127 981.98230 48.64283 2.42507E–03

NSGNDO 1.031434 2.637256 1.23563 821.64130 47.59823 2.05296E–03

Table 8 Comparing the

statistical results obtained by

applying different algorithms on

PV module model

Algorithm Worst Mean Median Best Std Rank

CS 2.55775E–03 2.49100E–03 2.48920E–03 2.43826E–03 3.36708E–05 4

PSO 3.46542E–03 2.59052E–03 2.54424E–03 2.42508E–03 2.23891E–04 7

GWO 6.79852E–03 3.45865E–03 2.76756E–03 2.61050E–03 1.17692E–03 10

NNA 9.93471E–03 2.80788E–03 2.58140E–03 2.43094E–03 1.34914E–03 8

SSA 7.13378E–03 3.06402E–03 2.70224E–03 2.44223E–03 9.79741E–04 9

SCA 2.74358E–01 1.64222E–01 1.83550E–01 1.45451E–02 1.13594E–01 12

WOA 2.75329E–01 7.06264E–02 3.77256E–03 2.61095E–03 1.15749E–01 11

BSA 2.60813E–03 2.48539E–03 2.48233E–03 2.43386E–03 3.11321E–05 3

JAYA 2.60715E–03 2.49291E–03 2.47649E–03 2.43598E–03 4.47505E–05 6

TLBO 2.53475E–03 2.49127E–03 2.48922E–03 2.43469E–03 2.24819E–05 5

GNDO 2.42507E–03 2.42507E–03 2.42507E–03 2.42507E–03 2.40648E–17 2

NSGNDO 2.05296E–03 2.05296E–03 2.05296E–03 2.05296E–03 1.05495E–17 1
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The I–V characteristic curve in Fig, 4c demonstrates the

consistency between the simulated currents and the mea-

sured current against different measured voltage. The small

error between the simulated current and measured current

infers that although the search space is more complex and

so large, the proposed NSGNDO efficiently explores the

search space and can find better values of the PVM’s

parameters. Furthermore, the P-V characteristics curve

shown in Fig. 5c shows that a very small RMSE between

the simulated power and the experimental power.

6.4 Wilcoxon signed-rank test

Table 9 presents the results obtained by Wilcoxon signed-

rank test with a significant level a ¼ 0:05 to check the null

hypothesis that the NSGNDO algorithm do not have sig-

nificant performance differences compared to other con-

sidered algorithms for SDM, DDM, and PVM models.

The results obtained by 30 independent runs are used for

this test. The Tþ represents the sum of ranks for the

benchmark in which the NSGNDO algorithm has better

performance compared to the corresponding algorithm,

whereas T� represents the opposite.

By carefully looking at the results on Table 9, the pro-

posed NSGNDO outperforms the basic GNDO and other

methods in all benchmarks. In detail, NSGNDO superior the

basic GNDO in 487 out of 500 cases for SDM, 496 out of

500 cases for DDM, and 500 out of 500 cases for PVM

models. Furthermore, the p value of 1.19E–70, 1.50E–79,

and 1.26E–83 for SDM, DDM, and PVM, respectively, indi-

cates that the superiority of the proposed NSGNDO com-

pared to the standard GNDO is significant.

To sum up, the values of Tþ,T�, and p value for SDM,

DDM, and PVM demonstrates that the NSGNDO performs

better in most cases compared to other methods.

7 Conclusion

This paper presents an enhanced variant of generalized

normal distribution optimization algorithm denoted as

NSGNDO to extract the unknown parameters of the photo-

voltaic models. The NSGNDO algorithm improves the

convergence of the basic GNDO and increases the diversity

of the population by integrating the neighborhood search

strategies within the algorithm. The neighborhood search

strategies include LNS for local search, and GNS for global

search. The experimental results show consistency of the

performance and the stability of NSGNDOcompared to

other algorithms in the literature. The NSGNDO is an effi-

cient algorithm and can be applied to solve different

optimization problem such as load balancer in fog-com-

puting, disease diagnoses, and image segmentation. Some

of the limitations include: the proposed method is not

tested on noisy data and is not tested for other PV modules

such as polycrystalline STP6-120/36, STP6-40/36, and

triple diode model. These limitations will be considered as

future work.

Table 9 The results of

Wilcoxon signed-rank test with

a significant level a=0.05

Item Single diode model Double diode model PV module model

Tþ T� P-value Tþ T� P-value Tþ T� P-value

GNDO 487 13 1.19E-70 496 4 1.50E-79 500 0 1.26E-83

SSA 500 0 1.26E-83 499 1 2.43E-82 499 1 2.52E-82

TLBO 500 0 1.26E-83 499 1 2.52E-82 408 92 2.30E-23

NNA 500 0 1.26E-83 500 0 1.26E-83 500 0 1.26E-83

MBO 500 0 1.26E-83 500 0 1.26E-83 472 28 3.77E-61

GA 500 0 1.25E-83 500 0 1.26E-83 495 5 1.43E-83

BSA 500 0 1.26E-83 500 0 1.26E-83 500 0 1.26E-83

PSO 498 2 1.26E-83 499 1 1.28E-83 500 0 1.26E-83

CS 500 0 1.26E-83 500 0 1.26E-83 400 100 1.73E-19
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