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Abstract
Fault detection plays a crucial role in ensuring the safety, availability, and reliability of modern industrial processes. This

study focuses on data-driven fault detection methods, which have gained significant attention across various industrial

sectors due to the rapid development of industrial automation technologies and the availability of extensive datasets. The

objectives of this paper are to comprehensively review and present the theoretical foundations of widely used data-driven

fault detection approaches. Specifically, these approaches are applied to fault detection in wind turbine systems, with

performance evaluation conducted using multiple statistical measures. The data utilized in this study were collected from a

simulated benchmark of a wind turbine system. The data-driven methods are tested under the assumption that the wind

turbine operates in a steady-state region. Additionally, a comparative study is conducted to identify and discuss the primary

challenges associated with the practical application of these methods in real-world scenarios. Simulation results show the

effectiveness and efficacy of data-driven approaches concerning the sensitivity and robustness of wind turbine sensor faults

as applied in practical industrial environments.

Keywords Fault detection � Statistical process monitoring � Data-driven methods � Wind turbine system.

1 Introduction

Fault detection and process monitoring have been active

areas of the research in the control community over the last

several decades [1–3]. Due to a large amount of stored data

in industrial databases, the data-driven process monitoring

approaches have attracted more attention because of their

simple design methods and low requirements on the

underlying mechanisms [4, 5]. To effectively use the data-

driven approaches for process monitoring of large-scale

industrial systems with a huge amount of data, it is nec-

essary to perform pre-processing on the collected data to

extract information, followed by dimensionality reduction

and the selection of the variables that explains a significant

part of the observed process variation.

The multivariate statistical process monitoring methods

are considered the most popular among data-driven tech-

niques where they directly use the input–output measure-

ments for process monitoring purposes. The basic

multivariate statistical process monitoring methods

including principal component analysis (PCA) [6, 7], par-

tial least squares (PLS) [8], total projection to latent

structures (TPLS) [9], modified partial least squares

(MPLS) [10], orthogonal projection to latent structures (O-

PLS) [11], modified orthogonal projection to latent struc-

tures (MOPLS) [12], expectation-maximization partial

robust M-regression (EMPRM) [13], and total principal

component regression (TPCR) [14]. All these methods
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have been successfully applied to many large industrial

processes, e.g., chemical plants, water treatment processes,

power grids, and cyber-physical systems [15–17]. It should

be noted that these monitoring methods are efficiently used

with linear, single-mode, and time-invariant processes [18].

Today, wind turbine systems have been widely used to

convert wind energy into electricity as a renewable energy

source [19–21]. Some wind turbines can produce power up

to 4.8 MW [22]. However, wind turbines can be subjected

to several faults whether they are sensor faults, actuator

faults, and system faults. For a wind turbine, the sensor

faults include pitch position sensor faults, rotor speed

sensor faults, and generator speed sensor faults. On the

other hand, the actuator faults are due to converter coupling

faults and pitch system faults. Furthermore, system faults

can be found in the wind turbine drive train. It is worth

mentioning that unexpected failures of wind turbine parts

are the major cause of increased repair costs [23, 24].

Fault detection and diagnosis in different fields have

attracted more attention in the literature. The research

papers can be classified according to the used fault detec-

tion techniques into statistical techniques [25], machine

learning techniques [26], deep learning techniques [27–29],

vibration analysis techniques [30], and Hybrid techniques

[31]. Furthermore, there are two sources of data in these

researches that can be either simulated data [32] or

SCADA data [33]. Moreover, deep learning methods have

been applied in many fields, and among these fields is the

field of fault detection and diagnosis. Therefore, its

advantages are their ability to improve the accuracy of

predictions and decision-making, the ability to learn from

unstructured data, such as images, text, and audio, and the

ability to automatically learn features from data, elimi-

nating the need for manual feature engineering, but their

limitations are their high computational cost and their

dependence on the quality and quantity of data used for

training.

Recently, data-driven techniques have been applied to a

wide range of applications, e.g fault classification [34],

signal processing [35], image processing and pattern

recognition [36], modeling [37], real-time fatigue life

prediction of structures [38], and fuzzy sewage treatment

processes [39].

Although significant efforts have been made in the

process monitoring of wind turbine systems, to the best

knowledge of the authors, there is no systematic compar-

ative studies of data-driven fault detection strategies are

available in the literature. Therefore, this is the main

motivation behind this study. Due to the nature of this

study, the amount of mathematical equations behind the

different methodologies have been minimized, as there is a

wealth of knowledge in the literature on data-driven

methodologies. In addition to that, a detailed description of

the benchmark of wind turbines including the models,

variables, and faults is presented to be as a reference to

other research studies.

The remainder of this study is presented in the following

structure. Section 2 gives an overview of the basic data-

driven fault detection methods and their variants. Section 3

provides a detailed description of the wind turbine system.

The presented fault detection methods are applied to a

simulated benchmark of wind turbines, and the compara-

tive results are presented in Sect. 4. Finally, the conclu-

sions are provided in Sect. 5.

2 Overview of data-driven techniques

In order to make it easier to compare different data-driven

techniques, we categorize them along a standard fault

detection and diagnosis (FDD) work-flow for gathering and

analyzing measurements from manufacturing process.

Additionally, the basic multivariate statistical process

monitoring methods including: The principal component

analysis (PCA) model is a statistical procedure in which a

set of correlated variables is converted into a set of linearly

independent variables that are called principal components.

Moreover, PCA is regarded as one of the dimensional

reduction techniques in which the number of principal

components is always lower than the number of original

variables. As well known, the fault detection issue in the

scope of the statistics is formulated by two hypotheses, the

null hypothesis, which represents the fault-free case, and

the alternative hypothesis, which represents the faulty-case

[40]. Assume that Jindex and Jth;index are the fault detection

index and its corresponding threshold, respectively. Then,

the fault detection logic is as follows:

Jindex � Jth;index null hypothesis (fault-free case);

Jindex [ Jth;index alternative hypothesis (fault case):

�

ð1Þ

Partial least square (PLS) is a popular input–output tech-

nique that is used for modeling, regression, fault detection,

and classification purposes. Although the success of the

standard PLS model as a monitoring tool for quality-related

process problems, it suffers from some problems such as it

requires many latent variables that include variations

orthogonal to the output Y but are not useful for predicting

the output Y [41]. Moreover, residual subspace usually has

quite large variations that are not proper to be monitored.

[9] proposed the TPLS algorithm to treat the standard PLS

model-associated problems. TPLS model works well for

characterizing the observed X and is appropriate for mon-

itoring various parts of X. In spite of this, TPLS is not able

to totally eliminate impacts. Therefore, as fault amplitude
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increases, the amount of undesired variability will rise to a

point where the post-processing techniques are useless.

MPLS is another variant of PLS in which the orthogonal

decomposition on regression variable space is applied to

eliminate the useless variations for output prediction. The

related computation cost of the modified strategy elimi-

nates the shortcomings of the traditional PLS algorithm and

is significantly simpler than that of the standard technique.

Orthogonal projection to latent structures (OPLS) has been

used to reduce the number of latent variables while main-

taining good prediction accuracy. The OPLS approach is a

combination between PLS and a pre-processing technique

that is used for removing components that orthogonal to the

output Y from the input X [42].

MOPLS methodology is a combination of both OPLS

and MPLS algorithms defined in the previous subsections.

One of its main advantages is its lower complexity since it

reduces the number of latent variables. The EMPRM

algorithm has a smaller predicted offset and a more accu-

rate predicted output than the PLS algorithm. The expec-

tation-maximization (EM) phase consists of two steps: the

expectation step and the maximization one. In the former,

the missing elements are filled with the expected values. In

the latter, the expected values are updated using the data in

which missing elements are included have been filled in.

TPCR model is used to solve the quality-related fault

detection issue for linear systems [14]. However, TPCR is

inappropriate for automobile applications but is suitable for

statistical processes. In the following subsections, the

essential mathematical background for the discussed data-

driven techniques is presented.

2.1 Principal component analysis

The first step in building a PCA model for the fault

detection process is to collect the normal dataset

X ¼ x1 x2 . . . xN½ �T2 RN�M , with M is the process variables

and N is the number of measurements. The second step is

to normalize the data matrix X with data mean and variance

to ensure that all variables have equal weight and to pre-

vent a set of variables from dominating the fault detection

process [43]. The third step is to build the PCA model

which can be done by calculating the sample covariance

matrix S ¼ 1
N�1

XTX, and then applying the singular value

decomposition (SVD) method to calculate the loading

vectors which are considered the new coordinates of the

data. Generally, PCA model decomposes the original data

measurement space into the principal component subspace

(PCS), Sp = spanðPÞ and the residual subspace (RS), Sr

= spanð ePÞ [18, 41].

X ¼ bX þ eX ¼ TPT þ eT eP ð2Þ

where T 2 RN�l and eT 2 RN�M�l are the score matrices in

the PCS and RS, respectively, and l � M is the number of

the principal components that can be determined by using

different methods [44]. In general, The PCS contains the

data that show the most variation, while the RS typically

includes data with little variation, which is primarily noise.

For an online sample vector, x 2 RM , the principal and

residual components are obtained by projecting x on both

two subspaces, PCS and RS according to the following:

x ¼ bx þ ex ¼ PPTxþ eP ePT
x ¼ PPTxþ I � PPT

� �
x ð3Þ

where I 2 RM�M is an identity matrix. Typically, there are

two indices are used to monitor normal the variability in

PCS and RS, i.e., Hotelling’s T2 and the squared prediction

error SPE. Hotelling’s T2 captures the variations in the

PCS. On the other hand, the SPE index measures the

variations in RS. Therefore, the two monitoring indices

with their thresholds for a given significant level [45, 46]

can be calculated as Table 1:

2.2 Partial least squares

Generally, the PLS partitions the input space into a prin-

cipal subspace Sp and a residual subspace Sr. Given a

measurement data matrix (regression variables) X ¼
x1 x2 . . . xN½ �T2 RNxM and Y ¼ y1 y2 . . . yN½ �T2 RN�q con-

sisting of N samples of q product quality variables (out-

puts), the PLS projects both X and Y onto a low

dimensional subspace defined by a l latent variables.

Therefore, both X and Y become:

X ¼ TPT þ eX ¼ XRPT þ eX ð4Þ

Y ¼ TQT þ eY ¼ XRQT þ eY ð5Þ

where T ¼ t1. . . tl½ �� RN�lis the score matrix. P 2 RM�l

and Q 2 Rq�l are the loading vectors of X and Y, respec-

tively. PTR ¼ RTP ¼ Il, R 2 RM�l. The PLS is

Table 1 PCA monitoring statistics and thresholds

Statistics Calculation Threshold

T2 xTP K�1PTx l N2�1ð Þ
NðN�lÞ Faðl;N � lÞ

SPE exk k2 ¼ I � PPTð Þxk k2 h1
cah0

ffiffiffiffiffi
2h2

p

h1
þ 1þ h2h0ðh0�1Þ

h1
2

� � 1
h0

where K ¼ diagðk1 k2 . . .; kl) are the leading eigenvalues of S.
Faðl;N � lÞ is an F distribution with l and N � l degrees of freedom.

ca is the confidence interval that corresponds to the ð1� aÞ percentile
of the normal distribution. hi ¼

Pm
j¼lþ1 kj

� �2
; i ¼ 1; 2; 3;

h0 ¼ 1� 2h1h3
3h2

2
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implemented using the nonlinear iterative partial least

squares algorithm (NIPALS) to calculate P, T, Q, and R

matrices [47, 48]. Similarly to the PCA model, there are

two indices used for fault detection extracted from PLS

model, i.e., Hotelling’s T2
PLS statistic that is used for

monitoring the variations in the Sp related to the quality

output data Y. On the other side, the residual subspace Sr is

monitored by the SPEPLS statistic which represents the

variations unrelated to Y. Therefore, the two monitoring

indices with their thresholds can be calculated as Table 2:

2.3 Total projection to latent structures (TPLS)

The main idea of the TPLS model is to decompose the

input data space, X, into four parts instead of two parts as in

the standard PLS:

X ¼ TyP
T
y þ ToP

T
o þ TrP

T
r þ eX r

Y ¼ bY þ eY ¼ TQT þ eY ð6Þ

where Ty is a score matrix that is directly correlated with Y

in the original T, and To is orthogonal to Y in the original T.

Furthermore, Tr is the main part in eX , and eX r ¼eX I � PrP
T
r

� �
is the residual part in eX that represents the

noise. Py, Po, Pr are the loading vectors that span the

corresponding subspaces. It is clear that the TPLS model is

able to monitor different parts of X. Therefore, there are

four monitoring statistics, i.e., T2
y , T

2
r , T

2
o , and SPEr with

their thresholds that can be calculated according to the

following [49] as Table 3:

More details about the TPLS model are given in the

research work of [9]. It should be noted that both T2
y and

SPEr are used to detect the faults related to Y. On the

contrary, To and Tr are used together to detect the faults

that are not related to Y. It should be noted that SPEr is

more sensitive to incipient faults compared with SPE in the

standard PLS [9].

2.4 Modified partial least squares (MPLS)

The following desired relation can be calculated:

Y ¼ bY þ eY ¼ XM þ eY ð7Þ

where M is the matrix of the regression coefficient and

contains correlation information between X and Y. More-

over, bY and eY are the subspaces that are correlated and

uncorrelated with X, respectively. The coefficient matrix,

M can be easily calculated as:

M ¼ XTX
� ��1

XTY ð8Þ

By applying the SVD technique, the MPLS model

decomposes the original data measurement space into the

principal component subspace (PCS), Sp = spanðPM) and

the residual subspace (RS), Sr = spanð ePM) [50].

MMT ¼ PM
ePM

� 	 KM 0

0 0


 �
PT
M

ePT

M

" #
ð9Þ

where PM 2 RM�q, ePM 2 RM�ðM�qÞ and KM 2 Rq�q

Accordingly, the fault detection process can be achieved

using two monitoring statistics, T2
M and SPEM . It is worth

mentioning that T2
M statistic is used for monitoring bX which

enables detecting faults that are related to Y. On the other

hand, the SPEM statistic is used for monitoring eX , thus it

can detect faults that are unrelated to Y. Therefore, the

monitoring statistics, i.e., T2
M , SPEM with their thresholds

can be calculated as Table 4

More details about the MPLS algorithm are given in the

research work of [50].

2.5 Orthogonal projection to latent structures
(OPLS)

The original measurement data matrix X is converted into a

filtered matrix Xopls which in turn is decomposed by the

OPLS algorithm into two subspaces bXopls and eXopls.

Xopls ¼ bXopls þ eXopls ð10Þ

where bXopls is highly correlated with Y and eXopls is

uncorrelated with Y. Similarly, the aforementioned sub-

spaces can be monitored by two indices, i.e., T2
opls and

SPEopls. Therefore, the two monitoring statistics, i.e., T2
opls,

SPEopls with their thresholds can be calculated as Table 5:

2.6 Modified orthogonal projection to latent
structures (MOPLS)

In this technique, the process data matrix X is decomposed

into orthogonal data, X?, and filtered data Xopls. First, the

PCA model is used for Monitoring X? that are uncorrelated

with the quality variables. This can be done by performing

SVD on ð1=N � 1ÞXT
?X?.

Table 2 PLS monitoring statistics and thresholds

Statistics Calculation Threshold

T2
PLS xTR TTT

N�1

� ��1

RTx
l N2�1ð Þ
NðN�lÞ Faðl;N � lÞ

SPEPLS exk k2¼ IMxM � PRT
� �

x
�� ��2 gv2h;a

where gv2h;a is the v2 distribution under a significance level a with

scaling factors g ¼ c=2m and h ¼ 2m2=c. m and c are the sample

mean and the variance of the SPE statistic [46, 49].
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1

N � 1


 �
XT
?X? ¼ Cpc Cres½ �

Kpc 0

0 0


 �
CT
pc

CT
res

" #
ð11Þ

where Cpc 2 RMxlpc , Cres 2 RMxðM�lpcÞ, Kpc 2 Rlpcxlpc , and

lpc is the number of principal components. For a new data

sample x 2 RM , this subspace can be monitored using two

statistics that are T2
? and SPE?. Second, the MPLS model

is used to monitor Xopls which in turn decomposed into

bXopls and eXopls. The monitoring results of bXopls and eXopls

reveal quality-related and quality-unrelated faults, respec-

tively. The principal and residual components are obtained

by projecting xopls on both two subspaces, PCS and RS

according to the following:

xopls ¼ bxopls þ exopls ð12Þ

Therefore, there are four monitoring statistics, i.e., T2
?,

SPE?, T
2bxopls , and T2exopls with their thresholds that can be

calculated according to the following [12] as Table 6:

where hi ¼
Pm

j¼lpcþ1 kj
� �2

; i ¼1; 2; 3; h0 ¼ 1� 2h1h3
3h2

2 .

kj is the diagonal elements of Kpc. Here, tbxopls and texopls are
considered the score vectors as defined in [12].

2.7 Expectation–maximization partial least
squares (EMPRM)

Algebraically, the final regression coefficient vectorMEM is

obtained from the last PLS step in the final iteration of

EMPRM algorithm that is summarized in [52].

Similarly, by applying the singular value decomposition

(SVD) method, the EMPRM model decomposes the orig-

inal data measurement space X and Y into the principal

component subspace (PCS), Sp = spanðPEM) and the

residual subspace (RS), Sr = spanð ePEM).

MEMM
T
EM ¼ PEM

ePEM

� 	 KEM 0

0 0


 �
PT
EM

ePT

EM

" #
ð13Þ

where PEM 2 RM�q, ePEM 2 RM�ðM�qÞ and KEM 2 Rq�q

The fault detection process can be achieved using two

monitoring statistics, T2
EM and SPEEM for monitoring bX , eX ,

respectively. It is worth mentioning that T2
EM statistic which

enables detecting faults related to Y. The other statistics

SPEEM is used for monitoring eX that detects unrelated

Table 3 TPLS monitoring

statistics and thresholds
Statistics Calculation Threshold

T2
y tTyK

�1
y ty

ðNþ1Þ
N Fað1;N � 1Þ

T2
o tToK

�1
o to ðl�1ÞðN2�1Þ

NðN�lþ1Þ Faðl� 1;N � lþ 1Þ

T2
r tTr K

�1
r tr lrðN2�1Þ

NðN�lrÞ Faðlr;N � lrÞ
SPEr exrk k2¼ IMxM � PrPr

T
� �

ðIMxM � PRT
�� �

xk2 grv2hr;a

where tk are the score vectors for an online sample data vector,x, which are calculated as: ty ¼ QRTx,

to ¼ PT
o ðP� PyQÞRTx, and tr ¼ PT

r ðIMxM � PRTÞx. Here, ly is the number of principal components related

to Y; lr is the number of principal components unrelated to Y . Ky ¼ 1
N�1

tTy ty is the variance of ty which is

estimated by the training samples. Moreover, Ko and Kr are the covariance matrices of to and tr, respec-

tively. grv2hr ;a is the critical value of the v2 distribution under a significance level a with scaling factors

gr ¼ cr=2mr and hr ¼ 2m2r =cr, where mr and cr are the sample mean and variance of the SPEr statistic [46, 49].

Table 4 MPLS monitoring

statistics and thresholds
Statistics Calculation Threshold

T2
M xTPM

PT
MX

TXPM

N�1

� ��1

PT
Mx

qðN2�1Þ
NðN�qÞ Faðq;N � qÞ

SPEM
xT ePM

ePT

MX
TXePM

N�1


 ��1 ePT

Mx
ðM�qÞðN2�1Þ
NðN�MþqÞ FaðM � q;N �M þ qÞ

Table 5 OPLS monitoring statistics and thresholds

Statistics Calculation Threshold

T2
opls bxTopls bXT

opls
bX opls

N�1

 !�1

bxopls
MðN2�1Þ
NðN�MÞ FaðM;N �MÞ

SPEopls exToplsexopls goplsv2hopls ;a

where bxopls is the projection of xopls in the PCS that are associated

with the quality variables. exopls is the projection of xopls in the RS that

is independent of quality variables. gopls and hopls are scaling factors

defined as in [51].
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faults to Y. Therefore, the two monitoring statistics with

their thresholds can be calculated as Table 7.

More details about the EMPRM model are given in the

research work of [52].

2.8 Total principal component regression (TPCR)

The basic idea of this algorithm is that the original process

matrix X is first projected onto the score matrix T by PCA.

Tc is a score matrix that is extracted from T by the least

squares regression between T and Y. After that, Xc is

reconstructed from X by Tc such that Xc is highly correlated

with Y, leaving the remaining part Xu is uncorrelated with

Y. To build the TPCR model, the PCA is performed on bY to

get its score matrix Tc and load matrix Qc such that:

Tc ¼ bYQc ¼ TQTQc ð14Þ

where bY is the online prediction of Y, QT ¼ TTTð Þ�1
TTY ,

and T is re-projected to Tc by QTQc. Next, we reconstruct

Xc from Tc by the following steps:

PT
c ¼ TT

c Tc
� ��1

TT
c
bX ð15Þ

Thus:

Xc ¼ TcP
T
c ¼ Tc TT

c Tc
� ��1

TT
c TP

T ð16Þ

And

Xu ¼ X � Xc ð17Þ

By performing PCA on Xu, we get its score matrix Tu and

load matrix Pu with only the eigenvectors corresponding to

zero and extremely small eigenvalues. For each online

sample x, the correlated score vector tTc is calculated as

follows:

tTc ¼ tTQTQc ¼ xTPQTQc ð18Þ

Similarly, the score vector of the uncorrelated part is cal-

culated as follows:

tTu ¼ xTuPu ¼ xT � tTc P
T
c

� �
Pu ¼ xT � xTPQTQcP

T
c

� �
Pu

ð19Þ

Therefore, the two monitoring statistics, i.e., T2
c , T

2
u of Xc

and Xu, respectively, with their thresholds can be calculated

as Table 8.

To summarize the main components of the fault detec-

tion approaches given in this paper, the offline and online

phases are described in the following flowchart, see Fig. 1.

The main terminologies and abbreviations of the algo-

rithms are summarized in table 15.

3 Wind turbine system

It is well known that wind turbines convert the kinetic

energy of wind into electrical energy. The main compo-

nents are the tower, the rotor and hub (including three

blades), the nacelle, and the generator as shown in Fig. 2.

Wind turbines may generate several GW yearly that are

used around the world. Therefore, they have attracted many

investments in the field of renewable energy sources. It is

worth mentioning that the parts of wind turbines may have

malfunctions that should be detected using fault detection

schemes. As mentioned in the introduction section, there

are two sources of the wind turbine systems data including

the SCADA and simulated data. In the paper, we collect the

data from a benchmark of a wind turbine system that is

popularly used for evaluating the controller and process

monitoring schemes [53–55]. The wind turbine model

consists of a horizontal-axis three-blade turbine with full

converter coupling and is connected to the generator via a

gearbox, see Fig. 2. The conversion from wind energy to

mechanical energy can be controlled using the aerody-

namics of the wind turbine. Using the generator coupled to

a converter coupling, mechanical energy is converted to

electrical energy. The drive train (Gearbox) between the

rotor and the generator increases the generator’s speed.

Table 6 MOPLS monitoring

statistics and thresholds
Statistics Calculation Threshold

T2
? xT?CpcK

�1
pc C

T
pcx?

lpc N2�1ð Þ
N N�lpcð Þ Faðlpc;N � lpcÞ

SPE? xT?CresC
T
resx?

h1
ca
ffiffiffiffiffiffiffiffiffi
2h2h20

p
h1

þ 1þ h2h0ðh0�1Þ
h1

2


 � 1
h0

T2bxopls
tTbxopls

TTbxopls Tbxopls
N�1

 !�1

tbxopls
qðN2�1Þ
NðN�qÞ Faðq;N � qÞ

T2exopls
tTexopls

TTexopls Texopls
N�1

 !�1

texopls
ðM�qÞðN2�1Þ
NðN�MþqÞ FaðM � q;N �M þ qÞ
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Table 9 summarizes the main signals exchanged among the

subsystems.

The wind turbine model consists of different parts, i.e.,

controller, drive train, generator/converter, wind, blade and

pitch subsystems as shown in Fig. 3. The main variables of

the wind turbine system are summarized in table 16.

Moreover, because the wind turbine system is a multi-

mode system, the controller has to work in four operating

zones, which are determined according to the average wind

speed within a certain time window as depicted in Fig. 4

[56]. It is clearly shown from this figure that the turbine is

at standstill at Region I and Region II represents the power

optimization with partial load. Whenever, Region III and

Region IV describe the constant power generation and high

wind speed, respectively. In this paper, the wind turbine is

assumed to work at Region III which represents the steady-

state operation of the wind turbine system. The turbine is

controlled at wind speed between 0 and vrated m/s in order

to achieve the optimal power generation. The speed ratio is

given by:

l ¼ xr.r

tw
ð20Þ

where r is the radius of the blades.

The benchmark model implemented in Simulink is

available at the URL address: https://www.mathworks.

com/matlabcentral/fileexchange/35130-award-winning-fdi-

solution-in-wind-turbines.

The utilization of wind energy for the wind power

generation system is a subject of research interest and in

the recent years, the focus is on the cost-effective use of

wind energy with the aim of providing electricity of high

quality and reliability. In the past twenty years, wind tur-

bine sizes have evolved from 20-kW to 5-megawatts, while

even more powerful wind turbines are being developed.

Therefore, in order to prevent major component failures,

fault detection algorithms enable early alarms of mechan-

ical and electrical faults. Side effects on other components

can be significantly reduced.

Furthermore, many faults can be detected even when the

faulty component is still working. Thus, necessary repairs

can be planned in time and do not have to be carried out

immediately. Therefore, this is important because wind

power generation system is inaccessible because they are

located on extremely high towers, typically 20 m or higher

[57]. This is also particularly important for wind turbine

installations, where adverse weather conditions (storms,

high tides, etc.) can prevent repair action for several weeks.

Therefore, maintenance costs and downtime of wind

power generation system can be significantly reduced [58].

Therefore, due to the importance of fault detection and

diagnosis in wind power generation system (blades, drive

train, and generator), this paper is presented to be as a

reference to other research studies as shown in Fig. 5

[25, 57]. For illustration, this figure shows the main wind

turbine components that are concerned by the above

benchmark model.

In summary, the sensors are mainly used for the blade

load reduction based on the individual pitch control strat-

egy, especially in offshore wind turbines. The lifetime of

the sensors in wind turbine systems is usually not very

long. There are several factors that lead to higher failure

rates. The strain in the blades can be very high, which

affects the gauges themselves and the bonding. Harsh

environmental factors such as lightning, salt spray, mois-

ture, corrosion can directly affect the bonding and wiring

of the sensors. Maintenance personnel can easily damage

the sensors [25].

3.1 Wind model

The combined wind model is [59]:

twðtÞ ¼ tmðtÞ þ tsðtÞ þ twsðtÞ þ ttsðtÞ ð21Þ

where tmðtÞ is the mean wind, ts ðtÞ is the stochastic part,

tws ðtÞ is the wind shear, and tts ðtÞ is the tower shadow.

The wind shear model is:

Table 7 EMPRM monitoring

statistics and thresholds
Statistics Calculation Threshold

T2
EM xTPEM

PT
EM

XTXPEM

N�1

� ��1

PT
EMx

qðN2�1Þ
NðN�qÞ Faðq;N � qÞ

SPEEM
xT ePEM

ePT

EMXTXePEM

N�1


 ��1 ePT

EMx
ðM�qÞðN2�1Þ
NðN�MþqÞ FaðM � q;N �M þ qÞ

Table 8 TPCR monitoring statistics and thresholds

Statistics Calculation Threshold

T2
c tTc

Tc
TTc

N�1

� ��1

tc
ðNþ1Þ

N Fað1; N � 1Þ

T2
u tTu

Tu
TTu

N�1

� ��1

tu
ðl�1ÞðN2�1Þ
NðN�lþ1Þ Faðl� 1; N � lþ 1Þ
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tws;iðtÞ ¼
2tmðtÞ
3r2

r3r
3H

Nþ r4

4
r
r� 1

2 H2
N2


 �

þ 2tmðtÞ
3r2

r5

5

ðr2 � rÞðr� 2Þ
6 H3

N3

 ! ð22Þ

where N ¼ cosð#r�ðtÞÞ; and #r� is the angular position of

the three blades, #r1ðtÞ =#rðtÞ, #r2ðtÞ = #rðtÞ þ ð2=3Þp,

and #r3 = #rðtÞ þ ð4=3Þp. r and H are two aerodynamic

parameters. Furthermore, the tower shadow model is:

tts;iðtÞ ¼
m#r;iðtÞ
3r2

ðwþ tÞ ð23Þ

where

w ¼ 2a2
r2 � r20

r2 þ r20
� �

sin ð#r;iðtÞÞ
2 þ k2Þ

ð24Þ

t ¼ 2a2k2
ðr20 � r2Þðr20sinð#r;iðtÞÞ

2 þ k2Þ
r2 sin ð#r;iðtÞÞ

2 þ k2
ð25Þ

m ¼ 1þ rðr� 1Þ r20
8 H2

ð26Þ

ð#r;iðtÞ ¼#rðtÞ þ
ði� 1Þ2p

3
� floor

#rðtÞ þ ði�1Þ2p
3

2p

 !
2p

ð27Þ

r0 is the blade hub radius and k is an aerodynamic

parameter.

Fig. 1 Flowchart of the fault detection schemes

Fig. 2 Wind turbine model
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Table 9 Variables of wind

turbine system
Variable Notation Description

v1 vhub Wind speed at hub height

v2 xr;m1 Measured rotational speed of the rotor 1

v3 xr;m2 Measured rotational speed of the rotor 2

v4 xg;m1 Measured rotational speed of the generator 1

v5 xg;m2 Measured rotational speed of the generator 2

v6 sg Generator torque

v7 Pg Power produced by the generator

v8 b1;m1 Pitch 1 position for blade 1

v9 b1;m2 Pitch 2 position for blade 1

v10 b2;m1 Pitch 1 position for blade 2

v11 b2;m2 Pitch 2 position for blade 2

v12 b3;m1 Pitch 1 position for blade 3

v13 b3;m2 Pitch 2 position for blade 3

v14 sg;r Torque reference to the generator

v15 xr Rotational speed of the rotor of the drive train

v16 xg Rotational speed of the generator of the drive train

Fig. 3 Overview of the

benchmark model

Fig. 4 Regions of power

operation
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3.2 Blade and pitch model

This model combines the aerodynamic and the pitch

models. The aerodynamic subsystem describes the forces

that an air flow develops on a wind turbine and transforms

the three-dimensional wind field into concentrated forces.

As can be seen in the block diagram of Fig. 3, the inputs to

this subsystem are the wind speed vw, the pitch angle b, and
the rotation speed of the rotor xr. The output of this sub-

system is the aerodynamic torque sr. The torque equation

of this subsystem is [56]:

srðtÞ ¼
qpr3CqðcðtÞ; bðtÞÞtwðtÞ2

2
ð28Þ

where CqðcðtÞ; bðtÞÞ is a map of the torque coefficients that

represent a function of the speed ratio with the lead angle

and q is the air density. A simple representative is used to

model the three blades to obtain their pitch angle value.

This assumption suppose that the torque of each blade is

one-third of the torque that is given by the three blades.

Therefore, the torque equation of this subsystem is:

srðtÞ ¼
X3
i¼1

qpr3CqðcðtÞ; biðtÞÞtw;iðtÞ2

6
ð29Þ

where bi is the pitch position.

On the other hand, the pitch subsystem is an actuator

that generally rotates all the blades or a part of them.

Therefore, the model of the hydraulic pitch system is

considered as a closed-loop transfer function between the

measured pitch angle (bm) and its reference (br). In prin-

ciple, this subsystem can be modeled by a second-order

transfer function [60] as:

bmðsÞ
brðsÞ

¼ x2
n

s2 þ 2fxnsþ x2
n

ð30Þ

where br is the input to the closed-loop transfer function;

bm is the output of the transfer function; fis the damping

factor, and xn is the natural frequency.

3.3 Drive train model

A two-mass model of the drive train is used in this

benchmark model. The torque from the rotor is transferred

to the generator through the drive train. From the low-

speed rotor side to the high-speed generator side, the

rotational speed is increased using a gearbox. A two-mass

drive train model can be represented by:

Jr _xrðtÞ ¼srðtÞ � Kdt#DðtÞ � Bdt þ Brð ÞxrðtÞ þ
Bdt

Ng

xgðtÞ

ð31Þ

Jg _xgðtÞ ¼
gdtKdt

Ng

#DðtÞ þ
gdtBdt

Ng

xrðtÞ �
gdtBdt

Ng
2

þ Bg


 �
xgðtÞ � sgðtÞ

ð32Þ

_#DðtÞ ¼xrðtÞ �
1

Ng

xgðtÞ ð33Þ

Fig. 5 Wind turbine configuration
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where Jr, Jg are the moment of inertia of the low-speed and

high-speed shafts, respectively, Kdt is the torsion stiffness,

gdt is the efficiency, Bdt is the torsion damping coefficient,

Br, Bg are the viscous friction of the low-speed and high-

speed shafts, respectively, Ng is the gear ratio, and #DðtÞ is
the torsion angle.

3.4 Generator and converter model

The frequency range used in this model is much slower

than the electrical system in the wind turbine system. A

first-order transfer function can be used to represent the

generator and converter dynamics at the wind turbine

system level.

sgðsÞ
sg;rðsÞ

¼ rgc
sþ rgc

ð34Þ

Table 10 The benchmark model parameters

Subsystem Parameter name Value and unit Description

Wind model r 0.1 Aerodynamic parameter

H 81 m Blade hub height

ro 1.5 m Radius of blade hub

Blade and pitch model r 57.5 m Radius of blades

q 1.225 kg/m3 Air density

f 0.6 Damping factor

xn 11.11 rad/s Natural frequency

Drive train model Bdt 775.49 Nms/rad Torsion damping coefficient of drive train

Br 7.11 Nms/rad Viscous friction of low-speed shaft

Bg 45.6 Nms/rad Viscous friction of high-speed shaft

Ng 95 The gear ratio

Kdt 2:7� 109 Nm/rad Torsion stiffness of drive train

gdt 0.97 Efficiency of drive train

gdt2 0.92 Lower drive train efficiency

Jg 390 kg m2 Moment of inertia of high-speed shaft

Jr 55� 106kg m2 Moment of inertia of low-speed shaft

Generator and converter model rgc 50 rad/s Generator and converter model parameter

ggc 0.98 Generator and converter efficiency

Controller model Kopt 1.2171 Optimal value of K

Ki 1 Controller gains of PI

Kp 4 Controller gains of PI

xnom 162 rad/s Nominal generator speed

xD 15 rad/s Small offset

Sensor model mx 1.5 m/s Mean value of wind speed

Sx 0.5 m/s Variance of wind speed

mwr 0 rad/s Mean value of rotor speed

Swr 0.025 rad/s Variance of rotor speed

mwg 0 rad/s Mean value of generator speed

Swg 0.05 rad/s Variance of generator speed

msg 0 Nm Mean value of generator torque

Ssg 90 Nm Variance of generator torque

mPg 0 W Mean value of generator power

SPg 1000 W Variance of generator power

mb 0	 Mean value of pitch angle

Sb 0:2	 Variance of pitch angle
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where rgc is the model parameter of generator and

converter.

The generator output power is:

PgðtÞ ¼ ggxgðtÞsgðtÞ ð35Þ

where gg is the generator efficiency. Moreover, the con-

troller is implemented in discrete-time form, with a sam-

pling frequency of 100 Hz. The controller changes from

mode 1 to mode 2 in the following case:

PgðkÞ 
PrðkÞ _ xgðkÞ 
xnom ð36Þ

Here, xnom is the nominal speed of the generator. The

controller changes from mode 2 to mode 1 in the following

case:

xgðkÞ \xnom � xD ð37Þ

xD is a small offset subtracted from the nominal speed of

the generator. At mode 1, the optimal value of c is repre-

sented by copt. This optimal value is realized when the pitch

reference to zero (brðkÞ ¼ 0), and the reference torque to

the converter sg;r is:

sg;rðkÞ ¼Kopt

xgðkÞ
Ng


 �2

ð38Þ

Kopt ¼
1

2
q � Ar3 CPmax

c3opt
ð39Þ

A = pr2 is the area swept by the wind turbine blades, and

Kopt is the optimal value of k, CPmax is the maximum value

of the power coefficient. On the other hand, at mode 2, the

major control actions are handled by the pitch system using

a PI controller trying to keep xgðkÞ at xnom

brðkÞ ¼ brðk � 1Þ þ KPeðkÞ þ ðKiTs � KPÞeðk � 1Þ ð40Þ

eðkÞ ¼ xgðkÞ � xnom, and the controller gains are KP and

Ki. In this case, the converter reference is:

sg;rðkÞ ¼
PrðkÞ

ggcxgðkÞ
ð41Þ

where ggc is the efficiency of the generator and converter

subsystems. Moreover, a stochastic noise component is

added to the actual variable value to model each sensor.

The parameters used in the benchmark model are listed in

Table 10.

It is worth mentioning that many fault types are occur-

ring in wind turbine systems including sensor faults,

actuator faults, and process faults. This paper is dedicated

to studying the efficiency of the presented process moni-

toring methodologies for sensor faults detection. The sen-

sor faults can be in the pitch position measurements, e.g.,

b1;m1 b1;m2 b2;m1 b2;m2 b3;m1;b3;m2; in the rotor speed mea-

surements,xr;m1 andxr;m2; in the generator speed mea-

surements xg;m1 and xg;m2. The details of these faults are

listed in Table 11.

4 Simulation results and discussion

In this simulation study for a wind turbine system, the

measurement data are collected from 16 variables at nor-

mal operation. The dataset includes 105 samples, and the

fault scenarios are presented at a sample time k = 5� 104

to the end of the simulation. Twenty different fault sce-

narios are given in Table 11 that occur in the wind turbine

system. The rotational speed of the rotor in the drive train

is chosen as the quality variable to construct Y matrix

(output variable) and the other 15 process variables are

chosen as input variables. Furthermore, the different fault

scenarios are monitored using the presented data-driven

fault detection approaches in this paper and evaluated by

using two indices, i.e., fault detection rate (FDR) and false

alarm rate (FAR) [9, 43, 61].

Table 11 Sensor faults in the

wind turbine system
Fault number Related variables Fault type

F1, F3, F5, F7, F9, F11 b1;m1, b1;m2, b2;m1, b2;m2,b3;m1, b3;m2 Fixed value

F2, F4, F6, F8, F10, F12 b1;m1, b1;m2, b2;m1, b2;m2,b3;m1, b3;m2 Gain factor

F13, F15 xr;m1, xr;m2 Fixed value

F14, F16 xr;m1, xr;m2 Gain factor

F17, F19 xg;m1, xg;m2 Fixed value

F18, F20 xg;m1, xg;m2 Gain factor

Table 12 Design parameters
PCA PLS TPLS MPLS OPLS MOPLS EMPRM

l = 6 LV = 12 LV = 6 LV = 12 LV = 1 LV = 1 LV = 12
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FDR ¼ No. of samples ðJ[ Jthjf 6¼ 0Þ
total samples ðf 6¼ 0Þ � 100%

FAR ¼ No. of samples ðJ[ Jthjf ¼ 0Þ
total samples ðf ¼ 0Þ � 100%

The number of principal components (PCs) and the number

of LVs are selected by using the cumulative percent vari-

ance method (CPV) and the cross-validation method,

respectively [9, 44, 62]. The design parameters are sum-

marized in Table 12.

Two fault scenarios are given in details, i.e., F14 and

F19. The first fault occurs as a gain factor in the pitch

position sensor. Figure 6 shows the fault detection charts of

the described monitoring models in this paper. It is clearly

shown that the monitoring models achieved FDR with

average about 80%. Furthermore, PCA, TPLS recorded the

lowest FAR, but the other methods have the highest degree

of FAR compared with the PCA and TPLS.

Besides, F19 represents a fixed value in the sensor that

measures the generator speed. The fault detection results of

the presented methods of this fault are shown in Fig. 7. It is

clearly shown that all the tested algorithms showed satis-

factory fault detection performance with FDRs of approx-

imately 99:99% except for PCA algorithm that failed to

detect fault successfully as shown in Fig. 7a. As well as, all

monitoring methodologies exhibit acceptable FARs.

To evaluate the fault detection approaches according to

all possible sensor faults, Tables 13 and 14 give the FDRs

and FARS. As shown in Table 13, most fault detection

methods successfully detected all faults with high FDRs.

On the other side, the PCA and TPLS could not detect the

faults (F13, F14, F15, F16, F19) and F9, respectively, in

which the boldface denotes the lowest FDRs.

It is clearly shown from Table 14 that the FARs of both

PCA and TPLS had the lowest FAR rates for all fault

scenarios, which means they are the most robust fault

detection methods. As well as other algorithms in some

fault scenarios have high FARs which are denoted by the

boldface.
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The detectability of the described fault detection

approaches in this paper is clearly shown in Fig. 8 that

represents the average value of FDR’s of all possible

sensor fault cases. The MPLS achieved the highest average

FDR comparable to other methodologies. As well as, From

the point of view of robustness, Fig. 9 introduces a com-

parison of the fault detection techniques in terms of FARs.

It is well proven that both TPLS and PCA are the most

robust fault detection techniques.

In summary, the data-driven methods are tested under

the assumption that the wind turbine operates in a steady-

state region. Simulation results demonstrate that PLS

(Partial Least Squares) and its variants exhibit the highest

sensitivity to wind turbine sensor faults. Additionally, most

of the fault detection methodologies, including MPLS,

EMPRM, MOPLS, TPCR, OPLS, PLS, and TPLS, suc-

cessfully detected all faults with a high Fault Detection

Rate (FDR) with average about 90.57%, 88.55%, 88.52%,

88.12%, 88.09%, 86.55%, and 80.95%, respectively. On

the other hand, PCA exhibited the lowest FDR compared to

the other methods with average about 68.86%. Addition-

ally, this is because PCA cannot establish the correlation

between quality and process variables. However, PCA still

outperformed PLS and its variants in terms of robustness to

these faults, which directly relates to the False Alarm Rate

(FAR), i.e, PCA with average FAR about 1.02% is less

than TPCR, MOPLS, PLS, OPLS, EMPRM, and MPLS

with average FAR about 14.17%, 14.70%, 17.93%,

19.18%, 19.74%, and 22.96%, respectively, except TPLS

has the lowest average FAR of about 0.2%.

5 Conclusions

In this paper, we present a comprehensive review and

evaluation of the most commonly used multivariate sta-

tistical techniques for fault detection, specifically focusing

on their application in wind turbines. The primary
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objective of this study is to conduct a comparative analysis

of data-driven fault detection strategies within the context

of wind turbine applications. The data-driven methods are

tested under the assumption that the wind turbine operates

in a steady-state region. Simulation results demonstrate that

PLS (Partial Least Squares) and its variants exhibit the

highest sensitivity to wind turbine sensor faults. Addi-

tionally, most of the fault detection methodologies,

including MPLS, EMPRM, MOPLS, TPCR, OPLS, PLS,

and TPLS, successfully detected all faults with a high Fault

Table 13 FDRs ð%Þ of the wind
turbine system

Fault PCA PLS TPLS MPLS OPLS MOPLS EMPRM TPCR

F1 99.99 99.99 99.97 99.99 99.99 99.99 99.99 99.99

F2 63.59 59.22 39.42 66.75 60.20 61.19 62.01 60.74

F3 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99

F4 83.71 83.15 76.66 85.34 83.51 83.46 83.46 82.86

F5 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99

F6 76.46 72.80 68.20 82.91 79.29 79.78 80.25 79.61

F7 99.99 99.99 75.64 99.99 99.99 99.99 99.99 99.99

F8 72.39 65.89 46.96 73.11 67.76 68.81 69.30 68.35

F9 67.80 54.58 5.76 76.12 59.80 62.97 60.22 57.64

F10 58.43 46.15 58.92 61.23 55.48 56.88 56.45 55.74

F11 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99

F12 76.66 63.73 73.19 77.89 72.99 73.80 74.59 73.62

F13 30.79 99.99 99.99 99.99 99.99 99.99 99.99 99.99

F14 14.42 99.65 99.23 99.70 99.60 99.62 99.63 99.62

F15 42.95 99.99 99.99 99.99 99.99 99.99 99.99 99.99

F16 1.03 85.84 75.12 88.39 83.25 84.08 85.20 84.27

F17 94.03 99.99 99.99 99.99 99.99 99.99 99.99 99.99

F18 94.33 99.99 99.99 99.99 99.99 99.99 99.99 99.99

F19 0.61 99.99 99.99 99.99 99.99 99.99 99.99 99.99

F20 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99

Table 14 FARs ð%Þ of the wind
turbine system

Fault PCA PLS TPLS MPLS OPLS MOPLS EMPRM TPCR

F1 0.65 5.44 0.18 12.26 7.11 2.53 7.99 2.12

F2 1.82 44.41 0.21 48.82 45.43 41.66 45.93 41.28

F3 1.00 22.12 0.25 30.04 24.42 15.80 25.24 14.86

F4 3.84 66.30 0.10 71.56 67.68 62.33 68.36 61.81

F5 0.94 18.88 0.23 25.32 20.79 14.00 21.61 13.16

F6 0.79 18.34 0.19 26.76 20.53 13.84 21.57 13.04

F7 0.93 23.77 0.19 28.24 24.78 21.04 25.22 20.55

F8 0.61 0.60 0.22 2.23 0.61 0.38 0.63 0.27

F9 0.74 1.38 0.20 5.07 1.72 0.56 1.86 0.38

F10 0.92 29.39 0.19 37.78 32.50 19.31 33.78 17.81

F11 0.61 0.58 0.22 2.19 0.71 0.48 0.66 0.3040

F12 0.56 0.51 0.19 2.05 0.53 0.50 0.57 0.37

F13 0.93 23.77 0.19 28.24 24.78 21.04 25.22 20.55

F14 1.82 44.41 0.21 48.82 45.43 41.66 45.93 41.28

F15 0.74 1.38 0.20 5.07 1.72 0.56 1.86 0.38

F16 0.79 18.34 0.19 26.76 20.53 13.84 21.57 13.04

F17 0.68 8.63 0.19 16.42 10.89 4.22 11.87 3.64

F18 0.92 29.39 0.19 37.78 32.50 19.31 33.78 17.81

F19 0.54 0.42 0.20 1.75 0.45 0.50 0.52 0.36

F20 0.56 0.51 0.19 2.05 0.53 0.50 0.57 0.37
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Detection Rate (FDR) averaging around 90%. On the other

hand, PCA exhibited the lowest FDR compared to the other

methods. However, PCA still outperformed PLS and its

variants in terms of robustness to these faults, which

directly relates to the False Alarm Rate (FAR). It should be

noted that the discussed fault detection methods in this

paper are efficient in dealing with single-mode, time-in-

variant systems. Real wind turbines, however, are multi-

mode systems with high nonlinearity. Therefore, future

research efforts should focus on the development of pro-

cess monitoring methods capable of effectively handling

these challenges.

Acronyms and abbreviations

See Tables 15 and 16.
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Fig. 8 Average FDR of the presented algorithms

Fig. 9 Average FAR of the presented algorithms

Table 15 Abbreviations of algorithms

Abbreviation Definition

FDD Fault detection and diagnosis

PCA Principal component analysis

PLS Partial least squares

TPLS Total projection to latent structures

MPLS Modified partial least squares

OPLS Orthogonal projection to latent structures

MOPLS Modified orthogonal projection to latent structures

EMPRM Expectation–maximization partial robust M-

regression

TPCR Total principal component regression

SVD Singular value decomposition

PCS Principal component subspace

RS Residual subspace

SPE Squared prediction error

l No. of latent variables

NIPLS Nonlinear Iterative Partial Least Squares

EM Expectation-Maximization

FDR Fault Detection Rate

FAR False Alarm Rate

CPV Cumulative Percent Variance

Table 16 Acronyms of wind turbine system

Acronym Definition

sw The wind torque affected on the turbine blades

sr The rotor torque

br The reference pitch position

bm The measured pitch position

sw;m The measured wind torque due to wind speed

xr;m The measured rotational speed of the rotor

xg;m The measured rotational speed of the generator

sg;m The measured generator torque

Pr The torque reference to the the power reference
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