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Abstract
The COVID-19 pandemic has profoundly impacted healthcare systems and economies worldwide, leading to the imple-

mentation of travel restrictions and social measures. Efforts such as vaccination campaigns, testing, and surveillance have

played a crucial role in containing the spread of the virus and safeguarding public health. There needs to be more research

exploring the transmission dynamics of COVID-19, particularly within European nations. Therefore, the primary objective

of this research was to examine the spread patterns of COVID-19 across various European countries. Doing so makes it

possible to implement preventive measures, allocate resources, and optimize treatment strategies based on projected case

and mortality rates. For this purpose, a hybrid prediction model combining CNN and LSTM models was developed. The

performance of this hybrid model was compared against several other models, including CNN, k-NN, LR, LSTM, MLP,

RF, SVM, and XGBoost. The empirical findings revealed that the CNN-LSTM hybrid model exhibited superior perfor-

mance compared to alternative models in effectively predicting the transmission of COVID-19 within European nations.

Furthermore, examining the peak of case and death dates provided insights into the dynamics of COVID-19 transmission

among European countries. Chord diagrams were drawn to analyze the inter-country transmission patterns of COVID-19

over 5-day and 14-day intervals.
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1 Introduction

The COVID-19 pandemic affects almost every field,

including healthcare, the economy, management, supply

chain, manufacturing, and education [1, 2]. Immediately

many restrictions were introduced worldwide, such as a

curfew, mask requirement, and suspension of international

and domestic flights [3]. The COVID-19 virus is spread by

droplet contact with a contaminated surface or infected

individual [4]. The biggest challenge in controlling the

spread of the virus is that infected people with no

symptoms can be contagious, and the virus can spread from

them to other people [5]. Some studies have been con-

ducted to obtain the virus’s genetic structure [6]. However,

the rapid and unpredictable spread of the virus has placed a

heavy burden on healthcare systems [7]. As of December

15, 2021, there were about 500 million confirmed cases and

approximately 6 million deaths [7, 8]. Capacity planning

should be performed for hospital demand changes, such as

bed availability and the number of personal protective

equipment [9, 10]. Predicting the spread of the pandemic is

vital in the fight against COVID-19.

Pinter et al. [11] proposed a hybrid machine learning

model for COVID-19 case prediction in Hungary. This

hybrid model includes the combination of Support Vector

Machine (SVM), ARIMA, and Long-Short Term Memory

(LSTM). The experimental results demonstrated that the

proposed hybrid machine learning model effectively pre-

dicts COVID-19 cases.

Babukarthik et al. [12] presented a genetic CNN model

for predicting COVID-19. The developed model includes a
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learning process using genetic algorithm. In this process,

the model weights are optimized by the genetic algorithm,

and the structural features of the model are determined to

provide the best performance. The study evaluates the

accuracy and performance of the COVID-19 predictions

using the GDCNN model. The model makes predictions

using data features such as the number of COVID-19 cases,

death rates, and test results. Predictions obtained are

evaluated by comparing them with actual data. Experi-

mental results demonstrated that the GDCNN model

effectively predicts COVID-19 and provides higher accu-

racy than traditional methods.

Zoabi et al. [13] introduced a model utilizing machine

learning techniques to diagnose COVID-19 through

symptom analysis. Algorithms predict the likelihood of a

patient having COVID-19 by analyzing symptoms. These

predictions are validated on the samples in the training

dataset, and performance evaluation is made. Algorithms

estimate the probability of patients having COVID-19

using the combination of symptoms.

Zhao et al. [14] aimed to diagnose COVID-19 by

developing a deep learning model based on computed

tomography (CT) images and focused on the knowledge

that certain features in the lungs of COVID-19 patients

differ from normal lung images. The deep learning model

detects these differences and differentiates COVID-19

from other respiratory diseases. Experimental results show

that the developed model recognizes COVID-19 with high

accuracy.

Ismael and Şengür [15] proposed a deep learning-based

approach for detecting COVID-19 using chest X-ray ima-

ges. The study used a dataset containing both positive and

negative cases. Deep learning models have been used to

diagnose COVID-19 by identifying and analyzing patterns

in these images. Experimental results showed that deep

learning models recognize COVID-19 with high accuracy.

Alassafi et al. [16] conducted a comparative analysis of

deep learning methods to perform time series prediction of

the COVID-19 outbreak. The study used a dataset con-

taining various indicators such as infection numbers,

number of hospital admissions, and death rates. Prediction

models were created using LSTM and Recurrent Neural

Network (RNN) models. Experimental results demon-

strated that LSTM has 98.58% accuracy.

Al-Waisy et al. [17] presented a hybrid model for

detecting COVID-19 in chest X-ray images. The study

aims to develop a model that will help diagnose COVID-19

by using imaging methods such as chest radiography. The

dataset used includes images from positive, negative, and

normal breasts. Then, a hybrid model, COVID-CheXNet, a

combination of deep learning algorithms, was created.

CNN is used to extract features from images, while LVQ is

used to identify the COVID-19 virus using these features.

Experimental results show that COVID-CheXNet effec-

tively detects COVID-19 in chest X-ray images. Experi-

mental results showed that the developed model has high

accuracy and sensitivity. In addition, the model minimizes

false positive results with its ability to distinguish between

normal and COVID-19 negative images.

Aslam and Biswas [18] discuss using machine learning

methods to study COVID-19 death cases. Researchers try

to identify factors that affect deaths by analyzing a large

data set. Using machine learning algorithms, it evaluates

data such as patients’ demographics, medical history, and

symptoms and builds a model to predict the risk of death.

The results show that machine learning methods are

effective in analyzing COVID-19 death cases and can be

used to develop health policies and natural resources.

The motivation of this study is to predict future spread

patterns of epidemics such as COVID-19, which have

profoundly affected the health systems and economies of

countries around the world. Taking preventive measures

and planning health services throughout epidemics is pos-

sible. By determining the spread patterns of epidemics such

as COVID-19, resource allocations can be optimized,

measures can be taken to protect public health, and eco-

nomic strategies can be determined.

This study aims to predict the number of cases and

deaths in the top 20 European countries with the greatest

caseload. A hybrid prediction model combining CNN and

LSTM models was developed and compared extensively

with CNN, eXtreme Gradient Boosting (XGBoost), Mul-

tilayer Perceptron (MLP), Linear Regression (LR),

k-Nearest Neighbors (k-NN), SVM, Random Forest (RF),

LSTM. The performance of the models was assessed using

R-Squared (R2), Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), and Mean Squared Error (MSE)

metrics. In addition, the dates of the highest cases and

deaths were used to assess the transmission dynamics of

COVID-19 among European countries.

This paper offers the following significant contributions:

• A prediction model based on the combination of CNN

and LSTM was developed to predict the spread of

COVID-19 in Europe.

• The developed CNN-LSTM model was compared with

CNN, k-NN, LR, LSTM, MLP, RF, SVM, and

XGBoost.

• Chord diagrams were drawn to analyze the inter-

country transmission patterns of COVID-19 over 5-day

and 14-day intervals.
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2 Material and method

Time series analysis is a statistical method in which data is

organized and analyzed as a time-varying series [19]. This

analysis is used to understand data patterns, trends, and

regularities measured or recorded over time. Time series

analysis is widely used in many fields, such as medicine,

economics, finance, meteorology, and marketing. Deep

learning methods in time series analysis have become very

popular recently. Deep learning is a powerful artificial

intelligence approach that can perform automatic feature

extraction in complex and large data sets and capture

relationships over time [18]. Deep learning methods pro-

vide automatic extraction of features, the capture of non-

linear relationships, scalability, and long-term forecasting

capability in time series analysis.

2.1 Prediction models

k-NN makes predictions for a sample based on the distance

between the sample and its Neighbors [20]. The Euclidean

distance can be used to calculate the distance between any

two points in multi-dimensional space [21]. k-NN requires

large memory for storing the entire dataset for prediction.

LR is the most popular multivariable method used in

many different application areas. LR analyzes the rela-

tionships between variables in the data set and makes

predictions. LR predicts the value of dependent variables

using a linear equation [22]. RF creates an ensemble model

by combining multiple decision trees. Different sub-data-

sets are created from the dataset by random sampling

method. A decision tree is created and trained on each sub-

dataset. When constructing decision trees, a random subset

of features is chosen at each node, which is used to

determine the best split point [23, 24]. SVM creates a

decision class to classify data points and aims to best dis-

tinguish this class with maximum marginal decomposition

[25]. The basic idea of SVM is to find a hyperplane that

best separates the classes while representing the data points

in a feature space. This hyperplane determines a decision

class that provides the best possible classification of data

points [26].

XGBoost is a tree-based learning algorithm that makes

predictions using decision trees [27]. Combining multiple

weak tree models reduces errors and creates a more robust

prediction model. This algorithm can be used in various

tasks, such as classification and regression [28]. MLP is

one of the most basic and widely used types of artificial

neural networks [29]. MLP is a feedforward neural network

model with at least one hidden layer. Neurons in each layer

receive weighted inputs from nodes in the previous layer,

apply an activation function, and produce outputs [30].

CNN is a deep learning model that is especially effec-

tive in the image and visual data processing problems [31].

CNNs have a particular architecture that can better capture

the structure and properties of the data. The convolution

layer takes an image or a feature map as input and extracts

the feature maps using the convolution process [32]. The

activation layer provides non-linearity learning of the

model by using activation functions such as Sigmoid,

ReLU, and tanh. The pooling layer is used to summarize

the outputs of the convolution layer and reduce its size. The

fully connected layer provides a unified rendering of fea-

tures from previous layers [33, 34].

LSTM is mainly used in processing data with sequential

structure, such as time series data or language [35]. LSTM

can learn longer-term dependencies than RNNs because it

can store information from previous timesteps [36]. This is

achieved by the cell state and gate mechanisms in the

LSTM’s buffer. Cell state is the component that represents

the memory of LSTM and is used to store information. The

cell state is updated at each time step and can preserve

information from previous steps [37]. Forget gate controls

what information from the cell state needs to be remem-

bered. The input gate controls how new incoming infor-

mation is added to the cell state. The output gate

determines the output from the cell state [38, 39].

2.2 The developed CNN-LSTM-based prediction
model

The sliding window method, which is used to transform

time series problems into supervised learning problems,

divides the time series into small time steps and predicts

the target value for each time step. The sliding window

method transforms the time series into data points con-

taining an output value and one or more input properties, as

shown in Fig. 1. This transformation can predict future

values using historical data from the time series [40].

Fig. 1 The sliding window method
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Data pre-processing has been performed for missing and

erroneous data. The size of the sliding window was

selected as 3. In this manner, the input to the sliding

window consists of observational data from 3 consecutive

time steps, while the output comprises the data from the 4th

time step. Min–Max normalization was used to scale the

dataset. Min–Max normalization is a scaling method used

to transform the values of the data set into a particular

range. This method converts the values of the dataset from

the original range to the range [0, 1]. Min–Max normal-

ization converts each value in the data set into a propor-

tional value between the minimum and maximum values of

the original value. This preserves the distribution of each

value in the data set, making the values comparable [41].

The dataset was split, allocating 70% for the train set

and 30% for the test set. 10% of the train set was split for

validation. The validation data played a crucial role in

optimizing the model parameters. Grid search was used for

hyperparameter tuning.

Walk-forward validation is used to evaluate time series

prediction models, as seen in Fig. 2. In this method, time

series data is used sequentially from a specific starting

point, and training and testing of the model are performed

at each time step. Beginning from the starting point, the

data set is progressively divided into training and test sets.

A data window size is taken from the starting point

determined in the first step and is used as a training set.

Then, the new data point from the next time step is added

to the test set, and the model’s performance is evaluated on

this data [42]. Walk-forward validation is shown in Fig. 2.

The CNN-LSTM model was developed to capture time

and spatial characteristics of time series data. CNN was

used to detect local structures of data over time. The LSTM

was used to model the long-term dependencies of the time

series. The CNN-LSTM model consists of interconnected

CNN layers and successive LSTM layers, as seen in Fig. 3.

CNN layers perform convolution operations to capture

local features in the time series. LSTM layers are used to

model long-term dependencies. The model has an output

layer.

The dataset is trained on the generated CNN-LSTM

model. In this step, the model’s hyperparameters are

determined, and the loss function and the optimizer are

selected. The model learns to predict target outputs based

on input data in the training process. The number of con-

volution layers, kernel size, activation function, number of

filters of convolution layers, and pooling size parameters

were optimized for CNN. Hidden unit number, cell num-

ber, epoch number, dropout rate, and activation function

parameters were optimized for LSTM.

2.3 Dataset

In this study, official COVID-19 statistics from the World

Health Organization (WHO) panel were used as a dataset.

The dataset consists of eight columns:

• Date The date or date range in which the data was

recorded.

• Country The name of the country to which the data

relates.

• Country Code A standard code for the country.

• Region The country’s regional location or continent

name.

• New Cases Reported new cases to date.

• Total Cases Reported total cases to date.

• New Deaths Reported new deaths to date.

• Total Deaths Reported total deaths to date.

The applied models were tested using data from 20

countries, with the highest cases among European coun-

tries. Figures 4 and 5 show the total number of cases and

deaths of the 20 countries with the highest number of cases

in Europe until April 2, 2022. Figures 4 and 5 present the

countries’ total number of cases and deaths comparatively.

As seen in Fig. 4, the experimental studies were carried out

for the top 20 countries.

As shown in Fig. 4, France stands out with the highest

number of cases, reaching 25,068,545. After France,

Poland has a higher death toll than any other European

country. Finland, Belarus, and Slovenia are countries with

less than one million deaths.

Figure 5 shows the cumulative number of deaths in the

top 20 countries.

Figure 5 shows France has the highest death toll, with

139,272 deaths. Poland and Romania have a higher death

toll than any other European country. Belarus, Ireland, and

Slovenia reported the lowest number of deaths.

2.4 The evaluation metrics

MSE, RMSE, MAE, and R2 metrics are commonly used to

evaluate the regression models. MSE measures how far the

predicted values are from the actual values. It is frequently

used, especially in regression analysis and evaluating the

performance of machine learning models. As seen in Eq. 1,

MSE squares the difference between the estimated and

actual values, sums these differences, and divides them by

the number of observations to obtain the mean value.

Train

Validation

Remaining data

Fig. 2 Walk forward validation
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MSE ¼ 1

n

Xn

i¼1

ðy� ŷÞ2 ð1Þ

here n denotes the total sample size. ŷ represents the pre-

dicted values. y represents the true values. The RMSE

measures the difference between the true and the predicted

values, making the magnitude of errors more visually

understandable. Like the MSE, the RMSE is employed to

assess the proximity of the predicted values to the actual

values. The value of the RMSE indicates the average

amount of error to the true values, as seen in Eq. 2, and a

lower RMSE value indicates better forecasting

performance.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðy� ŷÞ2
s

ð2Þ

MAE is used to measure how far the predicted values are,

on average, from the true values, as seen in Eq. 3.

MAE ¼ 1

n

Xn

i¼1

y� ŷj j ð3Þ

R2 as seen in Eq. 4, expresses how much of the indepen-

dent variables explain the variance of the dependent

variable.

R2 ¼ 1�
P

ðy� ŷÞ2

ðy� yÞ2
ð4Þ

Fig. 3 The developed CNN-LSTM model
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Fig. 4 Top 20 countries with the highest number of cases in Europe
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here ŷ represents the predicted value and y represents the

mean of y.

3 The experimental results

To comprehensively evaluate the developed model, a

comparative analysis is conducted against CNN, k-NN,

LR, LSTM, MLP, RF, XGBoost, and SVM models.

3.1 The prediction of COVID-19 spread

This section provides the findings of experimental inves-

tigations to predict the incidence of cases and fatalities in

European nations. Experimental studies were carried out

according to each model’s MSE, RMSE, R2, and MAE.

The experimental results for predicting the case count,

assessed through the MSE metric, are presented in Table 1.

Table 1 demonstrates that the CNN-LSTM-based model

outperforms other models regarding MSE values. Follow-

ing the developed model, LSTM, MLP, and CNN exhibit

more favorable outcomes than the other models.

The experimental results for predicting the case count,

assessed through the RMSE metric, are presented in

Table 2.

Table 2 demonstrates that the CNN-LSTM-based model

outperforms other models regarding RMSE values. Fol-

lowing the developed model, LSTM, MLP, and CNN

exhibit more favorable outcomes than the other models.

The experimental results for predicting the case count,

assessed through the MAE metric, are presented in

Table 3.

Table 3 demonstrates that the CNN-LSTM-based model

outperforms other models regarding MAE values. Fol-

lowing the developed model, LSTM, MLP, and CNN

exhibit more favorable outcomes than the other models.

The experimental results for predicting the case count,

assessed through the R2 metric, are presented in Table 4

and Fig. 6.

Table 4 demonstrates that the CNN-LSTM-based model

outperforms other models regarding R2 values. Following

the developed model, LSTM, MLP, and CNN exhibit more

favorable outcomes than the other models.

Figure 6 displays the experimental results for R2 values.

The experimental results for predicting the death count,

assessed through the MSE metric, are presented in Table 5.

Table 5 demonstrates that the CNN-LSTM-based model

outperforms other models regarding MSE values. Follow-

ing the developed model, LSTM, MLP, and CNN exhibit

more favorable outcomes than the other models.

The experimental outcomes for predicting the death

count, assessed through the RMSE metric, are presented in

Table 6.

Table 6 demonstrates that the CNN-LSTM-based model

outperforms other models regarding RMSE values. Fol-

lowing the developed model, LSTM, MLP, and CNN

exhibit more favorable outcomes than the other models.
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Fig. 5 Total number of deaths for the top 20 countries
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Table 1 Results of the MSE for cases prediction (MSE*104)

Country k-NN LR RF SVR XGB MLP CNN LSTM CNN-LSTM

FR 114,498,201 3,226,323 8,574,886 4,154,520 11,323,782 3,204,442 2,493,307 3,147,843 2,128,603

PL 35550.71 13132.98 34331.14 13142.01 37899.88 11556.20 21384.07 11043.99 9450.04

AU 61288.85 25593.36 44157.52 26883.85 27123.30 24428.13 30821.93 20121.16 16653.35

CZ 56591.73 33571.11 85466.83 34206.14 56424.87 27776.04 27947.45 28077.80 26495.17

PT 165761.45 20610.02 172023.28 23671.37 155080.04 22237.09 24670.17 23366.30 10968.90

CH 93005.03 27261.55 116349.11 34531.28 89029.22 26993.56 27838.67 26903.31 26358.41

DK 197352.62 18340.11 193693.05 16356.58 200475.49 12209.21 13893.80 12190.31 12170.00

GR 36271.54 14218.14 35188.41 30761.41 34827.96 14556.76 14763.31 14219.14 11334.98

RO 41751.15 8829.13 41783.42 9970.95 45597.03 6955.01 11144.57 6545.60 6955.01

SK 21569.62 5070.55 22128.52 6931.80 22375.20 3793.65 5930.79 3569.29 2693.77

RS 8678.59 882.39 7855.22 930.70 8149.90 1099.57 1566.97 794.81 699.68

HU 40754.88 95052.32 49908.01 101896.11 43227.45 22331.55 76561.37 16435.31 16140.86

IE 11942.26 4660.59 11754.33 4589.96 13551.41 4370.72 5341.64 4321.43 4254.24

NO 46491.58 8660.57 43838.02 25871.59 56457.95 6099.43 9858.28 4933.51 3919.08

BG 3498.49 2003.68 4088.15 2203.44 4170.36 1410.49 2186.60 1234.08 630.13

HR 5056.55 3158.15 5334.13 3250.93 4641.38 3107.56 2999.92 3016.63 1742.12

LT 6647.87 865.26 5288.48 1023.23 6410.78 860.16 1289.03 860.16 606.82

SI 10108.85 3587.75 9667.38 3744.48 9875.63 3257.74 2816.93 3196.66 2358.71

BY 2137.58 593.69 2215.78 478.98 2132.56 492.62 610.36 460.94 403.10

FI 12568.56 1748.60 12453.43 4513.81 12580.46 1457.44 2035.76 1074.49 768.39

Bold values indicate the best of the compared results

Table 2 Results of the RMSE for cases prediction

Country k-NN LR RF SVR XGB MLP CNN LSTM CNN-LSTM

FR 107003.83 56800.73 92600.67 64455.56 106413.26 56607.79 49933.02 56105.63 46136.78

PL 5962.44 3623.94 5859.27 3625.19 6156.28 3399.44 4624.29 3323.25 3074.09

AU 7828.72 5058.98 6645.11 5184.96 5208.00 4942.48 5551.75 4485.66 4080.85

CZ 7522.74 5794.05 9244.82 5848.60 7511.64 5270.29 5286.53 5298.84 5147.34

PT 12874.83 4539.82 13115.76 4865.32 12453.11 4715.62 4966.90 4833.87 3311.93

CH 9643.91 5221.26 10786.52 5876.33 9435.53 5195.53 5276.23 5186.84 5134.04

DK 14048.22 4282.53 13917.36 4044.32 14158.93 3494.16 3727.43 3491.46 3488.55

GR 6022.58 3770.69 5931.98 5546.29 5901.52 3815.33 3842.30 3770.82 3366.74

RO 6461.51 2971.38 6464.00 3157.68 6752.55 2637.23 3338.34 2558.43 2637.23

SK 4644.31 2251.78 4704.09 2632.83 4730.24 1947.73 2435.32 1889.25 1641.27

RS 2945.94 939.36 2802.71 964.73 2854.80 1048.60 1251.79 891.52 836.47

HU 6383.95 9749.47 7064.56 10094.36 6574.75 4725.62 8749.93 4054.04 4017.57

IE 3455.75 2158.84 3428.45 2142.41 3681.22 2090.62 2311.19 2078.80 2062.58

NO 6818.47 2942.88 6621.02 5086.41 7513.85 2469.70 3139.79 2221.15 1979.66

BG 1870.42 1415.51 2021.91 1484.39 2042.14 1187.64 1478.71 1110.89 793.80

HR 2248.67 1777.12 2309.57 1803.03 2154.38 1762.82 1732.02 1736.84 1319.89

LT 2578.34 930.19 2299.67 1011.55 2531.95 927.45 1135.35 927.45 778.98

SI 3179.44 1894.13 3109.24 1935.06 3142.55 1804.92 1678.37 1787.92 1535.81

BY 1462.04 770.51 1488.55 692.08 1460.33 701.87 781.25 678.92 634.90

FI 3545.21 1322.35 3528.94 2124.57 3546.89 1207.24 1426.80 1036.57 876.58

Bold values indicate the best of the compared results
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Table 3 Results of the MAE for cases prediction

Country k-NN LR RF SVR XGB MLP CNN LSTM CNN-LSTM

FR 52661.46 28825.11 40072.51 32337.30 51840.43 28830.23 25973.59 29205.45 21748.66

PL 3041.13 2285.45 3153.92 2403.89 3234.84 2105.07 2800.44 2060.52 1947.70

AU 4591.49 3191.04 3360.87 3260.09 4368.52 2915.52 3219.64 2301.82 2002.60

CZ 3537.84 2940.08 5338.05 3018.48 3572.38 2571.78 3079.16 2880.07 2773.69

PT 5768.33 2363.84 6030.71 2453.80 5725.82 2901.69 2603.04 3008.28 1538.50

CH 4763.22 2859.87 6095.45 2831.61 4668.04 2997.99 3031.54 2830.57 2812.46

DK 6649.67 2615.23 6535.63 2087.47 6748.05 1787.09 1939.02 1764.12 1755.34

GR 3873.90 2190.98 3795.76 3384.47 3759.50 2194.78 2221.78 2186.69 1989.55

RO 3105.88 1538.47 3120.38 1589.23 3278.30 1366.68 1692.91 1133.21 1366.68

SK 2362.42 1467.80 2507.06 1718.62 2524.02 1230.82 1609.15 1111.66 901.21

RS 1398.87 610.27 1354.13 593.21 1369.25 665.63 785.53 574.34 499.54

HU 3414.03 5432.42 3473.61 5652.95 3329.31 2927.90 4956.28 2245.37 2150.06

IE 1881.69 1254.20 1907.67 1264.89 2110.93 1192.60 1372.33 1229.16 1204.81

NO 3353.45 1313.36 3770.03 2896.04 4277.94 1158.59 1512.61 936.98 872.04

BG 1058.19 903.44 1168.36 850.20 1185.60 777.74 1003.49 732.87 509.99

HR 1385.70 1134.85 1482.77 1136.80 1354.94 1140.73 1119.08 1144.85 844.09

LT 1327.90 609.80 1224.83 642.02 1347.40 609.84 712.50 609.84 506.05

SI 1318.94 972.09 1306.61 989.64 1323.86 874.58 869.16 944.44 667.31

BY 592.00 447.93 632.87 396.54 605.62 401.29 484.67 392.41 360.18

FI 1984.69 722.15 1979.86 1263.83 1992.59 594.41 819.78 460.16 419.07

Bold values indicate the best of the compared results

Table 4 Results of the R2 for

cases prediction
Country k-NN LR RF SVR XGB MLP CNN LSTM CNN-LSTM

FR 0.336 0.722 0.442 0.642 0.342 0.727 0.683 0.729 0.816

PL 0.789 0.922 0.796 0.922 0.775 0.931 0.656 0.934 0.944

AU 0.401 0.877 0.548 0.871 0.650 0.883 0.572 0.903 0.920

CZ 0.446 0.671 0.385 0.665 0.448 0.728 0.667 0.725 0.741

PT 0.261 0.912 0.253 0.898 0.265 0.921 0.556 0.917 0.942

CH 0.475 0.799 0.371 0.746 0.485 0.801 0.747 0.802 0.806

DK 0.248 0.919 0.252 0.921 0.244 0.940 0.851 0.940 0.941

GR 0.448 0.842 0.458 0.658 0.462 0.838 0.782 0.842 0.874

RO 0.351 0.862 0.351 0.845 0.291 0.891 0.719 0.886 0.891

SK 0.060 0.825 0.184 0.761 0.175 0.869 0.504 0.869 0.901

RS 0.552 0.954 0.594 0.951 0.579 0.956 0.672 0.958 0.963

HU 0.415 0.260 0.407 0.250 0.425 0.528 0.285 0.653 0.659

IE 0.366 0.752 0.376 0.756 0.281 0.768 0.721 0.771 0.774

NO 0.478 0.800 0.428 0.558 0.377 0.859 0.771 0.867 0.894

BG 0.453 0.686 0.360 0.655 0.348 0.779 0.511 0.807 0.918

HR 0.370 0.606 0.335 0.595 0.422 0.613 0.674 0.624 0.783

LT 0.143 0.888 0.318 0.868 0.174 0.889 0.848 0.889 0.921

SI 0.110 0.729 0.148 0.717 0.130 0.754 0.789 0.759 0.792

BY 0.148 0.799 0.116 0.838 0.150 0.820 0.823 0.827 0.863

FI 0.301 0.830 0.302 0.562 0.300 0.846 0.730 0.886 0.918

Bold values indicate the best of the compared results
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The experimental outcomes for predicting the death

count, assessed through the MAE metric, are presented in

Table 7.

Table 7 demonstrates that the CNN-LSTM-based model

outperforms other models regarding MAE values.

Following the developed model, LSTM, MLP, and CNN

exhibit more favorable outcomes than the other models.

The experimental results for predicting the death count,

assessed through the R2 metric, are presented in Table 8.

Table 8 and Fig. 7 demonstrate that the CNN-LSTM-

based model outperforms other models regarding R2
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Fig. 6 The experimental results for R2 values

Table 5 Results of the MSE for deaths prediction

Country k-NN LR RF SVR XGB MLP CNN LSTM CNN-LSTM

FR 5285.85 4735.67 5136.04 4939.63 8722.96 5616.23 4993.00 4773.82 4672.47

PL 11403.24 17576.68 14310.23 18768.08 16224.59 11782.82 25184.68 11395.92 11146.41

AU 693.05 289.65 426.88 295.46 285.64 273.59 936.07 289.12 159.94

CZ 118.15 68.18 71.25 68.35 102.39 70.54 72.96 68.39 67.59

PT 41.44 29.67 34.71 28.22 28.15 27.92 34.90 27.83 25.62

CH 18.06 15.98 18.14 16.09 21.70 15.90 17.00 15.89 15.78

DK 37.50 16.24 36.95 16.66 41.12 16.23 17.23 16.18 15.84

GR 193.70 132.27 166.58 134.73 267.41 131.39 146.25 130.99 129.16

RO 4294.89 2797.79 4105.01 2931.63 4184.58 2900.35 2950.45 2831.88 2766.35

SK 121.77 103.63 111.35 95.29 219.86 110.46 104.53 97.35 83.43

RS 21.51 10.45 12.19 10.23 17.46 10.51 12.99 10.11 8.75

HU 7901.94 9056.36 9144.96 9067.26 7984.54 6092.08 9084.84 6057.35 5618.96

IE 9.75 10.24 10.33 10.01 9.89 8.04 10.80 7.84 7.82

NO 48.57 21.21 41.70 24.69 53.89 21.31 36.13 20.88 19.55

BG 2613.43 1908.95 2523.54 2803.26 2588.05 2039.00 2486.18 1892.16 1845.10

HR 83.37 51.64 57.37 50.44 76.90 52.87 51.10 55.06 50.07

LT 32.70 29.79 36.58 29.90 42.38 29.35 30.95 29.38 29.27

SI 17.38 15.60 18.56 15.74 22.42 15.56 15.24 15.30 12.28

BY 6.28 4.48 5.98 4.31 5.89 4.48 4.38 4.28 3.92

FI 61.30 26.77 52.63 31.17 68.01 26.90 45.60 26.35 24.67

Bold values indicate the best of the compared results
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Table 6 Results of the RMSE

for deaths prediction
Country k-NN LR RF SVR XGB MLP CNN LSTM CNN-LSTM

FR 72.70 68.81 71.66 70.28 93.39 74.94 70.66 69.09 68.35

PL 106.78 132.57 119.62 136.99 127.37 108.54 158.69 106.75 105.57

AU 26.32 17.01 20.66 17.18 16.90 16.54 30.59 17.00 12.64

CZ 10.87 8.25 8.44 8.26 10.11 8.39 8.54 8.27 8.22

PT 6.43 5.44 5.89 5.31 5.30 5.28 5.90 5.27 5.06

CH 4.25 3.99 4.25 4.01 4.65 3.98 4.12 3.98 3.97

DK 6.12 4.03 6.07 4.08 6.41 4.02 4.15 4.02 3.98

GR 13.91 11.50 12.90 11.60 16.35 11.46 12.09 11.44 11.36

RO 65.5 52.89 64.07 54.14 64.68 53.85 54.31 53.21 52.59

SK 11.03 10.18 10.55 9.76 14.82 10.51 10.22 9.86 9.13

RS 4.63 3.23 3.49 3.19 4.17 3.24 3.60 3.18 2.95

HU 88.89 95.16 95.62 95.22 89.35 78.05 95.31 77.82 74.96

IE 3.12 3.20 3.21 3.16 3.14 2.83 3.28 2.80 2.79

NO 6.96 4.60 6.45 4.96 7.34 4.61 6.01 4.56 4.42

BG 51.12 43.69 50.23 52.94 50.87 45.15 49.86 43.49 42.95

HR 9.13 7.18 7.57 7.10 8.76 7.27 7.14 7.42 7.07

LT 5.71 5.45 6.04 5.46 6.50 5.41 5.56 5.42 5.41

SI 4.16 3.94 4.30 3.96 4.73 3.94 3.90 3.91 3.50

BY 2.50 2.11 2.44 2.07 2.42 2.11 2.09 2.07 1.98

FI 7.82 5.17 7.25 5.58 8.24 5.18 6.75 5.13 4.96

Bold values indicate the best of the compared results

Table 7 Results of the MAE for

deaths prediction
Country k-NN LR RF SVR XGB MLP CNN LSTM CNN-LSTM

FR 49.823 50.537 50.864 49.261 65.569 54.141 49.591 48.881 47.973

PL 69.610 84.067 77.055 84.698 77.937 65.005 102.404 66.220 65.395

AU 14.907 11.017 9.971 11.172 10.800 10.977 19.054 10.986 6.522

CZ 7.343 5.497 5.536 5.556 6.841 5.832 5.600 5.439 5.434

PT 4.823 4.187 4.353 4.095 3.958 4.003 4.582 4.021 3.779

CH 3.235 3.074 3.236 3.110 3.511 3.072 3.154 3.054 3.049

DK 3.977 2.753 3.816 2.769 3.963 2.712 2.829 2.736 2.693

GR 11.030 9.007 10.091 9.024 12.867 8.991 9.093 9.025 8.960

RO 43.367 31.862 41.517 32.796 41.459 36.222 34.978 35.674 31.189

SK 7.633 7.107 7.213 6.890 9.515 7.625 7.114 6.669 6.108

RS 3.579 2.541 2.736 2.501 3.189 2.547 2.849 2.477 2.278

HU 51.150 49.580 49.935 50.109 49.464 47.017 53.695 43.788 42.415

IE 2.477 2.541 2.520 2.517 2.468 2.152 2.642 2.146 2.115

NO 4.164 2.735 3.810 2.923 4.409 2.731 3.550 2.701 2.634

BG 33.354 30.240 33.342 30.965 34.156 30.860 31.108 29.731 29.065

HR 6.660 5.268 5.481 5.228 6.457 5.314 5.252 5.483 5.228

LT 4.471 4.231 4.707 4.221 4.974 4.191 4.277 4.196 4.183

SI 3.035 2.959 3.151 2.952 3.540 2.960 2.892 2.956 2.488

BY 1.900 1.597 1.839 1.543 1.780 1.604 1.588 1.594 1.524

FI 5.255 3.452 4.809 3.690 5.565 3.448 4.481 3.409 3.325

Bold values indicate the best of the compared results
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values. Following the developed model, LSTM, MLP, and

CNN exhibit more favorable outcomes than the other

models.

Figure 8 illustrates the prediction charts of the proposed

model for the top 20 European countries with the highest

incidence of cases. The developed model has demonstrated

superior performance compared to the other models,

effectively capturing the variations in the number of cases

across different countries.

3.2 Analysis of transmission dynamics of COVID-
19 among European countries

The dates of the peak numbers of confirmed cases and

deaths were employed to analyze the transmission

dynamics of COVID-19 among European nations. The

incubation period of COVID-19 is thought to extend to

14 days by WHO. Because the early onset of symptoms

has been reported in 5 days, analysis has been performed

Table 8 Results of the R2 for

deaths prediction
Country k-NN LR RF SVR XGB MLP CNN LSTM CNN-LSTM

FR 0.482 0.536 0.429 0.516 0.397 0.450 0.525 0.533 0.543

PL 0.714 0.559 0.641 0.530 0.593 0.704 0.459 0.714 0.720

AU 0.296 0.581 0.443 0.572 0.553 0.604 0.232 0.582 0.678

CZ 0.913 0.949 0.942 0.949 0.924 0.948 0.921 0.949 0.950

PT 0.755 0.824 0.794 0.833 0.833 0.835 0.700 0.835 0.849

CH 0.670 0.708 0.669 0.706 0.604 0.710 0.688 0.710 0.712

DK 0.786 0.907 0.789 0.905 0.765 0.907 0.866 0.907 0.910

GR 0.758 0.835 0.792 0.832 0.666 0.836 0.826 0.837 0.839

RO 0.758 0.844 0.769 0.837 0.764 0.836 0.794 0.841 0.847

SK 0.809 0.838 0.826 0.851 0.656 0.847 0.759 0.858 0.885

RS 0.944 0.972 0.968 0.973 0.954 0.973 0.784 0.973 0.981

HU 0.264 0.272 0.270 0.270 0.273 0.261 0.251 0.265 0.319

IE 0.449 0.438 0.421 0.442 0.451 0.513 0.421 0.525 0.527

NO 0.483 0.735 0.528 0.688 0.456 0.736 0.566 0.745 0.764

BG 0.294 0.436 0.318 0.416 0.300 0.449 0.388 0.430 0.444

HR 0.813 0.884 0.871 0.886 0.827 0.881 0.885 0.877 0.888

LT 0.607 0.642 0.561 0.641 0.491 0.647 0.636 0.648 0.649

SI 0.734 0.761 0.715 0.759 0.656 0.761 0.765 0.766 0.814

BY 0.244 0.464 0.280 0.484 0.290 0.465 0.474 0.488 0.510

FI 0.401 0.610 0.438 0.571 0.378 0.611 0.470 0.610 0.634

Bold values indicate the best of the compared results
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Fig. 7 The experimental results for R2 values
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Fig. 8 Prediction charts of the developed model
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for 5 days and 14 days. Also, the chord diagrams were

drawn to analyze the inter-country transmission patterns of

COVID-19 over 5-day and 14-day intervals. Table 9 pre-

sents the dates with the maximum case count in each

country and the dates that are 5 and 14 days before and

after these peak dates.

Figure 9 illustrates the dispersion of COVID-19 cases

across European countries considering a 5-day incubation

period.

Based on Fig. 9 and Table 9, it is apparent that Bulgaria

and France, Croatia and Poland, Czechia and Romania,

Hungary and Ireland, Switzerland and Serbia, Bulgaria,

and Switzerland, Bulgaria and Poland, Bulgaria and Serbia,

Croatia and France, Denmark and Slovakia, France and

Switzerland, France and Poland, France and Serbia, Bul-

garia and Poland, Poland and Portugal, Romania and

Slovenia exhibit a similar spread pattern of COVID-19

cases when considering 5-day incubation period.

Figure 10 illustrates the dispersion of COVID-19 cases

across European countries considering a 14-day incubation

period.

Based on Fig. 10 and Table 9, it is apparent that Belarus

and Denmark, Belarus and Slovakia, Bulgaria and Croatia,

Bulgaria and Czechia, Bulgaria and France, Bulgaria and

Hungary, Bulgaria and Ireland, Bulgaria and Switzerland,

Bulgaria and Poland, Bulgaria and Portugal, Bulgaria and

Serbia, Croatia and France, Croatia and Hungary, Croatia

and Ireland, Croatia and Switzerland, Croatia and Poland,

Croatia and Portugal, Croatia and Serbia, Czechia and

Hungary, Czechia and Ireland, Czechia and Romania,

Table 9 The dates with the maximum case count in each country

Country 14 days before peak date 5 days before peak date Peak date 5 days after peak date 14 days after peak date

AT 2022/03/03–2022/03/16 2022/03/12–2022/03/16 2022/03/17 2022/03/18–2022/03/22 2022/03/18–2022/04/01

BY 2022/01/31–2022/02/13 2022/02/09–2022/02/13 2022/02/14 2022/02/15–2022/02/19 2022/02/15–2022/02/28

BG 2022/01/12–2022/01/25 2022/01/21–2022/01/25 2022/01/26 2022/01/27–2022/01/31 2022/01/27–2022/02/09

HR 2022/01/13–2022/01/26 2022/01/22–2022/01/26 2022/01/27 2022/01/28–2022/02/01 2022/01/28–2022/02/10

CZ 2022/01/28–2022/02/01 2022/01/18–2022/02/01 2022/02/02 2022/02/03–2022/02/07 2022/02/03–2022/02/16

DK 2022/01/29–2022/02/09 2022/01/05–2022/02/09 2022/02/10 2022/02/11–2022/02/15 2022/02/11–2022/02/24

FI 2019/12/29–2020/01/10 2020/01/06–2020/01/10 2020/01/11 2020/01/12–2020/01/16 2020/01/12–2020/01/25

FR 2022/01/12–2022/01/25 2022/01/21–2022/01/25 2022/01/26 2022/01/27–2022/01/31 2022/01/27–2022/02/09

GR 2021/12/21–2022/01/04 2021/12/31–2022/01/04 2022/01/05 2022/01/06–2022/01/10 2022/01/06–2022/01/19

HU 2022/01/17–2022/01/30 2022/01/26–2022/01/30 2022/01/31 2022/02/01–2022/02/05 2022/02/01–2022/02/14

IE 2022/01/17–2022/01/30 2022/01/26–2022/01/30 2022/01/31 2022/02/01–2022/02/05 2022/02/01–2022/02/14

CH 2022/01/11–2022/01/24 2022/01/20–2022/01/24 2022/01/25 2022/01/26–2022/01/30 2022/01/26–2022/02/08

LT 2020/12/12–2020/12/25 2020/12/21–2020/12/25 2020/12/26 2020/12/27–2020/12/31 2020/12/27–2021/01/09

NO 2020/10/11–2020/10/24 2020/10/20–2020/10/24 2020/10/25 2020/10/26–2020/10/30 2020/10/26–2020/11/09

PL 2022/01/13–2022/01/26 2022/01/22–2022/01/26 2022/01/27 2022/01/28–2022/02/01 2022/01/28–2022/02/10

PT 2022/01/14–2022/01/27 2022/01/23–2022/01/27 2022/01/28 2022/01/29–2022/02/02 2022/01/29–2022/02/11

RO 2022/01/18–2022/02/01 2022/01/28–2022/02/01 2022/02/02 2022/02/03–2022/02/07 2022/02/03–2022/02/16

RS 2022/01/11–2022/01/24 2022/01/20–2022/01/24 2022/01/25 2022/01/26–2022/01/30 2022/01/26–2022/02/08

SK 2022/01/26–2022/02/08 2022/02/04–2022/02/08 2022/02/09 2022/02/10–2022/02/14 2022/02/10–2022/02/23

SI 2022/01/20–2022/02/02 2022/01/29–2022/02/02 2022/02/03 2022/02/04–2022/02/08 2022/02/04–2022/02/17

Fig. 9 The dispersion of COVID-19 cases across European countries

considering a 5-day incubation period
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Czechia and Slovenia, Czechia and Denmark, France and

Switzerland, France and Poland, France and Portugal,

France and Serbia, Greece and Romania, Hungary and

Ireland, Hungary and Poland, Hungary and Portugal,

Hungary and Romania, Hungary and Slovenia exhibit a

similar spread pattern of COVID-19 cases when consid-

ering 14-day incubation period.

Table 10 shows the dates when the countries experi-

enced the highest number of deaths, as well as the dates

that are 5 and 14 days prior to and following these peak

dates.

Figure 11 illustrates the dispersion of COVID-19 deaths

across European countries considering a 5-day incubation

period.

Based on Fig. 11 and Table 10, it is apparent that

Austria and Serbia, Austria and Slovenia, Serbia and

Slovenia, Portugal and Ireland, Belarus and France, Bul-

garia and Switzerland, Denmark and Finland exhibit a

similar spread pattern of COVID-19 cases when consid-

ering 14-day incubation period.

Figure 12 illustrates the dispersion of COVID-19 deaths

across European countries considering a 14-day incubation

period.

Based on Fig. 12 and Table 10, it is apparent that

Austria and Croatia, Austria and Serbia, Austria and

Slovenia, Bulgaria and Romania, Denmark and Finland,

Ireland and Portugal, Serbia and Slovenia, Lithuania and

Croatia, Switzerland and Czechia exhibit a similar spread

pattern of COVID-19 cases when considering 14-day

incubation period.

Fig. 10 The dispersion of COVID-19 cases across European coun-

tries considering a 14-day incubation period

Table 10 The dates when the countries experienced the highest number of deaths

Country 14 days before peak date 5 days before peak date Peak date 5 days after peak date 14 days after peak date

AT 2020/11/21–2020/12/04 2020/11/30–2020/12/04 2020/12/05 2020/12/06–2020/12/10 2020/12/06–2020/12/19

BY 2021/05/21–2021/05/30 2021/05/26–2021/05/30 2021/05/31 2021/06/01–2021/06/05 2021/06/01–2021/06/14

BG 2021/10/26–2021/11/08 2021/11/04–2021/11/08 2021/11/09 2021/11/10–2021/11/14 2021/11/10–2021/11/23

HR 2020/12/03–2020/12/16 2020/12/12–2020/12/16 2020/12/17 2020/12/18–2020/12/22 2020/12/18–2020/12/31

CZ 2020/10/21–2020/11/03 2020/10/30–2020/11/03 2020/11/04 2020/11/05–2020/11/09 2020/11/05–2020/11/18

DK 2022/02/19–2022/03/04 2022/02/28–2022/03/04 2022/03/05 2022/03/06–2022/03/10 2022/03/06–2022/03/19

FI 2022/02/15–2022/02/28 2022/02/24–2022/02/28 2022/03/01 2022/03/02–2022/03/06 2022/03/02–2022/03/15

FR 2020/03/21–2020/04/03 2020/03/30–2020/04/03 2020/04/04 2020/04/05–2020/04/09 2020/04/05–2020/04/18

GR 2021/04/20–2021/05/03 2021/04/29–2021/05/03 2021/05/04 2021/05/05–2021/05/09 2021/05/05–2021/05/18

HU 2021/11/23–2021/12/05 2021/12/01–2021/12/05 2021/12/06 2021/12/07–2021/12/11 2021/12/07–2021/12/20

IE 2021/01/20–2021/02/02 2021/01/29–2021/02/02 2021/02/03 2021/02/04–2021/02/08 2021/02/04–2021/02/17

CH 2020/10/30–2020/11/12 2020/11/08–2020/11/12 2020/11/13 2020/11/14–2020/11/18 2020/11/14–2020/11/27

LT 2020/12/12–2020/12/25 2020/12/21–2020/12/25 2020/12/26 2020/12/27–2020/12/31 2020/12/27–2021/01/09

NO 2022/03/14–2022/03/27 2022/03/23–2022/03/27 2022/03/28 2022/03/29–2022/04/02 2022/03/29–2022/04/11

PL 2021/03/25–2021/04/07 2021/04/03–2021/04/07 2021/04/08 2021/04/09–2021/04/13 2021/04/09–2021/04/22

PT 2021/01/18–2021/01/31 2021/01/27–2021/01/31 2021/02/01 2021/02/02–2021/02/06 2021/02/02–2021/02/15

RO 2021/10/20–2021/11/02 2021/10/29–2021/11/02 2021/11/03 2021/11/04–2021/11/08 2021/11/04–2021/11/17

RS 2020/11/22–2020/12/04 2020/11/31–2020/12/04 2020/12/05 2020/12/06–2020/12/10 2020/12/06–2020/12/19

SK 2020/12/21–2021/01/03 2020/12/30–2021/01/03 2021/01/04 2021/01/04–2021/01/04 2021/01/04–2021/01/18

SI 2020/11/21–2020/12/04 2020/11/31–2020/12/04 2020/12/05 2020/12/06–2020/12/10 2020/12/06–2020/12/19
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4 Conclusions and discussions

This study presents the development of a hybrid prediction

model that integrates CNN and LSTM models, enabling the

prediction of case and death numbers while facilitating

analysis of the inter-country transmission patterns in

European nations. Extensive comparisons were conducted

between the developed model and CNN, k-NN, LR, LSTM,

MLP, RF, SVM, and XGBoost models. The dataset

consisted of WHO-confirmed cases and deaths up to April

2, 2022. The experimental studies focused on the top 20

countries in Europe with the highest case count. The

models were evaluated using metrics such as MSE, RMSE,

R2, and MAE. Experimental findings revealed that the

CNN-LSTM model showed superior prediction perfor-

mance compared to alternative models.

In order to analyze the inter-country, spread of COVID-

19 in European countries, the incubation period of COVID-

19 was extended to 14 days, according to WHO’s report.

Because the early onset of symptoms has been reported in

5 days, analysis has been performed for 5 and 14 days.

According to the experimental results, Bulgaria and

France, Croatia and Poland, Czechia and Romania, Hun-

gary and Ireland, Switzerland and Serbia, Bulgaria and

Switzerland, Bulgaria and Poland, Bulgaria and Serbia,

Croatia and France, Denmark and Slovakia, France and

Switzerland, France and Poland, France and Serbia, Bul-

garia and Poland, Poland and Portugal, Romania and

Slovenia exhibit a similar spread pattern of COVID-19

cases when considering a 5-day incubation period.

This study is an essential source of information to guide

decision-makers and researchers in areas such as epidemic

management, health policy, and resource planning. The

research results showed that the developed CNN-LSTM

model effectively predicts the spread of COVID-19. The

developed model possesses the capability to predict the

trajectory of the epidemic by leveraging historical data.

The theoretical innovation of the hybrid model pre-

sented in this study is that a model has been developed that

determines the spread pattern of COVID-19 more suc-

cessfully than popular machine learning and deep learning

models. By combining CNN and LSTM models, the

developed model is capable of better modeling the spread

dynamics of COVID-19 in European countries. In the

developed hybrid model, CNN is used to extract the fea-

tures’ spatial features, while LSTM enables the extraction

of time-dependent relationships. The experimental results

showed that the CNN-LSTM model had a better prediction

performance than the compared models and was more

effective in managing the epidemic. Such theoretical

innovations of the developed model enable more successful

predictions to overcome future epidemics such as COVID-

19.

The CNN-LSTM hybrid model takes advantage of the

prominent features of CNN and LSTM models. CNN

automatically extracts features in input data, while LSTM

effectively captures long-term dependencies between con-

secutive time series data. In this way, complex patterns in

the data are extracted.

The fact that CNN-LSTM is more successful than kNN,

LR, RF, SVM, and XGBoost can be explained by the

ability of LSTM to model temporal and spatial features.

Fig. 11 The dispersion of COVID-19 deaths across European coun-

tries considering a 5-day incubation period

Fig. 12 The dispersion of COVID-19 deaths across European coun-

tries considering a 14-day incubation period
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CNN-LSTM has a feature learning ability that can auto-

matically extract complex data patterns. However, tradi-

tional machine learning methods require data engineering

processes. In addition, with LSTM in the structure of the

model, a more effective learning process is achieved by

performing operations such as remembering long-term

dependencies, updating the model, and remembering and

forgetting.

The fact that CNN-LSTM is more successful than MLP

can be explained by processing historical data through

feature extraction processes. CNN-LSTM reduces feature

engineering by automating the feature extraction process

by capturing relationships between different features and

components in the data. However, in MLP, features must

be defined beforehand. Additionally, LSTM can model

changes over time, allowing trends in the data to be cap-

tured. The fact that CNN-LSTM is more successful than

CNN and LSTM can be interpreted as CNN and LSTM

alone are effective only at specific points. CNN is partic-

ularly effective at feature extraction and dimensionality

reduction on image data and 1D time series data. LSTM, on

the other hand, is effective in remembering and learning

long-term dependencies and identifying trends in data.

While CNN alone is not effective in the learning step,

LSTM is not effective in the feature extraction stage.

Therefore, the CNN-LSTM model, which combines these

two models in a hybrid model, was more successful than

the compared models.

In the studies examined in the introduction section, it is

seen that the studies in the literature are aimed at predicting

the number of COVID-19 cases/deaths and detecting

COVID-19 from lung X-ray images. There is no study in

the literature to analyze the spread of COVID-19 between

countries and to predict the number of cases and deaths in

European countries. This research provides a valuable tool

for controlling the epidemic and tackling future outbreaks.

Using deep learning techniques provides a solid basis for

monitoring the epidemic’s spread rate, assessing risks, and

taking appropriate action. In addition, it is essential not to

use estimates alone for outbreak management and policy

decisions but to consider other factors and expert opinions.
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