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Abstract
Harris Hawks optimization (HHO) algorithm was a powerful metaheuristic algorithm for solving complex problems.

However, HHO could easily fall within the local minimum. In this paper, we proposed an improved Harris Hawks

optimization (IHHO) algorithm for solving different engineering tasks. The proposed algorithm focused on random

location-based habitats during the exploration phase and on strategies 1, 3, and 4 during the exploitation phase. The

proposed modified Harris hawks in the wild would change their perch strategy and chasing pattern according to updates in

both the exploration and exploitation phases. To avoid being stuck in a local solution, random values were generated using

logarithms and exponentials to explore new regions more quickly and locations. To evaluate the performance of the

proposed algorithm, IHHO was compared to other five recent algorithms [grey wolf optimization, BAT algorithm,

teaching–learning-based optimization, moth-flame optimization, and whale optimization algorithm] as well as three other

modifications of HHO (BHHO, LogHHO, and MHHO). These optimizers had been applied to different benchmarks,

namely standard benchmarks, CEC2017, CEC2019, CEC2020, and other 52 standard benchmark functions. Moreover, six

classical real-world engineering problems were tested against the IHHO to prove the efficiency of the proposed algorithm.

The numerical results showed the superiority of the proposed algorithm IHHO against other algorithms, which was proved

visually using different convergence curves. Friedman’s mean rank statistical test was also inducted to calculate the rank of

IHHO against other algorithms. The results of the Friedman test indicated that the proposed algorithm was ranked first as

compared to the other algorithms as well as three other modifications of HHO.
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1 Introduction

Optimization solved nonlinear, complex, real-time issues.

The metaheuristic algorithm became an intrinsic feature of

all optimization processes [1]. Metaheuristics had been

grown as a solution for real-world optimization problems

in the last two decades. A method of optimization was

defining the system’s objective function, variables, limits,

system properties, and optimal solution [2]. Trajectory-

based and population-based approaches were two types of

metaheuristic optimization. These two groups exhibit a

wide range of probable answers employed in each iterative

stage [3].

Randomness marked stochastic search and optimization

algorithms. Two types of stochastic algorithms were

heuristic and metaheuristic [4]. Heuristics are problem-

dependent, and numerous heuristics can be created [5]. A

metaheuristic method, on the other hand, makes few

assumptions about the problem and can combine various

heuristics and generate candidate solutions [6]. Meta-

heuristics solve intractable optimization problems. Since
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the initial metaheuristic was proposed, several new algo-

rithms have now been created [7].

Metaheuristic optimization algorithms’ computational

efficiency is dependent on striking the right balance

between exploration and exploitation [8]. Combining the

terms Meta and Heuristic produces the term ‘‘metaheuris-

tics’’ [9]. Metaheuristic algorithms are often characterized

as just a master strategy that guides and modifies other

heuristics to get answers beyond those typically generated

in the pursuit of local optimality [10]. Optimizing meta-

heuristic algorithms has become such an active area of

research and one of the most well-known high-level pro-

cedures for generating, selecting, or locating heuristics that

optimize solutions as well as provide a better objective

function for a real-world optimization problem [11] [12].

Every metaheuristic technique must achieve a reason-

able balance between exploration and utilization of the

search space for optimal performance [13]. Metaheuristics

have gained appeal over exact methods for addressing

optimization issues due to the ease and resilience of the

answers they give in a variety of sectors, such as engi-

neering, business, transportation, as well as the social sci-

ences [14] [15]. A metaheuristic is an algorithm meant to

tackle a wide variety of difficult optimization problems

without requiring extensive problem-specific adaptation.

The prefix ‘‘meta’’ indicates that these heuristics are

‘‘higher level’’ than problem-specific heuristics. Meta-

heuristics are often used to solve unsolvable situations [16].

For mathematical optimization problems with more than

one objective for which no single solution exists, multi-

objective optimization is used [17]. Stochastic optimization

methods, such as metaheuristics, use mechanisms inspired

by nature to solve optimization problems [18]. Meta-

heuristic algorithms are very good optimization techniques

that have been utilized to solve a wide variety of opti-

mization issues. Metaheuristics can be viewed as a global

algorithmic framework utilized to solve multiple opti-

mization problems with minimal modification [19], 20.

Metaheuristics outperform simple heuristics. Meta-

heuristic algorithms use randomization and local search. In

most situations, complexity analysis, performance assess-

ment, and metaheuristic parameter adjustment were

ignored when metaheuristics were used to address opti-

mization problems [21], 22. Single-solution metaheuristics

focus on a single starting solution, whereas population-

based metaheuristics focus on a large number of possible

solutions [18]. It is generally more effective to use the

standard metaheuristics when dealing with typical research

challenges [23].

Genetic algorithms [24], evolutionary methods [25], and

cultural algorithms [26] are a few of the most well-known

types of algorithms. Particular to this topic is the meta-

heuristics for optimizing the foraging of particles as well as

those for bees, insects, and bacteria [27]. The basic flow

diagram for population-based metaheuristic optimization is

shown in Fig. 1.

Structural control issues that require a fast convergence

of the best solution sometimes benefit from metaheuristic

methods. These heuristic techniques are called ‘‘meta-

heuristics’’ since they are based on a real-world phe-

nomenon [28]. High-level problem-solving techniques can

be applied regardless of the nature of the challenge.

Metaheuristic procedures have an advantage over tradi-

tional methods since they can establish a unique starting

point, convexity, continuity, and differentiability [29]. As

illustrated in Fig. 2, metaheuristic algorithms can be cate-

gorized into a variety of subclasses based on the theory

they are derived from [30]. Evolutionary, physical, and bio-

inspired algorithms-based metaheuristics are the three main

kinds of metaheuristics. The first technique is based on

evolution, while the second technique is based on physical

phenomena. On the other hand, swarm intelligence-based

Fig. 1 Schematic flow diagram for population-based metaheuristic optimization methods
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metaheuristics mimic social species’ collective activ-

ity[31]. Single-solution algorithms may trap local optima,

preventing us from finding global optimum, because they

generate just one solution for a particular problem [32].

Population-based algorithms can escape local optima [33].

These algorithms are classed by their theoretical roots.

Adaptive algorithms take their cues from natural selection,

mutation, and recombination in nature[29]. These algo-

rithms pick the best candidate based on population survival

[34].

One of the popular swarm-based metaheuristic opti-

mization algorithms is called the Harris Hawks optimiza-

tion (HHO) algorithm [14]. HHO is inspired by the feeding

method that Harris Hawks use to search for and attack the

prey. This algorithm has powerful exploration and

exploitation capabilities that make it a suitable choice for

solving complex problems [35]. However, HHO can

sometimes fail to balance between local exploitation and

global exploration. Therefore, improvements in both the

exploration and exploitation phases are necessary to find

additional ideal locations.

In this paper, an improved HHO (IHHO) that improves

upon HHO by fixing its flaws was presented. We have

compared our proposed algorithm to the original HHO and

to other modifications of HHO algorithm implementations,

namely BHHO [36], MHHO [37], and logHHO [38]. Also,

we have compared IHHO to other recent algorithms,

namely grey wolf optimization (GWO) [39], BAT algo-

rithm [40], teaching–learning-based optimization

(TLBO)[41], moth-flame optimization (MFO) [42], and

whale optimization algorithm (WOA)[43]. GWO has sim-

pler principles and fewer parameters. However, it suffers

from poor convergence speed and limited solution accu-

racy [44]. BAT algorithm has rapid convergence but suf-

fers from poor exploration [19]. Although the TLBO

operation has no required parameters, the algorithm’s

drawbacks include its time-consuming iterations [41].

MFO has few configuration parameters, but early conver-

gence is its biggest downside [42]. WOA exhibits slow

convergence as a drawback, while it boasts the advantage

Fig. 2 Formalization of metaheuristic methods
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of straightforward operation [43]. Mainly, this paper con-

tributed in the following ways:

• Enhancing exploration ability by using the advantages

of logarithms and exponentials.

• Enhancing exploitation ability by using the concept of

traveling distance rate.

• Testing and comparing IHHO with other modifications

of HHO and other algorithms like GWO, BAT, TLBO,

WOA, and MFO on 23 standard test functions,

CEC2017, CEC2019, and CEC2020.

• Testing and comparing IHHO with other modifications

of HHO and other algorithms like GWO, BAT, TLBO,

WOA, and MFO on six classical real-world engineering

problems.

• Testing and comparing IHHO with other modifications

of HHO and other algorithms like GWO, BAT, TLBO,

WOA, and MFO on standard benchmark functions

consists of 14 variable-dimension unimodal, 5 fixed-

dimension unimodal, 20 multimodal fixed-dimension,

and 13 multimodal fixed-dimension benchmark

functions.

• Using Friedman mean rank statistical test to calculate

the rank of IHHO against other algorithms.

The remainder of this study is structured as follows. The

second section provides a literature review regarding HHO

and its modifications. In Sect. 3, the mathematical concept

and computing techniques of the HHO algorithm are

explained. In Sect. 4, the concepts behind our proposed

IHHO are provided. In Sect. 5, the simulation results of

IHHO as compared to other algorithms on several bench-

marks are discussed. Finally, Sect. 6 includes the conclu-

sion of the work and future works.

2 Related work

Harris hawks are one of nature’s most intelligent birds.

These birds know how to lead a group and work together to

find a certain rabbit. Various forms of assault and evasion

take place during this stage [45]. A Harris hawk hunts with

support from family members in the same stable [46]. This

desert predator can follow, surround, and flush its prey

[47]. This hawk’s chase habits may differ based on its

environment and prey. A Harris hawk switches activity and

works with other predators to confuse prey [48]. HHO is

based on Harris hawks’ cooperative hunting and escaping.

Multiple Harris hawks strike from different angles to

Fig. 3 HHO and HHO editions
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converge on an escaping rabbit and use varied hunting

strategies [49].

Harris Hawks optimization (HHO) is based on hawk

hunting. With fewer modification parameters and a sig-

nificant optimization effect, it’s competitive with similar

methods [50]. Many academics prefer HHO’s global search

efficiency as a population-based metaheuristic algorithm

[51]. HHO keeps a flock of hawks. The literature shows

that HHO has solved challenging optimization problems in

several fields [52].

According to Alabool et al., 2021, Fig. 3 shows that

HHO’s adaptability has been enhanced, and/or additional

algorithms have been merged to increase the quality of

optimization solutions. There were 49 different HHO

variants studied in this review, including six different

modifications, 26 distinct hybridizations, one multiobjec-

tive version 2, a binarization variant, and 7 chaotic variants

[14]. This form of HHO demonstrates HHO’s capacity to

develop answers to a wide range of optimization issues.

2.1 Modifications of HHO

According to Ridha et al. [36], the exploration and

exploitation stages of the boosted mutation-based Harris

Hawks optimization (BHHO) algorithm are built using two

adaptive approaches. Random steps inspired by the flower

pollination algorithm (FPA) with levy flight (LF) ideal

notion are employed in the first adaptive approach. Also,

the second adaptive technique examines an ideal mutation

vector using differential evolution (DE) influenced by the

2-Opt method. A wide range of meteorological conditions

has been used to test the proposed BHHO algorithm’s

performance [53]. The new version has a lot more sturdi-

ness. An increase in diversification is the starting point of

its search patterns, but it quickly moves on to exploitation.

Average absolute error levels for the proposed BHHO

approach were no better than those for other methods [54].

According to Gupta et al. [56], differential fast dives and

opposition-based learning are all part of typical HHO. As a

result of these techniques, HHO’s search efficiency is

increased and problems like stagnation at poor options and

premature convergence are resolved. modified HHO

(mHHO) was the reworked HHO. Standard HHO can’t

achieve the balance between these two operators that are

needed to improve exploration and extraction quality [55].

In issue F7, the mHHO solution surpasses traditional HHO

and obtains its optimal value. mHHO can’t get to the

optima in F9, but it’s more accurate than regular HHO in

terms of searching [56].

According to Yousri et al. [58], using a new technique

dubbed the modified Harris Hawks optimizer, the switch-

ing matrix can be reconfigured in such a way as to maxi-

mize array generated power, according to the findings in

the research [57]. Different stages of the investigation

apply the basic Harris Hawk’s optimizer for the same

problem. To top it all off, the enhanced Harris Hawks

Fig. 4 Specifics of some HHO editions
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optimizer generates the optimal solar array arrangement in

less than a single second [58].

According to Devarapalli et al. [59], the HHO algorithm

was put out as a potential solution. Damping devices were

evaluated with HHO, GWO, and MFO algorithms under

various loads. To find the best control parameters, 500

iterations were used for each method to undertake a variety

of system analyses. Eigenvalue analysis and system per-

formance characteristics under perturbation were compared

among the various optimization methodologies. According

to a detailed comparison, the logarithmic function of the

modified HHO resulted in superior system operating con-

ditions [38].

According to Hussain et al. [52], long-term memory

HHO (LMHHO) could be better investigated. When the

search isn’t halted at a predetermined level, the new

method produces superior results. It was important for

LMHHO to maintain a balance between exploration and

extraction during its extensive search [59]. On numerical

optimization challenges with low- and high-dimensional

landscapes, LMHHO proved its search efficiency by out-

performing the original and numerous established and

recently released competitors [60]. Figure 4 presents

summary of the modifications to HHO.

2.2 Hybridization of HHO

Fan et al., 2020, claimed that HHO tends to be stuck in

limited variety, local optimums, and imbalanced exploita-

tion abilities. As a way to increase the performance of

HHO, a new quasi-reflected Harris Hawk’s algorithm

(QRHHO) was presented, which incorporated the HHO

method and the QRBL together. After introducing the

QRBL mechanism to promote population diversity, QRBL

was added to each population update to raise the conver-

gence rate. The QRBL mechanism is primarily used in the

starting phase and each population update phase of the

proposed technique. The experimental results revealed that

the QRHHO algorithm performs better than the standard

HHO, two versions of HHO, and six other swarm-based

intelligent algorithms [61].

According to Kamboj et al. [63], the sine–cosine algo-

rithm was used to speed up HHO’s global search stage and

keep it out of the local search space in the hybrid Harris

Hawks sine–cosine algorithm (hHHO-SCA). The proposed

optimizer has been evaluated on engineering design prob-

lems that are nonlinear, nonconvex, and heavily con-

strained. When compared to HHO, the suggested hybrid

hHHO-SCA algorithm outperforms it, proving that the

metaheuristic optimization algorithm derived from natural

phenomena is useful for a wide range of optimization

applications, including those involving multidisciplinary

engineering design [62].

Du et al., [64], proposed a strategy for achieving many

objectives for air pollution prediction. The HHO technique

has been created to fine-tune the parameters of a machine

learning (ELM) model to achieve high forecast accuracy

and stability. MOHHO, a novel multiobjective method, is

being developed to optimize the ELM model’s parameters

for predicting air pollution concentrations with high accu-

racy and stability. The sequence of pollutant concentrations

can be predicted using an ELM model that has been tuned.

In terms of prediction accuracy, the MOHHO-based hybrid

model could outperform existing multiobjective algorithms

[63].

According to Dhawale et al. 2020, the hybrid meta-

heuristic optimization approach is created by combining

Harris Hawks’ and Improved Grey wolf optimization

techniques. A more effective method of transitioning from

exploration to extraction is expected to be discovered.

HHHO-IGWO, on the other hand, allows for a greater

range of possibilities when it comes to solving optimization

problems. The unique optimization technique provides

improved phase exploitation, faster convergence, and

improved optimization accuracy. The hHHO-IGWO algo-

rithm outperforms the previous strategy when it comes to

convergence, according to researchers [64].

In the study by Zhong et al. [66], the authors provided a

first-order reliability method based on Harris Hawks opti-

mization (HHO-FORM) for high-dimensional reliability

analysis. HHO-FORM reliability index is a constrained

optimization problem solution by FORM theory. After that,

a penalty function is used to account for the limits.

FORM’s high-dimensional dependability issues can be

resolved more quickly with HHO-simplicity. Using HHO-

FORM, high-dimensional dependability challenges can be

tackled with precision and efficiency [65].

Sehabeldeen et al. [67], proposed a new hybrid ANFIS-

HHO model, which integrates a modified form of an

adaptive neuro-fuzzy inference engine (ANFIS) and HHO,

that can be used to forecast weld joint UTS. HHO’s search

for optimal ANFIS parameter values turned out the optimal

operating conditions for the FSW process. Using the

ANFIS-HHO method, it is possible to accurately estimate

the FSW parameters [66].

2.3 Other versions of HHO

Chen et al. [68] proposed a multipopulation differential

evolution-assisted Harris Hawks optimization algorithm

(CMDHHO) as an improved HHO. HHO’s incapacity to

balance exploration and extraction could lead to a local

optimum. The first strong variant of HHO integrates

chaotic strategy, topological multipopulation strategy, and

differential evolution (DE) strategy to fix its flaws. A chaos

mechanism is added to the original algorithm to improve
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HHO’s exploitation. Three strategies were used to enhance

HHO (chaos, multipopulation, and DE). The multipopula-

tion strategy includes DNS, SRS, and PDS. Simulations

demonstrated that the proposed technique avoided a local

optimum and increased the basic HHO’s convergence

speed. CMDHHO is superior to HHO and can be used to

tackle discrete problems [67].

While searching for prey cooperatively, HHO might be

unable to maintain exploration and development capacities

of information sharing. Qu et al. [69], proposed an

improved HHO algorithm with information exchange

(IEHHO), Harris Hawks that can trade and share infor-

mation while hunting. This enhanced accuracy and con-

vergence speed. Nonlinear escape energy factors with

chaotic disturbance could balance the algorithm’s explo-

ration and exploitation. Exploring the shared region

allowed Harris Hawks to exchange information. The

IEHHO approach took longer to run but yielded better

solutions and had a greater convergence rate. Parameters

were IEHHO’s biggest limitation. Ideal parameters

couldn’t be guaranteed despite testing. IEHHO is a random

search methodology; experimental results might be affec-

ted by environment and constraint handling [68].

Ewees et al. [70] proposed a chaotic multiverse Harris

Hawks optimization (CMVHHO), a modified form of

multiverse optimizer (MVO) based on chaos theory and

HHO. The suggested method uses chaotic maps to get the

optimal MVO parameters. Local searches help MVO

maximize search space. The original MVO was modified

using HHO. Chaos maps were used to determine appro-

priate MVO settings, while HHO increased the MVO’s

searchability. The recommended strategy for global opti-

mal solutions showed great convergence and statistical

analysis. The proposed CMVHHO solved four engineering

problems better than the current methods. When compared

to PSO and GA, CMVHHO consumed more CPU time,

although it is still faster than using the simple MVO

algorithm [69].

Menesy et al., 2019, proposed chaotic HHO (CHHO) to

precisely estimate the operational parameters of the proton

exchange membrane fuel cell (PEMFC), which models and

duplicates its electrical performance. By preventing HHO

from being stuck in local optima, the CHHO was intended

to improve on the normal HHO’s search capabilities while

still maintaining its functionality. CHHO outperformed

current metaheuristic optimization techniques. In all case

scenarios, the CHHO predicted the optimal PEMFC stack

characteristics precisely [70].

It is clear from the discussion above that there is a lot of

literature in this field. The Harris Hawks optimization

(HHO) method is a sophisticated metaheuristic algorithm

for addressing complicated problems [11]. However, HHO

can easily fall within the local minimum. Because of the

adjustments to each phase, the other modifications of HHO

make it impossible to achieve a healthy balance between

exploration and exploitation [39]. Improved Harris Hawks

optimization (IHHO) algorithm is capable of handling

various engineering jobs and is capable of reaching a good

equilibrium between exploitation and exploration as a

result of phase-by-phase adjustments [59].

3 Harris Hawk’s optimization (HHO)

The Harris Hawk Optimizer, proposed by Heidari et al., is

an optimization technique inspired by the natural world

Harris Hawks [47]. HHO is an innovative swarm-based

optimizer that is both quick and effective. It possesses

several exploratory and exploitative methods that are

deceptively straightforward yet very efficient, and it has a

dynamic structure for addressing continuous problems

[71]. This method is a population-based metaheuristic that

mathematically mimics natural events. In addition, the

coordinated manner in which Harris’s Hawks pursue their

prey and surprise it served as inspiration for this algo-

rithm’s design [72]. The victim is startled because multiple

hawks are attempting to attack it from different directions

at the same time [73]. Since HHO is an inhabitant’s opti-

mization technique that does not use gradients, it can be

used for any optimization issue as long as it is formulated

correctly. Figure 5 depicts all of the phases of HHO, each

of which will be discussed within the next subsections.

3.1 Exploration phase

During this stage of the HHO, Harris’ hawks perch at

random in various areas and wait to locate a victim char-

acterized by two tactics that take into account the fact that

Fig. 5 Explains the HHO’s major stages
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the hawks would wait at various places to identify the prey.

Following is a mathematical model Eq. (1). of the search

strategies utilized for the investigation of the search space:

X t þ 1ð Þ

¼
Xrand tð Þ � r1 Xrand tð Þ � 2r2X tð Þj j q� 0:5

Xrabbit tð Þ � Xm tð Þð Þ � r3 LBþ r4 BU� LBð Þð Þq q\0:5

�

ð1Þ

Here Xðt þ 1Þ seems to be the coordinates of hawks

within the next iteration,XrabbitðtÞ is the location for rabbit,

XðtÞ is just the current position vector for hawks, and r1, r2,
r3, r4, and q are randomized values within (0,1) updated in

each iteration. LB and UB display variable upper and lower

boundaries, XrandðtÞ is chosen at the random hawk, and Xm

is the population’s average position. Equation (2) gives the

average hawk posture.

Xm tð Þ ¼ 1

N

XN
i¼1

XiðtÞ ð2Þ

where N is the count of Hawks and XiðtÞ is its position at

iteration t.

3.2 The transformation from exploration
to exploitation

Exploration and exploitation are two different stages of the

HHO algorithm. It is possible to model the energy required

to make this shift using Eq. (3):

E ¼ 2E0 1� t

T

� �
ð3Þ

E represents the prey’s fleeing energy, T is just the

maximum number of rounds, and E0 randomly fluctuates

within the interval (-1, 1) which is modeled using Eq. (4).

E0 ¼ 2 � rand� 1 ð4Þ

3.3 Exploitation phase

The hawks use the surprise pounce to strike the rabbit in

their transition from the exploring stage to the exploitation

phase. Additionally, the rabbit makes a desperate bid to flee

this perilous scenario. The hawks are required to use a

variety of chasing techniques. Harris’ hawks use a variety

of evasive tactics to get their prey. The attacking stage can

be described using four well-considered techniques.

The r represents the probability of the rabbit evading the

hawks. When it is greater than or equal to 0.5, the rabbit is

unable to evade the hawks who employ either a soft

besiege or a hard besiege. When the rabbit’s health is less

than 0.5, hard besieges with progressive rapid dives or soft

besieges with progressive rapid dives are the techniques

employed by the hawks.

3.3.1 Soft besiege

When r and jEj � 0:5, the rabbit can elude the hawks

because it has a great deal of endurance. As a result, the

Harris hawks gently encircle the rabbit before performing

the surprise pounce. This behavior is modeled by using

Eq. (5) and Eq. (6):

X t þ 1ð Þ ¼ DX tð Þ � E JXrabbit tð Þ � X tð Þj j ð5Þ

where J ¼ 2 � ð1� r5Þ
DX tð Þ ¼ Xrabbit tð Þ � X tð Þ ð6Þ

DXðtÞ specifies the difference between the rabbit’s

position vector as well as its current position in iteration t.

The r 5 parameter is a random number between 0 and 1,

and J reflects the rabbit’s randomized leap strength as it

flees.

3.3.2 Hard besiege

When r� 0:5 and jEj\0:5, the rabbit can evade the hawks,

but he has quite a bit of energy. To pull off the final sur-

prise pounce, the Harris hawks barely have time to encircle

their prey. This behavior is modeled by using Eq. (7):

DX tð Þ ¼ Xrabbit tð Þ � E DX tð Þj j ð7Þ

Figure 6 shows a simple illustration of this process with

one hawk.

3.3.3 Soft besiege with progressive rapid dives

When r\0:5 andjEj � 0:5, the rabbit is still alive, but it has

lost its capacity to run away. This flying mimics the rab-

bit’s zigzag motion and the erratic dives made by hawks

around a fleeing rabbit. Using the Levy flight, this behavior

is modeled by using Eq. (8):

Y ¼ Xrabbit tð Þ � E JXrabbit tð Þ � X tð Þj j ð8Þ

Fig. 6 Vectors for a hard-besieged situation
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Then, they compare the likely outcome of such a

movement to the prior dive to determine whether or not it

was a good dive. They will dive according to the following

rule by Eq. (9):

Z ¼ Y þ S� LF Dð Þ ð9Þ

where D denotes the problem dimension, S denotes a ran-

dom vector of size 1� D, and LF denotes the levy flight

function, which is computed using Eq. (10):

LF xð Þ ¼ 0:01� u� r

vj j
1
b

; r ¼
C 1þ bð Þ � sin pb

2

� �

C 1þb
2

� �
� b� 2

b�1
2

0
@

1
A

1
b

ð10Þ

where u, v are random values within (0,1), and b is a

constant set to 1.5 by default.

Thus, Eq. (11) can be used to determine the ultimate

approach for updating the positions of hawks throughout

the gentle besiege phase:

X t þ 1ð Þ ¼ Y if F Yð Þ\F X tð Þð Þ
Z if F Zð Þ\F X tð Þð Þ

�
ð11Þ

Figure 7 shows an example of this process applied to a

single hawk.

3.3.4 Hard besiege with progressive rapid dives

When r and jEj\0:5, the rabbit has exhausted its reserves

of energy and is unable to flee. Hawks make an effort to

decrease the distance between their usual locations. This

behavior is modeled by using Eq. (12):

X t þ 1ð Þ ¼ Y if F Yð Þ\F X tð Þð Þ
Z if F Zð Þ\F X tð Þð Þ

�
ð12Þ

where Y and Z are calculated according to new principles

in Eq. (13) and Eq. (14). Figure 8 shows a simple illus-

tration of this phase in action.

Y ¼ Xrabbit tð Þ � E JXrabbit tð Þ � Xm tð Þj j ð13Þ
Z ¼ Y þ S� LF Dð Þ ð14Þ

where Xm tð Þ is found by solving Eq. (2).

Algorithm 1 presents the details of how the traditional

HHO works.

Algorithm 1 Pseudo-code of HHO algorithm

Fig. 7 An illustration of general vectors in the scenario of a hard

besiege with progressive quick dives
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The accompanying flowchart is in Fig. 9 which outlines

the operation of HHO.

4 Proposed modification of HHO

Even though the original HHO has a special weight com-

pared to other common approaches, while working on the

local exploitation of feasible solutions, it may not reach an

optimal set of scales between locally accurate exploitation

and worldwide exploratory search because some of the

used strategies are simple and can quickly converge, which

might lead it to skip several of the optimal regions.

Therefore, improvements in both the exploration and

exploitation phases are necessary to find additional ideal

locations and optimize the exploitation approach. There-

fore, the following can serve as updates to the exploration

phase (perching based on random locations) and exploita-

tion strategies 1, 3, and 4:

Fig. 8 An illustration of general vectors in the scenario of a hard besiege with progressive quick dives in 2D and 3D space [47]
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4.1 Updating exploration phase (perching based
on random locations):

To find prey, Harris’ hawks use one of two methods during

the exploration phase: perching at random in various areas

and waiting for the right moment. When solving for the

first line of Eq. (1) in the standard HHO, the hawks typi-

cally use the prey’s location and that of any other house-

hold members. Setting each phase of the global search to

be completely random is unlikely to happen. Consequently,

it still might be unable to achieve a perfect balance

between very specific local searches and broad, exploratory

ones. In conventional HHO, the first line of Eq. (1) is

dependent on the range of values for the variable from 0 to

1. There are two ways to find a hawk’s prey: either

immediately or after a lengthy search.

To avoid becoming stuck in a rut and settling for sub-

optimal solutions, we exploit the features of logarithms and

exponentials to generate random values in previously

unexplored regions [74]. It can be seen that the exponential

function of the current iteration concerning the upper

bound of the iteration problem helps to increase the

exploration rate in the early stages of the iteration. To

avoid being stuck in a local solution, we generated random

values using logarithms and exponentials to explore new

regions more quickly and locations we had not yet reached.

X t þ 1ð Þ

¼
Xm tð Þ � 0:5� Xrand tð Þ þ r1 � X tð Þð Þ þ Xrand tð Þ þ r1 � X tð Þð Þð Þ q� 0:5

Xrabbit tð Þ � Xm tð Þð Þ � r3 LBþ r4 UB� LBð Þð Þ q\0:5

�

ð15Þ

r1 ¼ 1� log 1þ eub
� �

ð16Þ

Here Xðt þ 1Þ seems to be the coordinates of hawks

within the next iteration, Xrabbit tð Þ is the location for rabbit,

XðtÞ is just the current position vector for hawks, r3, r4, and
q are randomized values within (0,1) updated in each

iteration, LB; and UB display variable upper and lower

boundaries, Xrand tð Þ is chosen at the random hawk, and

Xm tð Þ is the population’s average position.

4.2 Updating exploitation (strategy 1):

At this stage, the Harris hawks have barely cornered their

victim before they pounce. The prey may be wary, but this

stage ignores the rabbit’s unnatural jumps to freedom that

can occur. Since this stage contains local drops that cause

local falls, we modified it by providing the probability of

random jumps of prey that might occur, allowing us to

quickly reach an optimal solution. The following equation

Eq. 17 is an updated version of Eq. 7:

X t þ 1ð Þ ¼ 0:01 � E � Xrabbit tð Þ � 0:1
� J1 � Xrabbit tð Þ � Xm tð Þj j ð17Þ

where J1 ¼ ð2 � rand � 1Þ

Fig. 9 HHO flowchart
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Xm is the population’s average position. The rand

parameter is a random number between 0 and 1, and J

reflects the rabbit’s randomized leap strength as it flees.

4.3 Updating exploitation (strategy 3):

To swiftly increase the diversity of options for the existing

population, Strategy 3 is replaced by steps inspired by the

average distance traveled [75], which helps to (1) discover

new solutions, (2) prevent slipping into the local solution as

a result of the larger diversity of results, and (3) reach the

ideal solution in a faster way as a result of the faster

increase in the existing population. It can be expressed by

the following equation Eq. 18:

G1 ¼ i � 1� t
1
i

T
1
i

 !
ð18Þ

where i is a constant that dictates the exploitation accuracy

as iterations go. That is, when i is higher, exploitation and

local search occur faster and with more precision. The

following equations Eq. (19), Eq. (20) is an updated ver-

sion of Eq. 8 and Eq. 9:

Y ¼ Xrabbit tð Þ
i

� rand � E G1 � JXrabbit tð Þ � X tð Þj j ð19Þ

Z ¼ Xrabbit tð Þ � rand � E G1 � JXrabbit tð Þ � X tð Þj j � 1:5

� G2

LevyðdimÞ
ð20Þ

where G2 considers i in Eq. 18 to be a constant set to 6.

Xðt þ 1Þ ¼ Y if FðYÞ\FðXðtÞÞ
Z if FðZÞ\FðXðtÞÞ

�
ð21Þ

4.4 Updating exploitation (strategy 4)

Hawks make an effort to shorten the distance between their

typical roosting and feeding grounds. To swiftly enhance

the diversity of possibilities for the current population,

Strategy 4 is replaced with steps inspired by the average

distance traveled [61]. Because there is a greater variety of

results, it is easier to (1) discover new solutions and (3)

Fig. 10 IHHO flowchart

Table 1 Parameter Setting

Algorithm Setting

HHO b ¼ 1:5

IHHO b ¼ 1:5

BAT a ¼ 0:5; c ¼ 0:5;q ¼ 0:001

GWO r1 ¼ rand; r2 ¼ rand

WOA r1 ¼ rand; r2 ¼ rand; c ¼ 2 � r2
TLBO TF ¼ rand

MFO b ¼ 1

MHHO b ¼ 1:5; q ¼ rand

LogHHO b ¼ 1:5; q ¼ rand

BHHO b ¼ 1:5; q ¼ rand;F ¼ 1:2 � rand� 1
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locate the optimum answer faster because the present

population is growing at a faster rate. The modeling of this

behavior utilizes the Eq. (20):

X t þ 1ð Þ ¼ Y if F Yð Þ\F X tð Þð Þ
Z if F Zð Þ\F X tð Þð Þ

�
ð22Þ

where Y and Z are calculated according to new principles

in Eq. (23) and Eq. (24)

Y ¼ Xrabbit tð Þ
i

� rand � E G1 � JXrabbit tð Þ � Xm tð Þj j ð23Þ

Z ¼ Xrabbit tð Þ � rand � E G1 � JXrabbit tð Þ � Xm tð Þj j � 1:5

� G2

LevyðdimÞ
ð24Þ

Algorithm 2 gives explains the details of Improved

HHO (IHHO).

Algorithm 2 Pseudo-code of modified HHO algorithm (IHHO)

The accompanying flowchart is in Fig. 10 which outli-

nes the operation of IHHO.

5 Experimental results and analysis

This section presents the experimental results of applying

IHHO on various benchmarks and testing its performance

against other algorithms. To ensure that all algorithms are

given a fair chance, all algorithms have been applied for 30

separate runs and 500 iterations. All algorithms have the

same population size of 30. The parameters of the different

algorithms are given in Table 1.

The Friedman mean rank statistical test was used.

Friedman recommended using a rank-based statistic to

overcome the implicit assumption of normalcy in the

analysis of variance[76]. The independence of several

experiments leading to ranks is evaluated using Friedman’s

test. In practical use, the hypothesis testing can be obtained

using an asymptotic analytical approximation valid for big

N or large k, or from published tables containing accurate

values for small k and N[77]. This assertion applies to both

approximate tests of significance for comparing all (k2-
) = k(k - 1)/2 pairs of treatments and tests for comparing

k - 1 treatments with a single control. The utility of

asymptotic tests is dependent on their ability to approxi-

mate the exact sample distribution of the discrete rank sum

difference statistic [78].
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The precise null distribution improves significance

testing in the comparison of Friedman rank sums and

serves as a foundation for assessing theoretical approxi-

mations of the genuine distribution. For both many-one and

all-pairs comparisons, the simple normal approximation

matches the precise results the best among the large-sample

approximation techniques [78]. For major occurrences

farther into the distribution’s tail, there may be a big dis-

crepancy between the approximation p-values that are

exact and normal. These kinds of events specifically hap-

pen when there are a lot of groups (k) and few blocks (n).

Application of the normal approximation raises the likeli-

hood of a Type-II error in a multiple testing setting with

‘‘large k and small n,’’ leading to mistaken acceptance of

the null hypothesis of ‘‘no difference.’’[79]

5.1 CEC 2005 benchmark functions

The proposed algorithm IHHO is examined by utilizing a

well-studied collection of various benchmark functions

taken from the IEEE CEC 2005 competition [80]. Uni-

modal (UM), High-dimensional multimodal (MM), and

fixed-dimension multimodal are the three basic types of

benchmark landscapes that are represented in this set.

These are the UM operations (F1–F7), the MM Procedures

(F8–F13), and functions of several dimensions that are

fixed (F14–F23). Tables 2, 3, 4 demonstrate the mathe-

matical formalism and features of Unimodal, High-di-

mensional multimodal, and fixed-dimension multimodal

problems, respectively.

Table 2 Description of unimodal benchmark functions of CEC2005

Function Range F min

F1(x) =
Pdim

i¼1 x
2
i

[-100, 100] 0

F2(x)=
Pdim

i¼1 xij j ?
Qdim

i¼1 xij j [-10, 10] 0

F3(x) =
Pdim

i¼1ð
Pi

n�1 xnÞ
2 [-100, 100] 0

F4(x) = maxi xij j; 1� i� dimf g [-100, 100] 0

F5(x) =
Pdim�1

i¼1 100 xiþ1 � x2i
� �2 þ xi � 1ð Þ2

h i
[-30, 30] 0

F6(x) =
Pdim

i¼1 xi þ 0:5½ �ð Þ2 [-100, 100] 0

F7(x) =
Pdim

i¼1 ix
4
i þ random½0; 1Þ [-1.28, 1.28] 0

Table 3 Description of High-dimensional multimodal benchmark functions of CEC2005

Function Range F min

F8(x) =
Pdim

i¼1 �xisinð
ffiffiffiffiffiffiffi
xij j

p
Þ [-500, 500] -418.983

F9(x) =
Pdim

i¼1 x2i � 10cos 2pxið Þ þ 10
� 	

[-5.12,

5.12]

0

F10(x) = �20exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

dim

Pdim
i¼1 x

2
i

q
 �
� exp 1

dim

Pdim
i¼1 cos 2pxið Þ

� �
þ 20þ e

[-32, 32] 0

F11(x) = 1
4000

Pdim
i¼1 x

2
i �

Qdim
i¼1 cos

xiffi
i

p
� �

þ 1 -600, 600] 0

F12(x) = p
dim 10sin py1ð Þ þ

Pdim�1
i¼1 ðyi � 1Þ2 1þ 10sin2ðpyiþ1Þ

� 	
þ ðydim � 1Þ2

n o
þ
Pdim

i¼1 uðxi; 10; 100; 4Þ

yi ¼ 1þ xiþ1
4

u(xi; a; k;mÞ =
kðyi � 1Þmxi [ a
0� a\xi\a

kð�xi � aÞmxi\� a

8<
:

[-50, 50] 0

F13(x)=0:1 sin2ð3px1Þ þ
Pdim

i¼1 ðxi � 1Þ2 1þ sin2ð3pxi þ 1Þ
� 	

þ ðxdim � 1Þ2½1þ sin2ð3pxdimÞ
n o

?
Pdim

i¼1 uðxi; 5; 100; 4Þ

[-50, 50] 0
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5.1.1 IHHO vs HHO

The proposed IHHO has shown to be effective not just for

lower-dimensional problems, but also for higher-dimen-

sional jobs, and these benchmarks have been used in earlier

studies to highlight the effect of dimension on the quality

of solutions. In this experiment, original HHO and IHHO

are utilized to solve the 30-dimensional, scaled versions of

the UM, MM, and fixed-dimension multimodal F1-F23

multimodal test cases. For each metric, we record and

compare the average AVG, STD, minimum, and maximum

of the achieved results. The outcomes of IHHO against

HHO to F1-F23 issues are shown in Table 5.

As compared to HHO, IHHO achieves vastly improved

results attesting to the optimizer’s higher performance.

Convergence curves shown in Fig. 11 allow us to visually

compare the convergence rates of IHHO and HHO algo-

rithms. These diagrams depict typical objective values

achieved by algorithms at various stages of their iterative

process. Convergence plots depict iterations on the hori-

zontal axis and objective function values on the vertical

axis. The graphs make it clear that the suggested IHHO has

a faster convergence rate than the original HHO method.

5.1.2 IHHO vs other algorithms

In this part, we compare the proposed IHHO to various

optimization algorithms, namely GWO [39], BAT [40],

MFO [42], TLBO [41], and WOA [43]. The outcomes are

compared along the 30th dimension and from F14 to F23

with a fixed dimension. Table 6 shows the obtained

experimental results for scalable problems. The

table shows the average and standard deviation of the

objective function. Figure 12 also presents the findings

about the convergence of the various techniques.

As evidence of the proposed optimizer’s superior per-

formance, IHHO generates significantly better outcomes

than competing methods. In particular, the theoretical best

can be attained by IHHO for F1–F4. The purpose of uni-

modal benchmark problems is to evaluate a system’s

potential for exploitation. Using F1-F7 as experimental

tests showed that the suggested algorithm is quite good at

local searches.

It is clear from these tables and curves that the IHHO

has solved the majority of the difficulties to their satis-

faction. The IHHO’s reliability is demonstrated by the low

standard value observed for the vast majority of the prob-

lems. Because of this, the suggested IHHO has been proven

to have higher accuracy in finding the global optimum by

extensive experimental and statistical research.

Table 4 Description of fixed-dimension multimodal benchmark functions of CEC2005

Function Range F min

F14(x) = 1
500

þ
P25

i¼1
1

iþ
P2

j¼1
ðxj�ajiÞ6

 !�1 [-65.536, 65.536] 1

F15(x) =
P11

i¼1 ai � x1ðb2i þbix2Þ
b2i þbix3þx4

h i2 [-5, 5] 0.0003

F16(x)= 4 x21 – 2.1 x41 ? 1
3
x61 ? x1x2� 4 x22 ?4 x42 [-5, 5] -1.0316

F17(x) = x2 � 5:1
4p2

x21 þ 5
p
x1 � 6

� �2 þ 10 1� 1
8p

� �
cosx1 þ 10 lb = [-5,0]

ub = [10, 15]

0.398

F18(x) = 1þ x1 þ x2 þ 1ð Þ2 19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22
� �h i

�

[30þ 2x1 � 3x2ð Þ2 18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22
� �

�

[-5, 5] 3

F19(x) = �
P4

i¼1 ciexpð�
P3

j¼1 aijðxj � pijÞ2Þ [1, 3] -3.86

F20(x) = �
P4

i¼1 ciexpð�
P6

j¼1 aijðxj � pijÞ2Þ [0,1] -3.32

F21(x) = �
P5

i¼1 ½ X � aið Þ X � aið ÞT þ ci�
�1 [0,10] -10.1532

F22(x) = �
P7

i¼1 ½ X � aið Þ X � aið ÞT þ ci�
�1 [0,10] -10.4028

F23(x)�
P10

i¼1 ½ X � aið Þ X � aið ÞT þ ci�
�1 [0,10] -10.5363
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Table 5 Comparison of results of IHHO and HHO on standard benchmark functions

Benchmark optimizer Mean STD MIN MAX

F1 IHHO

HHO

0.00E 1 00

3.22E-96

0.00E 1 00

1.72E-95

0.00E 1 00

3.10E-119

0.00E 1 00

3.47E-89

F2 IHHO

HHO

0.00E 1 00

1.83E-50

0.00E 1 00

8.95E-50

0.00E 1 00

9.40E-61

0.00E 1 00

3.15E-49

F3 IHHO

HHO

0.00E 1 00

1.67E-74

0.00E 1 00

2.94E-71

0.00E 1 00

6.49E-103

0.00E 1 00

6.795e-74

F4 IHHO

HHO

0.00E 1 00

1.32E-47

0.00E 1 00

7.24E-47

0.00E 1 00

2.8476e-56

0.00E 1 00

9.9167e-48

F5 IHHO

HHO

0.0023

0.010235

0.0098289

0.01594

1.63E211

9.54E-06

0.074396

0.10659

F6 IHHO

HHO

6.33E206

1.92E-04

1.12E205

2.20E-04

3.5965e209

6.3899e-07

1.84E204

9.51E-04

F7 IHHO

HHO

5.84E205

1.25E-04

4.24E205

1.10E-04

5.10E206

4.48E-06

4.71E204

4.21E-04

F8 IHHO

HHO

212,569.3028

-1.26E ? 04

0.2026

39.8386

212,569.486

-12,569.487

212,568.705

-12,334.059

F9 IHHO

HHO

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

F10 IHHO

HHO

4.44E216

4.44E216

0.00E 1 00

0.00E 1 00

4.44E216

4.44E216

4.44E216

4.44E216

F11 IHHO

HHO

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

0.00E 1 00

F12 IHHO

HHO

2.2386e207

1.03E-05

2.03E206

1.36E-05

3.20E210

1.56E-09

7.72E206

5.99E-05

F13 IHHO

HHO

7.15E206

1.25E-04

2.47E205

1.30E-04

1.47E210

1.54E-07

2.17E204

3.62E-04

F14 IHHO

HHO

9.98E201

1.43E ? 00

1.90E211

9.94E-01

0.998

0.998

0.998

5.9288

F15 IHHO

HHO

3.20E204

3.41E-04

2.01E205

3.74E-05

3.08E204

3.08E-04

3.66E204

1.52E-03

F16 IHHO

HHO

21.0316

21.0316

1.50E209

1.50E209

21.0316

21.0316

21.0316

21.0316

F17 IHHO

HHO

3.98E201

3.98E201

1.90E-05

1.85E205

3.98E201

3.98E201

3.98E201

3.98E201

F18 IHHO

HHO

3.00E 1 00

3.00E 1 00

2.11E-04

1.94E206

3.00E 1 00

3.00E 1 00

3.00E 1 00

3.00E 1 00

F19 IHHO

HHO

23.86E 1 00

23.86E 1 00

6.94E-03

4.51E203

23.86E 1 00

23.86E 1 00

-3.8121

23.8428

F20 IHHO

HHO

23.24E 1 00

-3.06E ? 00

6.45E202

1.86E-01

23.31E 1 00

23.31E 1 00

23.08E 1 00

-2.82E ? 00

F21 IHHO

HHO

21.01E 1 01

-5.53E ? 00

1.22E202

1.46E ? 00

21.02E 1 01

-9.60E ? 00

1.01E 1 01

-5.02E ? 00

F22 IHHO

HHO

21.04E 1 01

-5.15E ? 00

9.92E203

1.14E ? 00

21.04E 1 01

-1.03E ? 01

21.03E 1 01

-5.05E ? 00

F23 IHHO

HHO

21.05E 1 01

-5.0064

0.0079963

0.6313

210.5363

-5.1284

210.5074

-2.3934

Best results are highlighted in bold
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Fig. 11 Convergence curves for IHHO vs HHO on standard benchmark functions
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Fig. 11 continued
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It is possible to visually compare the convergence rates

of IHHO vs other algorithms by inspecting the curves

depicted in Fig. 12. The diagrams show the usual objective

values attained by algorithms at different iterations. The

convergence plot displays the value of the goal function on

the vertical axis and the number of iterations on the

horizontal axis. The figures demonstrate that the proposed

IHHO has a higher rate of convergence than other recent

algorithms.

The purpose of multimodal functions is to assess a

system’s exploratory prowess; IHHO achieves the best

mean values (except F19) as well as the best standard

Fig. 11 continued
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Table 6 Comparison of results between IHHO and other algorithms on standard benchmark functions

Benchmark IHHO HHO GWO[39] BAT[81] MFO[42] TLBO[41] WOA[43]

F1 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

3.22E-96

1.72E-95

2

6.13E-28

6.10E-28

5

3.61E ? 04

7.02E ? 03

7

2.34E ? 03

6.26E ? 03

6

1.74E-89

1.78E-89

3

4.21E-72

2.17E-71

4

F2 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

1.83E-50

8.95E-50

3

1.26E-16

1.05E-16

5

1.28E ? 07

6.17E ? 07

7

31.4937

20.2128

6

4.00E-45

2.62E-45

4

2.03E-51

8.29E-51

2

F3 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

1.67E-74

2.94E-71

2

1.28E-05

3.00E-05

4

8.61E ? 04

3.09E ? 04

7

1.93E ? 04

1.17E ? 04

5

7.19E-18

1.88E-17

3

4.40E ? 04

1.57E ? 04

6

F4 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

1.32E-47

7.24E-47

2

9.13E-07

1.24E-06

4

71.6218

8.79

7

68.7883

8.9973

6

1.37E-36

9.11E-37

3

48.1917

30.7822

5

F5 AVG

STD

Rank

0.0023

0.0098289

1

0.010235

0.01594

2

27.0242

0.7532

4

1.06E ? 08

5.32E ? 07

7

1.01E ? 04

2.73E ? 04

6

25.3678

0.4444

3

27.9931

0.4596

5

F6 AVG

STD

Rank

6.33E206

1.12E205

1

1.92E-04

2.20E-04

3

0.7853

0.3742

5

3.75E ? 04

1.03E ? 04

7

2.05E ? 03

4.87E ? 03

6

1.90E-04

9.45E-04

2

0.337

0.2367

4

F7 AVG

STD

Rank

5.84E205

4.24E205

1

1.25E-04

1.10E-04

2

0.0021

0.0014

4

77.8913

33.2022

7

2.7092

5.5266

6

0.0011

5.23E-04

3

0.004

0.0064

5

F8 AVG

STD

Rank

212,569.302

0.2026

2

-1.26E ? 04

39.8386

1

-5.92E ? 03

951.8653

6

-5.81E ? 03

4.28E ? 03

7

-8.54E ? 03

833.415

4

-7.51E ? 03

1.02E ? 03

5

-1.06E ? 04

1.87E ? 03

3

F9 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

0.00E 1 00

0.00E 1 00

1

3.4078

3.9093

4

378.3514

58.3831

7

154.0734

33.0526

6

14.301

4.9273

5

0.00E 1 00

0.00E 1 00

1

F10 AVG

STD

Rank

4.44E216

0.00E 1 00

1

4.44E216

0.00E 1 00

1

1.03E-13

2.10E-14

5

19.6481

0.8417

7

15.6966

6.6761

6

6.01E-15

1.79E-15

4

4.94E-15

2.63E-15

3

F11 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

0.00E 1 00

0.00E 1 00

1

0.0018

0.006

4

347.3149

74.2876

7

28.3382

47.8696

6

0.00E 1 00

0.00E 1 00

1

0.0123

0.0474

5

F12 AVG

STD

Rank

2.2386e207

2.03E206

1

1.03E-05

1.36E-05

2

0.0416

0.0228

5

1.34E ? 08

8.52E ? 07

7

8.53E ? 06

4.67E ? 07

6

0.0035

0.0189

3

0.0186

0.0118

4

F13 AVG

STD

Rank

7.15E206

2.47E205

1

1.25E-04

1.30E-04

2

0.6901

0.3017

5

3.16E ? 08

1.50E ? 08

7

189.5869

718.4921

6

0.0594

0.0697

3

0.4933

0.2477

4

F14 AVG

STD

Rank

9.98E201

1.90E211

1

1.43E ? 00

9.94E-01

2

3.4192

3.4648

5

20.3851

34.6933

6

3.1341

2.5415

3

-

-

-

3.3146

3.8762

4

F15 AVG

STD

Rank

3.20E204

2.01E205

1

3.41E-04

3.74E-05

2

0.0049

0.0119

5

0.1045

0.2543

7

0.0017

0.0036

4

0.007

0.0202

6

6.58E-04

3.29E-04

3

F16 AVG

STD

Rank

21.0316

1.50E-09

1

21.0316

1.50E-09

1

21.0316

2.52E-08

1

-0.52

0.6137

7

21.0316

6.78E-16

1

-0.8177

0.2707

6

21.0316

8.13E210

1
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deviations (except F17, F20, and F23). The results of the

F8-F23 test demonstrate that IHHO has superb exploration

ability. As seen from Table 6, the total rank is 1, making

the IHHO algorithm the best of all algorithms.

In conclusion, the IHHO algorithm is more efficient than

the other examined algorithms for unimodal functions; this

is because the random walk method effectively increases

the algorithm’s capacity to jump out of the local optimum.

5.1.3 IHHO vs other modifications of HHO

In this part, the proposed IHHO to other modifications of

HHO was compared, namely BHHO[36], MHHO[37],

and LogHHO[38]. The outcomes are compared along the

30th dimension and from F14 to F23 with a fixed dimen-

sion. Experimental results addressing scalability issues are

presented in Table 7. A summary of the objective func-

tion’s mean and standard deviation is displayed below.

Results on the convergence of the various methods are also

shown in Fig. 13.

When compared to other modifications made to HHO,

the mean values achieved by IHHO are superior. For all

functions except F20, IHHO has the highest average values

in accordance with BHHO, especially for (F1, F2, F3, F4).

When compared to MHHO and LogHHO, the average

values for IHHO are higher in every respect (F1–F4 and

F20–F23). Except for F5 and F15, the median values

achieved by IHHO are the highest. The results of the F8-

F23 tests confirm IHHO’s exceptional global capability.

Table 7 shows that overall the IHHO algorithm ranks first,

making it the best of its kind.

Since the random walk method effectively increases the

algorithm’s ability to jump from the local optimum, it can

be concluded that the IHHO algorithm is more efficient

than other modification algorithms analyzed for unimodal

functions.

5.2 CEC 2017 benchmark functions

One of the most challenging evaluation tools is called

CEC2017 [82], and it consists of thirty test jobs in a variety

Table 6 (continued)

Benchmark IHHO HHO GWO[39] BAT[81] MFO[42] TLBO[41] WOA[43]

F17 AVG

STD

Rank

3.98E201

1.90E-05

4

3.98E201

1.85E-05

4

0.3979

8.66E-05

1

0.9501

0.8328

6

0.3979

0

1

-

-

-

0.3979

1.49E-05

1

F18 AVG

STD

Rank

3.00E 1 00

2.11E-04

1

3.00E 1 00

1.94E-06

1

3

4.48E-05

1

33.2527

32.6853

6

3

1.79E215

1

132.3356

159.3076

7

3.0001

3.58E-04

5

F19 AVG

STD

Rank

23.86E 1 00

6.94E-03

3

23.86E 1 00

4.51E-03

3

-3.8615

0.0024

2

-3.6039

0.2486

6

-3.8628

2.71E215

1

-

-

-

-3.8574

0.0097

5

F20 AVG

STD

Rank

23.24E 1 00

6.45E-02

1

-3.06E ? 00

1.86E-01

5

-3.2236

0.1085

2

-1.9483

0.5673

6

-3.2194

0

3

-

-

-

-3.2152

0.2145

4

F21 AVG

STD

Rank

21.01E 1 01

1.22E202

1

-5.53E ? 00

1.46E ? 00

5

-8.8873

2.3685

2

-0.9957

0.8525

6

-7.1271

3.1953

4

-

-

-

-8.4063

2.6596

3

F22 AVG

STD

Rank

21.04E 1 01

9.92E203

2

-5.15E ? 00

1.14E ? 00

5

-10.4011

9.11E-04

1

-0.9663

0.467

6

-7.6474

3.4917

3

-

-

-

-7.4581

3.0958

4

F23 AVG

STD

Rank

21.05E 1 01

0.0079963

1

-5.0064

0.6313

5

21.05E 1 01

8.85E204

1

-1.329

0.6039

6

-7.4001

3.6882

4

-

-

-

-7.4382

3.4276

3

Percentage 1.3043 2.4783 3.5217 6.6522 4.3478 2 3.6522

Total Rank 1 2 3 6 5 2 4

Best results are highlighted in bold
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Fig. 12 Convergence curves for IHHO vs other algorithms on standard benchmark functions
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Fig. 12 continued
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of formats as shown in Table 8, namely single-modal (F1),

multimodal (F3–F9), hybrid (F10–F19), or combination

(F20–F30). In this investigation, we set the dimensions to

10.

5.2.1 IHHO vs HHO

The HHO approach is not very useful for solving difficult

issues such as CEC 2017, but it does exceptionally well on

routine, low-dimensional projects. In agreement with the

first HHO, the newly proposed IHHO has proven to be

effective in finding solutions to challenging challenges.

In Table 9, IHHO to HHO after putting it through its

paces on the CEC2017 test functions (except F2, which is

unstable) was compared. This was done to determine which

of the two was superior.

As can be seen in Table 9, the suggested algorithm

IHHO fared well in all functions with the original HHO.

According to the tests, IHHO outperforms the original

HHO algorithm in every used metric. Generally speaking,

IHHO achieves the greatest median values, except for F8,

F21, and F24. IHHO algorithm outperforms other analyzed

modification methods for unimodal functions due to its

increased capacity to escape the local optimum using the

random walk approach.

Visually contrasting the convergence of the original

HHO algorithm is done by examining the curves in Fig. 14.

Typical objective values reached by algorithms throughout

multiple iterations are depicted in these figures. On the

vertical axis of the convergence plot is the value of the

objective function, and on the horizontal axis is the number

of iterations. As can be seen in the figures, the suggested

IHHO has a faster speed of convergence than that of the

original HHO.

5.2.2 IHHO vs other algorithms

Here, we evaluate the proposed IHHO in comparison to

other popular optimization methods, namely the BAT

algorithm [40], MFO [42], TLBO [41], and WOA [43].

Fig. 12 continued
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Table 7 Comparison of results of IHHO vs other modifications of HHO on standard benchmark functions

Benchmark IHHO HHO BHHO[36] MHHO[37] LogHHO[38]

F1 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

3.22E-96

1.72E-95

3

7.85E-60

8.71E-59

4

1.00E-244

0.00E 1 00

2

1.34E-17

1.12E-16

5

F2 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

1.83E-50

8.95E-50

3

1.07E-29

8.27E-29

4

3.07E-129

4.20E-127

2

1.81E-26

7.53E-25

5

F3 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

1.67E-74

2.94E-71

3

7.02E-40

3.43E-39

4

1.32E-196

0.00E 1 00

2

2.71E ? 04

9.30E ? 03

5

F4 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

1.32E-47

7.24E-47

3

5.51E-32

4.65E-32

4

3.76E-123

5.37E-120

2

14.4832

16.8466

5

F5 AVG

STD

Rank

0.0023

0.0098289

1

0.010235

0.01594

3

0.0063

0.0084

2

27.5121

0.5056

4

28.8904

0.0531

5

F6 AVG

STD

Rank

6.33E206

1.12E205

1

1.92E-04

2.20E-04

3

2.58E-05

8.26E-05

2

0.2962

0.2276

4

4.1674

0.8661

5

F7 AVG

STD

Rank

5.84E205

4.24E205

1

1.25E-04

1.10E-04

2

0.00025828

2.98E-04

4

0.00013326

2.70E-04

3

0.05209

0.0385

5

F8 AVG

STD

Rank

212,569.302

0.2026

2

-1.26E ? 04

39.8386

1

-1.25E ? 04

158.6328

3

-1.05E ? 04

2.10E ? 03

4

-5.54E ? 03

951.9147

5

F9 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

0.00E 1 00

0.00E 1 00

1

0.00E 1 00

0.00E 1 00

1

0.00E 1 00

0.00E 1 00

1

1.24E ? 02

103.8591

5

F10 AVG

STD

Rank

4.44E216

0.00E 1 00

1

4.44E216

0.00E 1 00

1

4.44E216

0.00E 1 00

1

4.44E216

0.00E 1 00

1

2.62E-10

7.83E-10

5

F11 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

0.00E 1 00

0.00E 1 00

1

0.00E 1 00

0.00E 1 00

1

0.00E 1 00

0.00E 1 00

1

6.04E-02

0.1202

5

F12 AVG

STD

Rank

2.2386e207

2.03E206

1

1.03E-05

1.36E-05

3

3.38E-06

3.63E-06

2

1.30E-02

0.0058

4

3.40E-01

2.2784

5

F13 AVG

STD

Rank

7.15E206

2.47E205

1

1.25E-04

1.30E-04

3

2.53E-05

4.41E-05

2

2.82E-01

0.1789

4

1.57E ? 00

0.3978

5

F14 AVG

STD

Rank

9.98E201

1.90E-11

1

1.43E ? 00

9.94E-01

3

9.98E201

1.15E213

1

5.08E ? 00

3.406

4

6.82E ? 00

5.5571

5

F15 AVG

STD

Rank

3.20E-04

2.01E205

1

3.41E-04

3.74E-05

2

3.52E-04

1.66E-04

3

5.71E-04

1.40E-04

4

4.07E-03

0.006

5

F16 AVG

STD

Rank

21.0316

1.50E-09

1

21.0316

1.50E-09

1

21.0316

1.58E-11

1

21.0316

6.17E-13

1

21.0316

1.61E-06

1
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Experimental results addressing scalability issues are pre-

sented in Table 10, which presents a summary of the

objective function’s mean and standard deviation. Results

on the convergence of the various methods are also shown

in Fig. 15.

The average values attained by using IHHO are higher

than those obtained using other recent algorithms.

According to the TLBO and BAT algorithms, IHHO typ-

ically has the greatest average values across the board for

all frequencies. IHHO has higher average values than the

WOA algorithm does across the board, but especially for

(F1, F3, F9, F12, F14, F19, F30). In every case, the average

values for IHHO are greater than those for the MFO

method, particularly for (F1 to F10, F19, F26, F30). Except

for F18 and F27, IHHO consistently produces the highest

average results. Table 10 shows that the performance of the

proposed IHHO algorithm outperforms the performance of

the original HHO method as well as all other algorithms

and the rank for all equations is 1.

The IHHO technique outperforms other analyzed mod-

ification methods for unimodal functions due to its

increased capacity to escape the local optimum using the

random walk approach. Because the random walk approach

effectively boosts the algorithm’s capacity to jump out of

the local optimum, the IHHO algorithm outperforms the

other algorithms studied for unimodal functions.

5.2.3 IHHO vs other modifications of HHO

Here, the proposed IHHO to other HHO variants such as

BHHO [54], MHHO[37], and LogHHO [38]. Table 11

displays experimental results that address scalability con-

cerns in terms of the mean and standard deviation of the

objective function evaluated. Figure 16 also displays the

convergence results for the different approaches.

Using CEC2017 functions, we compared the suggested

change IHHO to other modifications of the original HHO

and found that IHHO provided much better performance.

The IHHO algorithm is superior to the other examined

variations for functions because of random walk technique

significantly improves the algorithm’s ability to escape the

local optimum. Table 11 shows that the performance of the

IHHO algorithm outperforms the performance of the

original HHO method as well as all other HHO modifica-

tion algorithms and the rank for all equations is 1.

Table 7 (continued)

Benchmark IHHO HHO BHHO[36] MHHO[37] LogHHO[38]

F17 AVG

STD

Rank

3.98E201

1.90E-05

1

3.98E201

1.85E-05

1

3.98E201

4.46E-08

1

3.98E201

4.10E-07

1

3.98E201

1.20E-04

1

F18 AVG

STD

Rank

3.00E 1 00

2.11E-04

1

3.00E 1 00

1.94E-06

1

3.00E 1 00

1.15E-06

1

3.00E 1 00

3.33E-07

1

3.00E 1 00

0.0037

1

F19 AVG

STD

Rank

23.86E 1 00

6.94E203

1

23.86E 1 00

4.51E-03

1

23.86E 1 00

0.0022

1

23.86E 1 00

0.0012

1

23.86E 1 00

0.0039

1

F20 AVG

STD

Rank

-3.24E ? 00

6.45E202

3

-3.06E ? 00

1.86E-01

5

23.2778

0.0664

1

-3.26E ? 00

0.0657

2

-3.07E ? 00

0.1252

4

F21 AVG

STD

Rank

21.01E 1 01

1.22E202

1

-5.53E ? 00

1.46E ? 00

5

-9.98E ? 00

1.21E-04

2

-8.03E ? 00

2.5693

3

-6.43E ? 00

2.3338

4

F22 AVG

STD

Rank

21.04E 1 01

9.92E203

1

-5.15E ? 00

1.14E ? 00

5

21.04E 1 01

7.38E-05

1

-8.25E ? 00

3.0059

3

-6.00E ? 00

2.8613

4

F23 AVG

STD

Rank

21.05E 1 01

0.0079963

1

-5.0064

0.6313

5

21.05E 1 01

1.24E-04

1

-7.38E ? 00

3.2505

3

-5.66E ? 00

3.1372

4

Percentage 1.1304 2.5652 2.0435 2.4783 4.1304

Total Rank 1 4 2 3 5

Best results are highlighted in bold
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Fig. 13 Convergence curves for IHHO vs HHO modifications on standard benchmark functions
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Fig. 13 continued
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Fig. 13 continued

Table 8 Description of CEC 2017

Benchmark Name Dim Range F min

Unimodal functions

F1 Shifted and Rotated Bent Cigar Function 10 [-100, 100] 100

Multimodal functions

F3 Shifted and Rotated Rosenbrock’s Function 10 [-100, 100] 300

F4 Shifted and Rotated Rastrigin’s Function 10 [-100, 100] 400

F5 Shifted and Rotated Expanded Scaffer’s F6 Function 10 [-100, 100] 500

F6 Shifted and Rotated Lunacek BiRastriginFunction 10 [-100, 100] 600

F7 Shifted and Rotated Non-Continuous Rastrigin’s Function 10 [-100, 100] 700

F8 Shifted and Rotated Levy Function 10 [-100, 100] 800

F9 Shifted and Rotated Schwefel’s Function 10 [-100, 100] 900

Hybrid Functions (N is the basic number of functions)

F10 Hybrid Function 1 (N = 3) 10 [-100, 100] 1000

F11 Hybrid Function 2 (N = 3) 10 [-100, 100] 1100

F12 Hybrid Function 3 (N = 3) 10 [-100, 100] 1200

F13 Hybrid Function 4 (N = 4) 10 [-100, 100] 1300

F14 Hybrid Function 5 (N = 4) 10 [-100, 100] 1400

F15 Hybrid Function 6 (N = 4) 10 [-100, 100] 1500

F16 Hybrid Function 6 (N = 5) 10 [-100, 100] 1600

F17 Hybrid Function 6 (N = 5) 10 [-100, 100] 1700

F18 Hybrid Function 6 (N = 5) 10 [-100, 100] 1800
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Table 8 (continued)

Benchmark Name Dim Range F min

F19 Hybrid Function 6 (N = 6) 10 [-100, 100] 1900

Composite Functions (N is the basic number of functions)

F20 Composite Function 1 (N = 3) 10 [-100, 100] 2000

F21 Composite Function 2 (N = 3) 10 [-100, 100] 2100

F22 Composite Function 3 (N = 4) 10 [-100, 100] 2200

F23 Composite Function 3 (N = 4) 10 [-100, 100] 2300

F24 Composite Function 5 (N = 5) 10 [-100, 100] 2400

F25 Composite Function 6 (N = 5) 10 [-100, 100] 2500

F26 Composite Function 7 (N = 6) 10 [-100, 100] 2600

F27 Composite Function 8 (N = 6) 10 [-100, 100] 2700

F28 Composite Function 9 (N = 6) 10 [-100, 100] 2800

F29 Composite Function 10 (N = 3) 10 [-100, 100] 2900

F30 Composite Function 11 (N = 3) 10 [-100, 100] 3000

Table 9 Comparison of results of IHHO and HHO on CEC2017

Benchmark optimizer Mean STD MIN MAX

F1 IHHO

HHO

2.17E 1 04

9.91E ? 06

8666.9596

6.56E ? 06

5703.7119

3.46E ? 05

57,055.175

5.15E ? 07

F3 IHHO

HHO

300.2742

790.2067

0.18863

498.1986

300.083

304.5662

301.4204

1688.0762

F4 IHHO

HHO

405.4989

441.6495

12.3172

41.2061

400.0072

400.6048

480.1062

598.8978

F5 IHHO

HHO

523.0827

560.9182

9.7255

19.6982

503.0001

522.2605

550.7509

594.5018

F6 IHHO

HHO

601.2425

641.3173

1.6446

11.3266

600.1019

618.6942

621.2993

655.219

F7 IHHO

HHO

740.3267

803.3728

13.5653

15.7372

719.1461

733.6704

785.6197

827.7796

F8 IHHO

HHO

822.0687

832.37

8.89E ? 00

6.4979

8.08E ? 02

810.0621

8.47E ? 02

850.1502

F9 IHHO

HHO

911.342

1.52E ? 03

30.507

214.4839

900.0069

995.9883

1224.0933

2083.4515

F10 IHHO

HHO

1.59E 1 03

2.08E ? 03

264.6654

3.09E ? 02

1255.325

1376.439

2089.5942

2.52E ? 03

F11 IHHO

HHO

1123.0802

1198.231

1.28E 1 01

89.4682

1.11E ? 03

1132.6825

1.31E ? 03

1417.3129

F12 IHHO

HHO

1.35E 1 06

3.45E ? 06

1,377,342.073

3.67E ? 06

8339.2102

9.54E ? 04

8,639,874.3521

1.38E ? 07

F13 IHHO

HHO

1.16E 1 04

1.37E ? 04

9346.6084

1.03E ? 04

2718.654

2.17E ? 03

40,856.3071

8.92E ? 04

F14 IHHO

HHO

1.6116e 1 03

2.28E ? 03

350.1143

1.08E ? 03

1454.1619

1464.2827

2255.0692

5.94E ? 03

F15 IHHO

HHO

4.93E 1 03

8.89E ? 03

1959.5614

3.18E ? 03

1742.1252

2552.419

9149.3695

11,565.6309
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Figure 16 shows typical objective values attained by

algorithms over the course of numerous iterations, allowing

for a visual comparison of the convergence rates. A con-

vergence plot displays the value of the goal function along

the vertical axis and the number of repetitions along the

horizontal axis. The results clearly show that the proposed

IHHO has a higher rate of convergence compared to the

baseline HHO method and various modifications.

5.3 CEC 2019 benchmark functions

The benchmark test functions from the IEEE Congress on

Evolutionary Computation serve as the basis for IHHO’s

evaluation (CEC-C06, 2019 Competition) [83]. Functions

for 2019 Benchmark Tests in the CEC-C06 Standard As a

secondary measure, IHHO is applied to 10 state-of-the-art

CEC benchmark test functions.

Unlike CEC01-CEC03, CEC04-CEC10 undergoes both

translation and rotation. There is, however, scalability

across the board for the test procedures. Although CEC04–

CEC10 have the same dimensions as a 10-dimensional

constrained optimization problem in the [-100, 100] border

range, CEC01–CEC03 have different dimensions, as indi-

cated in Table 12.

5.3.1 IHHO vs HHO

In Table 13, a comparison of the results of IHHO vs HHO

after putting it through its paces on the CEC2019 test

functions is presented. This was done so that we could

Table 9 (continued)

Benchmark optimizer Mean STD MIN MAX

F16 IHHO

HHO

1.7763e 1 03

1.92E ? 03

147.1462

1.64E ? 02

1601.6159

1635.5939

2076.1548

2204.3433

F17 IHHO

HHO

1.76E 1 03

1.80E ? 03

18.3225

7.52E ? 01

1728.0332

1738.1283

1810.0079

2038.5601

F18 IHHO

HHO

1.6275e 1 04

1.7680e ? 04

10,835.5077

1.36E ? 04

2581.9049

2.10E ? 03

54,986.4211

4.13E ? 04

F19 IHHO

HHO

7.19E 1 03

3.59E ? 04

6647.6979

6.38E ? 04

1971.5397

4404.9096

28,369.1424

57,366.6541

F20 IHHO

HHO

2.07E 1 03

2.20E ? 03

49.3032

8.87E ? 01

2025.3629

2080.0135

2260.5939

2446.0105

F21 IHHO

HHO

2.28E 1 03

2352.2351

60.2607

30.8292

2200.0087

2207.2868

2351.5616

2385.9732

F22 IHHO

HHO

2.29E 1 03

2376.921

24.7819

237.0443

2225.9647

2274.969

2998.756

3132.1365

F23 IHHO

HHO

2622.469

2681.7155

10.5649

31.1696

2606.0671

2621.561

2665.1997

2785.2163

F24 IHHO

HHO

2719.675

2822.6602

92.5488

78.5028

2500.3054

2501.3983

2789.4829

2944.7632

F25 IHHO

HHO

2928.3439

2.93E ? 03

23.1189

6.88E ? 01

2897.752

2898.9264

2970.8463

2954.9231

F26 IHHO

HHO

2891.4091

3690.8329

250.8454

566.4344

2602.3498

2612.9373

3968.6475

4499.7978

F27 IHHO

HHO

3.10E 1 03

3.18E ? 03

8.18E 1 00

4.66E ? 01

3090.7815

3099.3257

3182.0987

3328.3845

F28 IHHO

HHO

3.36E 1 03

3.44E ? 03

9.25E 1 01

1.40E ? 02

3100.333

3103.5738

3736.1829

3749.371

F29 IHHO

HHO

3.24E 1 03

3.33E ? 03

57.3682

8.88E ? 01

3143.2242

3189.2023

3410.3241

3553.63

F30 IHHO

HHO

2.45E 1 05

2.05E ? 06

4.07E 1 05

3.01E ? 06

7.40E ? 03

7.36E ? 04

3.28E ? 06

9.39E ? 06

Best results are highlighted in bold
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Fig. 14 Convergence curves for IHHO vs HHO on CEC2017
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Fig. 14 continued
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Fig. 14 continued
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Fig. 14 continued

Table 10 Comparison of results between IHHO and other algorithms on CEC2017

Benchmark IHHO HHO BAT[40] MFO[42] TLBO[41] WOA[43]

F1 AVG

STD

Rank

2.17E 1 04

8666.9596

1

9.91E ? 06

6.56E ? 06

2

1.97E ? 10

7.85E ? 09

6

2.03E ? 08

4.69E ? 08

4

5.14E ? 09

3.85E ? 09

5

7.45E ? 07

7.89E ? 07

3

F3 AVG

STD

Rank

300.2742

0.18863

1

790.2067

498.1986

2

7.63E ? 04

3.03E ? 04

6

1.10E ? 04

1.42E ? 04

4

6.58E ? 04

1.25E ? 04

5

6.21E ? 03

4.32E ? 03

3

F4 AVG

STD

Rank

405.4989

12.3172

1

441.6495

41.2061

3

2.19E ? 03

1.02E ? 03

6

420.3863

30.7835

2

1.40E ? 03

994.2903

5

457.3243

57.1373

4

F5 AVG

STD

Rank

523.0827

9.7255

1

560.9182

19.6982

3

631.5225

28.0893

5

531.9467

12.3566

2

706.7606

50.1425

6

562.1442

18.2611

4

F6 AVG

STD

Rank

601.2425

1.6446

1

641.3173

11.3266

4

685.5707

22.1028

6

604.9002

7.252

2

641.6572

9.4312

5

639.4219

14.5207

3
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Table 10 (continued)

Benchmark IHHO HHO BAT[40] MFO[42] TLBO[41] WOA[43]

F7 AVG

STD

Rank

740.3267

13.5653

1

803.3728

15.7372

4

1.06E ? 03

100.0475

5

743.3572

14.3218

2

1.10E ? 03

70.0049

6

778.9864

27.5069

3

F8 AVG

STD

Rank

822.0687

8.89E ? 00

1

832.37

6.4979

3

920.1498

21.3481

5

832.2549

11.9416

2

965.7717

34.9736

6

845.293

17.2473

4

F9 AVG

STD

Rank

911.342

30.507

1

1.52E ? 03

214.4839

3

4.44E ? 03

1.44E ? 03

5

1.18E ? 03

334.0652

2

6.07E ? 03

1.48E ? 03

6

1.84E ? 03

865.9342

4

F10 AVG

STD

Rank

1.59E 1 03

264.6654

1

2.08E ? 03

3.09E ? 02

3

3.38E ? 03

376.9642

5

1.96E ? 03

340.7119

2

7.94E ? 03

1.03E ? 03

6

2.28E ? 03

344.1797

4

F11 AVG

STD

Rank

1123.0802

1.28E 1 01

1

1198.231

89.4682

2

2.09E ? 04

2.46E ? 04

6

1.29E ? 03

340.1241

4

1.77E ? 03

779.766

5

1.22E ? 03

61.4991

3

F12 AVG

STD

Rank

1.35E 1 06

1,377,342.073

1

3.45E ? 06

3.67E ? 06

3

1.12E ? 09

8.52E ? 08

6

2.54E ? 06

4.31E ? 06

2

8.26E ? 07

1.20E ? 08

5

4.35E ? 06

4.41E ? 06

4

F13 AVG

STD

Rank

1.16E 1 04

9346.6084

1

1.37E ? 04

1.03E ? 04

3

1.46E ? 08

1.75E ? 08

6

1.35E ? 04

1.16E ? 04

2

1.35E ? 06

3.92E ? 06

5

1.68E ? 04

1.16E ? 04

4

F14 AVG

STD

Rank

1.6116e 1 03

350.1143

1

2.28E ? 03

1.08E ? 03

2

8.07E ? 03

8.65E ? 03

5

5.29E ? 03

6.04E ? 03

4

4.83E ? 04

5.84E ? 04

6

2.75E ? 03

1.35E ? 03

3

F15 AVG

STD

Rank

4.93E 1 03

1959.5614

1

8.89E ? 03

3.18E ? 03

2

7.33E ? 04

9.42E ? 04

6

1.05E ? 04

1.27E ? 04

3

1.24E ? 04

1.33E ? 04

4

1.33E ? 04

8.42E ? 03

5

F16 AVG

STD

Rank

1.7763e 1 03

147.1462

1

1.92E ? 03

1.64E ? 02

3

2.58E ? 03

176.5344

5

1.83E ? 03

138.7651

2

2.97E ? 03

427.2746

6

1.92E ? 03

136.0335

3

F17 AVG

STD

Rank

1.76E 1 03

18.3225

1

1.80E ? 03

7.52E ? 01

3

2.24E ? 03

183.3624

5

1.78E ? 03

57.0341

2

2.39E ? 03

304.3592

6

1.84E ? 03

81.4459

4

F18 AVG

STD

Rank

1.6275e 1 04

10,835.5077

1

1.7680e ? 04

1.36E ? 04

2

3.63E ? 08

5.44E ? 08

6

2.23E ? 04

1.58E ? 04

4

1.22E ? 06

2.40E ? 06

5

1.84E ? 04

9.53E 1 03

3

F19 AVG

STD

Rank

7.19E 1 03

6647.6979

1

3.59E ? 04

6.38E ? 04

4

1.76E ? 07

7.63E ? 07

6

1.91E ? 04

1.89E ? 04

3

1.36E ? 04

1.67E ? 04

2

4.18E ? 04

6.30E ? 04

5

F20 AVG

STD

Rank

2.07E 1 03

49.3032

1

2.20E ? 03

8.87E ? 01

4

2.46E ? 03

121.9582

5

2.10E ? 03

60.9747

2

2.57E ? 03

185.4204

6

2.19E ? 03

67.5468

3

F21 AVG

STD

Rank

2.28E 1 03

60.2607

1

2352.2351

30.8292

4

2.42E ? 03

50.8977

5

2.31E ? 03

46.0485

2

2.48E ? 03

45.8557

6

2.33E ? 03

51.7961

3

F22 AVG

STD

Rank

2.29E 1 03

24.7819

1

2376.921

237.0443

3

3.98E ? 03

652.9891

5

2.31E ? 03

14.2038

2

4.58E ? 03

1.85E ? 03

6

2.40E ? 03

304.6141

4
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Table 10 (continued)

Benchmark IHHO HHO BAT[40] MFO[42] TLBO[41] WOA[43]

F23 AVG

STD

Rank

2622.469

10.5649

1

2681.7155

31.1696

4

2.87E ? 03

65.3471

5

2.63E ? 03

10.9218

2

2.99E ? 03

72.5619

6

2.65E ? 03

18.752

3

F24 AVG

STD

Rank

2719.675

92.5488

1

2822.6602

78.5028

4

3.02E ? 03

112.3605

5

2.76E ? 03

50.1124

2

3.15E ? 03

94.752

6

2.78E ? 03

62.1067

3

F25 AVG

STD

Rank

2928.3439

23.1189

1

2.93E ? 03

6.88E ? 01

2

4.27E ? 03

678.1578

6

2.93E ? 03

21.6507

2

3.14E ? 03

89.0578

5

2.98E ? 03

39.0756

4

F26 AVG

STD

Rank

2891.4091

250.8454

1

3690.8329

566.4344

3

4.94E ? 03

541.4107

5

3.08E ? 03

231.8064

2

7.18E ? 03

921.5414

6

3.70E ? 03

595.1693

4

F27 AVG

STD

Rank

3.10E 1 03

8.18E ? 00

1

3.18E ? 03

4.66E ? 01

4

3.35E ? 03

121.1479

5

3.10E 1 03

4.5736

1

3.39E ? 03

95.9356

6

3.15E ? 03

48.5217

3

F28 AVG

STD

Rank

3.36E 1 03

9.25E 1 01

1

3.44E ? 03

1.40E ? 02

4

3.82E ? 03

307.4426

6

3.37E ? 03

95.193

2

3.75E ? 03

283.7452

5

3.43E ? 03

171.5057

3

F29 AVG

STD

Rank

3.24E 1 03

57.3682

1

3.33E ? 03

8.88E ? 01

3

3.81E ? 03

253.5827

5

3.2542e ? 03

65.0163

2

4.50E ? 03

362.6095

6

3.36E ? 03

94.5697

4

F30 AVG

STD

Rank

2.45E 1 05

4.07E 1 05

1

2.05E ? 06

3.01E ? 06

5

6.07E ? 07

5.95E ? 07

6

9.07E ? 05

7.62E ? 05

2

1.37E ? 06

5.82E ? 06

3

1.70E ? 06

1.90E ? 06

4

Percentage 1 3.137931 5.448276 2.37931 5.344827586 3.586206897

Total Rank 1 3 6 2 5 4

Best results are highlighted in bold
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Fig. 15 Convergence curves for IHHO vs other algorithms on CEC2017
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Fig. 15 continued
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Fig. 15 continued
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determine which one was superior. CEC01-CEC03 has

varied dimensions, however, CEC04-CEC10 had a 10-di-

mensional constrained optimization problem within the [–

100, 100] border range.

According to Table 13, the performance of IHHO is

superior to that of the original HHO, with the exception of

CEC02. IHHO outperforms other analyzed approaches for

modifying functions due to its higher capacity to escape the

local optimum utilizing the random walk approach. This is

the primary reason for IHHO’s superior performance.

Viewing the curves in Fig. 17 allows for a comparison

of the convergence periods of IHHO and the original HHO

Fig. 15 continued
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Table 11 Comparison of results of IHHO vs other modifications of HHO on CEC2017

Benchmark IHHO HHO BHHO[36] MHHO[37] LogHHO[38]

F1 AVG

STD

Rank

2.17E ? 04

8666.9596

1

9.91E ? 06

6.56E ? 06

5

3.77E ? 06

4.12E ? 06

3

1.47E ? 06

8.42E ? 05

2

5.52E ? 06

7.26E ? 06

4

F3 AVG

STD

Rank

300.2742

0.18863

1

790.2067

498.1986

3

1.19E ? 03

770.3361

4

398.1691

104.8285

2

5.93E ? 03

6.10E ? 03

5

F4 AVG

STD

Rank

405.4989

12.3172

1

441.6495

41.2061

5

436.7338

44.7437

4

416.015

21.0623

2

430.7354

55.0594

3

F5 AVG

STD

Rank

523.0827

9.7255

1

560.9182

19.6982

4

548.4437

14.4186

2

548.8574

13.9218

3

564.0366

23.9574

5

F6 AVG

STD

Rank

601.2425

1.6446

1

641.3173

11.3266

4

628.4876

13.7503

2

631.5325

10.9249

3

649.3339

16.4377

5

F7 AVG

STD

Rank

740.3267

13.5653

1

803.3728

15.7372

5

776.8391

23.8562

2

784.2181

21.698

3

801.2626

31.341

4

F8 AVG

STD

Rank

822.0687

8.89E ? 00

1

832.37

6.4979

4

831.3131

7.9076

3

830.8505

11.4977

2

847.8072

17.132

5

F9 AVG

STD

Rank

911.342

30.507

1

1.52E ? 03

214.4839

4

1206.649

157.5356

2

1312.3297

258.1827

3

1808.6

573.6312

5

F10 AVG

STD

Rank

1.59E 1 03

264.6654

1

2.08E ? 03

3.09E ? 02

4

2.03E ? 03

226.4783

2

2.04E ? 03

371.8428

3

2.29E ? 03

444.9148

5

F11 AVG

STD

Rank

1123.0802

1.28E 1 01

1

1198.231

89.4682

4

1.18E ? 03

45.4478

3

1.17E ? 03

43.8321

2

1.21E ? 03

66.5747

5

F12 AVG

STD

Rank

1.35E 1 06

1,377,342.073

1

3.45E ? 06

3.67E ? 06

2

3.74E ? 06

5.30E ? 06

3

4.87E ? 06

3.66E ? 06

5

4.61E ? 06

6.07E ? 06

4

F13 AVG

STD

Rank

1.16E 1 04

9346.6084

1

1.37E ? 04

1.03E ? 04

2

1.72E ? 04

8.10E ? 03

3

1.84E ? 04

1.13E ? 04

4

2.42E ? 04

1.51E ? 04

5

F14 AVG

STD

Rank

1.6116e 1 03

350.1143

1

2.28E ? 03

1.08E 1 03

3

1.67E ? 03

150.0148

2

2.83E ? 03

1.54E ? 03

4

5.06E ? 03

3.51E ? 03

5

F15 AVG

STD

Rank

4.93E 1 03

1959.5614

1

8.89E ? 03

3.18E ? 03

4

5.36E ? 03

2.41E ? 03

2

6.69E ? 03

2.71E ? 03

3

1.94E ? 04

1.30E ? 04

5

F16 AVG

STD

Rank

1.7763e 1 03

147.1462

1

1.92E ? 03

1.64E ? 02

3

1.88E ? 03

126.3299

2

1.94E ? 03

128.9934

4

2.09E ? 03

205.4413

5

F17 AVG

STD

Rank

1.76E 1 03

18.3225

1

1.80E ? 03

7.52E ? 01

3

1.78E ? 03

25.6485

2

1.80E ? 03

61.2233

3

1.88E ? 03

118.0672

5
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Table 11 (continued)

Benchmark IHHO HHO BHHO[36] MHHO[37] LogHHO[38]

F18 AVG

STD

Rank

1.6275e 1 04

10,835.5077

1

1.7680e ? 04

1.36E ? 04

3

2.1607e ? 04

1.25E ? 04

5

2.09E ? 04

1.05E 1 04

4

1.7347e ? 04

1.16E ? 04

2

F19 AVG

STD

Rank

7.19E 1 03

6647.6979

1

3.59E ? 04

6.38E ? 04

4

1.24E ? 04

9.54E ? 03

3

1.17E ? 04

1.50E ? 04

2

4.63E ? 04

1.27E ? 05

5

F20 AVG

STD

Rank

2.07E 1 03

49.3032

1

2.20E ? 03

8.87E ? 01

4

2.15E ? 03

57.2151

2

2.16E ? 03

70.9044

3

2.28E ? 03

101.669

5

F21 AVG

STD

Rank

2.28E 1 03

60.2607

1

2352.2351

30.8292

5

2.30E ? 03

61.2391

2

2.34E ? 03

38.6362

3

2.35E ? 03

46.3345

4

F22 AVG

STD

Rank

2.29E 1 03

24.7819

1

2376.921

237.0443

4

2308.454

5.0388

2

2359.7196

11.2163

3

2463.2328

470.9754

5

F23 AVG

STD

Rank

2622.469

10.5649

1

2681.7155

31.1696

4

2644.4426

21.0086

2

2665.5052

20.9853

3

2699.1157

42.8784

5

F24 AVG

STD

Rank

2719.675

92.5488

1

2822.6602

78.5028

4

2765.9147

92.1919

2

2798.9617

74.8073

3

2867.0919

58.9812

5

F25 AVG

STD

Rank

2928.3439

23.1189

1

2.93E ? 03

6.88E ? 01

2

2.94E ? 03

25.3672

4

2.93E ? 03

16.7946

2

2.94E ? 03

32.0362

4

F26 AVG

STD

Rank

2891.4091

250.8454

1

3690.8329

566.4344

4

3166.3901

326.8225

2

3310.234

623.6603

3

3918.0487

642.3783

5

F27 AVG

STD

Rank

3.10E 1 03

8.18E 1 00

1

3.18E ? 03

4.66E ? 01

4

3.13E ? 03

12.949

2

3.14E ? 03

31.8968

3

3.20E ? 03

60.0345

5

F28 AVG

STD

Rank

3.36E 1 03

9.25E 1 01

1

3.44E ? 03

1.40E ? 02

5

3.36E 1 03

105.204

1

3.42E ? 03

144.1123

4

3.40E ? 03

167.4323

3

F29 AVG

STD

Rank

3.24E 1 03

57.3682

1

3.33E ? 03

8.88E ? 01

3

3.29E ? 03

52.3279

2

3.33E ? 03

75.0874

3

3.42E ? 03

126.0629

5

F30 AVG

STD

Rank

2.45E 1 05

4.07E 1 05

1

2.05E ? 06

3.01E ? 06

4

6.16E ? 05

102E ? 06

2

1.10E ? 06

1.39E ? 06

3

4.09E ? 06

1.05E ? 07

5

Percentage 1 3.75862069 2.482758621 3 4.586206897

Total Rank 1 4 2 3 5

Best results are highlighted in bold
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Fig. 16 Convergence curves for IHHO vs HHO modifications on CEC2017
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Fig. 16 continued
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method to be carried out visually. The figures present an

illustration of the typical objective values that are attained

by algorithms after going through some iterations. It is

clear from looking at the figures that the proposed IHHO

method converges at a point more quickly than the con-

ventional HHO approach does.

5.3.2 IHHO vs other algorithms

Our comparison of IHHO to other algorithms, namely

GWO [39], BAT [40], MFO [42], TLBO [41], and WOA

[43], can be found in Table 14 after putting it through the

paces on the test functions for the CEC2019 examination.

This was done so that we could decide which algorithm

was the better one. For CEC04-CEC10, a 10-dimensional

optimal solution is restricted within the [- 100, 100]

border range. Since CEC01-CEC03 has different dimen-

sions evaluated this function 30 times.

According to Table 14, the performance of the IHHO

algorithm is better than that of all other algorithms, with

the exception of the CEC02 method. IHHO outperforms

BAT by a significant margin when the two are compared to

each other. When compared to MFO, IHHO performs

better, except for CEC06. IHHO outperforms TLBO since

the latter is unable to solve CEC2019 functions ranging

from CEC04 to CEC10 which the former can solve. IHHO

performs better than GWO and WOA in all functions with

the exception of CEC02. IHHO has an overall rank of 1.

A visual comparison of the convergence periods of the

IHHO method can be carried out using the convergence

Fig. 16 continued
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Table 12 The description of CEC2019

Benchmark Name Dim Range F min

CEC01 STORN’S CHEBYSHEV POLYNOMIAL FITTING PROBLEM 9 [-8192, 8192] 1

CEC02 INVERSE HILBERT MATRIX PROBLEM 16 [-16384, 16384] 1

CEC03 LENNARD–JONES MINIMUM ENERGY CLUSTER 18 [-4, 4] 1

CEC04 RASTRIGIN’S FUNCTION 10 [-100, 100] 1

CEC05 GRIEWANGK’S FUNCTION 10 [-100, 100] 1

CEC06 WEIERSTRASS FUNCTION 10 [-100, 100] 1

CEC07 MODIFIED SCHWEFEL’S FUNCTION 10 [-100, 100] 1

CEC08 EXPANDED SCHAFFER’S F6 FUNCTION 10 [-100, 100] 1

CEC09 HAPPY CAT FUNCTION 10 [-100, 100] 1

CEC10 ACKLEY FUNCTION 10 [-100, 100] 1

Table 13 Comparison of results of IHHO and HHO on CEC2019

Benchmark optimizer Mean STD MIN MAX

F1 IHHO

HHO

0.00E 1 00

5.36E ? 04

0.00E 1 00

5.51E ? 03

0.00E 1 00

43,436.1761

0.00E 1 00

69,580.1764

F2 IHHO

HHO

3.04E ? 02

1.74E 1 01

4.63E ? 02

6.64E203

18.5521

17.3466

2112.115

17.3821

F3 IHHO

HHO

12.7024

12.7024

2.60E206

1.07E-05

12.7024

12.7024

12.7024

12.7024

F4 IHHO

HHO

31.5259

207.4399

9.0423

78.8245

21.0913

70.1553

58.6274

551.5347

F5 IHHO

HHO

1.1784

2.6186

0.11771

0.56213

1.0562

1.5114

1.4325

4.0057

F6 IHHO

HHO

8.5407

9.5065

1.2269

0.97188

5.5651

6.6634

10.8712

11.0721

F7 IHHO

HHO

278.1647

401.4808

116.2791

199.1003

-12.5279

-26.7632

697.0265

883.2117

F8 IHHO

HHO

5.3407

5.7866

0.66282

0.55709

4.2631

4.3016

6.1681

7.1031

F9 IHHO

HHO

2.493

3.44E ? 00

5.05E202

4.83E-01

2.38E ? 00

2.59E ? 00

3.01E ? 00

4.17E ? 00

F10 IHHO

HHO

18.7551

0.0333

2.03E ? 01

1.10E-01

1.74E ? 00

2.00E ? 01

2.02E ? 01

2.04E ? 01

Best results are highlighted in bold
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Fig. 17 Convergence curves for IHHO vs HHO on CEC2019
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Fig. 17 continued
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Table 14 Comparison of results between IHHO and other algorithms on CEC2019

Benchmark IHHO HHO GWO[39] BAT[81] MFO[42] TLBO[41] WOA[43]

F1 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

5.36E ? 04

5.51E ? 03

2

1.83E ? 08

3.49E ? 08

4

4.11E ? 12

3.39E ? 12

7

1.93E ? 10

2.74E ? 10

5

1.13E ? 08

2.13E ? 08

3

3.20E ? 10

4.44E ? 10

6

F2 AVG

STD

Rank

3.04E ? 02

4.63E ? 02

6

1.74E ? 01

6.64E-03

5

17.3439

3.69E-04

3

1.31E ? 04

4.14E ? 03

7

17.3429

7.23E-15

1

17.3429

6.76E215

1

17.3493

0.0056

4

F3 AVG

STD

Rank

12.7024

2.60E206

1

12.7024

1.07E-05

1

12.7024

1.89E-04

1

12.7066

0.001

7

12.7025

2.63E-04

6

12.7024

4.2862e-10

1

12.7024

1.37E-06

1

F4 AVG

STD

Rank

31.5259

9.0423

1

207.4399

78.8245

4

109.3664

257.2913

3

2.47E ? 04

8.93E ? 03

6

84.1661

134.4453

2

NAN 344.9699

180.3267

5

F5 AVG

STD

Rank

1.1784

0.11771

1

2.6186

0.56213

5

1.3805

0.2312

3

6.5935

1.7679

6

1.2273

0.1902

2

NAN 1.8245

0.3299

4

F6 AVG

STD

Rank

8.5407

1.2269

2

9.5065

0.97188

4

11.2022

0.9005

5

13.5474

1.0495

6

6.387

2.2168

1

NAN 9.496

1.1407

3

F7 AVG

STD

Rank

278.1647

116.2791

1

401.4808

199.1003

2

423.922

299.3608

3

1.70E ? 03

290.6627

6

467.3279

296.3268

4

NAN 539.6716

251.1866

5

F8 AVG

STD Rank

5.3407

0.66282

1

5.7866

0.55709

4

5.4677

1.0985

2

7.6263

0.5511

6

5.5632

0.5941

3

NAN 6.1317

0.5627

5

F9 AVG

STD Rank

2.493

5.05E202

1

3.44E ? 00

4.83E-01

3

4.5825

0.8744

4

4.66E ? 03

1.52E ? 03

6

2.8995

0.4787

2

NAN 4.9136

0.9791

5

F10 AVG

STD Rank

18.7551

0.0333

1

2.03E ? 01

1.10E-01

4

20.4496

0.091

5

20.8793

0.2007

6

20.2163

0.1735

2

NAN 20.2573

0.134

3

Percentage 1.6 3.4 3.3 6.3 2.8 NaN 4.1

Total Rank 1 4 3 6 2 2 5

Best results are highlighted in bold
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Fig. 18 Convergence curves for IHHO vs other algorithms on CEC2019
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Table 15 Comparison of results of IHHO vs other modifications of HHO on CEC2019

Benchmark IHHO HHO BHHO[36] MHHO[37] LogHHO[38]

F1 AVG

STD

Rank

0.00E 1 00

0.00E 1 00

1

5.36E ? 04

5.51E ? 03

4

5.34E ? 04

7.16E ? 03

3

4.96E ? 04

4.13E ? 03

2

1.88E ? 11

1.34E ? 11

5

F2 AVG

STD Rank

3.04E ? 02

4.63E ? 02

5

1.74E ? 01

6.64E203

4

0.00E 1 00

0.0077

1

0.00E 1 00

0.0053

1

0.00E 1 00

0.0089

1

F3 AVG

STD

Rank

12.7024

2.60E-06

3

12.7024

1.07E-05

3

1.27E 1 01

3.83E209

1

12.7024

4.05E-08

3

1.27E 1 01

1.57E-05

1

F4 AVG

STD

Rank

31.5259

9.0423

1

207.4399

78.8245

4

166.6872

85.9907

3

159.7486

70.2154

2

231.2291

85.6502

5

F5 AVG

STD

Rank

1.1784

0.11771

1

2.6186

0.56213

5

1.5799

0.2194

2

1.6984

0.2796

3

2.3964

0.6625

4

F6 AVG

STD

Rank

8.5407

1.2269

3

9.5065

0.97188

4

7.8931

0.9243

1

8.217

1.3799

2

9.9884

0.9531

5

F7 AVG

STD

Rank

278.1647

116.2791

1

401.4808

199.1003

2

436.7906

155.4532

5

401.9861

275.3689

3

402.6903

301.7879

4

F8 AVG

STD

Rank

5.3407

0.66282

1

5.7866

0.55709

4

5.5671

0.4605

2

5.6283

0.7015

3

6.2037

0.5425

5

F9 AVG

STD

Rank

2.493

5.05E202

1

3.44E ? 00

4.83E-01

2

4.60E ? 00

0.834

5

3.57E ? 00

0.6065

3

3.68E ? 00

0.4296

4

F10 AVG

STD

Rank

18.7551

0.0333

1

2.03E ? 01

1.10E-01

4

2.01E ? 01

0.112

2

2.01E ? 01

1.7089

2

2.04E ? 01

0.0824

5

Percentage 1.8 3.6 2.5 2.4 3.9

Total Rank 1 4 3 2 5

Best results are highlighted in bold
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Fig. 19 Convergence curves for IHHO vs HHO modifications on CEC2019
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Fig. 19 continued
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curves shown in Fig. 18. This allows for the comparison to

be carried out visually. The figures offer a visual repre-

sentation of the usual objective values that can be achieved

by algorithms after they have been subjected to a certain

number of iterations. When looking at the figures, it is

obvious that the proposed IHHO converges at a point more

quickly than the other used algorithms.

5.3.3 IHHO vs other modifications of HHO

In this paper, the proposed IHHO to other HHO variants,

namely BHHO [54], MHHO [37], and LogHHO, was

compared[38]. The objective function’s mean and standard

deviation are shown in Table 15. The results of the various

approaches’ convergence are also shown in Fig. 19.

According to Table 15, the performance of the HHO

algorithm is better than that of all other modifications of

HHO, with the exception of the CEC02 method. When

compared to BHHO, IHHO performs better, with the

exception of CEC06. IHHO performs better than MHHO

and LogHHO in all functions with the exception of CEC02.

IHHO has an overall rank of 1.

A visual comparison of the convergence periods of the

IHHO method can be carried out using the convergence

curves shown in Fig. 19. When looking at the figures, it is

obvious that the proposed IHHO approach converges more

quickly than the other algorithms that are traditionally

used.

5.4 CEC2020 benchmark functions

Algorithms for optimizing a single-objective problem serve

as the building blocks from which more complex methods,

such as multiobjective, niching, and constrained opti-

mization, are constructed. Therefore, it is crucial to work

on improving single-objective optimization methods, as

this can have repercussions in other areas [84]. Trials with

single-objective benchmark functions are essential to the

iterative refinement of these algorithms. New and more

difficult algorithms are required as computing power

increases. As a result, the CEC’20 Special Session has been

designed in real parameter optimization to foster this

symbiotic relationship between Methods and issues, which

is what drives development [85].

F1–F10 has the same dimensions as a 10-dimensional

constrained optimization problem in the [- 100, 100]

border range as indicated in Table 16.

Table 16 The description of CEC2020

Benchmark Name Dim Range F min

F1 Shifted and Rotated Bent Cigar Function (CEC 2017[86] F1) 10 [-100, 100] 100

F2 Shifted and Rotated Schwefel’s Function (CEC 2014[87] F11) 10 [-100, 100] 1100

F3 Shifted and Rotated Lunacek bi-Rastrigin Function (CEC 2017[87]F7) 10 [-100, 100] 700

F4 Expanded Rosenbrock’s plus Griewangk’s Function (CEC2017[86] f19) 10 [-100, 100] 1900

F5 Hybrid Function 1 (N = 3) (CEC 2014[87] F17) 10 [-100, 100] 1700

F6 Hybrid Function 2 (N = 4) (CEC 2017[86] F16) 10 [-100, 100] 1600

F7 Hybrid Function 3 (N = 5) (CEC 2014[87] F21) 10 [-100, 100] 2100

F8 Composition Function 1 (N = 3) (CEC 2017[86] F22) 10 [-100, 100] 2200

F9 Composition Function 2 (N = 4) (CEC 2017[86] F24) 10 [-100, 100] 2400

F10 Composition Function 3 (N = 5) (CEC 2017[86] F25) 10 [-100, 100] 2500

Neural Computing and Applications

123



5.4.1 HHO vs IHHO

In Table 17, after putting IHHO through its paces on the

CEC2020 test functions, the results are compared to those

obtained using HHO. We did this to establish which option

is best. Functions F1–F10 all fall into a 10-dimensional

restricted optimization problem with a boundary range of

[-100, 100].

As can be seen in Table 17, the proposed algorithm

IHHO performed similarly to the original HHO across the

board. The results show that IHHO is superior to the classic

HHO algorithm across the board. For unimodal functions,

the IHHO algorithm excels above other studied modifica-

tion methods due to its greater capacity to escape the local

optimum using the random walk approach.

Figure 20 is a visual comparison of the curves used in

the initial HHO method and its subsequent iterations. These

examples illustrate the typical objective values that algo-

rithms can achieve after some rounds. Convergence plots

typically have the goal function’s value on the vertical axis

and the number of iterations on the horizontal. Conver-

gence times for the proposed IHHO and the baseline HHO

both improve, as shown graphically.

5.4.2 IHHO vs other algorithms

In this section, the proposed IHHO to some established

competitors, such as the BAT algorithm [30], MFO [32],

TLBO [31], and WOA [33] was compared. Table 18

summarizes the mean and standard deviation of the goal

function and contains experimental results that address

scalability concerns. Convergence results for several dif-

ferent approaches are also displayed in Fig. 21.

When compared to other modern algorithms, IHHO

often yields greater average results. IHHO has the highest

average values across the board for all functions, as com-

pared to WOA, MFO, TLBO, and BAT algorithms. On

average, IHHO always has the best outcomes. According to

Table 18, the proposed IHHO algorithm has superior per-

formance compared to the original HHO method, as well as

to all other methods and the rank for all equations of 1.

For unimodal functions, IHHO performs better than

other analyzed modification approaches due to its superior

ability to break out of the local optimum via a random

walk. The IHHO algorithm outperforms its competitors for

unimodal functions because the random walk strategy

improves the algorithm’s ability to escape the local

optimum.

Table 17 Comparison of results of IHHO and HHO on CEC2020

Benchmark Optimizer Mean STD MIN MAX

F1 IHHO

HHO

2.17E 1 04

9.91E ? 06

8666.9596

6.56E ? 06

5703.7119

3.46E ? 05

57,055.175

5.15E ? 07

F2 IHHO

HHO

1123.0802

1198.231

1.28E 1 01

89.4682

1.11E ? 03

1132.6825

1.31E ? 03

1417.3129

F3 IHHO

HHO

740.3267

803.3728

13.5653

15.7372

719.1461

733.6704

785.6197

827.7796

F4 IHHO

HHO

7.19E 1 03

3.59E ? 04

6647.6979

6.38E ? 04

1971.5397

4404.9096

28,369.1424

57,366.6541

F5 IHHO

HHO

1.76E 1 03

1.80E ? 03

18.3225

7.52E ? 01

1728.0332

1738.1283

1810.0079

2038.5601

F6 IHHO

HHO

1.7763e 1 03

1.92E ? 03

147.1462

1.64E ? 02

1601.6159

1635.5939

2076.1548

2204.3433

F7 IHHO

HHO

2.28E 1 03

2352.2351

60.2607

30.8292

2200.0087

2207.2868

2351.5616

2385.9732

F8 IHHO

HHO

2.29E 1 03

2376.921

24.7819

237.0443

2225.9647

2274.969

2998.756

3132.1365

F9 IHHO

HHO

2719.675

2822.6602

92.5488

78.5028

2500.3054

2501.3983

2789.4829

2944.7632

F10 IHHO

HHO

2928.3439

2.93E ? 03

23.1189

6.88E ? 01

2897.752

2898.9264

2970.8463

2954.9231

Best results are highlighted in bold
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Fig. 20 Convergence curves for IHHO vs HHO on CEC2020
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5.4.3 IHHO vs other modifications of HHO

The proposed IHHO to other HHO variants such as BHHO

[40], MHHO[27], and LogHHO [28] were compared. The

experimental outcomes that meet scalability concerns in

terms of the mean and standard deviation of the objective

function are shown in Table 19. Similarly, the convergence

results for each method are shown in Fig. 22.

Using CEC2020 functions, we discovered that the pro-

posed IHHO significantly improved performance over

other changes of the original HHO. To get away from the

local optimum, IHHO uses a random walk technique that

gives it a significant advantage over the other variants

tested for the function. According to Table 19, the modi-

fied HHO algorithm has superior performance compared to

the original HHO method, as well as all other HHO mod-

ification algorithms and the rank for all equations of 1.

In contrast to the original HHO approach and its vari-

ants, the suggested IHHO is shown to converge faster.

5.5 Standard benchmark functions

An optimization algorithm has to be able to sift through the

Search space, identify attractive regions, and then capital-

ize on those regions to get a global optimum [82]. For an

algorithm to converge on the global optimum, it has to

strike a balance between exploring new territory and cap-

italizing on what has already been discovered. In this part,

IHHO’s efficiency, reliability, and stability were assessed.

The 52 benchmark functions used to assess IHHO’s

efficacy fall into four categories: (i) 14 unimodal variable-

Fig. 20 continued
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dimension benchmark functions; (ii) 5 unimodal fixed-di-

mension benchmark functions; (iii) 20 multimodal fixed-

dimension benchmark functions; and (iv) 13 multimodal

variable-dimension benchmark functions. Tables 20, 21, 22

and 23 list the names of all these methods and their asso-

ciated attributes.

A table’s global minimum is denoted by the column

labeled‘‘f min,’’ while the column labeled ‘‘Dim’’ displays

the number of variables (design variables) for the func-

tions. Additionally, the variable-dimension unimodal

benchmark functions are described in Table 20; the fixed-

dimension unimodal benchmark functions are shown in

Table 21; the multimodal benchmark functions are

described in Table 22; and the variable-dimension multi-

modal benchmark functions are presented in Table 23.

5.5.1 IHHO vs HHO

In Table 24, a comparison between HHO and IHHO is

shown after putting it through its paces on the benchmark

functions. This was done so that the best option could be

determined. These functions thirty times for a total of five

hundred iterations were evaluated.

According to unimodal variable-dimension benchmark

functions, the results shown in Table 25 indicate that the

performance of HHO is better than that of the original

Table 18 Comparison of results between IHHO and other algorithms on CEC2020

Benchmark IHHO HHO BAT[40] MFO[42] TLBO[41] WOA[43]

F1 AVG

STD

Rank

2.17E 1 04

8666.9596

1

9.91E ? 06

6.56E ? 06

2

1.97E ? 10

7.85E ? 09

6

2.03E ? 08

4.69E ? 08

4

5.14E ? 09

3.85E ? 09

5

7.45E ? 07

7.89E ? 07

3

F2 AVG

STD

Rank

1123.0802

1.28E 1 01

1

1198.231

89.4682

2

2.09E ? 04

2.46E ? 04

6

1.29E ? 03

340.1241

4

1.77E ? 03

779.766

5

1.22E ? 03

61.4991

3

F3 AVG

STD

Rank

740.3267

13.5653

1

803.3728

15.7372

4

1.06E ? 03

100.0475

5

743.3572

14.3218

2

1.10E ? 03

70.0049

6

778.9864

27.5069

3

F4 AVG

STD

Rank

7.19E 1 03

6647.6979

1

3.59E ? 04

6.38E ? 04

4

1.76E ? 07

7.63E ? 07

6

1.91E ? 04

1.89E ? 04

3

1.36E ? 04

1.67E ? 04

2

4.18E ? 04

6.30E ? 04

5

F5 AVG

STD

Rank

1.76E 1 03

18.3225

1

1.80E ? 03

7.52E ? 01

3

2.24E ? 03

183.3624

5

1.78E ? 03

57.0341

2

2.39E ? 03

304.3592

6

1.84E ? 03

81.4459

4

F6 AVG

STD

Rank

1.7763e 1 03

147.1462

1

1.92E ? 03

1.64E ? 02

3

2.58E ? 03

176.5344

5

1.83E ? 03

138.7651

2

2.97E ? 03

427.2746

6

1.92E ? 03

136.0335

3

F7 AVG

STD

Rank

2.28E 1 03

60.2607

1

2352.2351

30.8292

4

2.42E ? 03

50.8977

5

2.31E ? 03

46.0485

2

2.48E ? 03

45.8557

6

2.33E ? 03

51.7961

3

F8 AVG

STD

Rank

2.29E 1 03

24.7819

1

2376.921

237.0443

3

3.98E ? 03

652.9891

5

2.31E ? 03

14.2038

2

4.58E ? 03

1.85E ? 03

6

2.40E ? 03

304.6141

4

F9 AVG

STD

Rank

2719.675

92.5488

1

2822.6602

78.5028

4

3.02E ? 03

112.3605

5

2.76E ? 03

50.1124

2

3.15E ? 03

94.752

6

2.78E ? 03

62.1067

3

F10 AVG

STD

Rank

2928.3439

23.1189

1

2.93E ? 03

6.88E ? 01

2

4.27E ? 03

678.1578

6

2.93E ? 03

21.6507

2

3.14E ? 03

89.0578

5

2.98E ? 03

39.0756

4

Percentage 1 3.1 5.4 2.5 5.3 3.5

Total Rank 1 3 6 2 5 4

Best results are highlighted in bold
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HHO, with the exception of F6 HHO and IHHO achieving

the fitness function. The fitness function is attained via

HHO and IHHO. Since IHHO uses a random walk strategy

to break out of the local optimum, it outperforms the other

approaches examined for modifying functions. Because of

this, IHHO outperforms the alternatives. That is much to

credit for IHHO’s improved efficiency. Besides F5, F9,

Fig. 21 Convergence curves for IHHO vs other algorithms on CEC2020
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F11, and F14, IHHO satisfies the fitness function in all

other functions.

Looking at the curves in Fig. 23, one can quickly and

easily compare the convergence times of the original HHO

technique with the original HHO.

Data from Table 24 show that IHHO outperforms the

original HHO when compared to unimodal fixed-dimen-

sion benchmark functions. IHHO excels at changing

functions because it utilizes a random walk method to

escape the local optimum. This is why IHHO performs

better than its competitors. Having that as a factor has

greatly contributed to IHHO’s increased productivity.

Convergence periods for the original HHO method and

the original HHO may be easily compared from the curves

in Fig. 24.

Table 24 reveals that when compared to multimodal

fixed-dimension benchmark functions, IHHO performs

better than the original HHO. Because it employs a random

walk strategy to break out of the local optimum, IHHO is

particularly effective at reshaping functions. The averages

at which the HHO fitness was achieved, IHHO achieved as

well, and the commentators that the original HHO could

not achieve the required physical fitness, the modification

achieved. Because of this, IHHO outperforms its rivals.

The presence of such a component is a major reason for

IHHO’s improved output.

The curves in Fig. 25 allow for a direct comparison of

the convergence times of the IHHO technique with the

original HHO.

Table 24 reveals that when compared to multimodal

fixed-dimension benchmark functions, IHHO performs

better than the original HHO. IHHO is so powerful at

function transformation because it uses a random walk

method to escape the local optimum. Even while some

critics claimed that the original HHO couldn’t provide the

desired level of physical fitness, IHHO did so on average at

Fig. 21 continued
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or above that level. As a result, IHHO is more successful

than its competitors. Having this component present is

crucial to the increased efficiency of IHHO.

The curves in Fig. 26 allow for a direct comparison of

the convergence times of the original HHO technique with

the IHHO.

5.5.2 IHHO vs other algorithms

Table 25 contains our comparison of IHHO to various

algorithms, namely GWO [39], BAT [40], MFO [42],

TLBO [41], and WAO [43] after giving it a thorough

workout on the test features to prepare for the engineering

problems. This was done so that could make a decision

regarding which of the possibilities was preferable. We

have performed this evaluation a total of 30 times, making

the total number of cycles 500.

According to Table 25, the performance of the IHHO

algorithm is better than that of all unimodal variable-di-

mension benchmark functions, with the exception of the

F6: IHHO, HHO, and MFO achieve the required fitness.

IHHO, HHO, TLBO, and WAO achieve the requirement

fitness for F8. IHHO outperforms BAT by a significant

margin when the two are compared to one another.

Table 19 Comparison of results of IHHO vs other modifications of HHO on CEC2017

Benchmark IHHO HHO BHHO[36] MHHO[37] LogHHO[38]

F1 AVG

STD

Rank

2.17E ? 04

8666.9596

1

9.91E ? 06

6.56E ? 06

5

3.77E ? 06

4.12E ? 06

3

1.47E ? 06

8.42E ? 05

2

5.52E ? 06

7.26E ? 06

4

F2 AVG

STD

Rank

1123.0802

1.28E 1 01

1

1198.231

89.4682

4

1.18E ? 03

45.4478

3

1.17E ? 03

43.8321

2

1.21E ? 03

66.5747

5

F3 AVG

STD

Rank

740.3267

13.5653

1

803.3728

15.7372

5

776.8391

23.8562

2

784.2181

21.698

3

801.2626

31.341

4

F4 AVG

STD

Rank

7.19E 1 03

6647.6979

1

3.59E ? 04

6.38E ? 04

4

1.24E ? 04

9.54E ? 03

3

1.17E ? 04

1.50E ? 04

2

4.63E ? 04

1.27E ? 05

5

F5 AVG

STD

Rank

1.76E 1 03

18.3225

1

1.80E ? 03

7.52E ? 01

3

1.78E ? 03

25.6485

2

1.80E ? 03

61.2233

3

1.88E ? 03

118.0672

5

F6 AVG

STD

Rank

1.7763e 1 03

147.1462

1

1.92E ? 03

1.64E ? 02

3

1.88E ? 03

126.3299

2

1.94E ? 03

128.9934

4

2.09E ? 03

205.4413

5

F7 AVG

STD

Rank

2.28E 1 03

60.2607

1

2352.2351

30.8292

5

2.30E ? 03

61.2391

2

2.34E ? 03

38.6362

3

2.35E ? 03

46.3345

4

F8 AVG

STD

Rank

2.29E 1 03

24.7819

1

2376.921

237.0443

4

2308.454

5.0388

2

2359.7196

11.2163

3

2463.2328

470.9754

5

F9 AVG

STD

Rank

2719.675

92.5488

1

2822.6602

78.5028

4

2765.9147

92.1919

2

2798.9617

74.8073

3

2867.0919

58.9812

5

F10 AVG

STD

Rank

2928.3439

23.1189

1

2.93E ? 03

6.88E ? 01

2

2.94E ? 03

25.3672

4

2.93E ? 03

16.7946

2

2.94E ? 03

32.0362

4

Percentage 1 3.9 2.5 2.7 4.6

Total Rank 1 4 2 3 5

Best results are highlighted in bold
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Fig. 22 Convergence curves for IHHO vs HHO modifications on CEC2020
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Because of this, IHHO outperforms its rivals. The presence

of such a component is a major reason for IHHO’s

improved output. IHHO achieved an overall rank of 1.

A visual comparison of the convergence periods of the

IHHO method and other algorithms can be carried out

using the convergence curves shown in Fig. 27.

Table 25 shows that, except for F2, the IHHO method

outperforms all of the unimodal fixed-dimension bench-

mark functions. When comparing IHHO to TLBO, IHHO

is the superior option. In particular, the benchmark func-

tions F1, F2, and F4 with a single variable dimension are

intractable to TLBO. As a result, IHHO is more successful

than its competitors. Having this component present is

crucial to the increased efficiency of IHHO. IHHO ranked

first among its competitors.

The convergence curves depicted in Fig. 28. can be used

to visually examine the differences between the IHHO

technique and other algorithms concerning the time

required for them to reach convergence.

Table 25 reveals that when compared to multimodal

fixed-dimension benchmark functions, IHHO performs

better than the original HHO. Because it employs a random

walk strategy to break out of the local optimum, IHHO is

particularly effective at reshaping functions. The averages

at which the HHO fitness was achieved, IHHO achieved as

well, and the commentators that the original HHO could

not achieve the required physical fitness, the modification

achieved. In particular, some benchmark functions with a

single variable dimension are intractable to TLBO. IHHO

has a rank of 1 for these types of functions.

Fig. 22 continued
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The curves in Fig. 29 allow for a direct comparison of

the convergence times of the IHHO technique with other

algorithms.

Table 25 shows that IHHO outperforms all of the mul-

timodal variable-dimension benchmark functions except F2

and F12. When comparing IHHO to TLBO, IHHO is the

superior option. As a result, IHHO is more successful than

its competitors. Having this component present is crucial to

the increased efficiency of IHHO.

The convergence curves depicted in Fig. 30 can be used

to visually examine the differences between the IHHO

technique and other algorithms concerning the time

required for them to reach convergence.

5.5.3 IHHO vs other modifications of HHO

As such, the proposed IHHO to existing HHO variations,

namely BHHO[26], MHHO [27], and LogHHO [28], was

compared. To give all algorithms a fair opportunity, we’ve

decided to set the swarm size at 30, and the stopping

condition at 500 iterations. The experimental findings in

Table 26 address the issue of scalability. The objective

function’s mean and standard deviation are shown in the

table below. The convergence outcomes of the various

methods are shown in Figs. 31, 32, 33, and 34.

According to Table 26, the performance of the IHHO

algorithm is better than that of all other modifications of

HHO, except the F11 and F13 methods. When compared to

MHHO and LogHHO, IHHO performs better for all uni-

modal variable-dimension benchmark functions. As a

result, IHHO is more successful than its competitors.

Having this component present is crucial to the increased

efficiency of IHHO. A visual comparison of the conver-

gence periods of the IHHO method can be carried out using

the Convergence curves shown in Fig. 31.

According to Table 26, the performance of the IHHO

algorithm is better than or equal to the required fitness of

all other modifications of HHO, with the exception of the

F1 method. As a result, IHHO is more successful than its

competitors. Having this component present is crucial to

the increased efficiency of IHHO. Utilizing the conver-

gence curves that are depicted in Fig. 32, one can carry out

a visual comparison of the convergence periods of different

HHO modifications.

Table 26 reveals that when compared to multimodal

fixed-dimension benchmark functions, IHHO performs

better than the original HHO and other HHO modifications

or achieves the required fitness. Because it employs a

random walk strategy to break out of the local optimum,

IHHO is particularly effective at reshaping functions.

Table 20 A characterization of benchmark functions with variable dimensions and unimodality

Function no Function name Dim Range f min

F1 Sphere 30 [-100, 100] 0

F2 Powell Sum 30 [-1, 1] 0

F3 Schwefel’s 2.20 30 [-100, 100] 0

F4 Schwefel’s 2.21 30 [-100, 100] 0

F5 Step 30 [-100, 100] 0

F6 Stepint 30 [-5.12, 5.12] -155

F7 Schwefel’s 2.22 30 [-100, 100] 0

F8 Schwefel’s 2.23 30 [-10, 10] 0

F9 Rosenbrock 30 [-30, 30] 0

F10 Brown 30 [-1, 4] 0

F11 Dixon and Price 30 [-10, 10] 0

F12 Powell Singular 30 [-4, 5] 0

F13 Perm 0, D, Beta 5 [-dim, dim] 0

F14 Sum Squares 30 [-10, 10] 0

Table 21 A characterization of benchmark functions with fixed

dimensions and unimodality

Function no Function name Dim Range f min

F1 Booth 2 [-10, 10] 0

F2 Brent 2 [-10, 10] 0

F3 Matyas 2 [-10, 10] 0

F4 Schaffer N. 4 2 [-100, 100] 0.292579

F5 Wayburn Seader 3 2 [-500, 500] 19.10588
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Because of this, IHHO outperforms its rivals. The presence

of such a component is a major reason for IHHO’s

improved output. The curves in Fig. 33 allow for a direct

comparison of the convergence times of the IHHO tech-

nique with different HHO modifications.

According to Table 26, the performance of the HHO

algorithm is better than that of all other modifications of

HHO, with the exception of the F12 method. When com-

pared to MHHO and LogHHO, IHHO performs better for

all unimodal variable-dimension benchmark functions. As

Table 23 An explanation of benchmark functions for multimodal that are variable in dimension

Function no Function name Dim Range f min

F1 Schwefer’s 2.26 30 [-500,500] -418.983

F2 Periodic 30 [-10, 10] 0.9

F3 Qing 30 [-500, 500] 0

F4 Alpine N. 1 30 [-10, 10] 0

F5 Xin-She Yang 30 [-5, 5] 0

F6 Trignometric 2 30 [-500, 500] 0

F7 Salomon 30 [-100, 100] 0

F8 Styblinski-Tang 30 [-5, 5] -1174.98

F9 Xin-She Yang N. 2 30 [-2pi, 2pi] 0

F10 Gen. Penalized 30 [-50, 50] 0

F11 Penalized 30 [-50, 50] 0

F12 Michalewics 30 [0, pi] -29.6309

F13 Quartic Noise 30 [-1.28, 1.28] 0

Table 22 An explanation of benchmark functions for multimodal that are fixed in dimension

Function no Function name Dim Range f min

F1 Egg Crate 2 [-500,500] 0

F2 Ackley N.3 2 [-32, 32] -195.629

F3 Adjiaman 2 [-1, 2] -2.02181

F4 Bird 2 [-2pi, 2pi] -106.765

F5 Branin RCOS 2 [-5, 5] 0.397887

F6 Cross-in-tray 2 [-10, 10] -2.06261

F7 Bartels Conn 2 [-500, 500] 1

F8 Bukin 6 2 [(-15, -5), (-5, -3)] 180.3276

F9 Carrom Table 2 [-10, 10] -24.1568

F10 Chichinadze 2 [-30, 30] -43.3159

F11 Cross Leg Table 2 [-10, 10] -1

F12 Easom 2 [-100, 100] -1

F13 Giunta 2 [-1, 1] 0.060447

F14 Helical Valley 3 [-10, 10] 0

F15 Holder 2 [-10, 10] -19.2085

F16 Pen Holder 2 [-11, 11] -0.96354

F17 Test Tube Holder 2 [-10, 10] -10.8723

F18 Shubert 2 [-10, 10] -186.731

F19 Shekel 4 [0, 10] -10.5364

F20 Three-Hump Camel 2 [-5, 5] 0
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Table 24 Comparison of results of IHHO and HHO on 52 benchmark functions

Benchmark optimizer Mean STD MIN MAX

Unimodal variable-dimension

F1 IHHO

HHO

0

1.3961e-91

0

7.6465e-91

0

1.2707e-113

0

4.1882e-90

F2 IHHO

HHO

0

2.2961e-124

0

7.8038e-124

0

6.7471e-154

0

3.9174e-123

F3 IHHO

HHO

0

1.6936e-49

0

8.9877e-49

0

7.6813e-57

0

4.9275e-48

F4 IHHO

HHO

0

2.1191e-50

0

6.4085e-50

0

2.3044e-57

0

3.2259e-49

F5 IHHO

HHO

1.269e205

0.00020706

3.7067e205

0.00034121

6.2893e-11

1.805e-09

0.00065825

0.00166

F6 IHHO

HHO

2155

2155

0

0

-155

-155

-155

-155

F7 IHHO

HHO

0

6.9426e-50

0

1.8065e-49

0

1.7956e-59

0

8.0488e-49

F8 IHHO

HHO

0

0

0

0

0

0

0

0

F9 IHHO

HHO

0.002708

0.013231

0.0049833

0.01834

3.6982e-07

3.827e-06

0.019291

0.067915

F10 IHHO

HHO

0

1.3167e-98

0

4.9725e-98

0

1.2315e-115

0

2.131e-97

F11 IHHO

HHO

0.24973

0.24971

0.00088237

0.00070803

0.24879

0.24732

0.25399

0.2515

F12 IHHO

HHO

0

7.5986e-97

0

4.1565e-96

0

1.935e-114

0

2.2767e-95

F13 IHHO

HHO

37.259

126.6738

29.048

225.3297

0.39056

0.9636

99.016

1075.7969

F14 IHHO

HHO

0

4.8407e-96

0

2.5151e-95

0

2.6014e-114

0

1.3782e-94

Unimodal fixed-dimension

F1 IHHO

HHO

2.0815e205

5.9535e-05

2.3061e205

8.1805e-05

3.3123e-07

2.1613e-07

0.00010228

0.00033879

F2 IHHO

HHO

1.3839e287

1.3839e287

6.8117e2103

6.8117e2103

1.3839e-87

1.3839e-87

1.3839e-87

1.3839e-87

F3 IHHO

HHO

0

1.0717e-122

0

5.8701e-122

0

1.3295e-162

0

3.2152e-121

F4 IHHO

HHO

0.29258

0.29258

1.2316e-06

5.9415e207

0.29258

0.29258

0.29258

0.29258

F5 IHHO

HHO

19.106

19.1062

8.9581e205

0.00060229

19.1059

19.1059

19.1062

19.1087

Neural Computing and Applications

123



Table 24 (continued)

Benchmark optimizer Mean STD MIN MAX

Multimodal fixed-dimension

F1 IHHO

HHO

0

1.2975e-109

0

6.8953e-109

0

4.7176e-128

0

3.779e-108

F2 IHHO

HHO

2195.629

2195.629

1.5244e-05

7.4381e207

-195.629

-195.629

-195.629

-195.629

F3 IHHO

HHO

22.0218

22.0218

1.9896e-07

9.9301e216

-2.0218

-2.0218

-2.0218

-2.0218

F4 IHHO

HHO

2106.7634

2106.7645

0.0013021

1.3424e205

-106.7645

-106.7645

-106.7601

-106.7645

F5 IHHO

HHO

0.3979

0.39789

1.4258e205

3.9394e-06

0.39789

0.39789

0.39795

0.39791

F6 IHHO

HHO

22.0626

22.0626

2.6641e-07

2.5808e-08

-2.0626

-2.0626

-2.0626

-2.0626

F7 IHHO

HHO

1

1

0

0

1

1

1

1

F8 IHHO

HHO

180.3276

180.3276

0

0

180.3276

180.3276

180.3276

180.3276

F9 IHHO

HHO

224.1568

224.1568

0.00016531

1.4263e206

-24.1568

-24.1568

-24.1562

-24.1568

F10 IHHO

HHO

242.7648

-42.7355

0.2223

0.22672

-42.9444

-42.9444

-42.4971

-42.4972

F11 IHHO

HHO

20.50015

-0.036205

0.49812

0.30403

-1

-1

-0.0001596

-0.0021456

F12 IHHO

HHO

20.99999

-0.99998

9.0857e206

2.1463e-05

-1

-1

-0.99996

-0.99993

F13 IHHO

HHO

0.06447

0.064471

1.8395e207

3.4941e-07

0.06447

0.06447

0.064471

0.064472

F14 IHHO

HHO

0.056121

0.02485

0.079838

0.051972

3.5001e-05

6.4552e-06

0.35368

0.24897

F15 IHHO

HHO

219.2084

219.2085

0.00013123

3.2574e212

-19.2085

-19.2085

-19.2079

-19.2085

F16 IHHO

HHO

20.96353

20.96353

1.6112e-07

3.1589e-09

-0.96353

-0.96353

-0.96353

-0.96353

F17 IHHO

HHO

210.8716

-10.867

0.0036257

0.008909

-10.8723

-10.8723

-10.8524

-10.8525

F18 IHHO

HHO

2186.7197

2186.7303

0.014362

0.0022392

-186.7308

-186.7309

-186.6707

-186.7216

F19 IHHO

HHO

210.529

-5.1252

0.012416

1.5814

-10.5363

-5.1285

-10.4839

-5.108

F20 IHHO

HHO

0

4.8345e-107

0

2.6475e-106

0

1.6585e-131

0

1.4501e-105
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a result, IHHO is more successful than its competitors.

Having this component present is crucial to the increased

efficiency of IHHO.

A visual comparison of the convergence periods of the

HHO method can be carried out using the Convergence

curves shown in Fig. 34.

5.6 Engineering problems

5.6.1 Tension/compression spring design

Designing coil springs with the ideal tension and com-

pression is a classic engineering optimization challenge

[88]. Figure 35 shows the tension/compression spring

design problem (TCSD). Assuming a constant

tension/compression load, the goal is to minimize the

volume V of the coil spring. There are three potential

configurations for this issue:

• the number of usable coils in a spring P ¼ x1�½2; 15�
• the size of the winding in centimeters

D ¼ x2�½0:25; 1:3�
• the size of the wire’s diameter d ¼ x3�½0:005; 2�

The TCSD problem may be expressed mathematically

as follows: [89]

minf xð Þ ¼ x3 þ 2ð Þx2x
2
1 ð25Þ

Subject to:

Table 24 (continued)

Benchmark optimizer Mean STD MIN MAX

Multimodal variable-dimension

F1 IHHO

HHO

0.0051495

1.722

0.0049582

9.2336

4.9861e-05

0.00020745

0.015189

50.61

F2 IHHO

HHO

0.9

0.9

4.5168e216

4.5168e216

0.9

0.9

0.9

0.9

F3 IHHO

HHO

132.2224

501.6447

35.2382

113.7039

77.6757

329.5382

218.557

791.1485

F4 IHHO

HHO

0

1.0634e-49

0

5.8038e-49

0

4.3256e-61

0

3.1792e-48

F5 IHHO

HHO

1.2369e2284

1.2345e-15

0

6.5949e-15

0

1.7724e-57

3.7108e-283

3.6141e-14

F6 IHHO

HHO

1.0003

1.0008

0.00058655

0.0008597

1

1

1.0029

1.003

F7 IHHO

HHO

0

5.4413e-48

0

1.8677e-47

0

3.7222e-58

0

7.6802e-47

F8 IHHO

HHO

21174.9747

21174.978

0.014211

0.0093998

-1174.985

-1174.985

-1174.9336

-1174.9423

F9 IHHO

HHO

3.5134e212

3.5134e212

3.5146e-12

1.7099e-15

3.5124e-12

3.5124e-12

3.5187e-12

3.52e-12

F10 IHHO

HHO

9.3135e206

9.9379e-05

2.3563e205

0.00013036

3.9671e-10

1.6528e-06

0.00010955

0.0005777

F11 IHHO

HHO

1.6483e206

7.4312e-06

3.3941e206

1.2137e-05

1.4336e-10

2.1301e-08

1.6366e-05

5.8061e-05

F12 IHHO

HHO

211.5431

-11.2914

1.4046

1.261

-14.3447

-14.0072

-8.7851

-9.1013

F13 IHHO

HHO

6.6808e205

0.00011582

6.9955e205

8.191e-05

1.3118e-06

2.2222e-06

0.00030964

0.00033512

Best results are highlighted in bold
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Fig. 23 Unimodal variable-dimension curves

Neural Computing and Applications

123



Fig. 23 continued
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Fig. 24 Convergence curves for IHHO vs HHO on unimodal fixed-dimension curves
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Fig. 25 Convergence curves for IHHO vs HHO on multimodal fixed-dimension curves
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Fig. 25 continued
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Fig. 25 continued
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Fig. 26 Convergence curves for IHHO vs HHO on multimodal fixed-dimension curves
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Fig. 26 continued
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Fig. 27 Convergence curves for IHHO vs other algorithms on unimodal variable-dimension functions
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Fig. 27 continued
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Fig. 28 Convergence curves for IHHO vs other algorithms on Unimodal fixed-dimension functions
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Fig. 29 Convergence curves for IHHO vs other algorithms on multimodal fixed-dimension functions
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Fig. 29 continued
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q1 xð Þ ¼ 1 � x3
2x3

71785x4
1

� 0

q2 xð Þ ¼ 4x2
2 � x1x2

12566 x2x
3
1 � x4

1

� �þ 1

5108x2
1

� 1� 0

q3 xð Þ ¼ 1 � 140:45x1

x2
2x3

� 0

q4 xð Þ ¼ x2 þ x1

1:5
� 1� 0

ð26Þ

5.6.2 Pressure vessel design

Figure 36 shows a pressure vessel created to reduce the

entire cost of the pressure vessel’s materials, form, and

welding [73, 90]. The thickness of the shell (Ts ¼ x1), the

depth of the head (Th ¼ x2), the inner radius (R ¼ x3), and

the height of a cylindrical section (L ¼ x4) are the four

design parameters. Here is how the pressure vessel problem

is formulated:

f xð Þ ¼ 0:0624x1x3x4 þ 1:7781x2x
3
3 þ 3:1661x2

1x4

þ 19:84x3
1x3 ð27Þ

Subject to:

g1 xð Þ ¼ 0:0193x3 � x1 � 0

g2 xð Þ ¼ 0:00954x3 � x2 � 0

g3 xð Þ ¼ 1296000 �Px2
3x4 �

4

3
Px3

3 � 0

g4 xð Þ ¼ x4 � 240

ð28Þ

where

x1� 0:0625; 6:187½ �; x2� 0:0625; 6:187½ �; x3

� 10; 200½ �; x4�½10; 200�

5.6.3 Welded beam design

The welded beam design (WBD) issue takes into account

several design factors such as design for minimal cost

while subjected to shear stress limits (s), beams’ end

Fig. 29 continued
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deflection (d), bending stress in the beam (h), buckling load

on the bar (Pc), and side constraints [91]. According to

Fig. 37 WDB took into account four design factors in order

to build a welded beam using the fewest possible resources.

These parameters are hðxÞ, iðx2), tðx3), and bðx4). This is a

mathematical representation of the WDB issue:

Fig. 30 Convergence curves for IHHO vs other algorithms on multimodal variable-dimension functions
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Fig. 30 continued
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Table 26 Comparison of results of IHHO vs other modifications of HHO on 52 benchmark functions

Benchmark IHHO HHO BHHO [36] MHHO [37] LogHHO [38]

Unimodal variable-dimension

F1 AVG

STD

Rank

0

0

1

1.3961e-91

7.6465e-91

3

6.116e-59

2.0779e-58

4

4.5193e-247

0

2

7.385e-17

1.8431e-16

5

F2 AVG

STD

Rank

0

0

1

2.2961e-124

7.8038e-124

3

2.3391e-84

1.0322e-83

4

0

0

1

5.7648e-17

1.9317e-16

5

F3 AVG

STD

Rank

0

0

1

1.6936e-49

8.9877e-49

3

1.3855e-29

6.8401e-29

4

2.7023e-123

1.4764e-122

2

4.5853e-25

2.4734e-24

5

F4 AVG

STD

Rank

0

0

1

2.1191e-50

6.4085e-50

3

2.4949e-31

1.1005e-30

4

6.1223e-125

3.0248e-124

2

16.2935

15.3757

5

F5 AVG

STD

Rank

1.269e205

3.7067e205

1

0.00020706

0.00034121

3

5.01e-05

9.1013e-05

2

0.29935

0.28698

4

3.9107

1.1734

5

F6 AVG

STD

Rank

2155

0

1

2155

0

1

2155

0

1

2155

0

1

2155

0

1

F7 AVG

STD

Rank

0

0

1

6.9426e-50

1.8065e-49

3

1.4102e-29

5.0969e-29

4

5.8625e-126

2.7735e-125

2

1.3336e-25

4.2254e-25

5

F8 AVG

STD

Rank

0

0

1

0

0

1

4.4574e-308

0

4

0

0

1

1.9821e-12

8.3108e-12

5

F9 AVG

STD

Rank

0.002708

0.0049833

1

0.013231

0.01834

3

0.0049096

0.0099083

2

27.4986

0.52734

4

28.8905

0.040288

5

F10 AVG

STD

Rank

0

0

1

1.3167e-98

4.9725e-98

3

7.1392e-61

3.9099e-60

4

8.2589e-251

0

2

4.4834e-21

1.0303e-20

5

F11 AVG

STD

Rank

0.24973

0.00088237

3

0.24971

0.00070803

2

0.22309

0.031211

1

0.66669

1.8082e205

4

0.99611

0.006894

5

F12 AVG

STD

Rank

0

0

1

7.5986e-97

4.1565e-96

3

1.0199e-59

5.2251e-59

4

5.7654e-247

0

2

8.7899e-14

4.7891e-13

5

F13 AVG

STD

Rank

37.259

29.048

2

126.6738

225.3297

4

32.8555

57.2093

1

116.6899

225.8021

3

254.5941

398.7312

5

F14 AVG

STD

Rank

0

0

1

4.8407e-96

2.5151e-95

3

4.7614e-60

2.593e-59

4

2.8795e-246

0

2

8.1577e-19

2.6108e-18

5
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Table 26 (continued)

Benchmark IHHO HHO BHHO [36] MHHO [37] LogHHO [38]

Percentage 1.214285714 2.714285714 3.071428571 2.285714286 4.714285714

Total Rank 1 3 4 2 5

Unimodal fixed-dimension

F1 AVG

STD

Rank

2.0815e-05

2.3061e-05

3

5.9535e-05

8.1805e-05

4

6.5393e208

2.1566e207

1

3.7561e-06

4.7767e-06

2

8.523e-05

0.00011752

5

F2 AVG

STD

Rank

1.3839e287

6.8117e2103

1

1.3839e287

6.8117e2103

1

1.3839e287

6.8117e2103

1

1.3839e287

6.8117e2103

1

1.3839e287

6.8117e2103

1

F3 AVG

STD

Rank

0

0

1

1.0717e-122

5.8701e-122

2

3.3321e-78

1.8251e-77

4

1.2509e-314

0

5

1.4344e-95

7.0465e-95

3

F4 AVG

STD

Rank

0.29258

1.2316e-06

1

0.29258

5.9415e-07

1

0.29258

5.3408e-07

1

0.29258

1.2761e207

1

0.29258

1.274e-06

1

F5 AVG

STD

Rank

19.106

8.9581e-05

1

19.1062

0.00060229

4

19.1059

1.7712e206

1

19.1059

2.4124e-05

1

19.1064

0.00085601

5

Percentage 1.4 2.4 1.6 2 3

Total Rank 1 4 2 3 5

Multimodal fixed-dimension

F1 AVG

STD

Rank

0

0

1

1.2975e-109

6.8953e-109

3

2.3129e-73

1.2668e-72

4

5.222e-298

0

2

2.2797e-20

8.3495e-20

5

F2 AVG

STD

Rank

2195.629

1.5244e-05

1

2195.629

7.4381e-07

1

2195.629

2.6573e210

1

2195.629

1.011e-09

1

2195.629

8.1302e-05

1

F3 AVG

STD

Rank

22.0218

1.9896e-07

1

22.0218

9.9301e216

1

22.0218

1.1662e-15

1

22.0218

9.2199e216

1

22.0218

6.4964e-08

1

F4 AVG

STD

Rank

2106.7634

0.0013021

1

2106.7645

1.3424e-05

1

2106.7645

5.4481e209

1

2106.7645

1.2277e-07

1

-106.7603

0.0057088

5

F5 AVG

STD

Rank

0.3979

1.4258e-05

4

0.39789

3.9394e-06

1

0.39789

1.4848e209

1

0.39789

8.8691e-09

1

0.39797

0.00012145

5

F6 AVG

STD

Rank

22.0626

2.6641e-07

1

22.0626

2.5808e-08

1

22.0626

2.3052e212

1

22.0626

1.0581e-11

1

22.0626

2.4307e-06

1

F7 AVG

STD

Rank

1

0

1

1

0

1

1

0

1

1

0

1

1

1.9097e-15

1

F8 AVG

STD

Rank

180.3276

0

1

180.3276

0

1

180.3276

0

1

180.3276

0

1

180.3276

0

1

F9 AVG

STD

Rank

224.1568

0.00016531

1

224.1568

1.4263e-06

1

224.1568

3.4259e-09

1

224.1568

2.2034e-07

1

-24.1567

0.0002296

5
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Table 26 (continued)

Benchmark IHHO HHO BHHO [36] MHHO [37] LogHHO [38]

F10 AVG

STD

Rank

242.7648

0.2223

1

-42.7355

0.22672

4

-42.8697

0.16945

3

-42.7804

0.21916

2

-42.6015

0.19227

5

F11 AVG

STD

Rank

20.50015

0.49812

1

-0.036205

0.30403

3

-0.070731

0.25261

2

-0.006106

0.0095452

4

-0.00043546

0.00043551

5

F12 AVG

STD

Rank

-0.99999

9.0857e-06

3

-0.99998

2.1463e-05

4

21

2.4617e-10

1

21

7.2562e210

1

-0.76653

0.43011

5

F13 AVG

STD

Rank

0.06447

1.8395e-07

1

0.064471

3.4941e-07

4

0.06447

3.9337e211

1

0.06447

4.4321e211

1

0.064482

1.7445e-05

5

F14 AVG

STD

Rank

0.056121

0.079838

4

0.02485

0.051972

3

0.0064274

0.022298

1

0.01096

0.019587

2

0.064131

0.10576

5

F15 AVG

STD

Rank

219.2084

0.00013123

1

219.2085

3.2574e212

1

219.2085

1.2288e-10

1

219.2085

2.2808e-13

1

219.2085

1.7423e-05

1

F16 AVG

STD

Rank

20.96353

1.6112e-07

1

20.96353

3.1589e-09

1

20.96353

6.6609e-11

1

20.96353

6.8895e211

1

20.96353

1.1735e-06

1

F17 AVG

STD

Rank

210.8716

0.0036257

1

-10.867

0.008909

3

-10.8703

0.0060438

2

-10.8657

0.0094966

4

-10.8405

0.048889

5

F18 AVG

STD

Rank

2186.7197

0.014362

4

2186.7303

0.0022392

3

2186.7309

7.7956e208

1

2186.7309

6.5409e-07

1

-186.7084

0.056534

5

F19 AVG

STD

Rank

210.529

0.012416

1

-5.1252

1.5814

5

-10.5164

7.3186e-05

2

-8.3248

2.7536

3

-5.1853

3.1008

4

F20 AVG

STD

Rank

0

0

1

4.8345e-107

2.6475e-106

3

1.1994e-77

5.9739e-77

4

5.2277e-283

0

2

9.3917e-12

5.0768e-11

5

Percentage 1.39891 2.09891 1.39891 1.44891 3.39891

Total Rank 1 4 1 3 5

Multimodal variable-dimension

F1 AVG

STD

Rank

0.0051495

0.0049582

1

1.722

9.2336

3

0.7474

2.0535

2

29.878

51.2718

4

226.5854

28.0164

5

F2 AVG

STD

Rank

0.9

4.5168e216

1

0.9

4.5168e216

1

0.9

4.5168e216

1

0.9

4.5168e216

1

4.7633

0.7702

5

F3 AVG

STD

Rank

132.2224

35.2382

1

501.6447

113.7039

4

232.4891

106.0033

2

330.992

133.9866

3

557.4169

142.2815

5

F4 AVG

STD

Rank

0

0

1

1.0634e-49

5.8038e-49

3

6.2261e-30

2.509e-29

4

5.282e-131

2.742e-130

2

0.52013

2.8468

5
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Min f xð Þ ¼ 1:10471x2
1x2 þ 0:04811x3x4 14:0 � x2ð Þ ð29Þ

Subject to:

g1 xð Þ ¼ s xð Þ � 13000� 0

g2 xð Þ ¼ d xð Þ � 30000� 0

g3 xð Þ ¼ x1 � x4 � 0

g4 xð Þ ¼ 0:1047x2
1 þ 0:04811x3x4 14:0 þ x2ð Þ � 5� 0

g5 xð Þ ¼ 0:125 � x1 � 0

x6 xð Þ ¼ d xð Þ � 0:25� 0

g7 xð Þ ¼ 6000 � Pc xð Þ� 0

ð30Þ

where

s xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0Þ2 þ 2s0s00

x2

2R
þ ðs00Þ2

r

s0 ¼ 6000ffiffiffi
2

p
x1x2

;

s00 ¼ MR

J

M ¼ 6000 14 þ x2

4

� �

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ ðx1 þ x3

2
Þ

2
r

J ¼ 2
ffiffiffi
2

pn
x1x2½

x2
2

12
þ ðx1 þ x3

2
Þ

2

Table 26 (continued)

Benchmark IHHO HHO BHHO [36] MHHO [37] LogHHO [38]

F5 AVG

STD

Rank

1.2369e2284

0

1

1.2345e-15

6.5949e-15

4

5.2732e-19

2.4521e-18

3

6.177e-36

3.3833e-35

2

1837.7999

9636.4365

5

F6 AVG

STD

Rank

1.0003

0.00058655

1

1.0008

0.0008597

2

1.0009

0.0015977

3

37.4598

15.2751

4

107.0851

28.6798

5

F7 AVG

STD

Rank

0

0

1

5.4413e-48

1.8677e-47

3

6.7188e-31

2.2332e-30

4

4.2404e-122

1.9292e-121

2

0.32691

0.14171

5

F8 AVG

STD

Rank

21174.9747

0.014211

3

21174.978

0.0093998

2

-1174.9837

0.0017942

1

-1145.8295

31.8021

4

-890.3591

50.3703

5

F9 AVG

STD

Rank

3.5134e212

1.3473e215

1

3.5146e-12 1.7099e-15

2

3.5381e-12

2.0495e-14

3

5.3066e-12

2.9595e-12

4

4.7891e-08

9.0099e-08

5

F10 AVG

STD

Rank

9.3135e206

2.3563e205

1

9.9379e-05

0.00013036

3

1.5115e-05

2.3959e-05

2

0.24715

0.16008

4

1.511

0.60349

5

F11 AVG

STD

Rank

1.6483e206

3.3941e206

1

7.4312e-06

1.2137e-05

3

3.0467e-06

4.654e-06

2

0.0090666

0.0054853

4

1.0432

2.4001

5

F12 AVG

STD

Rank

-11.5431

1.4046

3

-11.2914

1.261

4

215.3568

1.8088

1

-14.2167

1.5774

2

-10.8524

1.6254

5

F13 AVG

STD

Rank

6.6808e205

6.9955e205

1

0.00011582

8.191e-05

2

0.00017865

0.00018167

3

0.00023069

0.00021186

4

0.05861

0.070564

5

Percentage 1.307692308 2.769230769 2.384615385 3.076923077 5

Total Rank 1 3 2 4 5

Best results are highlighted in bold

Neural Computing and Applications

123



Fig. 31 Convergence curves for IHHO vs HHO modifications on unimodal variable-dimension functions
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c xð Þ ¼ 504000

x4x
2
3

d xð Þ ¼ 2:1952

x4x
3
3

Pc xð Þ ¼ 64746:022ð1 � 0:0282346X3ÞX3X
3
4

5.6.4 Gear train design problem

The challenge of designing gears with the optimal ratio

comprises five different design variables, a nonlinear

objective function, and five different nonlinear limitations

[92]. The goal of this exercise is to find the gear ratio for

the gear train depicted in Fig. 38 with the lowest possible

cost [93]. To specify the gear ratio, we say:

Fig. 30 continued
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Gearratio ¼ gBgD
gFgA

ð31Þ

Min f xð Þ ¼ 1

6:931
� x3x2

x1x4

� �2

ð32Þ

Subject to:

12� xi � 60 wherei ¼ 1; . . .:; 4

5.6.5 Three-bar truss design

Ray and Saini [94] were the first to identify the optimiza-

tion difficulty inherent in the design of a three-bar truss. As

seen in Fig. 39, three bars are preferred in light of this. The

goal is to reduce the total bar weight by placing them in

this orientation [77]. This issue contains three constrained

functions and two design parameters (x1, x2). A mathe-

matical formulation of the issue is as follows:

Min f xð Þ ¼ 2
ffiffiffi
2

p
x1 þ x2

� �
xL ð33Þ

g1 ¼
ffiffiffi
2

p
x1 þ x2ffiffiffi

2
p

x2
1 þ 2x1x2

P� r� 0

g2 ¼ x2ffiffiffi
2

p
x2

1 þ 2x1x2

P� r� 0

g3 ¼ 1

x1 þ
ffiffiffi
2

p
x2

P� r� 0

ð34Þ

where:x1 � 0; x2 � 1; the constant are L ¼ 100cm;

P ¼ 2KN=cm2

And r ¼ 2KN=cm2 [1, 2, 6].

Fig. 32 Convergence curves for IHHO vs HHO modifications on unimodal fixed-dimension functions
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Fig. 33 Convergence curves for IHHO vs HHO modifications on multimodal fixed-dimension functions
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5.6.6 speed reducer problem

As shown in Fig. 40, there are countless applications for

gear reducers because of their versatility and importance in

the mechanical transmission of a wide variety of processes

[95]. The reducer has several issues that make it less than

ideal for use in modern applications, including its heft, high

transmission ratio, and low mechanical efficiency [96].

Good power, big transmission ratio, compact size, high

mechanical efficiency, and long service life are all

requirements for an energy-efficient current reducer [75].

The following constraints are obtained:

Minf xð Þ ¼ mn1z1 1 þ i1ð Þ þ mn2z3 1 þ i2ð Þ
2cosb

ð35Þ

Subject to:

Fig. 33 continued
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g1 ¼ 3:098 x 10�6x3
1x

2
3x5 � cos3 x6 � 0

g2 ¼ 1:017 x 10�4x3
2x

3
4 � x2

5 cos3 x6=x
2
3 � 0

g3 ¼ 9:939 x 10�5: 1 þ x5=x3ð Þx3
1x

2
3 � cos3 x6 � 0

g4 ¼ 1:076 x 10�4: 31:5 þ x5=x3ð Þx3
2x

2
4 � x2

5 cos2 x6=x
2
3 � 0

g5 ¼ x2x4 31:5 þ x5

x3

� �
� x5

x3

: 2 x1 þ 50ð Þ: cos x6 þ x1x5½ � � 0

ð36Þ

5.6.7 Results

In that part, we will test IHHO with the previous six

engineering problems as in Table 27. The problems are

tension/compression spring design [98], pressure vessel

design [99], welded beam design [100], speed reducer

problem [101], gear train design problem [68], and three-

bar truss design [103].

Fig. 33 continued
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5.6.7.1 IHHO vs HHO The comparison of IHHO against

HHO is presented in Table 28. This was done so that we

could decide which of the two options was the better one.

However, F2, F3, and F5 have a four-dimensional restric-

ted optimization problem inside the given range for each

equation. Because F1, F4, and F6 have different

Fig. 34 Convergence curves for IHHO vs HHO modifications on multimodal variable-dimension functions
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Fig. 34 continued
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dimensions, this function 30 times for a total of 500 iter-

ations was evaluated.

The results shown in Table 28 indicate that the perfor-

mance of IHHO is better than that of the original HHO,

except for F5 and F6. IHHO outperforms other analyzed

methods for changing functions because of its greater

capacity to escape the local optimum utilizing the random

walk methodology. This gives IHHO a performance

advantage over HHO. The higher performance of IHHO

can largely be attributed to this factor.

A visual comparison of the convergence times of the

IHHO method and the original HHO can be carried out by

looking at the curves in Fig. 41, which shows the results of

the comparison.

5.6.7.2 IHHO vs other algorithms Table 29 contains our

comparison of IHHO to various algorithms, namely BAT

[40], MFO [42], TLBO [41], and WOA [43]. This was

done so that could make a decision regarding which of the

possibilities was preferable. This evaluation a total of 30

Fig. 35 Tension/compression spring design problem

Fig. 36 Pressure vessel design problem

Fig. 37 Welded beam design problem

Fig. 38 Gear train design problem Fig. 40 Speed reducer problem [97]

Fig. 39 Three-bar truss design problem
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times, making the total number of cycles 500 was

performed.

According to Table 29, the performance of the HHO

algorithm is better than that of other algorithms on all

engineering problems, with the exception of the F5 and F6

methods. IHHO outperforms BAT by a significant margin

when the two are compared to one another. When com-

pared to MAT, IHHO performs better, with the exception

of F6. IHHO outperforms TLBO since the former cannot

solve all engineering problems. IHHO performs better than

WOA in all functions with the exception of F2.

A visual comparison of the convergence periods of the

IHHO method can be carried out using the Convergence

curves shown in Fig. 42.

5.6.7.3 IHHO vs other modifications of HHO Here, the

proposed IHHO with other HHO variants such as MHHO

[37] and LogHHO [38] was evaluated. We have set the

swarm size at 30, and the halting criterion at 500 iterations,

to ensure that all algorithms get a fair shot. Table 30 dis-

plays experimental results regarding the mean and standard

deviation of the objective functions. Figure 43 also dis-

plays the convergence results for the different approaches.

According to Table 30, the performance of the IHHO

algorithm is better than that of all other modifications of

HHO, with the exception of the F5, and F6 methods. When

compared to MHHO and LogHHO, IHHO performs better,

except for the F5, and F6 methods.

A visual comparison of the convergence periods of the

IHHO method can be carried out using the convergence

curves shown in Fig. 43.

Table 27 Description of engineering problems

Benchmark Name Dim Range

F1 Tension/compression spring design 3 lb = [0.05, 0.25, 2] ub = [2, 1.3, 15]

F2 Pressure vessel design 4 lb = [0, 0, 10, 10] ub = [99, 99, 200, 200]

F3 Welded beam design 4 lb = [0.1, 0.1, 0.1, 0.1] ub = [2, 2, 10, 10]

F4 speed reducer problem 7 lb = [2.6, 0.7, 17, 7.3, 7.3, 2.9, 5.0] ub = [3.6, 0.8, 28, 8.3, 8.3, 3.9, 5.5]

F5 Gear train design problem 4 b = [12, 12, 12, 12] ub = [59, 59, 59, 59]

F6 Three-bar truss design 2 lb = [0,0]

ub = [1, 1]

Table 28 Comparison of results of IHHO and HHO on six engineering problems

Benchmark optimizer Mean STD MIN MAX

F1 IHHO

HHO

0.013667

0.013941

0.00095398

0.00090174

0.012893

0.012668

0.018728

0.017774

F2 IHHO

HHO

6512.1456

1.14E ? 04

346.3228

2.47E ? 04

5966.6247

6072.2207

7427.7495

7548.621

F3 IHHO

HHO

2.0472

2.1417

0.2608

0.38059

1.7535

1.7932

2.6917

3.2194

F4 IHHO

HHO

3030.5164

3899.2033

18.9552

565.4279

3013.4418

3028.2265

3140.4497

4876.9711

F5 IHHO

HHO

3.29E-11

0

7.54E-11

0

2.3598e-15

0

7.5594e-10

0

F6 IHHO

HHO

265.4281

264.0973

2.312

0.23932

263.9116

263.8962

272.8288

265.3612

Best results are highlighted in bold
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In CEC 2017, BHHO outperformed other variants of

HHO; however, in CEC 2020 and CEC 2019, it was unable

to progress and break free from the local solution. While

LogHHO performed admirably in CEC 2019, it was unable

to break free from the local solution in CEC 2017 and CEC

2020. While MHHO performed well in CEC 2020, it was

unsuccessful in CEC 2017 and CEC 2019. But in most

benchmark equations (CEC2017, CEC2019, etc.), the

improved modification (IHHO) outperformed all other

changes that were applied to it.

The suggested approach, IHHO, outperforms other

algorithms (GWO, BAT, WOA, TLBO, and MFO), as

demonstrated by the numerical results. This is visually

demonstrated by various convergence curves, but IHHO

was able to overcome these and obtain the global solution

in the majority of benchmarks. An analysis of the mean

Friedman rank statistical test is used to compare the IHHO

rank with other algorithms. The recommended method

beats out GWO, BAT, WOA, TLBO, MFO, and three

Fig. 41 Convergence curves for IHHO vs HHO on six engineering problems
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variants of HHO (BHHO, LogHHO, and MHHO),

according to Friedman tests.

6 Conclusion and future work

Metaheuristic optimization algorithms are now commonly

used to solve different engineering problems. Despite the

available algorithms, new algorithms with extended abili-

ties are continuously proposed to overcome the problems

of the existing algorithms. This paper proposes an

Improved algorithm based on the well-known Harris

Hawks optimization algorithm. The algorithm proposed in

this study emphasizes the utilization of random location-

based habitats during the exploration phase and the

implementation of strategies 1, 3, and 4 during the

exploitation phase. The improved algorithm is capable of

achieving a good balance between exploration and

exploitation due to the modifications of each phase. Our

suggested algorithm IHHO is benchmarked against not

only the original HHO, but also against state-of-the-art

algorithms, namely grey wolf optimization, BAT algo-

rithm, teaching–learning-based optimization, moth-flame

optimization, and whale optimization algorithm. IHHO is

also compared with other modifications of HHO, namely

BHHO, MHHO, and logHHO. Different benchmark func-

tions with varying difficulties CEC2017, CEC2019,

CEC2020, and 52 benchmark functions were used. We

have also applied these algorithms to six classical real-

world engineering problems.

Compared to other variations of HHO, BHHO per-

formed well in CEC 2017 but failed to advance and escape

the local solution in CEC 2020 and CEC 2019. LogHHO

did well in CEC 2019 but was not able to get ahead and out

of the local solution in CEC 2017, and CEC 2020 MHHO

did well in CEC 2020, however, it failed in CEC 2017 and

CEC 2019. However, the enhanced modification (IHHO)

demonstrated exceptional performance in the majority of

Table 29 Comparison of results between IHHO and other algorithms on six engineering problems

Benchmark IHHO HHO BAT [81] MFO [42] TLBO

[41]

WAO [43]

F1 AVG

STD

Rank

0.013667

0.00095398

1

0.013941

0.00090174

4

1.0193e ? 13

3.9674e ? 13

5

0.0137

0.0014

2

NAN 0.0138

0.0014

3

F2 AVG

STD

Rank

6512.1456

346.3228

1

1.14E ? 04

2.47E ? 04

3

4.1358e ? 05

4.5439e ? 05

5

6.6533e ? 03

601.0981

2

NAN 1.2247e ? 04

6.5017e ? 03

4

F3 AVG

STD

Rank

2.0472

0.2608

1

2.1417

0.38059

2

1.8408e ? 13

5.8079e ? 13

5

2.8124

0.1394

3

NAN 3.1418

0.9008

4

F4 AVG

STD

Rank

3030.5164

18.9552

2

3899.2033

565.4279

4

1.4109e ? 12

1.7415e ? 12

5

3.0102e ? 03

7.9191

1

NAN 3.4142e ? 03

564.9316

3

F5 AVG

STD

Rank

3.29E-11

7.54E-11

5

0

0

1

9.7184e-16

1.5966e-15

4

0

0

1

NAN 2.4713e-23

1.1284e-22

3

F6 AVG

STD

Rank

265.4281

2.312

3

264.0973

0.23932

2

268.634

6.0427

5

263.9734

0.1501

1

NAN 265.4553

1.7689

4

Percentage 2.166666667 2.666666667 4.833333333 1.666666667 – 3.5

Total rank 2 3 5 1 – 4

Best results are highlighted in bold
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benchmark equations (CEC2017, CEC2019, etc.), sur-

passing all other modifications implemented on it.

The numerical results show the superiority of the pro-

posed algorithm IHHO over other algorithms (GWO, BAT,

WOA, TLBO, and MFO), which is visually proven using

different convergence curves but IHHO was able to over-

come them and achieve the global solution in most

benchmarks. The IHHO rank is compared to other algo-

rithms using a statistical test of the mean Friedman rank.

Friedman tests showed that the suggested algorithm out-

performs GWO, BAT, WOA, TLBO, MFO, and three

HHO variations (BHHO, LogHHO, and MHHO).

As with every proposed algorithm, IHHO has some

limitations. First, IHHO has solved the problem of sensi-

tivity to parameters in the original HHO. The results of the

discussed problems are promising. However, this may be

ineffective in other problems. Second, convergence time

increases with complexity, which opens a window for

Fig. 42 Convergence curves for IHHO vs other algorithms on six engineering problems
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Table 30 Comparison of results of IHHO vs other modifications of HHO on six engineering problems

Benchmark IHHO HHO MHHO [37] LogHHO [36]

F1 AVG

STD

Rank

0.013667

0.00095398

1

0.013941

0.00090174

4

0.013809

0.0011

3

0.013746

0.0014

2

F2 AVG

STD

Rank

6512.1456

346.3228

1

1.14E ? 04

2.47E ? 04

4

6807.9021

440.6797

2

10,164.7297

4.7936e ? 03

3

F3 AVG

STD

Rank

2.0472

0.2608

1

2.1417

0.38059

3

2.0476

0.2710

2

2.1977

0.3709

4

F4 AVG

STD

Rank

3030.5164

18.9552

1

3899.2033

565.4279

4

3086.8416

6.5047

2

3841.9831

0.0491

3

F5 AVG

STD

Rank

3.29E-11

7.54E-11

4

0

0

1

5.23E-32

8.3580e-29

2

8.37E-22

4.5870e-24

3

F6 AVG

STD

Rank

265.4281

2.312

4

264.0973

0.23932

3

263.9677

0.1847

1

264.092

0.2153

2

Percentage 2 3.166666667 2 2.833333333

Total Rank 1 4 1 3

Best results are highlighted in bold

Fig. 43 Convergence curves for IHHO vs HHO modifications on six engineering problems
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future research directions to solve this issue. Finally, as this

area of research is continuously improving, new algorithms

with better performance may be developed.

In future work, we plan to further improve the proposed

algorithm. Problem–based adaptive parameters can be

used. The binary version of the algorithm can also be

developed for classification tasks.
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