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Abstract
Ensemble analysis is proven to provide advantages in climate change impact assessment based on outputs from climate

models. Ensembled series are shown to outperform single-model assessments through increased consistency and stability.

This study aims to test the improvement of precipitation estimates through the use of ensemble analysis for south and

southwestern Turkey which is known to have complex climatic features due to varying topography and interacting climate

forcings. The analysis covers an evaluation of the performance of eight regional climate models (RCMs) from the EUR-11

domain available from the CORDEX database. The historical outputs are evaluated for their representativeness of the

current climate of the Mediterranean region and its surroundings in Turkey through a comparison with long-term monthly

precipitation time series obtained from ground-based precipitation observations by the use of statistical performance

indicators and Taylor diagrams. This is followed by a comparative evaluation of three ensemble methodologies, simple

average of the models, multiple linear regression for superensemble, and artificial neural networks (ANN). The analysis

results show that the overall performance of ensembled time series is better compared to individual RCMs. ANN generally

provided the best performance when all RCMs are used as inputs. Improvement in the performance of ensembling due to

the use of nonlinear models is further confirmed by fuzzy inference systems (FIS). Both ANN and FIS generated monthly

precipitation time series with higher correlations with those of observations. However, extreme events are poorly repre-

sented in the ensembled time series, and this may result in inefficiency in the design of various water structures such as

spillways and storm water drainage systems that are based on high return period events.
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1 Introduction

The Mediterranean region is expected to be affected most

by climate change impacts [17]. The Mediterranean basin

including southern Europe, Anatolia, and the Middle East

has a very complex topography resulting in a milder cli-

mate in coastal areas while inland Anatolia experiences

extreme weather conditions [48]. Moreover, the climate

processes in that region are affected by teleconnections and

regional processes, the interactions of which are not well

understood [22, 45]. The local processes and the telecon-

nections (e.g., North Atlantic Oscillation and North Sea-

Caspian) interacting with those, and the effects of the

varying topography and the Mediterranean Sea itself create

large inter-annual and intra-annual variability as well as

significant spatial variability depending on local properties

in the region [5, 8, 22, 36, 43, 45,].

High-resolution regional climate models (RCMs) are

used for local-scale assessments of climate change impacts

including impacts on hydrology [35] and parameters such

as precipitation that are mainly controlled by local pro-

cesses, particularly for regions with a complex orography

[34, 46, 52]. However, RCM outputs may contain
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systematic errors or biases [20, 51] due to the boundary

conditions or imperfect conceptualization, discretization,

and spatial averaging within grid cells [15, 24, 33, 55].

Furthermore, studies indicate uncertainties and significant

inter-model variability for RCM outputs [33, 52] which are

even more pronounced for regions with complex terrain

features [13]. Various factors such as the multiplicity of

model designs or assumptions amplify the variability and

divergence in outputs, particularly for evaluations based on

single models. Hence, the uncertainties and significant

divergence in precipitation outputs by various climate

models create challenges in impact assessment and plan-

ning for adaptation.

To overcome the limitations of the single-model

assessment in dealing with uncertainties, the multimodel

ensemble (MME) assessment is preferred over single-

model assessments. MME approach has been used in var-

ious fields such as finance [60], ecology [2], atmospheric

air quality [16], streamflow forecasting [1], weather pre-

diction [31, 47], and for climate simulations [29]. Studies

have shown that ensemble analysis helps to improve the

statistical indicators relative to single-model analysis,

provides better consistency and reliability in simulations,

and enables a better understanding of uncertainties

[21, 52, 54, 56]. The MME approach overcomes the dis-

advantages of single-model-based assessments by using a

set of models with different mechanisms that eliminate or

reduce poorly represented processes through better repre-

sented processes from other models in the ensemble group

[28, 54]. Thus, the main motivation of this study is to

investigate the performances of ensembled versus single-

model estimates of monthly precipitation time series and

potential improvements in enmsembling that can be

achieved due to the use of nonlinear approaches instead of

linear ones.

The most common approach in MME is ensemble

averaging. In this approach, weights are assigned to each

member of the ensemble either equally to obtain a multi-

model simple average (will be referred to as the simple

average of the models, SAM) or according to some pre-

defined criteria (e.g., weights for relative model perfor-

mances or weights defined by certain statistical techniques)

to obtain a multimodel weighted average [12, 18, 19, 54].

A linear statistical MME approach, superensemble (SE)

method uses multiple linear regression (MLR) to assign a

suitable weight for each model to build an ensemble model

with a minimized squared deviation from observations

[30–32, 50]. Studies verify that SE provides a better sim-

ulation efficiency than single models and SAM

[11, 30–32, 59] by enabling a bias correction in ensem-

bling. Comparison of SE with ‘‘individual bias removed

ensemble mean’’ is reported to verify the better perfor-

mance of SE providing a collective bias removal by

assigning different weights on member models depending

on the degree of convergence to observations [30, 31, 59].

Sirdas et al. [49] tested the efficiency of SE, for the Euro-

Mediterranean region, by the use of monthly and seasonal

forecasts of precipitation, sea surface temperature (SST),

and surface air temperature (SAT) from 13 global climate

models (GCMs). The outputs obtained with the synthetic

SE method for winter SST and SAT provided satisfactory

results concerning the root-mean-square error (RMSE) and

anomaly correlation (AC) coefficient values.

Another methodology for MME is the artificial neural

network (ANN) approach [6, 7, 14, 26] which is also fre-

quently used for statistical downscaling of climate models

[10, 23, 37, 40–42, 57]. For example, Campozano et al.

[10] compared the performances of two artificial intelli-

gence methods, namely, ANN and least squares support

vector machines in downscaling of monthly precipitation,

and the authors concluded that they performed equally

well. Regarding the use of neural networks in MME,

Boulanger et al. [6, 7] worked on the ensembling of seven

atmospheric-ocean global circulation models (AOGCMs).

They used ANN and Bayesian statistics to attain MME

with higher efficiency than single models for the simula-

tions of temperature and precipitation in South America.

Krasnopolsky and Lin [26] developed an ANN model for

MME of 24-h precipitation forecasts and demonstrated

improvements in the forecasts over continental US. Fur-

thermore, their findings verified superior results of the

nonlinear ANN approach compared to the linear approa-

ches (including MLR) in MME for forecasting. In a more

recent study, Fan et al. [14] used ANN to improve the

climate forecast system (CFS) of the US National Oceanic

and Atmospheric Administration (NOAA) for week 3–4

precipitation and 2-m air temperature forecasts. The study

developed an ANN model for MME by the use of a set of

predictors and the predictand. The study results revealed

that MLR and ANN provided superior results over bias-

adjusted CFS, and MME through ANN improved forecasts

better than MLR in many aspects. However, despite

improvements in forecasting skills through MME with

ANN, some weaknesses regarding RMSE and AC skills are

still notified [14].

Studies on local impacts of climate change regarding

hydrology, crop yields, and reservoir inflows for various

basins in Turkey use the benefit of the ensemble approach

by including the SAM in the analysis [27, 41, 44]. In their

study, on climate change in Gediz Basin in western Turkey,

Okkan and Kirdemir [42] used a multi-GCM ensemble

based on Bayesian model averaging (BMA) for 12 GCMs

from Coupled Model Inter-comparison Project Phase 5

(CMIP5) after statistical downscaling with ANN and least

squares support vector machine methods. In another study,

Cakir et al. [9] used historical records from 50
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meteorological stations across Turkey to test the ANN

ensemble approach for temperature. Their study verified

that the ANN ensemble generates more accurate results

compared to the simple bias-corrected ensemble mean. On

the other hand, the study does not provide any evaluation

for a comparison of the nonlinear ANN approach with the

linear MLR approach and concludes the necessity of

comparison for future studies.

To the best of our knowledge, the use of ANN for MME

for the Mediterranean region is very limited, and only a

few studies are published on the use of ANN for ensemble

analysis for Turkey. Moreover, for Turkey, there are still

not many studies using multiple high-resolution CORDEX

RCMs to evaluate relative model performances in com-

parison with MME. Mesta and Kentel [39] in their study

evaluated the efficiency of the ensembles of raw and bias-

adjusted RCMs in projections on precipitation for

Mediterranean Turkey in comparison with the single

models and gave evidence of certain advantages and

weaknesses of linear ensembling methodology,

superensembling. The objective of this study is to evaluate

the efficiency of ensemble analysis with the nonlinear

ANN approach and to compare it with conventional linear

MME methodologies, namely, SAM and SE. The study

uses CORDEX data of RCM outputs. The evaluation is

done through comparison with reference data from local

stations in south and southwestern Turkey that provide

long-term daily precipitation time series. The comparison

of the efficiencies of ANN, SAM, and SE showed that for

most stations, correlation and normalized root-mean-square

difference (RMSD) values improved by MME compared to

the best-performing individual RCM, and the ANN

approach showed relatively best skills, in general. Similar

results are obtained when ensembling is carried out using

another nonlinear approach, namely, fuzzy inference sys-

tems (FIS) in terms of correlations and RMSDs. However,

certain weaknesses to represent the variability of precipi-

tation due to the reduction of the extreme or low-frequency

events are also detected for ANN, SAM, and SE through

the analysis.

2 Case study

2.1 Study area

In this study, the historical simulation outputs of eight

RCMs are used for the MME analysis. This paper makes a

comparison of the efficiency of the linear and nonlinear

ANN and FIS ensembling methodologies relative to the

individual raw RCM outputs regarding the replication of

the historical precipitation. For the analysis, the observed

and simulated daily total precipitation for 14

meteorological stations (MSs) throughout south and

southwestern Turkey including the Mediterranean coast

and its hinterland are used (Fig. 1). The MSs are selected

from different climatologic regions (i.e., coastal and inland

Mediterranean, inland Aegean, and Central Anatolian

regions) and major basins of Turkey to assess the potential

effect of spatial differences. The characteristics of these

MSs are given in Table 1.

2.2 Data

For the ensemble analysis, the daily precipitation data for

the closest grid to the MSs (see Table 1, the last column

gives the distance between MS and the center of the nearest

model grid) are extracted from the historic simulation

results of eight RCMs for the EUR-11 domain (with the

horizontal grid spacing of 0.11�) available from the

CORDEX database [61]. RCMs used in this study together

with their driving GCMs are given in Table 2. All of the

eight RCMs have daily historical simulation outputs for the

period between 1951 and 2005. The historical daily total

precipitation time series from 1951 to 2005 are extracted

for the relevant modeling grids by the use of the R code

developed by Kentel et al. [25].

The daily time series are converted to monthly mean

precipitation time series to be used in ensembling. These

will be referred to as RCM time series (RCMTS) from

hereafter. The observed daily total precipitation data for the

same historical period (1951 to 2005) from 14 meteoro-

logical stations operated by the Turkish State Meteoro-

logical Services are used as the reference data in this study.

The observed precipitation is used for the training of SE,

ANN, and FIS models and for the testing of the simulation

efficiency of the ensembled time series. For this purpose,

the observation data are initially screened through a quality

check (QC) process (see Fig. 2). In the QC, the observation

data are initially screened for continuous data gaps. The

months, that are identified to have more than 10 days of

missing records, are removed from the dataset. The

observed monthly mean precipitation time series is formed

by the use of the remaining months. As a second stage of

the QC, the data for the months with less than 0.1-mm

precipitation record outside the dry season raised an error

flag and are excluded from the data series as well. In the

study region, July, August, and September are the main dry

months during which monthly mean precipitation is likely

to drop to distinctly low levels or even to zero. Hence,

annual precipitation is mostly received during the

remaining months. Therefore, monthly mean precipitation

records of zero for the months outside of the dry season

raised an error flag. After the removal of the months with

long data gaps and monthly means with an error flag, the

final quality checked dataset (QCD) of the observed

Neural Computing and Applications

123



precipitation is obtained. The time series of observed pre-

cipitation generated using QCD will be referred to as the

observed time series (OTS) from hereafter. The OTS is

used for the application and testing of ensemble

methodologies.

3 Methodology

3.1 Formation of training and validation
datasets

The analysis includes a comparison of the efficiencies of

linear methodologies with the nonlinear ANN approach for

the ensembling of the climate simulation outputs to repli-

cate the observed precipitation. As the second stage, the

advantage of the use of a nonlinear model for ensembling is

further demonstrated by the FIS for the best-performing

combination of RCMTS as well. The use of linear and

nonlinear methodologies for ensembling of eight RCMTS

is based on a benchmark with the aforementioned OTS.

Training and validation datasets that are used in SE and

ANN methodologies are formed from the randomly

selected data points of eight RCMTS and OTS. The rele-

vant datasets include the same data points (from the same

grid point and the same point in time) of all time series. To

test the robustness of the linear and nonlinear approaches,

5-fold cross-validation (80% for training and 20% for

Fig. 1 The study region and the locations of meteorological stations
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validation) is used. Training and subsequent validation for

the ensembled datasets are done for each fold separately.

Log-transformation and normalization are applied to

datasets before ensembling to improve efficiency.

Ensembling is carried out for two different sets of

inputs. The first set is composed of all eight RCMTS (re-

ferred to as AllMs in Fig. 2). The second set is composed

of three best-performing RCMTS selected among available

eight RCMTS (referred to as SMs in Fig. 2). However, as

mentioned above, due to the multidimensional variability

of climate outputs, the selection of the best or most rep-

resentative model is a challenging task. Although there is

an ample number of metrics that provide an evaluation

from different aspects of climate features [28], no standard

set of performance metrics is defined for specific

assessment purposes [4]. Taylor diagram [53] is among the

most common means of depicting the relative performance

skill of models. Thus, in this study, Taylor diagrams are

used to select the three best-performing RCMTS (see

Fig. 2) for each MS.

As an example, Fig. 3 provides the Taylor diagram for

Usak MS (17188) comparing the OTS with eight RCMTS

for the entire period between 1951 and 2005. Each RCMTS

is represented by a symbol on the Taylor diagram. The

correlation coefficient, which is represented by the azi-

muthal angle, the centered RMSD, which is represented by

the distance from the OTS (i.e., the point marked with a

plus in a circle on the x-axis) to the symbol of the RCMTS,

and the standard deviation (SD), which is represented by

the radial distance from the origin, are plotted on the

Table 1 The characteristics of meteorological stations (MSs) used in this study

MS

ID*

MS name Elevation (m

ASL)

Latitude

(DD)

Longitude

(DD)

Distance to the sea

(km)

Distance to the center of the nearest RCM

grid (km)

17290 BODRUM 26 37.03 27.44 0 4.4

17296 FETHIYE 3 36.63 29.12 0 5.3

17320 ANAMUR 2 36.07 32.86 0 3.8

17340 MERSIN 7 36.78 34.6 0 4.8

17300 ANTALYA 64 36.91 30.8 6 2.4

17330 SILIFKE 10 36.38 33.94 7 3.7

17292 MUGLA 646 37.21 28.37 17 3.3

17238 BURDUR 957 37.72 30.29 100 5.6

17240 ISPARTA 997 37.78 30.57 100 5.6

17246 KARAMAN 1018 37.19 33.22 115 4.2

17244 KONYA 1031 37.98 32.57 165 2.2

17239 AKSEHIR 1002 38.37 31.43 170 4.3

17188 USAK 919 38.67 29.4 195 3.9

17190 AFYON 1034 38.74 30.56 205 5.6

*MS ID: Meteorological station ID used by Turkish State Meteorological Services

Table 2 Overview of RCMs used in this study

Driving GCM RCM Model ID*

Name Institution

CNRM-CM5 (CNRM-CERFACS) CCLM4-8–17 Climate Limited-area Modelling Community (CLM-Community) M1

CNRM-CM5 (CNRM-CERFACS) ALADIN53 Centre National de Recherches Météorologiques (CNRM) M2

EC-EARTH (ICHEC) CCLM4-8–17 Climate Limited-area Modelling Community (CLM-Community) M3

EC-EARTH (ICHEC) RACMO22E Royal Netherlands Meteorological Institute (KNMI) M4

EC-EARTH (ICHEC) HIRHAM5 Danish Meteorological Institute (DMI) M5

CM5A-MR (IPSL) WRF331F Institut Pierre-Simon Laplace (IPSL-INERIS) M6

HadGEM2-ES (MOHC) CCLM4-8–17 Climate Limited-area Modelling Community (CLM-Community) M7

HadGEM2-ES (MOHC) RACMO22E Royal Netherlands Meteorological Institute (KNMI) M8

*Climate model ID used in this study
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Fig. 2 Flowchart of the methodology
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Taylor diagram. The position of each symbol indicates how

similar that RCMTS and OTS are. Euclidean distance from

the OTS to the symbol of the RCMTS is calculated, and

three best-performing RCMs are identified as the models

having three shortest Euclidean distances. For Usak MS,

three best-performing RCMs are M4, M7, and M3. Table 3

gives three best-performing RCMs for each MS in the

descending order of simulation skills based on the corre-

sponding Taylor diagrams. In this study, two types of

MMEs (i.e., MME of all RCMs and MME of three best-

performing RCMs) are generated by using ANN, SE, and

SAM methods as shown in Fig. 2.

3.2 Artificial neural networks for ensembling

The ensembling process used to simulate monthly mean

precipitation values at a selected grid i using RCMTS at the

same grid using all RCMs (AllMs) or three selected RCMs

(SMs) can be mathematically represented as follows:

ANNAllMs
i;t ¼ f RCM1

i;t;RCM
2
i;t; . . .;RCM

8
i;t

� �
; 8i;8t ð1Þ

ANNSMs
i;t ¼ f RCM1

i;t;RCM
2
i;t;RCM

3
i;t

� �
; 8i; 8t ð2Þ

where ANNAllMs
i;t is the ANN ensemble generated using all

RCMs at grid i for month t, and RCM
j
i;t is the jth RCMs at

grid i for month t. When all models are used in generating

the ensemble, j ¼ 1; 2; . . .; 8. ANNSMs
i;t is the ANN ensemble

generated using three selected RCMs based on Taylor

diagrams at grid i for month t. For each MS, selected three

RCMs are given in Table 3. In this study, 14 MSs are used;

thus, i ¼ 1; 2; . . .; 14. The simulation period is from 1951 to

2005, but the months that could not pass the quality check

are eliminated, thus ensembles are calculated for t ¼
1; 2; . . .; T where T is at most 660.

As shown in Fig. 2, two ANN models—one using out-

puts of eight RCMs (i.e., eight input nodes) and the other

using outputs of three selected RCMs (i.e., three input

nodes) as inputs—are built for each MS. One hidden layer

with six and two hidden nodes for AllMs and SMs,

respectively, is used in all ANN models in this study. The

number of hidden nodes is selected after multiple trials to

avoid overfitting. The architecture for the ANN model built

for Anamur MS (17320) which uses all RCMs as inputs is

shown in Fig. 4. In this study, the sigmoid activation

function is used in all ANN models, and all data are scaled

Fig. 3 Taylor diagram of Usak

MS (17188)

Table 3 Selected models (SMs) for meteorological stations (MSs)

MS ID MS name SMs

17290 BODRUM M7 M3 M4

17296 FETHIYE M5 M4 M2

17320 ANAMUR M5 M4 M8

17340 MERSIN M4 M6 M5

17300 ANTALYA AIRPORT M2 M4 M6

17330 SILIFKE M5 M4 M6

17292 MUGLA M7 M3 M4

17238 BURDUR M5 M4 M8

17240 ISPARTA M4 M3 M7

17246 KARAMAN M5 M4 M8

17244 KONYA AIRPORT M5 M4 M8

17239 AKSEHIR M4 M3 M8

17188 USAK M4 M7 M3

17190 AFYON M4 M8 M5
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to the 0.1–0.9 range. The momentum, the learning rate, and

maximum iterations are identified through trial and error.

Various combinations of momentum and learning rates

from the ranges of 0.001–0.9 and 0.001–0.5, respectively,

are tested. Finally, the momentum and learning rates are

selected as 0.5 and 0.05, respectively. The maximum

number of iterations is set to 2000 for all ANN models.

Larger number of iterations have been tested; however, no

significant improvement is achieved when all cross-vali-

dation runs are considered.

3.3 Simple average of the models
for ensembling

SAM of all RCMs (Eq. 3) and three selected RCMs (Eq. 4)

are calculated based on the arithmetic average of the

anomalies simulated by the RCMs by the use of the fol-

lowing equations [11]:

SAMAllMs
i;t ¼ Oi þ

1

8

X8
j¼1

ðRCM j
i;t � RCM

j
i Þ; 8i; 8t ð3Þ

SAMSMs
i;t ¼ Oi þ

1

3

X3
j¼1

ðRCM j
i;t � RCM

j
i Þ; 8i; 8t ð4Þ

where SAMAllMs
i;t is the SAM ensemble generated using all

RCMs at grid i for month t, SAMSMs
i;t is the SAM ensemble

generated using three best-performing RCM outputs at grid

i for month t, RCM
j
i is the climatology determined by

RCMj, and Oi is the mean observation or observed cli-

matology value at grid i.

RCM
j
i ¼

1

T

XT
t¼1

RCM
j
i;t; 8i; 8j

Oi ¼
1

T

XT
t¼1

Oi;t; 8i

where Oi;t is the observed precipitation at grid i at month t.

3.4 Multiple linear regression for ensembling

The superensemble method suggested by Krishnamurti

et al. [30, 31] uses the MLR approach for ensembling based

on the following equations:

SEAllMs
i;t ¼ Oi þ

X8
j¼1

ajðRCM j
i;t � RCM

j
i Þ; 8i; 8t ð5Þ

SESMs
i;t ¼ Oi þ

X3
j¼1

ajðRCM j
i;t � RCM

j
i Þ; 8i; 8t ð6Þ

where SEAllMs
i;t is the SE generated using all RCMs at grid i

for month t, SESMs
i;t is the SE generated using three selected

RCMs at grid i for month t, and ai is the weight

of anomaly simulated by RCMj optimized for the training

period to minimize the squared difference between

observed and modeled precipitation at grid i based on the

conventional MLR. In order to enable benchmarking

between three methods, the same training and validation

datasets are used for all three ensemble approaches for each

fold.

4 Results and discussion

In the tables and figures given in this section, MSs are

sorted based on their proximity to the sea, in order to

observe the potential spatial effect. 5-fold validation is

used to test the performance of each approach (i.e., each

data point is used in one of the validation datasets). The

comparison of the performance ranges of ensembles with

the performance range of individual RCMs regarding five

validation datasets is given in Figs. 5 and 6 for SMs and

AllMs, respectively. The performance ranges in Figs. 5 and

6 represent the range of correlation (Pearson correlation

coefficient) values of each ensemble method (ANN, SE,

and SAM) with the observed for SMs and AllMs,

respectively.

As shown from Figs. 5 and 6, ensembling with ANN,

SE, or SAM improves the correlations for most of the

validation datasets. Moreover, more consistent estimates

are obtained from ensembling compared to the single

RCMs in terms of correlations. Better improvement is

achieved when all the models are used in the ensemble.

Although the model performances generally are better for

MSs closer to the sea, variation of the correlation of the

models varies regardless of spatial characteristics of the

MSs.

In the rest of this study, the ensembled time series (ETS)

is used to evaluate the ensemble performance of each

approach (i.e., ANN, SE, and SAM). The ETS is generated

by combining together the validation datasets of fivefold.

Fig. 4 ANN model architecture for Anamur MS (17320)
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The correlation, RMSD, and percent bias (PBIAS) values

of the best- and the worst-performing RCMs, the ETS

obtained from ANN, SE, and SAM approaches with

selected, and all models are given in Tables 4, 5, and 6,

respectively. Stations are listed according to their approx-

imate distances from the sea (see Table 3), and the best-

performing model for each station is given in bold.

As shown in Table 4, the ETS obtained from

ANN_AllMs generally resulted in the best correlations,

except for two stations (i.e., 17238 and 17240) for which

ANN_SMs, and for two other stations (i.e., 17340 and

17330) for which SAM_AllMs provided the best correla-

tions. The performances of both ANN models (selected and

all) are very similar to each other. For all stations, other

than 17238, 17239, and 17240, when all models are used,

correlations improved but less than 5%. On the other hand,

for SE, correlation values improved by more than 5% for

eight of the stations when all models are used instead of

three best-performing RCMs as inputs. The improvement is

more pronounced for SAM. When all models are used

instead of three selected models, correlations of 11 stations

improved by more than 5%. In fact, for 17340 and 17239,

the improvement was more than 20%. Thus, it can be

concluded that generally, performance in terms of corre-

lations is better when all models instead of the selected

three best-performing models are used as inputs and SAM

benefits the most from ensembling all available RCMs.

For correlation, the ETS generated using all models or

selected three models performs better than the best

RCMTS for all stations. As can be seen in the third and

fifth columns of Table 4, RCMTS has a wide range of

correlation performances. The difference in model perfor-

mance according to the atmospheric instability on local

scale is also reported by Baghanam et al. [3]. Thus, the

utilization of a single RCM for future precipitation pro-

jections is prone to high uncertainty. Moreover, stations

closer to the sea generally perform better compared to the

inland ones (i.e., correlations have a decreasing trend from

Fig. 5 Comparison of

correlation performances when

selected models (SMs) are used

as inputs

Fig. 6 Comparison of

correlation performances when

all models (AllMs) are used as

inputs
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the top to the bottom in Table 4). Milder climatologic

conditions experienced in Mediterranean coasts compared

to the inland Anatolia might be the reason for it. As shown

in Fig. 6, the performance of the ETS is influenced by the

performances of the RCMTS in the ensemble set. Hence,

using better-performing RCMs as inputs results in the ETS

having better performance in terms of correlations. Percent

improvements in correlation, when the ETS is evaluated

with respect to the best RCMTS, are given in columns 2, 3,

Table 4 Correlation values of

the best and the worst RCMTS

and the ETS obtained from

ANN, SE, and SAM approaches

Correlation

MS ID* RCMTS ETS

Best RCM Worst RCM ANN SE SAM

Model Value Model Value SMs AllMs SMs AllMs SMs AllMs

17290 M4 0.57 M1 0.25 0.64 0.67** 0.62 0.66 0.61 0.66

17296 M5 0.52 M2 0.16 0.60 0.62 0.57 0.61 0.54 0.61

17320 M5 0.53 M2 0.26 0.66 0.66 0.61 0.62 0.60 0.62

17340 M7 0.46 M2 -0.02 0.51 0.52 0.47 0.51 0.45 0.54

17300 M4 0.43 M6 0.19 0.54 0.56 0.51 0.55 0.48 0.55

17330 M8 0.45 M2 0.17 0.56 0.57 0.54 0.56 0.51 0.58

17292 M8 0.57 M2 0.30 0.61 0.66 0.61 0.64 0.59 0.65

17238 M8 0.37 M6 0.11 0.47 0.45 0.45 0.43 0.42 0.45

17240 M4 0.40 M2 0.15 0.47 0.46 0.43 0.47 0.46 0.45

17246 M7 0.42 M2 0.14 0.54 0.55 0.48 0.50 0.47 0.51

17244 M7 0.35 M2 0.07 0.46 0.48 0.44 0.47 0.44 0.46

17239 M7 0.35 M2 0.04 0.41 0.44 0.39 0.44 0.37 0.45

17188 M8 0.42 M2 -0.14 0.51 0.53 0.51 0.49 0.48 0.53

17190 M3 0.29 M2 0.12 0.39 0.40 0.36 0.40 0.37 0.40

*MSs are given in the order of proximity to the sea, **the best-performing model for each station is given

in bold

Table 5 RMSD values of the

best and the worst RCMTS and

the ETS obtained from the

ANN, SE, and SAM approaches

RMSD (mm)

MS ID* RCMTS ETS

Best RCM Worst RCM ANN SE SAM

Model Value Model Value SMs AllMs SMs AllMs SMs AllMs

17290 M4 2.26 M6 2.94 2.00 1.85** 1.97 1.94 1.99 1.89

17296 M5 2.76 M7 4.10 2.49 2.43 2.56 2.51 2.62 2.45

17320 M8 3.12 M7 3.86 2.68 2.66 2.79 2.81 2.81 2.75

17340 M4 2.25 M1 3.06 1.96 1.93 2.01 1.96 2.05 1.91

17300 M4 4.16 M7 6.71 3.79 3.67 3.84 3.79 3.91 3.70

17330 M5 2.15 M8 2.81 1.83 1.81 1.89 1.87 1.95 1.82

17292 M7 3.59 M6 6.53 3.13 2.93 3.09 3.05 3.13 2.96

17238 M4 1.11 M1 1.61 0.96 0.96 0.93 0.95 1.00 0.93

17240 M4 1.72 M2 3.12 1.32 1.32 1.34 1.31 1.41 1.31

17246 M8 0.86 M1 1.19 0.70 0.69 0.72 0.71 0.74 0.71

17244 M5 0.83 M2 1.27 0.67 0.66 0.69 0.67 0.72 0.68

17239 M4 1.44 M2 2.18 1.25 1.23 1.27 1.24 1.37 1.22

17188 M4 1.49 M2 2.31 1.09 1.07 1.09 1.11 1.20 1.07

17190 M4 0.96 M2 2.21 0.79 0.79 0.80 0.80 0.85 0.78

*MSs are given in the order of proximity to the sea, **the best-performing model for each station is given

in bold
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and 4 of Table 7 for ANN, SE, and SAM, respectively. Up

to 38% improvement is achieved due to ensembling.

Similar to correlations, the ETS obtained from

ANN_AllMs generally resulted in the best RMSD values

(see Table 5). For 17340, 17240, 17239, and 17190, either

SE or SAM with all models resulted in better RMSD val-

ues, while for 17238, SE_SMs provided the minimum

RMSD. The performances of both ANN models are very

similar to each other. Improvements in RMSD when all

models are used instead of selected three are less than 3%

for all stations, other than 17290, 17292, and 17300.

Similarly, for SE, improvements are less than 3% for all the

stations, and in fact for 17320, 17238, and 17188, SE_SMs

performed better than SE_AllMs. On the contrary,

improvement in RMSD is more than 5% for 12 stations

when SAM is used for ensembling. Thus, it can be

Table 6 PBIAS values of the

best and the worst RCMTS and

the ETS obtained from the

ANN, SE, and SAM approaches

PBIAS

MS ID* RCMTS ETS

Best RCM Worst RCM ANN SE SAM

Model Value Model Value SMs AllMs SMs AllMs SMs AllMs

17290 M5 4.07** M6 - 48.64 25.12 14.20 17.91 21.11 13.33 15.40

17296 M6 - 3.13 M7 - 47.57 18.30 15.11 19.71 22.84 21.57 18.56

17320 M1 - 0.06 M4 47.21 21.10 19.15 17.47 23.91 15.74 16.88

17340 M3 6.61 M6 45.79 20.77 19.85 21.27 20.72 15.27 19.47

17300 M3 - 3.81 M7 - 66.78 26.61 23.10 25.59 29.06 26.54 22.71

17330 M4 -0.37 M8 - 52.73 9.11 6.94 19.18 20.69 13.91 17.90

17292 M2 - 2.14 M6 - 100.89 23.48 17.03 21.14 22.10 13.48 18.63

17238 M2 - 7.05 M1 - 52.07 23.01 22.47 12.31 9.33 5.33 11.97

17240 M3 - 16.99 M6 - 121.52 20.37 17.64 12.05 9.11 1.39 12.54

17246 M6 0.40 M5 57.04 18.06 15.51 10.43 10.42 6.65 11.44

17244 M8 - 3.55 M5 24.21 -1.93 1.97 10.85 9.06 4.82 10.33

17239 M8 1.58 M2 - 34.38 13.28 13.48 14.21 10.03 4.83 13.03

17188 M4 - 6.73 M6 - 79.15 9.33 9.80 12.68 10.72 2.56 12.09

17190 M8 - 2.88 M2 - 116.00 12.56 11.72 9.87 7.16 4.80 10.34

*MSs are given in the order of proximity to the sea, **the best-performing model for each station is given

in bold

Table 7 Percent changes in

correlation, RMSD, and PBIAS

values of the ETS relative to the

best RCMTS

MS ID* Correlation RMSD PBIAS

ANN SE SAM ANN SE SAM ANN SE SAM

17290 17.5** 15.8 15.8 - 18.1 - 14.2 - 16.4 248.9 418.7 278.4

17296 19.2 17.3 17.3 - 12.0 - 9.1 - 11.2 382.7 629.7 493.0

17320 24.5 17.0 17.0 - 14.7 - 9.9 - 11.9 31816.7 39750.0 28033.3

17340 13.0 10.9 17.4 - 14.2 - 12.9 - 15.1 200.3 213.5 194.6

17300 30.2 27.9 27.9 - 11.8 - 8.9 - 11.1 506.3 662.7 496.1

17330 26.7 24.4 28.9 - 15.8 - 13.0 - 15.3 1775.7 5491.9 4737.8

17292 15.8 12.3 14.0 - 18.4 - 15.0 - 17.5 695.8 932.7 770.6

17238 21.6 16.2 21.6 - 13.5 - 14.4 - 16.2 218.7 32.3 69.8

17240 15.0 17.5 12.5 - 23.3 - 23.8 - 23.8 3.8 - 46.4 - 26.2

17246 31.0 19.0 21.4 - 19.8 - 17.4 - 17.4 3777.5 2505.0 2760.0

17244 37.1 34.3 31.4 - 20.5 - 19.3 - 18.1 - 44.5 155.2 191.0

17239 25.7 25.7 28.6 - 14.6 - 13.9 - 15.3 753.2 534.8 724.7

17188 26.2 16.7 26.2 - 28.2 - 25.5 - 28.2 45.6 59.3 79.6

17190 37.9 37.9 37.9 - 17.7 - 16.7 - 18.8 306.9 148.6 259.0

*MSs are given in the order of proximity to the sea, **improved values are given in bold
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concluded that generally, all methods perform better in

terms of RMSD when all models instead of the selected

three models are used as inputs, but SAM benefits the most

from ensembling a larger number of inputs.

For RMSD, the ETS generated using all models or

selected three models performs better than the best

RCMTS for all stations. Percent improvements in RMSD

(i.e., decrease in RMSD) when the ETS is evaluated with

respect to the best RCM are given in columns 5, 6, and 7 of

Table 7 for ANN, SE, and SAM, respectively. The

improvements in RMSD range between 9 and 28% when

the ETS is used instead of the best RCMTS.

As shown from Table 6, the bias correction performance

of ensembling is not as good as those of correlation and

RMSD. All ensemble results are in the range of best and

worst RCMTS performances for all stations. Thus, the ETS

performs better than some of RCMTS but generally not as

well as the best RCMTS. PBIAS values of the best RCMTS

are better than all the ETS for all the stations other than

17238, 17240, 17244, 17188, and 17190. For ANN, uti-

lization of all models compared to selected models

improves PBIAS values for all the stations other than

17239 and 17188, but not to the level of the best RCMTS.

For SE, PBIAS values improve when all models are used

for half of the stations. In contrast, PBIAS values are better

when selected models are used for all stations other than

17296 and 17300 for SAM. So, it can be concluded that

PBIAS values of the best RCMTS cannot be achieved with

either of the three ensembling methods with all or selected

models. Thus, when the goal is to obtain precipitation time

series with minimum bias, the best-performing RCMTS

should be preferred over the ETS when ensembling is

carried out using the procedures outlined in this study.

Percent deterioration in PBIAS when the ETS obtained

by using the better of the selected or all models is evaluated

with respect to the best RCMTS and is given in the last

three columns of Table 7. For most of the stations, higher

PBIAS values are obtained for the ETS compared to those

obtained for the best RCMTS. This outcome does not

support the literature where the multimodel ensemble is

reported to reduce model biases [30, 32, 54]. In this study,

we believe that the poor performance of ensembling for

PBIAS is partially due to the utilization of log-transformed

inputs. In order to test this hypothesis, the ETS is generated

for MS 17320 which has the worst PBIAS performance

(see Table 7) using only normalized RCMTS as inputs

(i.e., log-transformation is not applied to input data). AllMs

are used to generate the ETS, and the results are given in

Table 8. Log-transformation does not significantly affect

correlation and RMSD performances of ensembling.

However, PBIAS values decrease significantly, almost to

the level of the best-performing RCMTS, when log-trans-

formation is not used. Thus, when bias is the critical per-

formance criterion, it is beneficial to use RCMTS directly,

without log-transformation.

The superior results for simulation skills regarding

correlation and RMSD indicate the advantage of the use of

MME over single-model analysis for long-term climate

assessments. Furthermore, the MME obtained by the use of

the nonlinear ANN method has a relatively better perfor-

mance compared to the linear ensembling methods

regarding both MLR and simple ensemble averaging.

Hence, the improved representation skills by nonlinear

ANN over linear methods obtained as a result are in

agreement with the findings from a study by Krasnopolsky

and Lin [26] for the continental US. Krasnopolsky and Lin

[26] denote that nonlinear approaches provide better rep-

resentation for long-term simulations, and for precipitation

fields with high gradients and sharp, localized features for

which the linearity assumption is not applicable, and

therefore, ANN generates better skills compared to the

conventional linear methods.

To provide a visual comparison of RCMTS and ETS,

Taylor diagrams for all MSs are given in Fig. 7. The legend

is given at the bottom right corner of the figure. The out-

puts that are close to the reference/observed are the better-

performing ones. As shown from Fig. 7, RCMTS (marked

with gray circles) always has lower correlation and higher

RMSD values compared to those of the ETS as demon-

strated in Tables 4 and 5. However, improvement in cor-

relation and RMSD is maintained with ensembling at the

cost of losing variance (see normalized standard deviation

performances in Fig. 7).

To represent the performance of ensembling in terms of

reproducing the mean and variation of the OTS, the relative

Table 8 Effect of log-

transformation on ensemble

performance for Anamur MS

(17320)

Best RCM Worst RCM Log-transformed Without log-transformation

ANN SE SAM ANN SE SAM

Corr 0.53 0.26 0.66 0.62 0.62 0.64 0.62 0.61

RMSD 3.12 3.86 2.66 2.81 2.75 2.65 2.70 2.72

PBIAS - 0.06 47.21 19.15 23.91 16.88 - 0.33 - 0.56 - 0.29

cFig. 7 Taylor diagrams of RCMTS and the ETS obtained from ANN,

SE, and SAM for all MSs (legend and explanation of axis are

provided on the bottom right diagram)
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mean (i.e., the mean of RCMTS or ETS divided by the

mean of the OTS) versus the relative standard deviation

(i.e., the standard deviation of RCMTS or ETS divided by

the standard deviation of the OTS) plots are given in Fig. 8.

The relative mean values of the ETS range between 0.75

and 1.00, while relative standard deviations are around 0.5

for all MSs. On the other hand, the relative standard

deviations of RCMTS are between 0.5 and 1.5, while the

relative means of RCMTS are highly scattered (especially

for MS 17240 and 17190). One noteworthy drawback of

ensembling is that it causes time series to accumulate

around the mean as shown in Fig. 8. Moreover, the stan-

dard deviation values of the ETS are significantly lower

than those of the RCMTS in comparison with the OTS (see

Figs. 7 and 8). Thus, it can be concluded that through

ensembling, higher variations in RCMTS are mapped into

ETS with lower variations.

The ETS obtained by ANN_AllMs for 17290 which has

a very good performance (i.e., correlation = 0.67,

RMSD = 1.85 mm, and PBIAS = 14.2) is given in Fig. 9.

Eight RCMTS used in ensembling and the OTS are marked

with gray and dashed black lines, respectively. As shown in

Fig. 9, despite following the general trend, the ETS

obtained by ANN_AllMs does not show the variation that

exists in the OTS. For MS 17290, the relative standard

deviations for four RCMTS (M1, M2, M3, and M7) have

similar values to those of the ETS, but three RCMTS (M4,

M5, and M8) have normalized standard deviations very

close to the OTS (see Fig. 8). Although their correlation

and RMSD values are lower than those of the ETS, these

three RCMTS which have higher normalized standard

deviations represent the variability in observed precipita-

tion better. Hence, a set of individual climate models with

different mechanisms provides a better representation of

the potential variability in observations. The cumulative

distribution functions of the ETS obtained from

ANN_AllMs, observations, and RCMTS demonstrate this

behavior (Fig. 10). As shown in Fig. 10, the cumulative

distribution functions of three RCMTS (M4, M5, and M8)

are more similar to that of the OTS compared to the

ANN_AllMs for MS 17290. However, as reported in

Mascaro et al. [36], the performance skills of RCMs in

capturing the variation of climatological precipitation pat-

terns at small temporal scales are limited. Hence, the use of

a single model for the assessment may cause higher biases

in evaluations due to unconsidered uncertainties, especially

for regions having complex spatial characteristics like the

Mediterranean region. Given that, ensembled time series

can be considered to be particularly useful in assessment

when evaluated in integration with the likely ranges

including relatively low frequency and/or extreme events

bFig. 8 The relative mean versus relative standard deviation of

RCMTS and the ETS obtained from ANN_AllMs, SE_AllMs, and

SAM_AllMs for all MSs (legend and explanation of axis are provided

on the bottom right diagram)

Fig. 9 ETS obtained from

ANN_AllMs, observations, and

eight input RCMs for Bodrum

MS (17290)

Fig. 10 Cumulative distribution functions for the ETS obtained from

ANN_AllMs, observations, and eight input RCMs for Bodrum MS

(17290)
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identified through a large ensemble set of individual

models with diverse approaches or assumptions.

Providing more consistent estimates, ensembling is

advisable for station simulation [58]. Ensembling, on the

other hand, improves correlation and RMSD performances

at the cost of reducing the variability in the precipitation.

Thus, it can be concluded that in the estimation of the total

depth/volume of precipitation over a long period of time,

utilization of ensembled time series will be beneficial.

However, when the goal is to select extreme precipitations

to be used in design discharge calculations of water

structures, peak values of individual RCMs will be more

conservative, thus, may be better preferred.

It is shown that the nonlinear ANN approach resulted in

improved performances in terms of correlations and

RMSDs (Tables 4 and 5) for ensembling for most of MSs.

As a final analysis, FIS which is another data-driven

method is used for ensembling to investigate the added

benefit of nonlinear approaches. FIS models using all

RCMs (FIS_AllMs) as inputs are built for each MS, and the

performances of two nonlinear approaches are compared in

terms of correlation, RMSD, and PBIAS. In this study,

Takagi–Sugeno type FISs are constructed, and fuzzy rules

are identified via subtractive clustering. For each MS, 400

different FIS models with various cluster radii and numbers

of cluster centers are constructed by using training data,

and the best-performing model is selected according to the

performance of FIS for validation data (e.g., for fivefold

validation, 80–20 training-validation ratio is used). Once

the best-performing model is selected for the first fold, the

predictions of other folds are obtained by using the

parameters of the selected model to obtain ETS. The reader

may refer to Mesta et al. [38] for details about FIS mod-

eling. The comparison of FIS with ANN is presented in

Fig. 11, and the information about the parameters of FIS is

given in Appendix A. Figure 11 shows that the perfor-

mances of ANN_AllMs and FIS_AllMs are almost the

same for all MS in terms of correlations and RMSDs.

Fig. 11 Comparison of the performances of ANN_AllMs and FIS_AllMs in terms of correlation, RMSD, and PBIAS
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However, ANN_AllMs performs slightly better for stations

17244 and 17246 in terms of correlation. On the other

hand, although the PBIAS values obtained from

ANN_AllMs and FIS_AllMs for MS significantly differ

from each other, both models underestimate the precipita-

tion for all MS according to the PBIAS measure. To

summarize, both nonlinear approaches, ANN and FIS,

provided very similar performances in terms of correlations

and RMSDs which are better than those of linear models

for almost all the MSs.

5 Summary and main findings of the study

The objective of this study is to examine the effect of the

multimodel ensembling using linear and nonlinear

approaches on the precipitation simulations for a study

region in south and southwestern Turkey with complex

climatic features. In the analysis, three ensembling

approaches, namely, SAM, SE, and ANN, are applied by

the use of the historical simulation outputs of eight RCMs

from the CORDEX database. Long-term monthly precipi-

tation time series obtained from ground-based precipitation

observations from fourteen meteorological stations is used

as the benchmark. This study provides a comparison of the

improvement in replication skills of historical precipitation

simulations from individual RCMs by the use of linear and

nonlinear MME methods. The main findings of the study

are as follows:

• The analysis results show that the overall performance

of the ensembled time series is better compared to

individual RCMs. Generally, stations in the coastal strip

have better-performing RCMs, thus ensembling works

better for these stations compared to the inland ones.

• ANN generally provided the best performance among

the three ensembling methodologies, particularly

regarding the correlation and RMSD values. Addition-

ally, it is seen to perform better when all RCMTS are

used as inputs instead of the three best-performing

RCMTS.

• Analysis of the individual RCMTS in a multimodel

analysis generates a wide range of correlations and

RMSD, hence, high uncertainty, however, the use of

multimodel ensembling reduces the model uncertainty.

On the other hand, PBIAS values for MME are seen to

be higher than the value for the best individual model. It

is observed that bias reduction, almost to the level of

the best RCMTS performance, is achieved when input

time series is directly used (i.e., without log-transfor-

mation) in ensembling.

• Despite the advantages of reducing uncertainty and

improvement in correlation and RMSD values, ensem-

bling is verified to increase the simulation performance

at the cost of reducing the variability in the precipita-

tion. It should be realized that extreme events are

poorly represented in the ensembled time series, and

this may result in the inefficient design of various water

structures such as spillways and storm water drainage

systems that are based on high return period events.

Thus, it can be concluded that ensembling is more

useful in the estimation of the total depth/volume of

precipitation over long time periods, rather than for the

simulation of extreme precipitations.

6 Conclusions

The main conclusions of the study are as follows:

• Ensembled monthly mean precipitation time series of

RCM outputs has higher correlations and lower RMSDs

with ground-based observations compared to single

RCM outputs, and thus should be preferred in climate

impact analysis.

• Nonlinear models such as ANN or FIS that as well have

linear modeling capabilities should be preferred for

ensembling instead of linear models such as SE and

SAM.

• When the goal is to assess the impacts of extreme

precipitation, all available single RCM outputs should

be used instead of ensembled time series as this will

lead to a better understanding of possible variability.

The use of nonlinear methods such as ANN and FIS for

ensembling will lead to better quantification of climate

change impacts and in return better design of new

hydraulic structures and development of suitable adapta-

tion measures. Of course, the above-stated conclusions are

derived based on the study conducted in south and south-

western Turkey. Confirmation of these results in other parts

of the world is a matter for future work.

Appendix 1: The parameters of fuzzy
inference system (FIS)

See Table 9.
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