
ORIGINAL ARTICLE

A methodological framework for optimizing the energy consumption
of deep neural networks: a case study of a cyber threat detector

Amit Karamchandani1 • Alberto Mozo1 • Sandra Gómez-Canaval1 • Antonio Pastor2

Received: 9 April 2023 / Accepted: 5 February 2024
� The Author(s) 2024

Abstract
The growing prevalence of deep neural networks (DNNs) across various fields raises concerns about their increasing

energy consumption, especially in large data center applications. Identifying the best combination of optimization tech-

niques to achieve maximum energy efficiency while maintaining system performance is challenging due to the vast number

of techniques available, their complex interplay, and the rigorous evaluation required to assess their impact on the model.

To address this gap, we propose an open-source methodological framework for the systematic study of the influence of

various optimization techniques on diverse tasks and datasets. The goal is to automate experimentation, addressing

common pitfalls and inefficiencies of trial and error, saving time, and allowing fair and reliable comparisons. The

methodology includes model training, automatic application of optimizations, export of the model to a production-ready

format, and pre- and post-optimization energy consumption and performance evaluation at inference time using various

batch sizes. As a novelty, the framework provides pre-configured ‘‘optimization strategies’’ for combining state-of-the-art

optimization techniques that can be systematically evaluated to determine the most effective strategy based on real-time

energy consumption and performance feedback throughout the model life cycle. As an additional novelty, ‘‘optimization

profiles’’ allow the selection of the optimal strategy for a specific application, considering user preferences regarding the

trade-off between energy efficiency and performance. Validated through an empirical study on a DNN-based cyber threat

detector, the framework demonstrates up to 82% reduction in energy consumption during inference with minimal accuracy

loss.

Keywords Software-defined networking � SDN controller � Cybersecurity � Machine learning � Deep learning �
Energy efficiency

1 Introduction

Training deep neural network (DNN) models can be

computationally expensive, requiring large amounts of

memory and specialized hardware, such as GPUs or TPUs,

which must run for several hours for typical applications,

consuming a significant amount of power each time a new

model needs to be trained. Additionally, when deployed on

a large scale, DNN model inference can also consume a

large amount of energy over the model lifetime, especially

in real-time applications where buffering the data is not

possible or is limited by the constraints of the environment.

Furthermore, new instances of the model usually have to be

created or destroyed on demand frequently, depending on

the system load, which also adds to the overall high power

consumption.

In addition to the above, the deployment of such net-

works also requires substantial use of the central processing

unit (CPU), random access memory (RAM), and storage.

The resources required by a DNN model have a direct

impact on the number of models that can be simultaneously

trained and deployed on a given server, as well as on the

hardware specifications necessary to support these activi-

ties. Therefore, reducing resource utilization during run-

time is imperative not only to mitigate the cost and carbon

& Alberto Mozo

a.mozo@upm.es

1 E.T.S. de Ingenierı́a de Sistemas informáticos, Universidad

Politécnica de Madrid, Calle Alan Turing s/n, 28031 Madrid,

Spain

2 Telefónica I?D, 28050 Madrid, Spain

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-09588-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-9743-8604
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09588-z&domain=pdf
https://doi.org/10.1007/s00521-024-09588-z

footprint of DNN-based systems but also to improve their

scalability and deployment flexibility. Although it is pos-

sible to increase the storage and resources of a system in

response to changing requirements, this approach can result

in higher power consumption, which leads to a critical

trade-off between scalability, power, and performance.

Moreover, the edge inference requirements are even more

stringent, requiring devices capable of performing infer-

ence with precise latency, storage, computation, and energy

consumption specifications.

To date, research in the area of energy-efficient DNN-

based systems has focused mainly on energy-efficient

hardware, such as custom DNN accelerators [1, 2], which

aim to minimize the energy consumption of specific DNN

architectures by reducing the number of operations per-

formed and the amount of data transferred. However, these

approaches are often not effective in reducing the energy

consumption of DNN-based systems because they are

limited to a handful of specific architectures, primarily

convolutional neural networks, which are often not the

architecture of choice for specific applications outside the

visual domain. In addition, these approaches require that

the hardware be equipped with the appropriate software,

which can further limit the scalability and flexibility of a

system. Furthermore, these techniques have not been

widely adopted, partly because of the high cost of devel-

oping and maintaining custom hardware.

In contrast, other techniques that are completely

agnostic to the architecture of the DNN model that is the

target of the optimization process, such as model pruning

[3] or weight quantization [4], have seen widespread

adoption and are now used in many commercial products

due to their ease of application and reasonable portability

between hardware platforms. However, these techniques

can potentially impair model performance, thus creating a

trade-off between energy efficiency and model perfor-

mance, which must be considered when deciding which

optimization technique is best for a given application.

Furthermore, changes in performance depend on the actual

architecture of the DNN model and are, in general,

unpredictable and difficult to control.

In general, optimizing the energy efficiency of a DNN-

based system requires careful analysis of the trade-offs

associated with energy efficiency and performance to

determine the most appropriate optimization techniques for

the application at hand. However, little research has been

devoted to analyzing and understanding the trade-offs

associated with energy efficiency and resource utilization

in DNN-based systems. To our knowledge, this study is the

first work to provide a methodological framework and an

extensible experimentation platform for (i) evaluating the

trade-offs associated with energy efficiency, resource uti-

lization, and performance in DNN-based systems, and (ii)

automatically selecting the most appropriate optimization

techniques based on the application requirements (e.g.,

favoring performance over energy consumption or vice

versa or balancing both).

This work proposes as a novelty an integrated method-

ological framework for analyzing and calculating the

energy consumption and resource utilization of DNN-based

systems in a production environment, which is imple-

mented in an open-source extensible experimentation

platform. The framework presents a new concept called

‘‘optimization strategies’’, which allows for the combina-

tion of several state-of-the-art architecture-agnostic tech-

niques within the experimentation platform. Additionally,

the framework introduces the concept of an ‘‘optimization

profile’’ that effectively addresses the trade-off between

energy savings and model performance. Profiles allow for

quantitatively reflecting the expected balance between

energy savings and model performance, allowing for the

automatic selection of the most appropriate optimization

strategy based on the specific user preferences and

requirements of a given application.

In our framework, we consider two types of resources:

energy, which is the main resource of interest, and com-

putational resources, such as CPU, memory, and storage

usage. The framework consists of the following four main

steps: (1) a benchmark DNN model is trained using stan-

dard training techniques, without any compression or

speedup; (2) a set of strategies designed by us and based on

the combination of state-of-the-art model compression

techniques, such as pruning, weight quantization, and

knowledge distillation, are applied to the benchmark DNN

model; (3) the resulting models are deployed in a produc-

tion-ready format using an open-source DNN inference

engine that is optimized for inference speed and resource

utilization, such as TensorFlow Lite; (4) the energy con-

sumption and resource utilization of the resulting models

are measured in the production environment using perfor-

mance profiling tools; and (5) the results obtained with the

different optimization strategies are compared and the most

suitable strategy is automatically selected according to the

chosen optimization profile, producing the final optimized

model ready to be deployed.

We demonstrate the effectiveness of our proposed

framework by applying it to a complex real-world use case,

namely cryptomining detection, which requires the use of

highly efficient and high-performance DNN models for

real-time classification of network traffic with high accu-

racy due to the critical nature of the application [5]. In

particular, we validate our proposed framework in a real-

istic network scenario by successfully applying it to opti-

mize a DNN classifier deployed in a cybersecurity

component of TeraFlowSDN, an open-source cloud-native

software-defined network (SDN) controller [6], in which

Neural Computing and Applications

123

the cybersecurity component is responsible for monitoring

and detecting cryptomining activity in the network [7]. The

results obtained by the optimization framework show that

the optimized DNN-based detector achieves an 82.304%

reduction in total energy consumption while maintaining a

0.008% loss in the target performance metric (balanced

accuracy). We provide an in-depth analysis of the energy

consumption, resource utilization, and performance of the

resulting models and how they are affected by the choice of

optimization techniques.

Our research offers three key contributions. First, we

present an integrated methodology and a flexible experi-

mentation platform that enables accurate analysis of energy

efficiency, performance, and resource utilization in DNN-

based systems operating in production environments with

strict computational and scalability requirements. The

experimentation platform is based on a versatile design and

can be easily adjusted to incorporate new optimization

techniques and evaluation metrics, making it suitable for a

wide range of applications. Moreover, the platform incor-

porates several adaptive algorithms that can automatically

determine and implement the optimal combination of

optimization techniques required to meet specific applica-

tion requirements through a rigorous examination of the

trade-off between energy efficiency and model perfor-

mance exhibited by the target model. Second, in an effort

to enhance the academic community’s understanding of the

various approaches available for energy optimization of

DNNs, our work provides a comprehensive and critical

review of the current state of the art of model optimization

techniques. Finally, we demonstrate the practical applica-

tion of our methodology by evaluating the trade-offs

between energy efficiency, performance, and scalability in

a cryptomining detector, a complex use case deployed in a

real-world network production environment.

1.1 Contributions

In this section, the main contributions of our work are

summarized below.

• We propose a novel methodology to reliably analyze

the energy efficiency and resource utilization of DNN-

based systems when deployed in realistic production

environments.

• The methodology is implemented in a publicly

available open-source framework that contains a

DNN inference engine optimized for inference

speed and resource utilization.

• The methodology proposes as novelty a set of

strategies based on a combination of state-of-the-art

model optimization techniques.

• As an additional innovation, several optimization

profiles adapted to different application scenarios

(e.g., favoring performance over energy consump-

tion or vice versa or balancing both) are also

proposed in the framework.

• In addition, a wide variety of model optimization

techniques and resource utilization and performance

metrics are supported out-of-the-box, which makes

our framework suitable for a wide range of appli-

cations, and it is also easily extensible to adapt to

specific needs.

The proposed framework can be a valuable tool for

researchers and practitioners, providing a complete

scientific basis for the design, optimization, and eval-

uation of novel model optimization techniques.

• The effectiveness of our proposed framework is demon-

strated by applying it to a real-world use case subject to

real-time constraints and high scalability requirements,

namely cryptocurrency mining detection. In particular, we

successfully applied the proposed framework to optimize

a DNN classifier deployed in a SDN controller responsible

for monitoring and detecting cryptocurrency mining

activity in the network. We provide a systematic in-depth

analysis of the energy consumption, resource utilization,

and performance of the resulting models, along with a

critical analysis of the trade-offs found. To the best of our

knowledge, this is the first work that provides a compre-

hensive analysis of the trade-offs between energy effi-

ciency, resource utilization, and model performance

obtained with a variety of state-of-the-art machine

learning (ML) and deep learning (DL) model optimization

techniques for a realistic use case with ML/DL models

deployed in a real-time environment.

• The source code for our proposed framework is

released, in order to promote wider adoption and

further research in this field. The open-source nature

of our framework provides transparency and repro-

ducibility, facilitating replication and promoting the

extension of research in this field. In addition, the

release of our framework can foster collaboration and

sharing of ideas and techniques, leading to a more

diverse and comprehensive approach to energy opti-

mization and evaluation of DNNs, especially in

production environments with high scalability require-

ments and real-time constraints. By providing access to

our methodology, we hope to contribute to the

advancement of the field, serving as a starting point

for future research in the area, and allowing researchers

to build upon our work and develop new techniques and

methodologies to advance in the energy optimization

and evaluation of DNNs. Access to the repository

containing the framework’s source code, installation

Neural Computing and Applications

123

instructions, documentation, example code, and data is

available at github.com/amitkbatra/EnergyNet.

1.2 Paper structure

The remainder of this article is organized as follows. In

Sect. 2, we discuss related work in the area of energy effi-

ciency and resource utilization analysis of DNN-based sys-

tems. In Sect. 3, we describe the main model optimization

techniques that have been proposed to improve the energy

efficiency of DNN-based systems. In Sect. 4, we describe our

proposed methodological framework for analyzing the energy

efficiency and resource utilization of DNN-based systems

when deployed in production environments. In Sect. 5, we

present a complex real-world use case, namely cryptomining

detection, and the DNN-based system that we implement in

an SDN controller to detect cryptomining activity in real time

by means of passive monitoring of network traffic. More

specifically, we describe the benchmark model we used as the

basis for our energy efficiency analysis. In particular, we

provide details on the dataset created to train the model, we

describe the model architecture and the training procedure,

and we evaluate the model’s performance. In Sect. 6, we

demonstrate the effectiveness of our proposed framework by

applying it to the cryptomining detection use case. In par-

ticular, we analyze the energy consumption, resource uti-

lization, and performance of the resulting models and how

they are affected by the choice of optimization techniques.

Section 7 provides an integrated discussion on the main

findings of the experimental evaluation, as well as on the

scalability aspects of the framework and its current limitations

with possible future research directions. In Sect. 8, we sum-

marize our findings and discuss future work.

2 Related work

This section provides a comprehensive review of the cur-

rent research on evaluating the energy efficiency of DNNs,

identifying significant gaps that this article aims to address.

Authors in [8] investigate the financial and environ-

mental expenses associated with training large data-driven

DNN models for natural language processing (NLP). The

authors quantify the approximate costs of training various

recently successful DNN models for NLP and propose

actionable recommendations for reducing costs and

enhancing equity in NLP research and practice.

In [9], an extensive analysis of the metrics crucial for the

practical implementation of DNNs in computer vision is

presented. Specifically, the article evaluates various DNNs

in the ImageNet classification challenge on metrics such as

accuracy, memory footprint, parameters, operation count,

inference time, and energy consumption. The study also

provides significant findings related to the interdependence

of these metrics, such as the hyperbolic relationship

between accuracy and inference time and the influence of

energy constraints on accuracy and model complexity.

Furthermore, the article discusses how more efficient

architectures can be utilized to produce more compact

representations than current models.

The study presented in [10] investigates the power and

energy efficiency of convolutional neural networks (CNNs)

when running on CPUs and GPUs. The article provides an

in-depth analysis of several well-known DL frameworks,

examining the impact of hardware settings on performance

and energy efficiency. The authors measure the power

consumption of different networks and layers and compare

the performance of native implementations of neural net-

work operations on GPUs with those present in the cuDNN

library. Furthermore, the study evaluates the performance

of the Caffe DL framework and its derivatives on the CPU,

exploring the performance of various libraries such as

Atlas, OpenBLAS, MKL, and Caffe-OpenMP.

Authors in [11] survey different approaches to model

power and energy consumption of ML algorithms. First,

the authors provide general information regarding the

fundamentals of power and energy consumption. Addi-

tional clarifications on how software programs consume

power are also described. In addition, they also provide an

overview of the various methods available for estimating

the proposed energy consumption, classified by type (an-

alytical or empirical measurement), technique (hardware-

based monitoring or simulation), and level (instruction or

application). In addition, the authors describe how these

power and energy consumption estimation methods can be

adapted to specific ML scenarios based on three key

characteristics: target, dataset size, and training type (of-

fline or online learning). The authors also present a case

study to illustrate the mapping suggestions. It provides an

example of how the suggested methods can be applied to

measure energy consumption in a real-world scenario.

A comprehensive literature review of energy estimation

approaches, grouping the surveyed works into a high-level

taxonomy can be found in [12]. The authors describe the

advantages and disadvantages of each category to guide the

selection of the most appropriate energy consumption

estimation method for specific application scenarios.

Additionally, the authors offer a detailed explanation of all

reviewed articles and provide an overview of current

research in ML concerning energy and power estimation,

with a focus on the DL field. The article also describes

currently available software tools for building power con-

sumption models and their features, as well as two inter-

esting use cases of energy consumption evaluation of ML

models, one focused on data stream mining and the other

Neural Computing and Applications

123

on inference with CNNs. In the case of data streaming, the

authors conclude that there is a trade-off between energy

efficiency and performance of the evaluated techniques.

The authors suggest taking this trade-off into account

when selecting a specific ML model for a given application

scenario, optimizing accuracy or energy efficiency based

on available battery life. Finally, the authors evaluated the

energy consumption of a CNN in a second use case,

obtaining detailed energy estimates of different layers and

applying a regression-based approach to performance

counter information to predict the energy consumption of

the convolutional layers, which was subsequently validated

with real energy measurements.

To the authors’ knowledge, no other study has provided

a complete analysis of the computational requirements of

DNN models during training, inference, and loading stages

using a comprehensive set of state-of-the-art optimization

techniques. Additionally, our study introduces a novel

systematic approach to measuring the balance between

energy efficiency and model performance, enabling the

automatic selection of the most effective optimization

strategy based on the application’s specific needs.

3 Energy efficiency optimization techniques
for deep neural networks

DNN training is often performed on expensive hardware

accelerators that lead to high energy consumption and

carbon emissions [13]. This issue has been a growing

concern in the AI community in recent years. It has

motivated the development of more efficient algorithms to

reduce the environmental impact of ML/DL models. This

set of techniques, commonly referred to as Green AI, aims

to fulfill this promise by reducing the energy required in the

training and inference of ML/DL models.

A common approach to achieving Green AI is to use

more efficient hardware. Some studies have focused on

developing application-specific accelerators based on

FPGA or ASIC technology to efficiently train arbitrarily

sized DNNs to optimize a given energy estimation model

[1, 2]. Although custom hardware optimized for DNN can

offer significant improvements in efficiency over general-

purpose hardware, it is often expensive and challenging to

develop. Architectural designs must be handcrafted to

optimize specific DNN architectures, undoubtedly a labo-

rious and time-consuming task. Although some frame-

works have been proposed to alleviate this issue [14, 15],

they are fundamentally confined to convolutional neural

networks (CNNs); therefore, their general applicability to

other architectures remains unsolved. The hardware capa-

bilities that these devices provide are another challenge.

The relatively low frequency at which FPGA and ASIC

boards operate and the small on-chip memory they provide

drastically limit their adoption for accelerating DNNs in

contexts beyond edge computing scenarios.

In addition to hardware optimization, another practical

approach to realizing Green AI is to use more efficient

algorithms in their use of resources. This can be done by

reducing the number of computations required for training,

using more efficient data structures, or finding ways to

reuse computations. However, prior to the optimization of

the ML model, it is imperative to first establish accurate

methods to estimate the energy cost associated with train-

ing or inference tasks. Several studies have focused on

optimizing ML-specific models by adopting general esti-

mation models that characterize energy consumption (ei-

ther at the software or hardware level) in the ML domain.

However, most of these studies specifically target battery-

constrained devices [16] or rely on simplistic approaches

that extrapolate hardware measurements to evaluate the

energy cost associated with each operation [17, 18] or relay

on indirect measurements (i.e., proxies) to determine

memory consumption such as number of floating point

operations (FLOPS) [19] or memory access counts [17]. In

addition, it must be noted that there is a lack of studies that

consider the design of GPU-aware energy estimation

models. As an exception, [18] proposes a method for a

priori evaluation of the power consumption required for

CNN model training on GPU that combines application-

level characteristics, such as per layer number of kernels

and kernel size, with the power consumption of the GPU

device that is associated with the application. This study

has shown that it is feasible to obtain a high correlation

between predicted measurement and actual consumption

that is sufficiently accurate and that can also be used to

predict the power consumption of the training task in

advance. However, as in most current studies, this method

is specifically designed to estimate the cost of a specific

DNN architecture, and therefore its scope of application is

minimal. To keep pace with the rapid pace of scientific

advances in the design of DL model architectures and

emerging generational hardware improvements, future

research should integrate GPU consumption into estimation

models to provide accurate but also architecture-agnostic

models, either using hardware component measurements or

via hardware simulators.

One way to reduce the energy consumption of DNN is to

use neural architecture search (NAS). NAS is a method for

automatically identifying the best DNN architecture for a

given task. There are many different ways to perform NAS,

such as NASNet [20], DARTS [21], AmoebaNet [22],

AutoKeras [23], ENAS [24] or ProxylessNAS [25], and the

best method for a given application will depend on the

specific constraints and objectives. More importantly, to

find DNN architectures that are accurate and energy-

Neural Computing and Applications

123

efficient using NAS, energy estimation must be incorpo-

rated as another optimization objective during the training

procedure. Unfortunately, very few studies have emerged

to accomplish this task. The proposed approaches range

from low-rank factorization [26, 27] to Bayesian opti-

mization [28] or genetic algorithms [29].

Another approach is to split and distribute the compu-

tation of DNN training across multiple devices. Distributed

training techniques, such as federated learning, can offer

significant efficiency improvements, as they allow for

harnessing the computational power of multiple devices to

perform the computation. However, it can also be more

difficult to deploy, as it requires careful coordination of the

different devices. Moreover, modern distributed training

algorithms are designed for HPC clusters with high-band-

width communications between powerful GPUs. To make

distributed training efficient for larger networks, some

techniques have been proposed to reduce the communica-

tion bandwidth. For example, [30] proposed layer-wise

adaptive rate scaling (LARS), a method for training DNN

efficiently with large batches, reducing the number of

information exchanges through the communication link.

Other techniques such as deep gradient compression [31],

PowerSGD [32], and 1-bit Adam [33], to name a few, have

been proposed to compress gradients and thus reduce the

required communication bandwidth and the training

latency. On the other hand, parameters between model

layers can be reused, resulting in a model with fewer

parameters. In this way, fewer gradients need to be

exchanged through the network, thus resulting in more

efficient network utilization. [34, 35] proposed parameter-

sharing techniques for NLP and computer vision.

Model compression (MC) is a related approach to more

efficient DNN training. This technique aims to reduce the

size of the DNN model, which can lead to improved effi-

ciency. MC can be done by pruning unused weights, using

lower precision weights, or using more efficient data

structures. Pruning is a technique to reduce the size of a

DNN by removing unnecessary weights [3]. Pruning can be

performed manually or automatically. Manual pruning

involves removing weights from a neural network by

applying a manually designed heuristic approach. This can

be done by removing individual weights or removing entire

network layers. Automatic pruning involves using algo-

rithms to automatically remove unnecessary weights from

a DNN. This can be done by training a smaller DNN and

then using that network to prune the larger network.

Moreover, quantization is a technique that allows DNN

models to be trained or used for inference with lower

precision, leading to improved efficiency [36]. [37] suc-

cessfully applied stochastic quantization to convert gradi-

ents to lower bit-width representations during the backward

pass. This enables the use of bit convolution kernels during

the backward and forward passes, which further accelerates

training times and speeds up inference times. Quantization

has also been applied in the form of a differentiable non-

linear activation function to reduce training times [38]. In

this way, the quantization is learned in a lossless and end-

to-end fashion during the training. This method is suit-

able for arbitrary bit-width quantization and can be applied

to both weights and activations of the DNN.

Another technique is low-rank factorization (LF), which

is a technique for representing a matrix with a smaller

number of parameters. This can be done by decomposing

the matrix into a product of two lower-rank matrices.

Taking advantage of this concept, LF has been applied to

reduce weight matrices that represent the parameters of the

ML / DL model [39]. LF has also been applied to the

compression of training datasets [26, 27]. In DNN, the

number of neurons in the input layer depends on the size of

the feature space. By reducing the dimensionality of the

feature space, the size of the DNN is also reduced. To

achieve this reduction in dimensionality, input data in the

form of matrices are factorized into low-rank matrices to

adjust to the hardware characteristics in an automated

fashion. In this way, both the in-memory size of the DNN

and the inference time are reduced, while the accuracy is

preserved.

On the other hand, knowledge distillation (KD) is a

technique for transferring the knowledge learned by a large

DNN into a smaller one. This can be done by training the

smaller DNN to mimic the predictions of the larger one

[40]. KD, which was first introduced by [41], has been

successfully applied to compress large transformer models

such as BERT (distilBERT) [42].

In addition, transfer learning (TL) is a technique that can

reduce the amount of data and computing power required

to train a model. TL involves using a model that has

already been trained on a similar task to train a new model.

This can be done by fine-tuning the weights of the pre-

trained model or by using the pre-trained model as a feature

extractor. Finally, the hyperparameter tuning process for

DNNs is computationally expensive and is often the main

bottleneck in model training times, especially for those

with billions of parameters. Therefore, poor hyperparam-

eter selection can lead to poor performance and potential

waste of resources (increased training times and energy

consumption). Related to the above, recently, [43] pro-

posed a new method to reduce the cost of hyperparameter

tuning for DNNs. This method is based on the discovery of

maximum updating parameterization, a variation of the

standard hyperparameter fitting process that demonstrates

that when hyperparameters are scaled in a specific way,

they can be zero-shot transferred from a (narrower) proxy

model to a (large width) target model with approximately

optimal performance, thus eliminating the need to fit the

Neural Computing and Applications

123

target model at all. Note, however, that regularization

parameters cannot be adjusted with this technique, so it is

only considered beneficial when regularization is not the

bottleneck of training. Also, since regularization is an

essential part of fine-tuning tasks for pre-trained models in

TL, this technique is inappropriate for these use cases.

Furthermore, the authors state that some hyperparameters

cannot be transferred when the proxy model is trained with

different data or for a different task, which further reduces

its utility for fine-tuning processes.

In summary, the main approaches to improving the

energy efficiency of DNN include:

1. Use of specialized hardware specifically designed to

accelerate the computation of specific DNN architec-

tures and provide significant performance improve-

ments over the use of commodity CPUs or GPUs.

2. Reducing the number of neurons and connections in

the network using model pruning or knowledge

distillation, thereby reducing the amount of computa-

tional resources required to run the network without

significantly degrading its performance.

3. Use of low-precision data types to represent weights

and network activations, making calculations more

efficient.

4. Use of energy-efficient distributed training techniques to

leverage the computational power of multiple machines

to reduce the time required to train the network.

5. Using transfer learning to reuse the knowledge gained

by existing models and reduce the training time and

computing resources required to obtain satisfactory

performance of new models.

4 Methodology and design of the proposed
machine learning energy efficiency
optimization framework

In this section, we describe the experimental framework of

our proposed methodology for analyzing the energy effi-

ciency and resource utilization of DNN-based systems

deployed in production environments. First, we provide an

overview and a visual representation that illustrates the

main steps of our proposed methodology. Then, we explain

the energy measurement process that our framework uses

to collect energy consumption data and discuss the main

statistics it collects to analyze the resource utilization of the

resulting models. Next, we describe how the most appro-

priate optimization strategy for the problem at hand is

selected in our framework. After that, we describe the

energy optimization techniques supported by our frame-

work. Finally, we describe the software stack that we used

to implement the proposed methodology and the

requirements that the hardware platform must meet to

properly run the framework.

4.1 Overview of the proposed methodology

In Fig. 1, we represent the complete workflow of the pro-

posed methodology. As can be seen, the methodology is

divided into two phases: an optimization phase and an

analysis phase. The first step is to train the model to be

optimized and that will serve as the baseline for the eval-

uation. The second step is to apply a set of energy opti-

mizations such as pruning or weight quantization

techniques to our target DNN. In the third step, the model

is converted to a production-ready format to obtain a

faithful evaluation of the energy consumption and perfor-

mance of the model once it is deployed. In the fourth step,

the energy consumption and resource utilization profiling

of the DNN during the inference (using different batch

sizes) and loading stages is performed. In the fifth step of

the methodology, the model is evaluated using different

metrics to compare its performance before and after opti-

mization. Finally, in the sixth step, the energy-accuracy

trade-off of the non-optimized model and the one that

results from the application of different energy optimiza-

tions is analyzed to provide a detailed report of the energy

efficiency gain and the impacts on the prediction accuracy

of the target DNN that is obtained with each technique. In

the seventh and final step, the automatic selection of the

best optimization strategy is carried out according to a

user-defined optimization profile that represents the user’s

preferences in terms of the relationship between energy

efficiency and accuracy shown by the final optimized

model.

4.2 Measuring energy, performance
and resource consumption

Measuring the energy consumption of a computer program

is a complex task due to the multiple factors involved in

this process, such as the computer architecture, the exe-

cution environment, and the different power modes of the

computer or battery usage, among others. Therefore, there

is no precise procedure to measure the energy consumed by

a program in a deterministic way, since different computers

can behave very differently depending on their compo-

nents, the program to be executed, the operating system,

and even the environmental conditions. The same program

may produce different results in energy consumption on

different computers. For this reason, power consumption

can only be estimated by measuring the resource con-

sumption and power usage of a group of representative

executions and applying a statistical average to aggregate

Neural Computing and Applications

123

them to produce an estimate of the real power

consumption.

There are several ways to estimate the energy con-

sumption of a program [11]. Traditional approaches rely on

empirical evaluation of power consumption using dedi-

cated power meters placed at different locations on the

computer (power supply, GPU, VRM, etc.). However, this

approach lacks precision, as it cannot be used to estimate

the power consumption related to the execution of a par-

ticular program. More fine-grained approaches consist of

estimating power consumption using simulators that model

the behavior of the main components of a computer to

obtain an estimate of the power consumption of each

component. The advantage of this method is that it offers

the possibility to easily instrument a program with moni-

toring code that can collect measurements of the usage of

each component at different execution levels [12]. How-

ever, simulators are often not able to capture a wide variety

of factors that influence a program’s energy consumption

due to the high complexity and computational power

required to accurately model the behavior of the various

components of a computer and their interactions. In fact,

the main drawback of this simulation-based approach is

that capturing many aspects of the processor’s internal

behavior that greatly influence a computer’s power con-

sumption, such as cache, memory, bus, registers, pipelines,

and memory mapping, can be very complex to simulate

properly and accurately. However, attempting to simulate

them accurately places a large computational burden that

makes it difficult to simulate complex programs with a

large instruction set or program loops accurately. There-

fore, this approach does not produce satisfactory results for

highly parallel and complex computer programs, such as

programs with many execution paths, branches, jumps,

etc., or using specialized instructions, as is precisely the

case for ML/DL models. Moreover, the induced overhead

of simulator-based approaches leads to the impossibility of

measuring energy use in real-time throughout the execution

of a program at a high level of resolution [11], which is

essential for a correct and reliable evaluation of the energy

consumption of a program.

Performance monitoring counters (PMCs) are hardware-

based monitors that are integrated into the processor or a

specific processor chip to collect data on specific

microarchitecture-related events that occur during com-

puter execution [12]. PMCs include event counters that

count the number of occurrences of certain hardware

events (such as cache access, instructions per cycle, etc.).

PMCs are generally considered reliable because they can

monitor every access to the computer’s core and memory,

and thus provide very accurate information on power

consumption in real-time and with low-performance over-

head. Importantly, the real-time measurements provided by

PMCs allow for dynamic energy optimizations based on

current energy consumption [11], which is highly useful in

certain scenarios (real-time or near real-time inference,

online learning, etc.). Many researchers have taken

advantage of PMCs to develop energy models capable of

estimating computer power consumption, even at the

application level. In this regard, Intel has developed a state-

of-the-art energy model called RAPL, which estimates

power consumption based on the PMC values that can be

collected from Intel family processors. The framework

proposed in this study uses the RAPL interface through the

powerstat command line profiling tool to collect the CPU

Fig. 1 Summary of the main

steps of the workflow proposed

in our energy efficiency

methodological framework for

DNNs

Neural Computing and Applications

123

power consumption of the ML models during the training,

model optimization, inference, and model loading phases.

In addition to energy measurement, information on

resource consumption is collected during the three phases

of the ML process (training, model optimization, and

model loading). In the following, we will refer to each of

these three phases as a test. To collect these measurements

the psutil (python system and process utilities) library is

used, which is a cross-platform library for obtaining

information about running processes and system resource

usage (CPU, memory, disks, network, sensors) in Python.

In particular, psutil is used to collect CPU and RAM usage,

as well as CPU frequency and disk IO statistics. The reason

we chose to use psutil is that it is free, open-source, cross-

platform, and capable of collecting the information needed

for our case. We decided to collect CPU and RAM metrics

because they have proven useful for other similar studies

[44] and will be especially useful in this study because ML

algorithms have been shown to have a large RAM footprint

and also require many processing cycles during their

loading, training, and inference.

Resource consumption measurements will be used to

provide information on the computational requirements of

ML models with different optimizations applied. In this

way, the computational needs of performing training and

inference tasks with different optimizations applied can be

determined, which will allow adjusting the hardware con-

figuration where the models will be deployed to maximize

resource utilization and minimize energy expenditure by

avoiding over-provisioning of hardware components and

idle power usage. In addition, these measurements provide

interesting information on scalability, as they can help

determine the number of instances that can be called on

demand to maximize resource utilization.

For each combination of techniques to be applied, the

baseline model, which, in our case, is the one evaluated in

Sect. 5.2.2, is trained and then the optimization techniques

are applied sequentially depending on the order specified in

the optimization strategy defined by the particular combi-

nation to be applied.

Once the model has been trained and optimized, its

inference performance is evaluated. To evaluate the infer-

ence performance of the model obtained with each com-

bination of techniques, the model is converted from

TensorFlow/Keras to TensorFlow Lite format. TensorFlow

Lite is one of the most common platforms for deploying

ML models in production. Being fully open source, cross-

platform, and offering an industrial-grade solution, it is an

optimal choice for most ML applications. Considering that

the inference phase is the most energy-consuming in ML

applications, converting the model to TensorFlow Lite

format to speed up and optimize the inference process has

proven to be a great gain in terms of both energy and

performance. For this reason, TensorFlow Lite and other

similar solutions such as open neural network exchange

(ONNX) have been widely adopted in the industry to

deploy ML models in production. Converting the Ten-

sorFlow model to a production-ready format such as that

offered by TensorFlow Lite is therefore an essential step in

providing a realistic assessment of the energy consumption

of ML systems in the inference phase. Note that other

alternatives, such as ONNX, were discarded because of the

immaturity and high complexity of this tool when working

with advanced optimization techniques, such as the one

applied in this work.

One of the disadvantages of using TensorFlow Lite is

that it does not yet provide support for GPU inference.

Therefore, to evaluate the performance of the model on

GPU, it is necessary to export the model to other frame-

works that provide this support such as TensorRT. How-

ever, since this time we will focus our evaluation on CPU-

based deployments, being the most used in production

systems due to their lower cost and high scalability and

flexibility compared to GPU solutions, the evaluation of the

model will be performed on CPU platforms using Ten-

sorFlow Lite. In the future, we plan to extend our frame-

work to add support for GPU inference using TensorRT or

other similar frameworks.

In the inference stage, various batch sizes are tested to

evaluate the variation in power consumption and resource

utilization. By default, the small (32), medium (256), and

large (1024) batch sizes are tested, although they can be

configured by the user depending on the application

requirements.

In addition, the predictive performance of the optimized

ML model obtained with each combination of techniques is

also measured. Our framework supports and generates a

complete list of performance metrics generally used to

evaluate the performance of classification and regression

models. More specifically, in the case of optimizing a

binary classifier, the following metrics are used: accuracy,

precision, recall, F1-score, and AUC, as well as balanced

accuracy and Matthews correlation coefficient to account

for the class imbalance problem. On the other hand, for

regression tasks, the following metrics are used: mean

absolute error, mean squared error, mean absolute percent

error, and symmetric mean absolute percent error.

Depending on the particular task that needs to be solved,

our framework will select the most appropriate metrics to

perform the evaluation. The user must determine the type

of task to be solved and select a metric as the objective to

be optimized during the selection of the most appropriate

combination of techniques to be applied, which is dis-

cussed in the next section.

In addition, our proposed framework can be extended to

incorporate arbitrary performance metrics which will be

Neural Computing and Applications

123

systematically computed and collected during the execu-

tion of all optimization strategies, ensuring a comprehen-

sive performance evaluation.

For each of the optimization strategies that can be

applied, a configurable number of repetitions for each test

(model training, inference, and load) can be defined (by

default is set to 5) together with an intermediate waiting

time to restore the initial conditions of the machine where

the framework is being executed. By setting a high number

of repetitions, more reliable measurements can be obtained.

During each repetition, the metrics listed hereafter are

collected at a configurable time interval (default is set to

1 s).

• Unique Set Size (USS) of the process.

• Percentage of CPU used by the process.

• System-wide CPU frequency.

• System-wide CPU power draw.

Other metrics such as the amount of physical and virtual

memory used by the process, as well as the number of I/O

operations performed by the process during the test, can

also be measured. However, these metrics have been dis-

carded due to the low variability shown in the measure-

ments obtained during the execution of the framework,

showing very similar values for all the tests performed. For

this reason, they are considered irrelevant to evaluate the

difference in resource utilization of the optimized and non-

optimized models and, therefore, have been discarded since

their inclusion would have meant an increase in the com-

putational load of the framework with little or no added

value.

The reason we decided to collect system-wide CPU

power consumption instead of process-specific CPU power

consumption is due to the unavailability of tools that allow

us to collect this type of information reliably and accu-

rately. In any case, system-wide CPU usage remains a

perfectly valid and reliable measure, as long as the user

ensures that no other CPU-intensive background compu-

tations are performed during the execution of the frame-

work, which may bias the results. For this reason, the

measurements obtained can be perfectly treated as a rough

estimate of the amount of CPU power consumed in each

test.

Once all repetitions have been performed, the metrics

obtained at each time step among all repetitions are

aggregated using the mean, standard deviation, and maxi-

mum value. In addition, a second aggregation is also per-

formed, but on this occasion on the time axis to show the

mean value, standard deviation, and maximum of each

statistic measured throughout the test as a summary of the

results. At this point, the total energy consumed in the test

is obtained by multiplying the average energy consumption

by the average duration of the test. Furthermore, the

percentage of reduction in total average energy consump-

tion is also calculated by computing the difference between

the average total energy consumption of each test with that

obtained for the same test performed with the baseline

model and dividing the result by the average total energy

consumption of the test performed with the baseline model.

In this way, a percentage is obtained that can be used as a

metric of the improvement in energy efficiency achieved

by the proposed optimizations. The obtained value can be

positive or negative depending on the change in the energy

consumption of the optimizations with respect to the

baseline. A positive value shows that the optimizations

perform better than the baseline, while a negative value

shows that the optimizations consume more energy than

the baseline.

On the other hand, for each test, the size of the com-

pressed model disk is also reported using the Deflate

algorithm. Compression is especially important for pruned

models because in the serialized weight matrices the

pruned connections are represented as zero and therefore

have the same size as the weight matrices of the non-

pruned model. Therefore, a compression algorithm has to

be applied to remove this redundancy and obtain a much

smaller model. For this reason, this step is crucial to obtain

a representative file size of the ML that is deployed in

production.

4.3 Selection of the best optimization strategy:
optimization profiles

To select the most appropriate combination of optimization

techniques to apply for a given target model, an exhaustive

search of all optimization strategies is initially performed.

More specifically, the framework builds a set of all possible

combinations of optimization techniques that can be

applied to the target DNN model. Once the set of all

combinations has been constructed, the framework will

evaluate each combination in the set by measuring the

energy consumption, performance, and resource utilization

as was previously defined in Sect. 4.2.

After a rigorous evaluation process of the results

obtained with all optimization strategies, the framework

will automatically identify and apply the optimization

strategy that best aligns with the user’s prioritized objec-

tives for the specific task at hand. To this end, we introduce

the concept of optimization profile to guide the optimizer

in selecting the optimal strategy for a particular application

according to the level of importance of energy consump-

tion reduction versus potential performance loss when

optimizing the target model. In this way, different opti-

mization profiles can be defined to weigh a more aggres-

sive fit in terms of energy reduction versus model

performance and vice versa. Therefore, before starting the

Neural Computing and Applications

123

model optimization process, the user must select the opti-

mization profile to be used. In particular, we propose three

different optimization profiles, although additional profiles

can also be explored in the future.

1. Energy efficiency profile This profile is designed to

minimize as much as possible the energy consumption

of the optimized model while providing acceptable per-

formance for the user. For this purpose, all applied

optimization strategies are ranked in descending order

according to the reduction in energy consumption they

provide compared to the non-optimized model, and

then the optimization strategy or strategies that provide

the largest reduction are selected. If several optimiza-

tion strategies provide the same reduction, the opti-

mization strategy that provides the highest

performance among them is chosen. The performance

of the optimized model, as measured by a user-defined

performance metric, is compared to the user-defined

threshold. If the performance is below the threshold,

the next optimization strategy that provides the greatest

reduction in energy consumption is selected, and so on

until the threshold is reached or all optimization

strategies have been evaluated. If no optimization

strategy provides acceptable performance, the non-

optimized model is returned to the user and the

framework will report the result obtained for each of

the optimization strategies tested so that the user can

decide which optimization strategy provides the best

balance between performance and energy efficiency for

their particular case. Alternatively, the user can select

the balanced profile, described below.

2. Performance profile This profile is designed to max-

imize the performance of the optimized model while

providing an acceptable energy efficiency gain with

respect to the non-optimized model. To do this, all

applied optimization strategies are ranked in descend-

ing order of the performance they provide based on a

user-defined target performance metric, and then the

optimization strategy or strategies that provide the

highest performance are selected. If several optimiza-

tion strategies provide the same performance, the

optimization strategy that provides the highest reduc-

tion in energy consumption among them is chosen. The

reduction in energy consumption of the optimized

model relative to the non-optimized model is then

compared to the user-defined threshold. If this relative

reduction in energy consumption is less than the

specified threshold, the next optimization strategy that

provides the highest performance is selected, and so on

until the threshold is reached or all optimization

strategies have been evaluated. If no optimization

strategy provides an acceptable reduction in energy

consumption with respect to the non-optimized model,

the non-optimized model is returned to the user, and

the framework will report the result obtained for each

of the optimization strategies tested so that the user can

decide which optimization strategy provides the best

trade-off between performance and energy efficiency

for their particular case. Alternatively, if the perfor-

mance profile cannot be satisfied, the user can select

the balanced profile, described below.

3. Balanced profile This profile is designed to balance

performance and energy efficiency by applying the

optimization strategy that provides the best trade-off

between both metrics. For this purpose, two parameters

are provided: the weight of the performance metric and

the weight of the energy efficiency metric. The weight

of each metric indicates the importance that the user

gives to that metric when selecting the optimization

strategy to be applied. For example, if the user wants

performance to be twice as important as energy

efficiency, the weight of performance would be set to

1 and the weight of energy efficiency to 0.5. On the

other hand, if the user wants performance to be the

most important metric, the performance weight would

be set to 1 and the energy efficiency weight to 0.

Similarly, if the user wants energy efficiency to be the

most important metric, the performance weight would

be set to 0 and the energy efficiency weight to 1. The

energy efficiency and performance gain metrics are

normalized to have a range of 0 to 1. For both metrics

to have the same optimization direction, the energy

efficiency is inverted, so that the lowest possible value

is assigned to one, and the highest possible value is

assigned to zero. Then, both values are multiplied by

the weight of each metric and summed. The optimiza-

tion strategy with the highest score is used to obtain the

final model.

A more concise explanation of each optimization profile is

provided below:

1. Energy Efficiency Profile Select the optimization

strategy, O, that minimizes energy consumption, E,

while providing acceptable performance, P, according

to the following procedure:

Oe ¼ argmaxfEðoÞ j o 2 O;PðoÞ�Pthresholdg

where Pthreshold is the user-defined performance

threshold. If no optimization strategy meets the

threshold, return the non-optimized model.

2. Performance Profile Select the optimization strategy,

O, that maximizes performance, P, while providing

acceptable energy efficiency gain, E, according to the

following procedure:

Neural Computing and Applications

123

Op ¼ argmaxfPðoÞ j o 2 O;EðoÞ�Ethresholdg

where Ethreshold is the user-defined energy efficiency

threshold. If no optimization strategy meets the

threshold, return the non-optimized model.

3. Balanced Profile Select the optimization strategy, O,

that balances performance, P, and energy efficiency, E,

according to the following procedure:

Ob ¼ argmaxfwP � PðoÞ þ wE � ð1� EðoÞÞ j o 2 Og

where wP and wE are the user-defined weights for

performance and energy efficiency, respectively. The

values for performance and energy efficiency are nor-

malized to have a range of 0 to 1, and the energy

efficiency is inverted so that both metrics have the

same optimization direction. The final score is the sum

of the performance and energy efficiency scores,

weighted by the user-defined weights.

4.4 Framework requirements

The framework was implemented using Python (version

3.10.6) as the main programming language and using the

following dependencies: TensorFlow (version 2.9.2), Ten-

sorFlow Model Optimization (version 0.7.3), psutil (ver-

sion 5.9.4) and powerstat (version 0.02.27).

To run the proposed framework correctly, it is necessary

to have a Linux operating system with a CPU that supports

the Intel RAPL interface. If the CPU does not support this

interface, the powerstat library will not work properly and

the total energy consumed by the DNN during training and

inference will not be obtained. As a result, only the

resource utilization of the DNN during the training, infer-

ence, and load stages will be obtained.

4.5 Supported model optimization strategies

In this section, first, we explain the initial selection of a

comprehensive set of several state-of-the-art optimization

techniques that have been integrated into the framework

and were previously presented in Sect. 3. Next, each of

these techniques will be systematically explained, encom-

passing both their theoretical foundational principles and

practical applications within the context of our proposed

framework.

4.5.1 Overview of the selected optimization techniques

The initial repository provided ‘‘out-of-the-box’’ in the

framework covers a wide spectrum of DNN optimization

techniques, including quantization-based methods, prun-

ing-based methods, transfer learning-based methods,

metaheuristic approaches, and hybrid approaches based on

combinations of different types of techniques. A brief

summary of the three sets of techniques initially included

in our framework is provided below.

• Post-training optimization techniques These techniques

focus on alterations that are applied after the model has

been trained. They include approaches such as full 8-bit

integer (INT8) weight quantization, half-precision

floating-point (FP16) weight quantization, and full

integer weight quantization with 16-bit integer

(INT16) activations and 8-bit integer (INT8) weights.

• Training-aware optimization techniques These strate-

gies are applied by fine-tuning the trained model. They

involve methods like pruning-aware model fine-tuning,

quantization-aware model fine-tuning, and a combina-

tion of neural architecture search coupled with knowl-

edge distillation.

• Combined optimization techniques Combining multiple

strategies, these techniques involve hybrid approaches

such as pruning-aware model fine-tuning combined

with quantization-aware model fine-tuning, neural

architecture search combined with knowledge distilla-

tion and pruning-aware model fine-tuning, among

others.

• Metaheuristic optimization A metaheuristic method is

specifically engineered to search for the optimal model

taking into account both the measured energy efficiency

and the exhibited performance. It operates as an

adaptive mechanism, utilizing a combination of param-

eters and performance indicators to iteratively navigate

the model space, optimizing both energy efficiency and

performance metrics simultaneously. This metaheuris-

tic method is applied in synergy with the knowledge

distillation technique and also as a mechanism to

automatically search for the overall optimal model

among the various optimization strategies applied

according to the optimization profile that was selected

for the optimization process, as discussed in Sect. 4.3.

This initial selection of optimization techniques was ori-

ented toward establishing a robust basis for comparison

within the study and showcasing the framework’s ability to

automatically enhance energy efficiency. The intention was

to demonstrate various widely recognized within the field

for their efficacy in optimizing the inference process of

DNN models (see Sect. 3), emphasizing the versatility of

our proposed framework in accommodating diverse model

optimization paradigms.

The framework was purposefully designed to be open

source, emphasizing its extensibility by providing a well-

documented structure for easily integrating new optimiza-

tion techniques. This adaptability allows for the inclusion

of both current and future advancements in optimization

Neural Computing and Applications

123

methods, ensuring the framework’s continuous relevance

in the evolving research landscape.

4.5.2 Optimization strategies sets

Three different sets of optimization strategies are supported

in our framework, each containing several different com-

binations of the most promising state-of-the-art optimiza-

tion techniques that were identified and discussed in

Sect. 3, to evaluate the most effective approach to mini-

mize the total energy consumption of an ML model during

the training, inference, and loading stages by performing a

quantitative analysis of the energy and resource con-

sumption metrics specified in Sect. 4.2.

The first set contains combinations of quantization

techniques that can be applied as a post-processing step

after training the ML model. The second set contains

various methods of compressing the physical representa-

tion of an ML model (number of total model parameters or

the in-memory size of each parameter), in order to reduce

the amount of energy consumed by an ML model during

the inference stage and in subsequent retraining that might

be necessary due to a change in the underlying data dis-

tribution during the operational stage. Finally, the third set

contains combinations of the individual techniques inclu-

ded in the other two sets.

The specific combinations of techniques in each set are

listed in Table 1. It should be noted that, in order to reduce

the computational cost and time spent on the third test set,

only the optimal post-training quantization technique

according to the results of the first test set in terms of the

selected optimization profile is applied to the models of the

third set. The reason for this choice is that all the post-

training quantization techniques have a negligible compu-

tational cost compared to that of the techniques found in

the second set. Therefore, by evaluating them beforehand

and selecting the optimal one as the one used for the

combinations present in the third test set, the total evalu-

ation time is considerably reduced. After preliminary val-

idation, we conclude that this approach does not affect the

results obtained with the third set in any meaningful way.

An important detail to note is that the baseline model is

trained using a fixed number of epochs rather than using

the early stopping technique, as done in Sect. 5.2.1. In

particular, 50 epochs are used to train the model by default,

although this parameter can be configured by the user. The

decision to do so is primarily because the early stopping

technique does not always guarantee that the model will

complete training at an equal number of epochs each time

it is performed. This, in turn, affects the energy con-

sumption metric obtained on each occasion and would not

provide a fair metric for comparisons between different

optimization techniques.

To apply the post-training quantization techniques, our

framework takes advantage of the capabilities provided by

TensorFlow Lite, which is a lightweight library for

deploying TensorFlow models on resource-constrained

devices. More specifically, the TensorFlow Lite converter

with the default weight quantization strategy is used to

perform the quantization, which aims to reduce latency and

model storage size while preserving model accuracy by

applying weight quantization per layer. The operations

supported by the model and the data types of the input and

output layers are explicitly declared during conversion

according to the information provided by the TensorFlow

Lite documentation [45]. In addition, the user can provide a

representative dataset to improve the optimization of the

post-training quantization process by allowing biases and

activations to be quantized as well. The user must decide

on the size of the representative dataset to be provided,

which should be large enough to represent the underlying

data distribution but small enough to fit in the device

memory. A larger dataset will lead to a smaller quantiza-

tion error, whereas a smaller data set will be faster to

process but may lead to a larger quantization error.

For the case of the quantization-aware model fine-tuning

technique, our framework makes use of the TensorFlow

Model Optimization (TFMOT) library, which is an exten-

sion of TensorFlow that contains a set of tools to optimize

ML models for deployment and execution. Several quan-

tization strategies are available to the user. The default is

the Last Value Quantizer, which aims to preserve model

accuracy by quantizing weights according to the range of

the last batch of values during training. Although it is

worth trying other quantization strategies such as moving

average quantizer (which quantizes based on a moving

average of values between batches), all values quantizer

(which quantizes based on the range of tensor values

between all batches), and fixed quantizer (which quantizes

based on a fixed range provided as a parameter). As for the

tuning parameters used to perform quantization-aware

model fine-tuning, the user can either manually optimize

these parameters or let the framework through one of the

built-in hyperparameter optimization techniques (tree-

structured Parzen estimator [TPE] [46], grid search, or

random search) to automatically optimize them. In partic-

ular, the batch size, the number of epochs to quantify the

model after freezing the weights, and the size of the vali-

dation split should be optimized. In the case of using a

hyperparameter optimization technique, the user must

provide the search space for these parameters and the

number of maximum evaluations that can be performed

during the optimization process.

To select the most suitable combination of techniques to

be applied, the hyperparameter optimization technique is

guided by the optimization profile defined by the user. In

Neural Computing and Applications

123

the case of using TPE as the hyperparameter optimization

technique, if the performance profile is selected, the target

evaluation metric is set as the objective to maximize. In

this case, if a combination of values leads to unaccept-

able performance according to the user-defined threshold,

the combination is discarded and another combination is

tried instead. On the other hand, if the optimization profile

is set to the energy efficiency profile, the TPE technique is

used to optimize energy consumption instead of perfor-

mance. Therefore, if a combination of values leads to an

unacceptable energy consumption according to the user-

defined profile threshold, the combination is discarded and

another combination is tried instead. Furthermore, in case a

balanced profile is used as the optimization profile, the

objective of the optimization process is set to minimize

energy consumption and maximize performance according

to user-specified ratios. If, on the other hand, a grid or

random search is used, the optimal combination is selected

from those tested in the optimization process according to

the optimization profile specified by the user. In the event

that during hyperparameter optimization a combination of

values leads to a performance equal to or better than that of

the baseline model, by default, the optimization process

will be terminated to save resources and reduce energy

consumption. However, this behavior can be disabled if

necessary.

To apply weight pruning techniques, the TFMOT library

is also used to prune lower-magnitude weights and elimi-

nate redundant information from the model while

attempting to maintain its accuracy by keeping only the

weights that contribute the most to the model output. The

polynomial decay pruning strategy is used to perform the

Table 1 Supported energy efficiency optimization strategies

Set Opt. Strategy Id. Opt. Strategy

N/A 0 No optimizations (baseline)

Post-Training Optimization Techniques 1 Full 8-bit Integer (INT8) Weight Quantization

2 Half-precision Floating-point (FP16) Weight Quantization

3 Full Integer Weight Quantization with 16-bit Integer (INT16)

Activations and 8-bit Integer (INT8) Weights

Training-aware Optimization Techniques 4 Pruning-aware Model Fine-tuning

5 Quantization-aware Model Fine-tuning

6 (1) Neural Architecture Search

(2) Knowledge Distillation

Combined Optimization Techniques 7 (1) Pruning-aware Model Fine-tuning

(2) Quantization-aware Model Fine-tuning

8 (1) Neural Architecture Search

(2) Knowledge Distillation

(3) Pruning-aware Model Fine-tuning

9 (1) Neural Architecture Search

(2) Knowledge Distillation

(3) Quantization-aware Model Fine-tuning

10 (1) Neural Architecture Search

(2) Knowledge Distillation

(3) Pruning-aware Model Fine-tuning

(4) Quantization-aware Model Fine-tuning

11 (1) Pruning-aware Model Fine-tuning

(2) Optimal post-training Quantization

12 (1) Neural Architecture Search

(2) Knowledge Distillation

(3) Optimal post-training Quantization

13 (1) Neural Architecture Search

(2) Knowledge Distillation

(3) Pruning-aware Model Fine-tuning

(4) Optimal post-training Quantization

Neural Computing and Applications

123

pruning, which adjusts the degree of sparsity using a

polynomial function of the training step. This function is

defined in Eq. 1 [47].

st ¼ sf þ si � sf
� �

1� t � t0
nDt

� �e

for t 2 t0; t0 þ Dt; . . .; t0 þ nDtf g
ð1Þ

Here st is the pruning rate at step t of the training process;

si is the initial pruning rate; sf is the final pruning rate; t0 is

the step to start pruning; n is the number of pruning steps;

Dt is the rate of pruning steps (pruning frequency); and e is

the exponent of the polynomial decay.

The pruning parameters should be optimized to achieve

the most appropriate balance between model performance

and energy efficiency gain, as in the case of the quantiza-

tion-aware model fine-tuning technique. Specifically, the

initial sparsity that is applied to the model immediately

after the start of training and the final sparsity that is the

target to be achieved in the last step of the pruning process

should be established. Furthermore, pruning is applied

every 100 training steps, and the exponent of the polyno-

mial decay function is kept at the default value of 3. We

found that the frequency of pruning does not significantly

alter the performance of the model or the optimization

quality, which is on par with the results of the study pre-

sented in [47], and that the default value of the polynomial

decay exponent works reasonably well for most cases.

However, users are encouraged to experiment with these

values to find the most optimal one for their use case.

The fine-tuning hyperparameters, which are the same as

the quantization-aware optimization (batch size, number of

epochs, and validation split) must also be optimized man-

ually by the user or automatically through the built-in

hyperparameter optimization techniques described above.

The rest of the hyperparameters (loss function and opti-

mizer) of the training process are kept the same as those

used to train the baseline model. For the pruned models,

during the conversion to the TensorFlow Lite format, we

make use of the experimental sparsity optimization strategy

along with the default strategy to take advantage of the

sparsity pattern during the conversion to further optimize

the latency and storage size of the model.

Finally, in the case of knowledge distillation, we fol-

lowed the details provided by [41] to implement this

technique in our framework. For the distillation process,

the same optimizer that is used to train the baseline model

is used. The loss function of the student model is also

always the same as that used to train the baseline model.

The distillation loss function is defined according to Eq. 2

[41].

L ¼ a � Ls þ ð1� aÞ � Ld
Ld ¼ T2 � KLDðSoftMaxðp=TÞ; SoftMaxðq=TÞÞ

ð2Þ

Here a is the hyperparameter that controls the trade-off

between the distillation loss and the training loss of the stu-

dent model. Ls is the training loss of the student model. Ld is

the loss function that is being used for knowledge distillation.

KLD is the Kullback Leibler Divergence. p and q are the

outputs of the teacher model and the student model, respec-

tively. T is used as a control parameter that is used to scale the

output of the models before applying the SoftMax function to

convert them into a softer probability distribution.

The parameters defining the amount of knowledge dis-

tillation applied to the student model are controlled by the

hyperparameters a and T. These parameters can be either

manually adjusted by the user or automatically optimized

by the framework to find the values that lead to the best

compromise between resource consumption and accuracy

loss. As for the training parameters used to train the student

model, the batch size and validation split size must be set

by the user or by letting the framework automatically find

the most optimal values through the built-in hyperparam-

eter optimization techniques described above. Regarding

the number of epochs, it is recommended to use the early

stopping technique with reasonable patience to avoid

overfitting and achieve the best possible performance.

The structure of the student model must be smaller than

that of the teacher to provide a positive energy efficiency

gain. Therefore, the number of neurons in the hidden layers

or the number of hidden layers must be reduced by some

factor compared to the teacher model. To do this, the user

has three options:

1. Use the NAS technique to automatically determine the

most suitable architecture for the student model.

2. Let the user specify the desired reduction factor for the

student model and then the framework automatically

generates the structure of the student model by

modifying the number of neurons in the hidden layers

and the number of hidden layers of the teacher model

to obtain a model that has a number of parameters that

is reduced by the provided value with respect to those

of the teacher.

3. Let the user specify the desired structure of the student

model.

Neural Computing and Applications

123

When using the NAS technique, the best model is selected

among the different models generated according to the

optimization profile specified by the user.

5 Use case: supervised machine learning
for cryptomining detection and mitigation

In this section, we first present the use case selected for the

study in order to demonstrate the effectiveness of our

proposed framework. Next, we will analyze the base DNN

model that will serve as the target for the experimental

analysis to be presented later in Sect. 6.

5.1 Use case description

The use case chosen to showcase our methodological

framework is based on a realistic deployment of an ML-

based cybersecurity solution that demonstrates that novel

approaches enabled by ML techniques can allow coping

with the development of new cyber threats, such as the

detection of malicious encrypted traffic (e.g., cryptomining

malware). The setup considered for this use case was

deployed in the Mouseworld laboratory, an open laboratory

for 5G experimentation located on Telefónica premises

[48], and is illustrated in Fig. 2.

The ML-based cybersecurity solution was integrated

into TeraFlowSDN, an innovative open-source, cloud-na-

tive SDN (software-defined network) controller that offers

revolutionary capabilities for both service-level flow

management and the integration and management of the

underlying network infrastructure, including transport

network elements (optical and microwave links), and IP

routers, while incorporating cybersecurity capabilities

through ML and forensics for multi-tenancy [6].

Since detection and identification of malware network

flows traversing the data plane of a network should not be

performed on a central ML-based component due to scal-

ability issues and slow response times, we propose to

implement a distributed solution where auxiliary ML

components are deployed on point of presence (PoP) nodes

[7]. To this end, a feature extractor is deployed at the

network edge to collect and summarize the packets. The

flow statistics aggregated by the feature extractor are sent

to an ML classifier. Based on the real-time identification of

malicious flows, the ML model will be able to report to the

TeraFlowSDN controller at scale to perform a security

assessment.

Assuming a typical telecommunication MPLS-based

network, a Level 3 VPN service (L3VPN) is deployed

using the TeraFlowSDN controller. The controller activates

this service using provisioned templates over the stan-

dardized IETF NETCONF southbound interface against the

different Provider Edge (PE) routers from the manufacturer

ADVA. A traffic generator (e.g., IXIA BreakingPoint)

emulating the network traffic generated in a branch office,

is connected to the leftmost PE to inject network packets

representing a mix of normal traffic and cryptomining

malware activity. The rightmost PE, the central office,

provides internet access offered by the L3VPN service and

leveraged by the malware. This specific malicious traffic is

represented as a red dashed line in Fig. 2.

As part of the VPN provisioning process, a request for

mirroring only the traffic in the logical interfaces that

conform to the L3VPN is also included to copy the traffic

toward a logical component (distributed attack detector)

co-located to the leftmost ADVA router. This logical

component (detailed later as distributed attack detector)

will extract and calculate statistical features from network

flows to be delivered to the TeraFlowSDN controller for

further processing by the ML-based Cybersecurity Tera-

FlowSDN netApp component. This component will iden-

tify the attack as a cryptomining activity and propose a

mitigation solution to the TeraFlowSDN Core components,

which will trigger the corresponding mitigation (e.g., block

the malicious connection). This mitigation will be instan-

tiated (green dash-dotted line in Fig. 2) as a new cus-

tomized access control list (ACL) rule in the ADVA router

with specific parameters (protocol TCP, destination IP

address, and destination port). It is worth mentioning that

Fig. 2, shows an additional branch office in the middle of

the figure, to represent a multisite L3VPN functionality

where the same rule can be enforced in additional PE

Fig. 2 Global Overview of the

Cyberthreat Analysis and

Mitigation Use Case

Neural Computing and Applications

123

routers, providing protection to all offices of the L3VPN

client.

A combination of several Cybersecurity components

deployed in the TeraFlowSDN controller focuses on the

capture, identification, and mitigation of network threats,

implementing a protection layer that is crucial for the

correct functionality that SDN controllers need to provide.

The Cybersecurity components include two core central-

ized components, the centralized attack detector, and the

attack mitigator, along with a distributed component, the

distributed attack detector, that is placed at a remote site.

Among these three components, the one that concerns

the work presented in this paper is the centralized attack

detector, where the ML model is trained and deployed. The

centralized attack detector component provides IP-layer

attack detection capabilities and a consolidated attack

detection mechanism based on the connection reports from

the distributed attack detectors. The centralized attack

detector consolidates information received from multiple

instances of the distributed attack detector, which allows

monitoring of malicious network traffic while forming a

view of the security status of IP traffic. From the summa-

rized connection statistics received from the different

instances of the distributed attack detector, the centralized

attack detector component performs attack detection using

an embedded DNN model. The DNN model classifies each

connection in the buffer as normal traffic or as part of an

attack, and a confidence level decision is derived. From this

inference, the centralized attack detector produces a

description of the connection, including a confidence value

indicating the probability that the connection is an attack or

normal traffic. If a connection is detected to be part of an

attack with a confidence level at or above a configurable

threshold, the centralized attack detector notifies the attack

mitigator component with the attack description, providing

a full characterization of the attack properties and other

relevant information to perform an attack mitigation

strategy.

This use case was specifically chosen due to its inherent

complexity, demanding highly efficient and accurate DNN

models for real-time classification of network traffic. The

chosen scenario involves real-time safety-critical opera-

tions with limited resources, which demands high-perfor-

mance models to accurately identify cryptomining activity

and minimal energy consumption while ensuring low

latency to facilitate swift decision-making, protect the

network infrastructure, and ensure the safety of its users.

These stringent requirements are accentuated by the need

to quickly analyze large volumes of network traffic with

minimal delay at several remote locations at the network

edge, which adds up to an immensely high rate of inference

processes per second. Consequently, energy efficiency

becomes a crucial factor for practical implementation,

highlighting the important real-world challenge that our

framework aims to address.

An in-depth analysis of the cryptomining connection

detection methodology using ML and DL models is pro-

vided in [5]. After a thorough comparison including fully

connected neural networks (FCNNs), random forest, clas-

sification and regression trees, and C4.5, this study iden-

tified FCNNs as one of the best-performing models to

recognize patterns in network traffic that may indicate the

presence of cryptomining malware. In light of the results

obtained in this exhaustive comparative study, the cen-

tralized attack detector currently employs a DNN model

based on a multi-layer FCNN as its classifier.

It should be noted that, although in our experimental

evaluation we focus on a specific DNN architecture

(FCNNs) and a specific use case (cryptocurrency mining

detection), the concepts and principles presented in this

article and on which we have relied to design our frame-

work are applicable to any type of DNN architecture and

any type of application. The reason we chose an FCNN-

based model as the target for optimization and a cryp-

tocurrency mining detection use case is because: 1) FCNNs

are the most versatile of all neural network architectures

and can be applied to any type of application, including

image recognition and natural language processing; 2)

cryptocurrency mining detection is a complex application

that requires very efficient and high-performance DNN

models for real-time classification of network traffic with

high accuracy due to the critical nature of the application,

which makes it restrictive in terms of energy consumption

and resource utilization; and 3) the data and features used

in the cryptocurrency mining detection application have no

underlying topology, which makes them well suited to be

analyzed using FCNNs. In contrast, if the data had a spatial

or temporal topology, the architecture of choice would

have been a convolutional neural network or a recurrent

neural network.

5.2 Analysis of the baseline deep neural network
model

In this subsection, we describe in detail the model we used

as the basis for our energy efficiency analysis. First, we

describe the setup we used to collect the data used to train

the model. Next, we present the structure of the model and

the procedure that was followed to train it. Finally, we

evaluate the model using several standard performance

metrics.

5.2.1 Training of the baseline deep neural network model

The dataset that was used to train the baseline DNN model

that will serve as the target in the demonstration of the

Neural Computing and Applications

123

proposed methodology has been developed for the precise

task of detecting cryptomining attacks [5]. This dataset was

generated in the Mouseworld lab [48] in Telefónica I?D

premises. This emulation environment allows configuring

and executing specific attacks mixed with normal traffic

(e.g., web, file hosting, streaming, etc.) instantiating virtual

machines that deploy normal traffic and specific attack

clients connected to real servers located at different points

on the Internet. In this way, the Mouseworld Lab can be

used to set up and emulate attack scenarios in a controlled

way and to generate and collect in PCAP files all packets of

the attack and normal traffic to be used later for the training

and testing of ML models. One key feature of the

Mouseworld Lab is the repeatability capacity, which allows

us to evaluate different mitigation tools or versions in the

same conditions and using similar statistical patterns.

The data collected for our study in the Mouseworld Lab

contain traffic samples represented by a set of flow (TCP

connection) statistics derived from network packets using

the Tstat tool. The statistics of a TCP connection were

calculated periodically (at fixed intervals or when a new

burst of packets was received), resulting in many different

examples in the dataset for the same flow representing the

state of the connection over its lifetime. These traffic data

were labeled to create the dataset that was used to train and

test the cryptomining detector. In particular, two types of

traffic can be found in the dataset: samples corresponding

to normal traffic and samples corresponding to crypto-

mining attacks. In this case, each sample of the dataset was

tagged as either 0 (normal traffic) or 1 (cryptomining attack

traffic) using the IPs and ports of the known attack con-

nections. Once labeled, the dataset was randomly parti-

tioned into two subsets: the training set, utilized for model

learning, and the test set, reserved for evaluating the final

model’s performance. The proportion of data assigned to

each subset follows a 50:50 ratio. From the training split,

20% of the data was reserved for the validation set,

employed for hyperparameter fine-tuning and model

selection.

The distribution of data samples across different sets

used for training, validating, and testing the model is pro-

vided below.

• Training dataset size: 83,591 data samples

• Validation dataset size: 20,898 data samples

• Test dataset size: 97,558 data samples

• Total: 202,047 data samples

Therefore, we used the TensorFlow library to train the

FCNN classifier to predict whether a connection corre-

sponds to cryptomining activity or not according to all

features derived from Tstat statistics except IPs and ports

that we used only to label the dataset (class labels). Note

that source and destination IPs and ports can easily be

changed by the attacker and, therefore, do not provide

significant information to the ML-based detector.

The structure of the FCNN model that was used as a

baseline model is specified below. In particular, the model

consists of a stack of three fully connected layers with 20,

30, and 10 neurons with ReLU activation followed by a

fully connected layer with two neurons and SoftMax acti-

vation as the output layer. The training hyperparameters

are as follows. We use a batch size of 4096 and the Adam

optimizer with a learning rate of 0.001. Furthermore, we

use the early stopping technique to automatically terminate

the training process if the validation loss does not improve

for 20 epochs, restoring the model weights to those

obtained in the epoch with the lowest validation loss after

training is complete. Finally, as a loss function, we use the

categorical cross-entropy function.

Although the accuracy of the model using all these

features is already high, it was observed that many of them

do not contribute significantly to the prediction perfor-

mance and can be ignored to improve the training effi-

ciency and model inference. Therefore, we decided to

make a random selection of the most commonly used

features and managed to reduce the required input to ten

features, while the F1-score was still high ([95%). We list

the features that we selected in Table 2. Note that if a

feature has a CS (Client–Server) and SC (Server-Client)

identifier, it is because it has been measured in both

directions. However, if a feature has only one identifier, it

is because it has been measured in the direction indicated

by the identifier type (CS or SC).

An extended description of the features employed and

their respective purposes within the TCP protocol is pro-

vided below.

• SYN count Number of synchronization (SYN) segments

observed, including retransmissions. SYN segments are

part of the TCP three-way handshake used to establish a

connection between two devices.

• Window Scale Scaling values negotiated during TCP

connection establishment. The scale factor adjusts the

size of the TCP window, allowing for more precise flow

control.

• MSS Maximum Segment Size (MSS) declared during

TCP connection setup. MSS specifies the maximum

amount of data that can be sent in a single TCP

segment.

• Max Seg Size Maximum segment size observed during

communication. It represents the largest amount of data

carried in a single TCP segment.

• Min Seg Size Minimum segment size observed during

communication. It indicates the smallest amount of data

carried in a single TCP segment.

Neural Computing and Applications

123

• Win Max Maximum receiver window announced during

TCP communication. The receiver window is a flow

control mechanism, and this value is scaled by the

negotiated window scale factor.

• Win Min Minimum receiver window announced during

TCP communication. Similar to the maximum receiver

window, this value is scaled by the window scale factor.

• Cwin Max Maximum in-flight-size computed as the

difference between the largest sequence number and the

corresponding last ACK message on the reverse path. It

serves as an estimate of the congestion window in TCP.

• Cwin Min Minimum in-flight-size observed during TCP

communication. It represents the minimum amount of

unacknowledged bytes sent.

• Initial Cwin Initial in-flight size, indicating the total

number of unacknowledged bytes sent before receiving

the first ACK segment during TCP connection

establishment.

All data were standardized to ensure that the mean of the

samples of each feature was 0 and the standard deviation

was 1. This was done so that the scale of each variable did

not cause one variable to dominate the results. We found

that standardization significantly improved the results.

5.2.2 Performance evaluation of the baseline deep neural
network model

We used three well-known metrics (accuracy, balanced

accuracy, and F1-score) to validate the performance of the

non-optimized DNN model in a reserved portion of the

data that was not used during training and that represents

20% of the total dataset. We incorporated balanced accu-

racy among the evaluation metrics to account for the

imbalances that exist in the dataset.

• Accuracy: 100%

• Balanced Accuracy: 99.5%

• F1-score: 1

We will use these results as a basis for comparison when

evaluating the performance of the models obtained with the

different optimization techniques that will be tested in the

following sections.

6 Experimental evaluation

This section presents the empirical findings of the valida-

tion of the open source framework proposed in this work,

demonstrating its usefulness as an experimental platform

for optimizing in an automated way the energy efficiency

of DNNs. To demonstrate the effectiveness of the frame-

work, we optimize a DNN classifier deployed in a cyber-

security component of an SDN controller, in which the

cybersecurity component is responsible for monitoring and

detecting cryptomining activity in the network. To show-

case the capabilities of the framework, the results obtained

at the end of the optimization process are presented for the

three available optimization profiles.

Table 2 Selected features of the Crypto dataset to train the baseline model

CS

ID

SC

ID

Name Type Description

13 27 SYN

count

Numeric Number of SYN segments observed (including rtx)

– 90 Window

scale

– Scaling values negotiated [scale factor]

70 – MSS Bytes MSS declared

71 94 Max seg

size

Bytes Maximum segment size observed

72 95 Min seg

size

Bytes Minimum segment size observed

73 96 Win max Bytes Maximum receiver window announced (already scaled by the window scale factor)

74 97 Win min Bytes Minimum receiver window announced (already scaled by the window scale factor)

76 99 cwin max Bytes Maximum in-flight-size computed as the difference between the largest sequence number so far, and the

corresponding last ACK message on the reverse path. It is an estimate of the congestion window

77 100 cwin min Bytes Minimum in-flight-size

78 – Initial

cwin

Bytes First in-flight size, or total number of unack-ed bytes sent before receiving the first ACK segment

CS Client to server traffic

SC Server to client traffic

Neural Computing and Applications

123

We begin by detailing in Sect. 6.1 the experimental

setup, which includes a description of the main parameters

configured in the framework for the optimization process

and the hardware platform used to run the framework. In

addition, in Sect. 6.2, we detail the framework’s ability to

perform an automatic hyperparameter selection process,

with the goal of achieving optimal results with each sup-

ported technique. Subsequently, Sect. 6.3 examines the

experimental results acquired during the model inference

phase for all applied optimization strategies. Finally, in

Sect. 6.4, we complement Sect. 6.2 results with a detailed

analysis of the experimental results obtained in the training

and optimization of the target model.

6.1 Framework setup and environmental
configuration

To demonstrate the effectiveness of the proposed

methodology, we have performed an experimental evalu-

ation in which we have applied the proposed methodology

with all combinations of supported techniques to the

cryptomining detector described in Sect. 5.2 using the

default parameters and settings of our framework (number

of repetitions set to 5 and sample measurement time

interval of 1 s). In this way, we were able to obtain a

detailed analysis of the trade-off between energy and

accuracy that exists when energy optimization techniques

are applied to an FCNN.

To carry out the optimization process with the frame-

work, we will use the three available profiles we proposed

(energy efficiency profile, performance profile, and bal-

anced profile) to select the most appropriate optimization

strategy. We set as the performance threshold a minimum

acceptable reduction in energy consumption with respect to

the non-optimized model of 25% and a minimum balanced

accuracy of 0.9. Furthermore, to apply the balanced profile,

we set the ratio of these two factors as 0.5 for both in order

to obtain the optimization strategy that leads to the most

balanced results between the two objectives and analyze its

comparison with those obtained with the other two profiles.

The reason why we use balanced accuracy as the target

performance metric of the optimization process is that, in

our case, the number of positive and negative samples is

highly imbalanced (positive samples are much less fre-

quent than negative samples). This means that using the

accuracy metric as the optimization objective would lead to

the selection of a model configuration with very low

accuracy on the positive samples. This is not the case for

the balanced accuracy metric, as this metric can be inter-

preted as a generalization of accuracy that takes into

account the class imbalance, improving the fairness of the

optimization process. It is important to note that the value

obtained with balanced accuracy is always lower than or

equal to the accuracy, and therefore we can use it as a

lower bound to evaluate the performance of different

optimization strategies. It should be noted that, although

we have used the balanced accuracy metric to drive the

optimization process, the comparative analysis of the

results also includes the accuracy and F1-score metrics. We

will only use balanced accuracy as the target performance

metric for our optimization process because, as explained

above, it is a more restrictive and more reliable metric to

evaluate the effectiveness of the different optimization

strategies that have been applied. Furthermore, we use a

balanced accuracy of 0.9 as a threshold because it provides

an acceptable accuracy in our case while maintaining

adequate energy efficiency.

On the other hand, we have chosen to focus our evalu-

ation on CPU-based systems, as they are the most widely

used for the deployment of DNN-based applications due to

their lower cost, scalability, and flexibility. However, the

fundamental principles and concepts presented in this

article are applicable to any type of hardware platform,

including GPUs and custom DNN accelerators.

The hardware platform used to validate the proposed

methodology is a system with an Intel(R) Core(TM) i7-

2600 CPU (Sandy Bridge microarchitecture; base clock

3.40 GHz; turbo boost 3.80GHz; and 8 MB cache). The

system has 32 GB of RAM and Ubuntu 20.04.5 (with

5.15.0-48-generic Linux kernel) was used as the operating

system. As the run-time, we used Python (version 3.10.6)

and the following packages: TensorFlow (version 2.9.2),

TensorFlow Model Optimization (version 0.7.3), psutil

(version 5.9.4), and powerstat (version 0.02.27).

6.2 Selection of hyperparameters used
for the application of optimization
techniques

To determine the hyperparameters of the optimization

techniques, a fully automated procedure was used. The

chosen technique involved using a grid search approach,

where predefined search spaces were utilized for each

parameter. These search spaces were considered reasonable

based on the literature review and can be considered suit-

able default options. Therefore, the optimization tech-

niques were applied using the most optimal values of the

hyperparameters, which were automatically determined by

this optimization process. More specifically, the optimal

hyperparameters were automatically identified by the

framework using a grid search procedure with cross-vali-

dation and a three-fold configuration. The goal was to

identify the optimal combination of hyperparameters that

would achieve the best balance between model perfor-

mance and efficiency (balanced profile), following the

framework parameters described in Sect. 6.1. Note,

Neural Computing and Applications

123

however, that some parameters cannot be optimized auto-

matically, as they require domain knowledge and prior

experience (e.g., learning rate) or usage-specific consider-

ations (e.g., batch size). In these cases, we use values that

are commonly recommended in the literature as good

starting points and therefore do not require extensive

tuning.

In order to determine the optimal representative dataset

size for the application of post-training weight quantization

techniques, the framework performs a cross-validation

procedure, using three folds and evaluating a range of

representative dataset sizes from 0.1 to 1.0. This repre-

sentative dataset allows calibration of the range of variable

floating-point tensors in the model (e.g., activations, model

input, and output), ensuring optimal inference accuracy for

post-training weight quantization. In our particular case, a

25% representative dataset was selected to improve the

optimization of the post-training weight quantization pro-

cess. Note that a representative dataset is not required for

half-precision floating-point weight quantization technique

and, therefore, was only used for the other two post-

training weight quantization techniques.

In the case of the quantization-aware model fine-tuning

technique, we adopt the quantization of 8-bit weights per

layer using the Last Value Quantizer strategy, which

ensures that the model accuracy is maintained during the

quantization process. The parameter grid used for this

purpose was the one pre-configured in the framework,

consisting of batch sizes of 256, 512, 1024, and 2048, and

the number of epochs set to 10, 20, and 30. After experi-

menting with different values for the batch size and number

of epochs to quantify the model after freezing the weights,

our framework identified the optimal values of the fitting

parameters for a batch size of 256 and a number of epochs

of 10. These values provide the best trade-off between

accuracy loss and energy consumption in our case. It

should be noted that the rest of the hyperparameters of the

training process, such as the loss function and the opti-

mizer, were kept the same as those used to train the ref-

erence model.

Two pruning techniques, constant sparsity and polyno-

mial decay sparsity, were also tested. The results demon-

strated that the polynomial decay sparsity technique

yielded the best performance, and thus, it was selected for

further analysis. The hyperparameters for this technique

included the initial sparsity, final sparsity, number of

epochs, and batch size used for fine-tuning. The grid search

was conducted with the predetermined parameter grid

configured in the framework for this technique, including

four batch sizes (256, 512, 1024, and 2048), three epoch

values (10, 20, and 30), four initial sparsity values (0.50,

0.60, 0.70, and 0.80), and four final sparsity values (0.60,

0.70, 0.80, and 0.90). Based on the optimal hyperparameter

values, weight pruning was applied every 100 training

steps during the training process using a polynomial decay

function with an exponent of 3. The initial sparsity was set

to 70%, and the final sparsity was set to 90%. For fine-

tuning, a batch size of 1024 and 10 epochs were deter-

mined to be the optimal values. The loss function and

optimizer used during training were the same as those used

to train the baseline model.

Finally, in the case of knowledge distillation, the

structure of the student model was obtained by searching

the neural architecture with the balanced optimization

profile to obtain the model architecture that achieves the

best compromise between reduced energy consumption and

performance. For this purpose, a grid search was used to

define the structure of the student model. The training

hyperparameters used in the search procedure were kept as

the defaults used for knowledge distillation (i.e., the same

as the baseline model). The space of architectures explored

includes two- to three-layer architectures, with the number

of neurons per layer ranging from 4 to 64, in steps of

powers of two. The activation function used in all layers

was ReLU and the output layer had two neurons with

SoftMax activation as the output layer. The student model

that was obtained consists of a fully connected two-layer

stack with 8 and 4 neurons with ReLU activation followed

by a fully connected layer with two neurons and SoftMax

activation as the output layer. Note that the student model

is more than 100 times smaller than the teacher in terms of

the number of parameters.

In relation to the parameters that determine the degree of

knowledge distillation applied to the student model, two

parameters were defined, namely a and T. The former

parameter, a, is responsible for controlling the amount of

knowledge transfer between the teacher and student models

by weighing the loss function defined in Eq. 2. The latter

parameter, T, controls the sharpness of the SoftMax func-

tion. The parameter grid search space used is the one pre-

configured in the framework and is defined by a range of

values for a and T, specifically [0.1, 0.2, 0.3, 0.4, 0.5] and

[0.5, 1, 1.5, 2, 2.5, 3], respectively. The framework auto-

matically determined the best parameters based on the

results of the validation set. In our case, the optimal values

were found to be a=0.1 and T=2, which provided the best

trade-off between model performance and power con-

sumption. These values were then used to train the student

model. It should be noted that the training parameters, such

as batch size and validation split size, remained the same as

those used to train the baseline model in order to ensure

consistency between the baseline model and the student

model training process and thus allow for a fair compari-

son. In addition, the student model was trained using the

early stopping technique until no improvement in the val-

idation set was observed for an unlimited number of epochs

Neural Computing and Applications

123

to avoid overfitting and achieve the best possible

performance.

6.3 Energy cost analysis in the inference stage

In this section, we analyze the results obtained in the

inference stage of the optimized models. These results

determine the optimization strategy that provides (i) the

best results in terms of energy consumption and (ii) the best

compromise between energy efficiency and performance

according to the three optimization profiles defined in

Sect. 4.3. Three different batch sizes (small: 32, medium:

256, and large: 1024) were tested to analyze the influence

of the batch size used to perform the prediction on the

results obtained. The results obtained for the optimization

strategies that have been applied to the objective model are

shown in Tables 3, 4 and 5 for the three batch sizes con-

sidered, respectively. The results shown in these three

tables correspond to the mean, standard deviation, and

maximum energy consumption and resource utilization

metrics derived from the aggregation of the measured

values collected over the duration of the model inference at

1-second intervals and over 5 iterations for each opti-

mization strategy.

The first thing we observe from the results presented in

Tables 3, 4 and 5 is that almost all optimization strategies

lead to a significant reduction in energy consumption,

exceeding in most cases the threshold of reduction in

energy consumption compared to the non-optimized model

that was set at the beginning of the experimental

evaluation.

In general, we observe that the optimization strategy

based on the application of the neural architecture search

and knowledge distillation techniques is the one that pro-

vides the largest reduction in energy consumption in all

cases studied. However, in some cases, the optimization

strategy based on the application of the neural architecture

search and knowledge distillation followed by the pruning-

aware fine-tuning technique and the quantization-aware

model fine-tuning provides a slight gain over the former

but with a much greater performance penalty. In addition,

the optimization strategy that provides the best energy

efficiency gain with no performance degradation is the

half-precision floating-point weight quantization technique.

The reason why knowledge distillation is the optimiza-

tion technique that provides the greatest energy reduction,

in this case, is that this technique provides the most drastic

reduction in the number of parameters of the objective

model, which directly translates into a reduction in the

amount of energy required to perform the inference stage

of the ML process. However, it is important to note that the

model that was used as the student model for the applica-

tion of the knowledge distillation technique would not be

able to provide accurate predictions if used by itself as the

target model, as it lacks the complexity necessary to cor-

rectly learn the relationship between the input and output

variables. We found that the student model provided an

accuracy of 0.995, a balanced accuracy of 0.5, and an F1-

score of 0.0 on several tests. These results clearly indicate

that this model, when trained without knowledge distilla-

tion, is only able to return negative predictions in all cases

(normal traffic), as it is not able to recognize patterns that

distinguish positive samples (cryptomining traffic) from

negative ones. Therefore, the application of knowledge

distillation by transferring the knowledge learned by the

teacher model (which is able to successfully learn to sep-

arate the positive from the negative class) to a smaller

model is essential to reduce the model size to a high degree

and maintain acceptable accuracy.

In the next Sects. 6.3.1, 6.3.2, and 6.3.3, we analyze the

results segregated by batch size. Finally, regarding the use

of computational resources (e.g., CPU, memory, and disk)

influence directly in the energy consumption of the system,

we provide in Sect. 9 a detailed analysis of the use of

computing resources (CPU, memory, and disk), taking into

account the optimization strategies and profiles mentioned

above, as well as batch sizes.

6.3.1 Small batch size (32)

As presented in Table 3 and summarized in Fig. 3, in the

case of using a small batch size of 32, globally taking into

account all optimization strategies, the reduction in energy

consumption obtained with the application of the opti-

mization strategy consisting of the application of the neural

architecture search and knowledge distillation technique

followed by a half-precision floating-point weight quanti-

zation (which turned out to be the optimal post-training

quantization for this particular case, as can be seen in

Table 3) is the most favorable, providing an 80.741%

reduction in total average energy consumption relative to

the baseline model. The second optimization strategy that

provided the largest reduction in energy consumption was

achieved with the application of the neural architecture

search and knowledge distillation without any subsequent

post-training quantization technique, leading to a reduction

of 79.927%. In the third place, we found the optimization

strategy based on the application of the neural architecture

search and the knowledge distillation technique followed

by the pruning-aware model fine-tuning technique as the

second step, which provides a reduction in energy con-

sumption of 55.427%.

Neural Computing and Applications

123

Ta
bl
e
3

A
v
er
ag
e,
st
an
d
ar
d
d
ev
ia
ti
o
n
an
d
m
ax
im

u
m

en
er
g
y
co
n
su
m
p
ti
o
n
an
d
re
so
u
rc
e
u
ti
li
za
ti
o
n
m
et
ri
cs

d
er
iv
ed

fr
o
m

th
e
ag
g
re
g
at
io
n
o
f
m
ea
su
re
d
v
al
u
es

co
ll
ec
te
d
o
v
er

th
e
d
u
ra
ti
o
n
o
f
m
o
d
el

in
fe
re
n
ce

at
1
-s
ec
o
n
d
in
te
rv
al
s
an
d
o
v
er

5
it
er
at
io
n
s
fo
r
ea
ch

o
p
ti
m
iz
at
io
n
st
ra
te
g
y
u
si
n
g
a
b
at
ch

si
ze

o
f
3
2
to

p
er
fo
rm

th
e
p
re
d
ic
ti
o
n

O
p
t.
S
tr
at
eg
y
Id
.

0
1

2
3

4
5

6
a
,c

7
8
b

9
1
0

1
1

1
2

1
3

T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y
C
o
n
su
m
p
ti
o
n
(J
)

4
.1
2
7

3
.6
9
1

1
.8
4
7

8
.4
1
8

1
.8
7
9

3
.6
9
6

0
:8
2
8

3
.9
2
1

1
:8
4

3
.8
8
2

3
.8
7
2

1
.9
0
5

0
:7
9
5

1
.8
5
8

P
er
ce
n
ta
g
e
o
f
T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y
C
o
n
su
m
p
ti
o
n

R
ed
u
ct
io
n
(%

)

N
/A

1
0
.5
7
6

5
5
.2
4
3

�
1
0
3
.9
6
2

5
4
.4
8
2

1
0
.4
5
6

7
9
:9
2
7

4
.9
9
9

5
5
:4
2
7

5
.9
4
4

6
.1
8
7

5
3
.8
3
2

8
0
:7
4
1

5
4
.9
7
4

A
v
g
.
C
P
U

P
o
w
er

D
ra
w

(W
)

1
5
:5
0
4

1
5
.7
7

1
5
.7
5
7

1
5
:6
6
8

1
5
.8
0
7

1
5
:6
7

1
5
.7
3
1

1
6
.0
1
8

1
5
.8
6
2

1
6
.1
0
1

1
6
.0
6
4

1
6
.0
9
3

1
5
.9
0
2

1
5
.8
8
3

S
td
.
D
ev
.
C
P
U

P
o
w
er

D
ra
w

(W
)

0
:0
8
3

0
.3
4
9

0
.2
7
9

0
.1
4
7

0
.2
8
1

0
.2
5
9

0
:1
2

0
.3
7
5

0
.3
4

0
.3
0
2

0
.2
9

0
.3
1
9

0
:0
7
6

0
.2
1
6

M
ax
.
C
P
U

P
o
w
er

D
ra
w

(W
)

2
5
:6
9

2
6
.8
2

2
6
.8
2

2
6

2
6
.9
6

2
6
.6
6

2
6
:0
3

2
7
.2
3

2
7
.4
6

2
7
.1
8

2
7
.3

2
7
.4
4

2
6
.3
8

2
6
.5
5

A
v
g
.
C
P
U

U
sa
g
e
(%

)
6
:2
4
4

6
.2
6
9

6
:2
4
4

6
:2
4
4

6
.2
6
9

6
:2
4
4

6
:2
4
4

6
.2
6
9

6
:2
4
4

6
:2
1
9

6
.2
6
9

6
:2
4
4

6
:2
4
4

6
.2
6
9

S
td
.
D
ev
.
C
P
U

U
sa
g
e
(%

)
0

0
.0
5

0
.1
1
2

0
.0
7
9

0
.0
5

0
0

0
.0
5

0
0
.0
5

0
.0
9
4

0
0
.0
7
9

0
.0
9
4

M
ax
.
C
P
U

U
sa
g
e
(%

)
1
2
:4
8
8

1
2
.7
3
8

1
2
.7
3
8

1
2
.7
3
8

1
2
.7
3
8

1
2
:4
8
8

1
2
:4
8
8

1
2
.7
3
8

1
2
:4
8
8

1
2
:4
8
8

1
2
.7
3
8

1
2
:4
8
8

1
2
.7
3
8

1
2
.7
3
8

A
v
g
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

1
:9
1
3

2
.0
0
2

1
.9
3
6

2
.0
6
2

1
:8
9
9

1
.9
8
5

1
.9
4
8

2
.0
0
2

1
:8
6
9

1
.9
5
2

2
.1
0
6

1
.9
6
6

1
.9
9

1
.9
5
9

S
td
.
D
ev
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

0
.0
7
2

0
.0
7

0
.0
8
7

0
.1
0
7

0
:0
3
9

0
.0
8

0
.0
8
8

0
.0
9
5

0
:0
0
8

0
:0
5
2

0
.1
9
5

0
.0
7
8

0
.1
4
3

0
.1
0
9

M
ax
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

2
:1
3
8

2
.1
4
9

2
.1
6

2
.4
0
6

2
:1
3
7

2
.2
7

2
.3
1
8

2
.1
6
3

2
:1
3
6

2
.1
4
5

2
.4
5
6

2
.1
4

2
.4
0
8

2
.1
7
7

A
v
g
.
R
A
M

M
em

o
ry

U
S
S
(B
)

1
0
.1
0
5

6
.9
0
2

9
.9
7

9
:8
5

9
.9
8
5

9
.8
7
6

9
:8
6
9

9
.8
9

1
0
.0
2

9
.8
8
1

9
.8
7
1

1
0
.0
2
3

9
.8
9
4

1
0
.0
2
9

S
td
.
D
ev
.
R
A
M

M
em

o
ry

U
S
S
(B
)

0
:0
1

0
.0
2
1

0
.0
1
2

0
.0
2
5

0
.0
1
2

0
.0
1
4

0
.0
1
4

0
.0
1
3

0
.0
2
2

0
:0
1
1

0
.0
1
6

0
.0
2
3

0
.0
2
2

0
:0
0
9

M
ax
.
R
A
M

M
em

o
ry

U
S
S
(B
)

1
6
.7
5

1
0
:4
4
5

1
6
.4
7
3

1
6
.3
4
4

1
6
.5
3
9

1
6
:3
4

1
6
:2
8
9

1
6
.3
5
2

1
6
.5
9
8

1
6
.3
5
2

1
6
.3
6
7

1
6
.6
1
7

1
6
.3
6
7

1
6
.6
0
5

A
cc
u
ra
cy

1
0
.9
9
6

1
1

1
1

0
.9
8
4

1
1

1
1

1
0
.9
9
7

1

B
al
an
ce
d
A
cc
u
ra
cy

0
:9
9
5

0
.5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
8
7

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
.7
0
8

0
:9
9
5

F
1
-s
co
re

1
0
.9
9
3

1
1

1
1

0
.9
8
9

1
1

1
1

1
0
.9
9
7

1

a
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
en
er
g
y
ef
fi
ci
en
cy

p
ro
fi
le

b
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
p
er
fo
rm

an
ce

p
ro
fi
le

c
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
b
al
an
ce
d
p
ro
fi
le

U
n
d
er
li
n
ed

v
al
u
es
:
T
o
p
th
re
e
o
p
ti
m
iz
at
io
n
st
ra
te
g
ie
s
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

B
o
ld

an
d
u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

D
o
u
b
le

u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
s
in

a
m
o
d
el

w
it
h
p
er
fo
rm

an
ce

ab
o
v
e
th
e
m
in
im

u
m

ac
ce
p
ta
b
le

p
er
fo
rm

an
ce

th
re
sh
o
ld

J:
Jo
u
le
s.
W
:
W
at
ts
.
B
:
B
y
te
s.
M
H
z:

M
eg
ah
er
tz

Neural Computing and Applications

123

Ta
bl
e
4

A
v
er
ag
e,
st
an
d
ar
d
d
ev
ia
ti
o
n
,
an
d
m
ax
im

u
m

en
er
g
y
co
n
su
m
p
ti
o
n
an
d
re
so
u
rc
e
u
ti
li
za
ti
o
n
m
et
ri
cs

d
er
iv
ed

fr
o
m

th
e
ag
g
re
g
at
io
n
o
f
m
ea
su
re
d
v
al
u
es

co
ll
ec
te
d
o
v
er

th
e
d
u
ra
ti
o
n
o
f
m
o
d
el

in
fe
re
n
ce

at
1
-s
ec
o
n
d
in
te
rv
al
s
an
d
o
v
er

5
it
er
at
io
n
s
fo
r
ea
ch

o
p
ti
m
iz
at
io
n
st
ra
te
g
y
u
si
n
g
a
b
at
ch

si
ze

o
f
2
5
6
to

p
er
fo
rm

th
e
p
re
d
ic
ti
o
n

O
p
t.
S
tr
at
eg
y
Id
.

0
1

2
b

3
4

5
6
a
,c

7
8

9
1
0

1
1

1
2

1
3

T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y
C
o
n
su
m
p
ti
o
n
(J
)

4
.3
0
9

3
.6
5
1

1
:8
5
4

8
.4
9
5

1
.8
8
7

3
.7
3
2

0
:7
6
3

3
.6
8
2

1
.8
6
7

3
.7
4
8

3
.8
2
7

1
.9
3
1

0
:8
1
7

1
.8
7
3

P
er
ce
n
ta
g
e
o
f
T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y
C
o
n
su
m
p
ti
o
n

R
ed
u
ct
io
n
(%

)

N
/A

1
5
.2
8

5
6
:9
7
5

�
9
7
.1
3
8

5
6
.1
9
9

1
3
.3
9
8

8
2
:3
0
4

1
4
.5
5
1

5
6
.6
6
6

1
3
.0
2
5

1
1
.1
9
5

5
5
.1
8
8

8
1
:0
4
6

5
6
.5
3
2

A
v
g
.
C
P
U

P
o
w
er

D
ra
w

(W
)

1
6
.1
3
8

1
5
.7
9
4

1
5
:6
9
1

1
5
:7
7
3

1
5
.7
8
2

1
5
:7
5
8

1
5
.8
0
6

1
5
.8
8

1
5
.8
9
8

1
6
.0
8
8

1
5
.9
6
1

1
6
.1
1

1
5
.8
4
2

1
5
.9
8

S
td
.
D
ev
.
C
P
U

P
o
w
er

D
ra
w

(W
)

0
.8
5
1

0
.2
6
7

0
.1
1
9

0
:0
5
5

0
.2
8
9

0
.2
7
3

0
.2
6
3

0
.2
3
2

0
.2
8

0
.3
7
1

0
.3
8
3

0
.2
7
8

0
:0
7
4

0
:0
5
4

M
ax
.
C
P
U

P
o
w
er

D
ra
w

(W
)

2
5
:8
6

2
6
.9
4

2
5
:8
1

2
6
:0
5

2
6
.8
9

2
6
.9

2
7
.0
3

2
6
.6
9

2
7
.2
1

2
7
.7
5

2
7
.2
3

2
7
.2
6

2
6
.2
2

2
6
.4
9

A
v
g
.
C
P
U

U
sa
g
e
(%

)
6
.2
1
9

6
:1
6
9

6
:1
9
4

6
.2
6
9

6
:1
9
4

6
.2
4
4

6
.2
4
4

6
.2
1
9

6
.2
6
9

6
.2
4
4

6
.2
1
9

6
.2
4
4

6
.2
9
4

6
.2
1
9

S
td
.
D
ev
.
C
P
U

U
sa
g
e
(%

)
0
.0
9
4

0
.0
6
1

0
.0
6
1

0
.0
5

0
.0
6
1

0
0

0
.0
5

0
.0
9
4

0
0
.0
9
4

0
.0
7
9

0
.1

0
.0
9
4

M
ax
.
C
P
U

U
sa
g
e
(%

)
1
2
.7
3
8

1
2
:4
8
8

1
2
:4
8
8

1
2
.7
3
8

1
2
:4
8
8

1
2
:4
8
8

1
2
:4
8
8

1
2
:4
8
8

1
2
.7
3
8

1
2
:4
8
8

1
2
.7
3
8

1
2
.7
3
8

1
2
.9
8
8

1
2
.7
3
8

A
v
g
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

1
.9
7
5

1
.9
7
6

2
.0
1
2

2
.1
9
5

1
:8
9

1
.9
9
1

1
.9
3
5

1
.9
7
7

1
.9
5
2

2
.0
2
1

1
.9
4
2

1
.9
6
9

1
:9
2

1
:9
1
8

S
td
.
D
ev
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

0
.0
8
9

0
.1
0
1

0
.1
3

0
.2
3
6

0
:0
4
7

0
.1
3
5

0
.0
9
1

0
.1
5
3

0
.1
0
1

0
.1
6
5

0
:0
7
5

0
.0
8
6

0
.0
8
4

0
:0
7
1

M
ax
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

2
.1
5
6

2
.4
0
4

2
.4
1
6

3
.1
6
8

2
:1
4
5

2
.2
5
2

2
.4
1
4

2
.4
1
3

2
.1
6
4

2
.4
1
2

2
:1
4
6

2
.1
7

2
:1
4
1

2
.1
5

A
v
g
.
R
A
M

M
em

o
ry

U
S
S
(B
)

1
0
.5
5
9

7
:4
1
5

1
0
.5
0
9

1
0
.3
9
3

1
0
.4
9
6

1
0
.4
2
3

1
0
:3
5
6

1
0
.4
2
7

1
0
.5
4
5

1
0
.4
2
2

1
0
.3
9

1
0
.5
5
2

1
0
:3
8
6

1
0
.5
4
3

S
td
.
D
ev
.
R
A
M

M
em

o
ry

U
S
S
(B
)

0
.0
1
7

0
.0
3
1

0
.0
1
8

0
.0
2
1

0
.0
2
5

0
.0
2
4

0
:0
1
4

0
:0
1
6

0
:0
1
3

0
.0
2
4

0
:0
1
6

0
.0
2
9

0
.0
2
1

0
.0
2
7

M
ax
.
R
A
M

M
em

o
ry

U
S
S
(B
)

1
7
.3
8
7

1
1
:2
1
5

1
7
.2
8
9

1
7
.1
6

1
7
.3
3
2

1
7
.1
6
8

1
7
:0
5
1

1
7
.1
6

1
7
.3
2
4

1
7
.1
6

1
7
:0
7
8

1
7
.3
7
5

1
7
.1
0
5

1
7
.3
3
6

A
cc
u
ra
cy

1
0
.9
9
6

1
1

1
1

0
.9
8
4

1
1

1
1

1
0
.9
9
7

1

B
al
an
ce
d
A
cc
u
ra
cy

0
:9
9
5

0
.5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
8
7

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
.7
0
8

0
:9
9
5

F
1
-s
co
re

1
0
.9
9
3

1
1

1
1

0
.9
8
9

1
1

1
1

1
0
.9
9
7

1

a
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
en
er
g
y
ef
fi
ci
en
cy

p
ro
fi
le

b
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
p
er
fo
rm

an
ce

p
ro
fi
le

c
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
b
al
an
ce
d
p
ro
fi
le

U
n
d
er
li
n
ed

v
al
u
es
:
T
o
p
th
re
e
o
p
ti
m
iz
at
io
n
st
ra
te
g
ie
s
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

B
o
ld

an
d
u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

D
o
u
b
le

u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
s
in

a
m
o
d
el

w
it
h
p
er
fo
rm

an
ce

ab
o
v
e
th
e
m
in
im

u
m

ac
ce
p
ta
b
le

p
er
fo
rm

an
ce

th
re
sh
o
ld

J:
Jo
u
le
s.
W
:
W
at
ts
.
B
:
B
y
te
s.
M
H
z:

M
eg
ah
er
tz

Neural Computing and Applications

123

Ta
bl
e
5

A
v
er
ag
e,
st
an
d
ar
d
d
ev
ia
ti
o
n
,
an
d
m
ax
im

u
m

en
er
g
y
co
n
su
m
p
ti
o
n
an
d
re
so
u
rc
e
u
ti
li
za
ti
o
n
m
et
ri
cs

d
er
iv
ed

fr
o
m

th
e
ag
g
re
g
at
io
n
o
f
m
ea
su
re
d
v
al
u
es

co
ll
ec
te
d
o
v
er

th
e
d
u
ra
ti
o
n
o
f
m
o
d
el

in
fe
re
n
ce

at
1
-s
ec
o
n
d
in
te
rv
al
s
an
d
o
v
er

5
it
er
at
io
n
s
fo
r
ea
ch

o
p
ti
m
iz
at
io
n
st
ra
te
g
y
u
si
n
g
a
b
at
ch

si
ze

o
f
1
0
2
4
to

p
er
fo
rm

th
e
p
re
d
ic
ti
o
n

O
p
t.
S
tr
at
eg
y
Id
.

0
1

2
b

3
4

5
6
a
,c

7
8

9
1
0

1
1

1
2

1
3

T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y
C
o
n
su
m
p
ti
o
n
(J
)

4
.4
6
3

3
.6
0
4

1
:8
6
5

8
.4
9
8

1
.9
8
4

3
.7
9
1

0
:7
9
8

3
.7
6
6

1
.8
7
1

3
.7
8
3

3
.8
6
8

1
.8
9
8

0
:7
9
5

1
.9

P
er
ce
n
ta
g
e
o
f
T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y
C
o
n
su
m
p
ti
o
n

R
ed
u
ct
io
n
(%

)

N
/A

1
9
.2
4
9

5
8
:2
0
8

�
9
0
.4
1
1

5
5
.5
5
5

1
5
.0
5

8
2
:1
2
4

1
5
.6
0
9

5
8
.0
7
4

1
5
.2
4
2

1
3
.3
2
2

5
7
.4
7

8
2
:1
8
3

5
7
.4
3
7

A
v
g
.
C
P
U

P
o
w
er

D
ra
w

(W
)

1
6
.7
6
4

1
5
:6
1
3

1
5
:6
8
9

1
5
.7
6
3

1
6
.8
7
6

1
5
.7
6
7

1
5
:7
5
3

1
5
.9
6
7

1
5
.8
4
8

1
5
.9
5
8

1
6
.3
2
3

1
6
.5
2
1

1
6
.8
3
9

1
6
.0
2
9

S
td
.
D
ev
.
C
P
U

P
o
w
er

D
ra
w

(W
)

2
.7
7
4

0
:2
8
3

0
.3
3
7

0
:2
1
3

1
.7
7
4

0
.4
2
1

0
.4
4
8

0
.8
1
8

0
:3
1
2

0
.8
2

1
.0
0
3

2
.3
8
1

2
.7
8
9

0
.7
2
9

M
ax
.
C
P
U

P
o
w
er

D
ra
w

(W
)

3
8
.9
6

2
6
.7
1

2
6
.8

2
5
:9
2

2
5
:8
4

2
5
:6
6

2
6
.4
6

2
6
.8
5

2
7
.1
9

2
6
.0
9

2
7
.0
7

3
6
.9
7

2
6
.2
2

2
6
.4
8

A
v
g
.
C
P
U

U
sa
g
e
(%

)
6
.2
4
4

6
:2
1
9

6
.2
6
9

6
.2
4
4

6
.2
4
4

6
.2
4
4

6
.2
4
4

6
.2
9
4

6
:2
1
9

6
:2
1
9

6
:2
1
9

6
:2
1
9

6
.2
4
4

6
:1
9
4

S
td
.
D
ev
.
C
P
U

U
sa
g
e
(%

)
0

0
.0
9
4

0
:0
5

0
.0
7
9

0
.0
7
9

0
0
.0
7
9

0
.0
6
1

0
:0
5

0
:0
5

0
:0
5

0
:0
5

0
.0
7
9

0
.0
6
1

M
ax
.
C
P
U

U
sa
g
e
(%

)
te
xt
u
b

1
2
.4
8
8

1
2
.7
3
8

1
2
.7
3
8

1
2
.7
3
8

1
2
.7
3
8

1
2
:4
8
8

1
2
.7
3
8

1
2
.7
3
8

1
2
:4
8
8

1
2
:4
8
8

1
2
:4
8
8

1
2
:4
8
8

1
2
.7
3
8

1
2
:4
8
8

A
v
g
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

2
.2
9
8

1
.9
4
7

1
.9
2
2

2
.0
5
1

1
.9
3
8

1
.9
5
1

1
:8
9
1

1
.9
6
1

1
:9
1
4

1
:9
0
6

1
.9
3
9

1
.9
2
2

1
.9
7
4

1
.9
2
5

S
td
.
D
ev
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

0
.3
5
7

0
.0
9
5

0
.0
7
4

0
:0
5
3

0
.0
8
6

0
.0
7
5

0
:0
3
5

0
.1
1
3

0
:0
6
8

0
.0
6
9

0
.1
3
3

0
.0
8
9

0
.1
4
3

0
.0
8
9

M
ax
.
C
P
U

F
re
q
u
en
cy

(M
H
z)

3
.5
4

2
:1
4

2
:1
4

2
:1
3
9

2
.1
5
1

2
.1
5
1

2
.1
5
2

2
.3
4
4

2
.1
4
5

2
.2
9
4

2
.4
1
1

2
.3
4
2

2
.3
2
4

2
.1
5
9

A
v
g
.
R
A
M

M
em

o
ry

U
S
S
(B
)

1
0
.1
9
5

6
:8
2
2

9
.9
7
3

9
:8
5
4

9
.9
5
3

9
:8
4
6

9
.8
7
5

9
.8
7
5

1
0
.0
2
1

9
.9

9
.9
1

1
0
.0
7

9
.9
1
1

1
0
.0
7
5

S
td
.
D
ev
.
R
A
M

M
em

o
ry

U
S
S
(B
)

0
.0
2

0
.0
1
8

0
.0
2

0
.0
2
7

0
:0
1
3

0
.0
2
9

0
:0
1
3

0
.0
1
4

0
.0
2

0
.0
2
1

0
:0
1
3

0
:0
1
2

0
:0
1
1

0
.0
1
8

M
ax
.
R
A
M

M
em

o
ry

U
S
S
(B
)

1
6
.8
2
4

1
0
:3
4
8

1
6
.4
6
9

1
6
.3
3
2

1
6
.4
9
2

1
6
.3
4
8

1
6
:2
8
5

1
6
:3
2
8

1
6
.5
8
6

1
6
.3
7
5

1
6
.3
8
7

1
6
.6
0
9

1
6
.3
4
4

1
6
.6
1
7

A
cc
u
ra
cy

1
0
.9
9
6

1
1

1
1

0
.9
8
4

1
1

1
1

1
0
.9
9
7

1

B
al
an
ce
d
A
cc
u
ra
cy

0
:9
9
5

0
.5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
8
7

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
.7
0
8

0
:9
9
5

F
1
-s
co
re

1
0
.9
9
3

1
1

1
1

0
.9
8
9

1
1

1
1

1
0
.9
9
7

1

a
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
en
er
g
y
ef
fi
ci
en
cy

p
ro
fi
le

b
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
p
er
fo
rm

an
ce

p
ro
fi
le

c
B
es
t
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
co
rd
in
g
to

th
e
b
al
an
ce
d
p
ro
fi
le

U
n
d
er
li
n
ed

v
al
u
es
:
T
o
p
th
re
e
o
p
ti
m
iz
at
io
n
st
ra
te
g
ie
s
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

B
o
ld

an
d
u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

D
o
u
b
le

u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
s
in

a
m
o
d
el

w
it
h
p
er
fo
rm

an
ce

ab
o
v
e
th
e
m
in
im

u
m

ac
ce
p
ta
b
le

p
er
fo
rm

an
ce

th
re
sh
o
ld

J:
Jo
u
le
s.
W
:
W
at
ts
.
B
:
B
y
te
s.
M
H
z:

M
eg
ah
er
tz

Neural Computing and Applications

123

The best optimization strategy according to the energy

efficiency profile and the balanced profile is the one based

on the application of the neural architecture search and

knowledge distillation. The results show that this opti-

mization strategy provides a very favorable balance

between energy and accuracy, achieving the highest

reduction in energy consumption with minimal degradation

in model performance. This optimization strategy provides

energy savings of 80.741% compared to the baseline model

and performance that meets the minimum performance

threshold established in the optimization process (balanced

accuracy of 0.9), achieving an accuracy of 0.984, a bal-

anced accuracy of 0.987, and an F1-score of 0.989. As can

be seen, some degradation in model performance is

obtained with these optimization strategies. However, the

performance degradation is negligible (0.08% loss in the

balanced accuracy, 0.016% loss in the accuracy, and 0.11

loss in the F1-score) and exceeds the minimum perfor-

mance threshold established for the optimization process.

In this particular case, this small degradation is justified by

the significant reduction in energy consumption achieved

with this optimization strategy.

On the other hand, the optimization strategy that pro-

vides the best performance when the small batch size is

used for prediction is the one based on the application of

the neural architecture search and knowledge distillation

technique and a pruning-aware model fine-tuning applied

subsequently. As can be seen from the results presented in

Table 3, this optimization strategy provides a model with

an accuracy of 1, a balanced accuracy of 0.995, and an F1-

score of 1, which is the same performance as that exhibited

by the baseline model. In addition, the optimized model

obtained with this optimization strategy provides a reduc-

tion that exceeds the predefined threshold of 25% reduction

in energy consumption compared to the baseline model,

achieving a reduction in energy consumption of 55.42%,

which is more than double the minimum desired efficiency

gain established as the threshold for the optimization pro-

cess. Therefore, the results obtained demonstrate that it is

possible to obtain a model with the same performance as

the baseline model by reducing its energy consumption by

more than half, thus achieving an optimal balance between

energy and accuracy for situations where performance

degradation is a concern.

6.3.2 Medium batch size (256)

In the results shown in Table 4 and summarized in Fig. 4,

we observe that, if the batch size used for the prediction is

increased to 256, the optimization strategy that provides

the highest reduction in energy consumption with respect

to the baseline model is the one based on the application of

the neural architecture search and knowledge distillation

technique, providing a reduction of 82.304% in energy

consumption. Second, we find the optimization strategy

consisting of the application of the neural architecture

search and knowledge distillation technique followed by a

pruning-aware model fine-tuning, providing a reduction in

energy consumption of 81.046%. The optimization strategy

based on the application of the half-precision floating-point

weight quantization is in third place, providing a reduction

in energy consumption of 56.975%.

The results shown in Table 4 are closely aligned with

those obtained with the small batch size of 32, since in this

case the optimization strategy selected by the energy effi-

ciency and balanced profiles is also the one based on neural

architecture search and knowledge distillation without any

post-training quantization technique. This optimization

strategy provides an energy reduction of 82.304% and

shows a performance that far exceeds the minimum per-

formance threshold established in the optimization process

(balanced accuracy of 0.9), achieving an accuracy of 0.984,

a balanced accuracy of 0.987 and an F1-score of 0.989. As

can be seen from the results presented in Table 4, the loss

of performance with respect to the baseline model is

minimal (0.08% for the balanced accuracy, 0.016% for the

accuracy, and 0.11 for the F1-score). Therefore, this opti-

mization strategy provides a very favorable balance

between energy and performance, achieving a very high

reduction in energy consumption with a negligible loss in

performance.

Regarding the optimization strategy that is selected by

the performance optimization profile when the batch size of

256 is used for inference, the results show that the strategy

based on the application of half-precision floating-point

weight quantization provides a model that shows abso-

lutely no degradation in performance with respect to the

baseline model, exhibiting an accuracy of 1, a balanced

accuracy of 0.995 and an F1-score of 1. Furthermore, the

energy reduction achieved is 56.975%, which is more than

double the 25% reduction that was established as a

threshold for the optimization process. Therefore, we can

conclude that the optimization strategy based on the

application of half-precision floating-point weight quanti-

zation provides a model with the best energy efficiency that

can be obtained when performance degradation is not tol-

erated by the application requirements.

6.3.3 Large batch size (1024)

The results shown in Table 5 and summarized in Fig. 5

corresponding to the case in which the batch size is

increased to 1024 show some similarities with those

obtained for a batch size of 256. In this case, the opti-

mization strategy based on the application of the neural

architecture search and knowledge distillation technique

Neural Computing and Applications

123

followed by a pruning-aware model fine-tuning is the best

option in terms of reducing energy consumption, providing

82.183% energy savings. The second best result is the

optimization strategy consisting of the application of the

neural architecture search and knowledge distillation

technique, which provides a reduction in energy con-

sumption of 82.124%. In third place is the optimization

strategy based on half-precision floating-point weight

quantization, which reduces energy consumption by

58.208%.

Fig. 3 Comparative analysis

showing the energy efficiency

and performance metrics of all

optimization strategies

evaluated with a small batch of

32 samples

Fig. 4 Comparative analysis

showing the energy efficiency

and performance metrics of all

optimization strategies

evaluated with a medium batch

of 256 samples

Neural Computing and Applications

123

As in the medium batch size case, the results demon-

strate that the optimization strategy selected by the energy

efficiency and balanced profiles (the one consisting of the

neural architecture search and the knowledge distillation

technique) provides a model with significantly lower

energy consumption than the baseline model (82.124%)

while showing a very low-performance degradation with

respect to the baseline model (0.08% for the balanced

accuracy, 0.016% for the accuracy, and 0.11 for the F1-

score). On the other hand, the optimization strategy

selected by the performance optimization profile (the half-

precision floating-point weight quantization technique)

provides a model with the same performance as the base-

line model and energy savings of 58.208% with respect to

the energy consumption exhibited by the baseline model,

more than double the 25% reduction in energy consump-

tion that was established as the threshold of the optimiza-

tion process.

The results obtained in terms of accuracy and balanced

accuracy are also very favorable in general. With only two

exceptions, the optimization strategies have managed to

maintain a balanced accuracy above the threshold we set at

the beginning of the experimental evaluation. In all cases,

the accuracy and the F1-score were almost unaffected.

However, due to the significant class imbalance in the data,

this result is irrelevant, so we continue to focus on balanced

accuracy. The largest balanced accuracy loss is obtained

with the application of 8-bit integer weight quantization

after training (0.5), followed by the balanced accuracy loss

produced with the application of neural architecture search,

knowledge distillation, and half-precision floating-point

weight quantization (0.287) and, following after, the

combination of neural architecture search and knowledge

distillation (0.008).

6.4 Energy cost analysis of the model training
and optimization

An interesting point to analyze is the energy consumption

required to train the model that is the object of the opti-

mization process and the time required to apply the opti-

mization strategy to it. This consideration is especially

important when designing systems that must be periodi-

cally retrained to incorporate new knowledge or learn from

new data when the statistical properties of the data or the

relationship between input and output variables change

over time, since the time required for applying the selected

optimization strategy will be incurred every time a

retraining is needed. In the results shown in Table 6, it is

observed that optimization strategies that have a higher

energy cost when applied are those that involve a training

procedure. That is, knowledge distillation, quantization-

aware model fine-tuning, and pruning-aware model fine-

tuning, in that order of increasing energy cost. This is

because optimization strategies that involve a training

procedure require more energy due to the computational

intensity involved in the backpropagation process. Among

these techniques, knowledge distillation is, by far, the most

Fig. 5 Comparative analysis

showing the energy efficiency

and performance metrics of all

optimization strategies

evaluated with a large batch of

1024 samples

Neural Computing and Applications

123

expensive optimization strategy among these techniques,

since is a computationally intensive process that explores a

vast search space of potential architectures to identify the

most efficient and effective neural network design for the

specific task. This exhaustive search incurs substantial

computational costs, contributing significantly to the

overall energy consumption of the knowledge distillation

technique. On the other hand, strategies that do not require

a training procedure (such as post-training weight quanti-

zation) require less energy because no training is involved

in the process, and the only task required is to process the

model weights in a single pass to obtain the quantized

version. In light of these results, it is possible to conclude

that the use of optimization strategies involving a training

procedure should be carefully considered when designing

systems that need to be periodically retrained, such as those

in the context of edge AI and those that are part of an

online learning system. In that case, post-training weight

quantization techniques may be the most efficient

alternative.

7 Discussion

This section provides an integrated discussion focusing on

key aspects of the framework. Section 7.1 presents a

comprehensive overview of the study’s primary findings

and key takeaways. Section 7.2 delves deeply into the

framework’s scalability aspect. Lastly, Sect. 7.3 thor-

oughly examines the current limitations of the proposed

framework while spotlighting potential directions for

future research to overcome these limitations.

7.1 Summary of the results obtained

The main conclusions and observations derived from the

results of the experimental evaluation we conducted in the

framework within the context of the cryptomining use case

are summarized below, organized by topic for ease of

comprehension.

Best optimization strategies Given the existing trade-off

between reducing energy consumption and avoiding

degradation of model performance, different optimization

strategies can be applied.

• The results show that, regardless of the batch size used

for inference, an optimal balance between energy

consumption and model performance can be obtained

with the application of the neural architecture search

and knowledge distillation techniques, as it provides

very high energy savings with minimal degradation of

performance. In our experiments, the use of neural

architecture search followed by the knowledge

Ta
bl
e
6

T
o
ta
l
av
er
ag
e
en
er
g
y
co
n
su
m
p
ti
o
n
o
b
ta
in
ed

b
y
ag
g
re
g
at
in
g
th
e
m
ea
su
re
d
v
al
u
es

co
ll
ec
te
d
o
v
er

m
u
lt
ip
le

ex
ec
u
ti
o
n
s
an
d
o
v
er

th
e
d
u
ra
ti
o
n
o
f
th
e
ex
p
er
im

en
t
d
u
ri
n
g
th
e
b
as
el
in
e
m
o
d
el

tr
ai
n
in
g
an
d
th
e
o
p
ti
m
iz
at
io
n
ap
p
li
ca
ti
o
n

O
p
t.
S
tr
at
eg
y
Id
.

0
1

2
þ
H

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y

C
o
n
su
m
p
ti
o
n
(J
)

2
7
5
:1
9
3

4
1
8
.2
0
6

3
0
0
:4
4
6

5
3
5
.7
7

3
5
3
:6
9
6

4
9
8
.4
6

6
5
4
.8
1
4

(9
5
4
6
7
.2
1
6
*
)

8
3
0
.8
9
8

1
0
3
5
.5
7
9

(9
5
8
4
7
.9
8
1
*
)

1
0
0
8
.4
2
6

(9
5
8
2
0
.8
2
8
*
)

1
3
6
2
.8
8

(9
6
1
7
5
.2
8
2
*
)

3
7
2
.3
1
9

7
6
6
.3
7
5

(9
5
5
7
8
.7
7
7
*
)

8
7
3
.1
1
3

(9
5
6
8
5
.5
1
5
*
)

A
cc
u
ra
cy

1
0
.9
9
6

1
1

1
1

0
.9
8
4

1
1

1
1

1
0
.9
9
7

1

B
al
an
ce
d
A
cc
u
ra
cy

0
:9
9
5

0
.5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
8
7

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
.7
0
8

0
:9
9
5

F
1
-s
co
re

1
0
.9
9
3

1
1

1
1

0
.9
8
9

1
1

1
1

1
0
.9
9
7

1

þ
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

m
in
im

iz
es

to
ta
l
av
er
ag
e
en
er
g
y
co
n
su
m
p
ti
o
n

H
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

m
in
im

iz
es

to
ta
l
av
er
ag
e
en
er
g
y
co
n
su
m
p
ti
o
n
an
d
sa
ti
sfi
es

th
e
m
in
im

u
m

ac
ce
p
ta
b
le

th
re
sh
o
ld

as
m
ea
su
re
d
b
y
th
e
u
se
r-
d
efi
n
ed

p
er
fo
rm

an
ce

ta
rg
et

m
et
ri
c

�
C
o
n
si
d
er
in
g
th
e
co
st

re
q
u
ir
ed

fo
r
th
e
n
eu
ra
l
ar
ch
it
ec
tu
re

se
ar
ch

p
ro
ce
d
u
re

u
se
d
to

fi
n
d
th
e
o
p
ti
m
al

m
o
d
el

st
ru
ct
u
re

U
n
d
er
li
n
ed

v
al
u
es
:
T
o
p
th
re
e
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

B
o
ld

an
d
u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

D
o
u
b
le

u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
s
in

a
m
o
d
el

w
it
h
p
er
fo
rm

an
ce

ab
o
v
e
th
e
m
in
im

u
m

ac
ce
p
ta
b
le

p
er
fo
rm

an
ce

th
re
sh
o
ld

J:
Jo
u
le
s

Neural Computing and Applications

123

distillation technique provided the largest reduction in

energy consumption in most cases studied, reducing the

total average energy consumption by up to 82.304%

with a minimal performance degradation of just 0.08%

in the balanced accuracy, 0.016% in the accuracy and

0.11 in the F1-score.

• The results demonstrate that, when performance degra-

dation is not allowed, the optimization strategy based

on the application of the half-precision floating-point

weight quantization provides the best energy-consump-

tion results. In our experiments, the application of the

half-precision floating-point weight quantization pro-

vided a reduction in energy consumption of up to

58.208%, with no performance degradation compared

to the baseline model.

Combination of optimization techniques Some of the

optimization techniques studied are not mutually exclusive

and can be applied in conjunction with each other to further

reduce the energy consumption of the model.

• Applying a weight quantization as the final post-

processing can potentially reduce the energy consump-

tion of the model in the inference stage. In particular,

we observed that the optimization strategy based on the

application of the neural architecture search and

knowledge distillation techniques followed by a half-

precision floating-point weight quantization provides a

reduction in energy consumption of up to 80.741%,

with a negligible performance degradation of 0.08% in

the balanced accuracy, 0.016% in the accuracy and 0.11

in the F1-score. However, in some cases, we observed

that the reduction in energy consumption was not

appreciable, and therefore the cost-effectiveness of

applying a post-training weight quantization technique

should be evaluated on a case-by-case basis.

• Since pruning makes a significant portion of the model

weights zero, if a post-training quantization technique is

subsequently applied, it will only reduce the model size

by a small factor and, in general, will do little to

increase the model efficiency already achieved by

applying the pruning technique.

• Pruning-aware model fine-tuning can be applied in

conjunction with the neural architecture search and

knowledge distillation techniques to further reduce the

energy consumption of the model. The optimization

strategy based on the application of the neural archi-

tecture search and knowledge distillation techniques

followed by a pruning-aware model fine-tuning pro-

vides a reduction in energy consumption of up to

81.046% but with a significantly higher performance

degradation of 0.287% in the balanced accuracy.

However, in some preliminary tests, we observed that

performance degradation was unpredictable, as this

optimization strategy provided different performance

results in different executions. For this reason, we

recommend caution when applying this optimization

strategy.

• Regarding quantization-aware model fine-tuning, when

this technique is applied as a single optimization step, it

provides a reduction in energy consumption of up to

15.05%, with no performance degradation. Although

our results confirm the effectiveness of this technique in

improving model energy efficiency when performance

degradation is not permissible, the improvement in

energy efficiency obtained is comparatively lower than

the one obtained with other techniques, such as neural

architecture search, knowledge distillation, or pruning-

aware model fine-tuning. In addition, when this tech-

nique is applied as part of a two- or three-step

optimization strategy in which neural architecture

search, knowledge distillation, or the pruning-aware

model fine-tuning technique are applied first, we

observed that it did not result in a further reduction in

energy consumption.

• Optimizing the quantization of neural network models

is a challenging task due to the complexity of

effectively handling mixed-precision operations. This

challenge is especially evident in cases where weights

are quantized to 8-bit integers, while activations, which

produce the outputs of hidden layers, are kept to 16 bits

to avoid significant loss of precision in internal

representations. However, the lack of optimization for

this mixed-precision approach, where operations on

different data types must be optimized together, results

in a significant increase in energy consumption and

slower inference in models produced with this quanti-

zation scheme. In fact, these models can be up to 1.84

times slower than the original model or other quanti-

zation schemes such as integer weight quantization and

half-precision floating-point quantization, resulting in

inference that is, respectively, 2.1 times and 3.72 times

slower. Nevertheless, integer weight quantization with

16-bit integer activations and 8-bit integer weights can

still be advantageous as it reduces the model size and

results in faster loading times. Furthermore, as observed

in the results presented above, the higher precision of

the activations prevents a significant loss of accuracy in

the internal representations compared to 8-bit integer

quantization, which is crucial for some applications. In

the future, support for kernels specifically optimized for

this type of quantization scheme in TFLite could

potentially resolve the current performance issues

observed.

Batch sizes

Neural Computing and Applications

123

• In most cases, optimization strategies that provide the

greatest reduction in energy consumption for small

batch sizes also provide the greatest reduction for large

batch sizes, and when this is not the case, the difference

in energy savings is small. However, it is clear from the

results that the reduction in energy consumption

obtained with the application of optimization strategies

is greater for larger batch sizes, regardless of the

optimization strategy applied. From this observation,

we can conclude that while it is true that larger batch

sizes provide higher energy efficiency compared to the

non-optimized model using the same batch size, there

may be cases where smaller batch sizes actually

consume less energy. For example, if the non-optimized

model using a large batch size requires substantially

more energy than the non-optimized model using a

small batch size, then the reduction obtained with an

optimization strategy on the large batch size may lead

to net energy consumption that is actually greater than

the net energy consumption obtained with the same

optimization strategy on the small batch size. That is,

although larger batch sizes typically provide greater

energy efficiency, there may be cases where smaller

batch sizes are preferable for optimal energy savings,

and therefore the choice of batch size should be

carefully considered to ensure that net energy con-

sumption is minimized.

Model size

• Knowledge distillation facilitates a notable reduction in

the model size while nearly completely mitigating

performance degradation. This method enables consid-

erably greater model compression compared to the

naive approach of simply reducing parameters. In our

case, it even allowed further reduction of the model

size, although the performance of the optimized model

becomes very inconsistent across different trials, failing

to correctly predict the minority class on some occa-

sions. However, this might not be a problem for model-

specific optimization, which will certainly compensate

for the cost of the several trials needed to obtain a well-

performing model in the medium term. On the other

hand, we have found that when training a model of the

same size as the one used to perform the knowledge

distillation technique, the model performs poorly. This

allows us to conclude that knowledge distillation allows

the use of very small models that would otherwise not

be usable due to lower-than-acceptable classification

accuracy and therefore could not be implemented in

production. When the temperature factor is increased

until the optimum point is reached progressively, the

performance of this model is observed to increase,

nearly approximating the performance obtained with

the baseline (teacher) model.

Model optimization process

• An important detail is that when using an imbalanced

dataset, it is necessary to pay special attention to the

choice of hyperparameters used to apply the optimiza-

tion techniques. In our use case, we have found that

pruning-aware model fine-tuning and quantization

techniques are particularly sensitive to the choice of

these values when dealing with imbalanced datasets. In

that case, if the hyperparameter values are not chosen

carefully, performance degradation after optimization

can be severe. Conversely, when the classes in the

dataset are balanced, we have found that these

techniques are more robust against the choice of these

hyperparameters than in the case of using an imbal-

anced dataset, since the performance is generally

maintained above the minimum acceptable through

different retrainings. Moreover, the case of the strategy

that consists of applying neural architecture search and

knowledge distillation is similar. The model can be

reduced by a larger factor if the number of samples in

each class is balanced, but if it is not, the model can be

reduced less with respect to the original model. In the

latter case, if the model is reduced excessively, the

accuracy in predicting the minority class will drop to a

random estimate or, in the worst case, to zero (i.e., the

model overfits to predicting the majority class),

although, in some cases, it is still possible to find a

local minimum in some training attempt to obtain

acceptable accuracy for both classes. However, the

likelihood of this occurring decreases as the model is

reduced further.

Temporal Analysis of the Framework Execution

• To evaluate the efficiency and usability of our proposed

framework and provide a better understanding of its

computational demands, the execution times for all

optimization strategies during training, inference, and

load phases have been carefully measured. This com-

prehensive analysis of the temporal aspect of running

the framework is presented in Table 9 within the

Appendix. This table delineates time statistics across

five executions for each optimization strategy. It

includes key metrics such as average, standard devia-

tion, and maximum times for training, inference, and

load processes. Section 9.2.2 thoroughly discusses these

results, extracting meaningful conclusions to under-

score their significance in our framework’s evaluation.

It should be noted that the total execution time will vary

depending on the machine specifications where the

Neural Computing and Applications

123

framework is running. However, in our experiments,

which were executed on a standard desktop computer

with specifications listed in Sect. 6.1, the total execu-

tion time for the complete framework, including all

optimization profiles and strategies and three different

batch sizes amounted to a total of three hours and

twenty minutes approximately in our case (approxi-

mately one hour per batch size evaluated and an

additional twenty minutes for the initialization of the

framework). Given the moderate capabilities of the

machine used in these experiments, the overall time

taken for the optimization process remained relatively

short. For significantly more complex models or models

that require quicker updates, a more powerful machine

to run the framework might be necessary, or, alterna-

tively, employing horizontal scalability might be

another solution if vertical scalability is not possible.

However, it’s worth noting these models that require

such frequent updates are uncommon in practice,

especially when complex models are involved. More-

over, in practice, highly complex models usually don’t

face significant resource constraints, so energy con-

sumption in those cases is usually not a critical factor.

Hence, we believe that the time spent is generally a

worthwhile investment, considering the significant

advantages in terms of energy efficiency and achieving

a higher rate of inference. Future enhancements to the

implementation of the framework or its supporting

libraries could further increase its effectiveness in

handling these scenarios more efficiently.

7.2 Considerations on the scalability
of the proposed framework

Regarding the scalability of the proposed framework,

especially in the context of large-scale data center sce-

narios involving concurrent operation of multiple DNN

models, a thorough explanation of this matter is essential.

Therefore, in this section, we will delve into the key

aspects of scalability within our proposed framework for

continuous optimization of multiple DNN models in large-

scale applications.

7.2.1 Application of the framework for simultaneous
model optimization

Our framework operates on a per-model basis, which

implies that for simultaneous optimization and execution of

different DNN models, the framework must be run inde-

pendently for each model. In contrast, when only a single

model is used, the optimization process takes place only

once for each time the model needs to be optimized, and,

once optimized, in the case of distributed applications, the

model can be deployed to the desired locations or opti-

mized in-place. Alternatively, if possible, a centralized

batch inference method can also be used, in which the data

is aggregated in a central location for batch inference using

a single model. In this regard, a comprehensive discussion

of batch inference is detailed in Sect. 6.3, accompanied by

supporting data in Tables 3, 4 and 5.

7.2.2 Simultaneous execution of multiple models

For concurrent execution of the framework on multiple

models, certain metrics collected by our framework operate

at the system level. Therefore, ensuring the reliability of

these metrics requires the exclusion of concurrent pro-

cesses in the same physical machine. To account for this,

we have designed our framework to verify this requirement

prior to the start of the optimization by requiring its ful-

fillment before starting the optimization process. Conse-

quently, in its current form, parallel optimization of

numerous models using our framework can only be

achieved through horizontal scalability by running the

framework on multiple physical machines simultaneously.

It should be noted that virtualization is not a valid approach

as Intel RAPL does not provide container-level power

consumption measurements when running within a virtu-

alized environment, and, instead, global power consump-

tion is reported. This limitation poses a challenge to our

framework’s scalability within virtualized infrastructures,

as it prevents precise measurement of the individual energy

consumption of each optimized model, which completely

prevents accurately and reliably selecting the best opti-

mization strategy for each model that needs to be opti-

mized. Additionally, this limitation also poses a challenge

for deploying our framework in cloud-based or virtualized

infrastructures where direct access to physical hardware

components is not possible or it is shared among multiple

tenants.

7.3 Limitations and challenges of the proposed
framework

This section critically evaluates the framework’s limita-

tions and the obstacles that might hinder its adoption and

effectiveness in certain real-world scenarios. First, the

impact of the model inference rate on overall energy effi-

ciency is analyzed. Next, the overall energy cost and effi-

ciency for different types of application architectures are

evaluated. Finally, the limitations regarding the frame-

work’s applicability for the continuous optimization of

models deployed in dynamic environments are discussed.

Neural Computing and Applications

123

7.3.1 Impact of model inference rates on energy efficiency

The proposed framework faces some limitations that

require careful consideration, especially in scenarios

characterized by variable inference rates and dynamic

conditions to which the model must adapt. More specifi-

cally, continuous optimization of one or several models in

environments with frequently changing conditions, such as

in distributed edge inference scenarios or settings where

federated learning is employed, can be challenging.

This is especially the case when the inference occurs

infrequently, and the energy cost savings obtained from

optimization may not offset the total energy invested in

executing the optimization process for a specific model.

Therefore, the frequency of inference, determined by the

specific usage scenario, and the energy invested to optimize

the model to be deployed are key factors to evaluate if

minimizing total energy consumption is considered

important for the application. To illustrate this point, we

draw upon some of our previous research and explore two

typical ML/DL inference scenarios to shed light on the

challenges and complexities associated with applying our

optimization framework in scenarios of considerably dif-

ferent inference rates per second in production

environments.

• Low inference rate scenario In prior research work [49],

the focus was placed on developing and implementing

chlorophyll-a soft-sensors adjusted for situations with

limited computational capacity and constrained

resources utilizing automatic high-frequency monitor-

ing systems and ML techniques to create a cost-

effective and rapid tool for estimating chlorophyll-a

fluorescence, especially beneficial for supporting man-

ual sampling in water bodies susceptible to harmful

algal blooms. This involved the development of com-

pact ML models designed for low-energy consumption

and efficient performance, specifically targeting deploy-

ment on buoys with restricted hardware and battery

resources. The inference, in this case, occurred at a

notably low frequency, spanning from once a day to a

prediction horizon of seven days into the future. The

low frequency of these inference operations will pose a

challenge regarding the energy consumption optimiza-

tion of these models. The computational expense

associated with optimizing these models for better

energy efficiency using our proposed framework is

expected to demand significant energy consumption.

However, amortizing this energy cost against the

infrequent inference process once the model is deployed

will potentially present a scenario where the gain

achieved in energy cost will take considerable time to

offset the total energy investment required in the

optimization process. Furthermore, if we factor in

relatively frequent model updates to address potential

issues like data drift or changes in the environment, the

increased frequency of the optimization process could

worsen the gap between the energy spent on optimiza-

tion and the infrequent cases where inference operations

are used. As a result, these frequent updates may not

effectively balance out the energy costs linked with

optimization, possibly leading to minimal or negative

overall energy savings.

• High inference rate scenario The case study presented

in Sect. 5 focuses on a high-rate inference scenario

exemplified by a real-world use case related to cryp-

tocurrency mining detection that requires highly effi-

cient and accurate DNN models for real-time

classification of network traffic. These models are

deployed at several remote locations, each location

serving as an aggregator for a subset of the global

network data. Therefore, a considerably high rate of

inference processing is expected for each deployed

model. The security-critical nature of this application

underscores the need for high-throughput, low-latency

models that efficiently identify cryptocurrency mining

activity within a substantial volume of network data,

while operating under significant resource constraints,

including the unavailability of specialized AI acceler-

ators, low computational resources, and minimal energy

consumption. In this case, due to the high inference rate

that is expected, energy efficiency is critical for

efficient, sustainable, and cost-effective operation.

Therefore, the high frequency of inference operations

in this scenario allows for the energy savings obtained

from the optimized models to offset the energy

expended during the optimization process relatively

quickly. Continuous adaptation and updates to the

model might still be necessary due to the evolving

nature of cryptocurrency mining methods, network

behaviors, and potential adversarial attacks. However,

if the expected inference rate in the production envi-

ronment is sufficiently high, as in the use case selected

for the present study, the continuous energy savings

achieved through energy-efficient inference will justify

the investment in the recurring optimization cycles

triggered by the necessary model updates.

The significant energy savings achieved during the infer-

ence processes—once the model is deployed in produc-

tion—will eventually offset the initial time and energy

investment, assuming that the model is not updated too

frequently to negate these gains. The inference rate of the

model will ultimately determine the rate at which this

break-even point is reached. Therefore, evaluating the

applicability of the proposed framework in various

Neural Computing and Applications

123

inference scenarios when minimizing total energy con-

sumption is a significant concern and requires a detailed

understanding of the trade-offs between model optimiza-

tion and expected inference frequencies in the production

environment.

However, although the initial energy cost associated

with the optimization process provided by our framework

is significant, especially for the more complex optimization

techniques, as noted in Sect. 6.4, and should be taken into

account when minimizing the total energy cost is important

for the specific application, the energy efficiency gains that

can be achieved in the inference process by using our

framework take precedence over the overall energy cost

within edge inference scenarios where IoT devices operate

under energy constraints imposed by the use of limited

capacity batteries.

The resulting energy savings during the inference pro-

cess are crucial for extending the battery life of these

devices, which offers substantial advantages in terms of

maintenance cost savings, which is especially relevant in

cases where the IoT devices are situated in remote loca-

tions such as the scenario described above where several

buoys are deployed in distant bodies of water. Addition-

ally, it enables the use of lighter, lower-capacity batteries

that can help reduce deployment and maintenance costs.

7.3.2 Evaluation of the energy costs and efficiency
in centralized and edge inference scenarios

As mentioned above, the optimization process within our

framework is exhaustive and incurs a certain energy cost,

especially for techniques involving training processes, as

evidenced in Table 6 and elaborated in Sect. 6.4. For this

reason, in scenarios where the edge computing paradigm is

not employed, the feasibility of deploying our framework

for continuous optimization in purely isolated IoT envi-

ronments where embedded systems are used with a limited

computer might be limited.

Nevertheless, the application of our proposed frame-

work provides significant benefits in scenarios where cen-

tralized inference, such as the case study presented in

Sect. 5, or edge computing is considered in the applica-

tion’s architecture is feasible. To illustrate the latter, in

prior research [50–53], we focused on utilizing multi-ac-

cess edge computing (MEC) for remote trajectory control

of automated guided vehicles (AGVs). The MEC server

facilitated periodic training of multiple ML/DL models

through transfer learning. These trained models were then

deployed to simultaneously control the trajectory of several

vehicles. Our framework allows continuous optimization of

these models within the MEC platform, benefiting from

ample computational power without facing energy con-

sumption constraints. As a result, the application of our

framework in this context would result in substantial

energy savings, especially considering the frequent infer-

ence requirements of ten times per second for each active

vehicle in the factory, and even more so in medium to large

factory environments with tens or even hundreds of AGVs

often operating simultaneously.

7.3.3 Optimizing energy efficiency in dynamic
environments

Our proposed framework addresses the challenge of

managing dynamic changes in workloads or data by re-

running the optimization process whenever updates to the

model are required. This iterative approach ensures that the

model remains optimized while being continuously aligned

with the evolving data distribution and the specific work-

loads it encounters in its deployment environment, which is

crucial in sustaining high-performance levels over time.

Regarding the frequency of optimization cycles, as we

mentioned earlier, excessively frequent changes can lead to

substantial computational overhead. This concern becomes

particularly pertinent in real-world scenarios characterized

by frequent dynamic changes, such as in distributed edge

inference or federated learning environments.

Moreover, as also mentioned above, in scenarios where

inference processes occur infrequently, the total energy

invested in frequent model updates may require consider-

able time to compensate. This is especially true when

considering the energy expenditure associated with these

frequent updates.

However, in the context of distributed edge inference, as

mentioned above, the emphasis is on prioritizing the

reduction of energy consumption during inference pro-

cesses rather than minimizing total energy costs, especially

when inference is performed using IoT devices operating

under strict battery constraints. Therefore, in this con-

text, despite considering the need for these recurring

optimization cycles, the improved energy efficiency in the

inference process achieved by our framework provides

important benefits regarding extended battery life and

reduced deployment and maintenance costs.

8 Conclusions and future work

In this article, we propose an integrated methodological

framework to analyze the energy consumption and

resource utilization of DNN-based systems deployed in

production environments. The proposed framework allows

us to evaluate and compare the performance of the com-

bination of a variety of state-of-the-art model optimization

techniques and provide a deep understanding of the trade-

offs between energy efficiency, resource utilization, and

Neural Computing and Applications

123

performance. In addition, the framework proposes the

concept of an ‘‘optimization profile’’ to address the trade-

off between energy savings and model performance.

Optimization profiles allow to reflect in a quantitative way

scenarios in which energy savings or model performance

should be balanced or may take priority over the other.

Our proposed framework for energy-efficient optimiza-

tion of deep neural networks (DNNs) provides added value

to the optimization process by automating the process of

finding optimal hyperparameters and configurations of the

network architecture that minimize energy consumption

without compromising model accuracy. This streamlines

the optimization process, saving valuable time and

resources and allowing researchers and practitioners to

focus on other aspects of their projects, such as data pre-

processing and model interpretation.

The application of our automatic framework to optimize

the energy efficiency of DNNs can improve the repro-

ducibility of the results by ensuring consistency between

different experiments, allowing fair and robust

comparisons.

It is worth noting that typical approaches based on trial-

and-error optimization of DNN energy efficiency can be

sub-optimal and inefficient, which underscores the impor-

tance of the automated framework we propose in this study.

Our framework defines a comprehensive set of predefined

common ‘‘optimization strategies’’ that combine multiple

state-of-the-art optimization techniques that can be applied

together, enabling fast and efficient optimization of a given

model. The integration of an extensive selection of opti-

mization techniques that can be automatically applied and

evaluated to identify the strategy that leads to maximum

energy efficiency and minimizes resource consumption for

a specific model facilitates adaptability across diverse

datasets and model architectures. By establishing a sys-

tematic process that exhaustively evaluates the available

optimization strategies based on real-time energy con-

sumption and performance feedback at inference time, our

proposed framework alleviates the burden associated with

trial-and-error optimization methods and effectively miti-

gates the potential pitfalls frequently observed in the

application of these manual optimization processes, while

ensuring a more robust and efficient optimization process,

that, due to its automated nature, can be seamlessly inte-

grated into continuous integration pipelines to fully harness

the advantages offered by the state-of-the-art energy opti-

mization techniques available across diverse deployment

scenarios. The variety of model optimization techniques

encompassed in this broad set of optimization strategies

underscores the versatility of our proposed framework to

adapt to various model optimization paradigms.

Moreover, the flexibility offered by the framework’s

modular design facilitates the integration of new

optimization techniques and customized strategies into the

existing framework architecture to address more specific

requirements. The adaptability and extensibility of our

framework are fundamental features that enable research-

ers to readily incorporate novel optimization methods or

those that already exist and were not initially included in

our work, thereby perpetually expanding the repertoire of

optimization methodologies available within the frame-

work. In this way, users of the framework can benefit from

the latest advances in optimization techniques without

being constrained by the framework’s pre-existing func-

tionality, thus perpetuating its relevance and usefulness in

the ever-evolving landscape of model optimization

research.

Importantly, this framework is open source and publicly

available (github.com/amitkbatra/EnergyNet), providing an

excellent opportunity for contributions from the scientific

community. These contributions could incorporate new

techniques or enhance those already included, thus estab-

lishing the framework as the foundational basis for energy

efficiency optimization in DNNs. By providing access to a

variety of optimization tools and techniques, this frame-

work offers an opportunity for the scientific community to

contribute to the improvement of energy efficiency in

DNNs, making it a collaborative effort toward sustainable

artificial intelligence.

The effectiveness of our proposed framework was

demonstrated by applying it to a real-world use case,

namely cryptomining detection, and successfully optimiz-

ing the energy efficiency of a DNN, achieving an 82.304%

reduction in total energy consumption while maintaining a

minimal performance loss of 0.008%. Our results demon-

strate that our framework is a reliable and effective way to

analyze and optimize the energy efficiency and resource

utilization of DNNs. Through careful analysis of the trade-

offs between energy efficiency and performance, our

framework allows us to automatically select the most

appropriate optimization techniques according to the

specific application requirements.

As future work, we plan to extend our proposed

framework to enable the analysis of the energy efficiency

and resource utilization of different DNN architectures,

such as recurrent neural networks and convolutional neural

networks, as well as different ML training methods (e.g.,

reinforcement learning). In addition, we plan to extend our

framework to analyze the energy efficiency of DNN-based

systems on specialized hardware platforms, such as GPUs

and TPUs. To that end, other inference engines that provide

support for the required platforms, such as TensorRT for

the GPU case, should be added. On the other hand, pro-

viding support for evaluation in different hardware archi-

tectures, such as heterogeneous and multi-core systems, as

Neural Computing and Applications

123

well as in distributed systems, such as clusters and cloud

computing, is also an interesting line of future work.

Moreover, to address computational overhead, various

strategies to optimize the efficiency of subsequent model

optimization processes within our framework are being

actively explored. One of our lines of research focuses on

the development of more efficient methods for incremental

model updating. Leveraging the latest advances in transfer

learning techniques, the goal is to enable the framework to

update and adjust models more efficiently. By leveraging

pre-existing model knowledge and parameters, this

approach significantly reduces the computational burden

associated with large-scale re-optimization.

In addition, we plan to incorporate automatic data drift

detection mechanisms into the framework. Continuous

monitoring of incoming data characteristics allows us to

identify shifts in data distribution that might affect the

model performance. This proactive approach assists in

determining precise times for model re-optimization,

ensuring timely adjustments. Quantifying data drift

involves analyzing statistical measures and metrics to

measure the degree of deviation between the most recent

data and the original training data. These metrics encom-

pass statistical distances, divergence measures, or similar-

ity scores that facilitate the comparison of data distribution

changes. To streamline this process, we empirically eval-

uate a reference point for expected data similarity, allowing

for the definition of adjustable thresholds. These thresholds

trigger automatic optimization when exceeded, ensuring

that the model remains aligned with evolving data patterns.

In addition, quantifying this deviation also helps determine

the degree of model retraining needed, which can be used

to further optimize the re-training efficiency.

Finally, we plan to explore alternative selection methods

for improving the combinatorial search space for opti-

mization strategies. In contrast to the exhaustive search

method currently employed, we propose to employ a

greedy strategy. This approach consists of systematically

applying optimization techniques to the target model one at

a time, selecting and retaining the technique that yields the

most favorable results aligned with the chosen optimization

profile. This iterative process continues until no further

improvements can be achieved. Although this approach

represents a suboptimal solution, as it assumes that the best

combination of techniques emerges through consecutive

application of optimization techniques that lead to incre-

mental improvements, preliminary tests have shown

promising results. Other strategies, such as Monte Carlo

tree search and genetic algorithms, are also being explored

for their potential to effectively navigate the vast search

space for optimization strategies, which will become

increasingly larger as the repertoire of optimization tech-

niques available in the framework expands over time.

Appendix

Analysis of resource usage in inference time

The use of computing resources (e.g., CPU, memory, and

disk) has a direct impact on energy consumption. In this

section, we analyze in detail the best optimization strate-

gies that reduce the use of computing resources, globally

considering all optimization profiles and taking into

account the prior selection of an optimization profile (en-

ergy efficiency, balanced, and performance profiles). The

analysis is performed considering different batch sizes

during the inference process.

Analysis of CPU consumption

From a general perspective, analyzing the results obtained

in the inference phase using the three batch sizes, some

interesting conclusions can be drawn about the resource

usage and the performance obtained by the models in the

evaluation phase. An interesting result is that no reduction

in CPU power consumption is achieved by applying any of

the optimization strategies when using a batch size of 32.

In fact, the results indicate that, in some cases, optimization

strategies lead to an increase in CPU power consumption.

The reduction in power consumption of the optimized

models is mainly due to the reduction in total inference

time as the number of operations and their required com-

putation time decrease. This is because an energy opti-

mization strategy consisting of reducing the number of

operations to be executed or reducing the number of

parameters to be used to perform the inference step of the

ML process results in a reduction in the time required to

perform the inference step. This reduction in total inference

time translates directly into a reduction in total energy

consumption needed to perform the inference step, since

this energy consumption is directly proportional to the time

needed to perform the inference step. The reason why no

reduction in CPU power consumption is achieved when

using a small batch size seems to be related to the fact that

the total inference time is so short (even shorter after

optimization) that the CPU power consumption is not

visibly affected. However, we can see that a small reduc-

tion in CPU power consumption is achieved when the

batch size is increased. Overall, the null reduction in CPU

power consumption observed in Table 3 and the small

decrease observed in Tables 4 and 5 is not a concern, since

the reduction of the energy consumption of the target

model during the inference state is the main goal, as this is

the key factor to minimize when optimizing the energy

efficiency of the target model and, as can be seen from the

results presented in Table 3, most optimization strategies

Neural Computing and Applications

123

provide a high reduction in energy consumption with

respect to the non-optimized model.

Analysis of CPU frequency

Another interesting conclusion that can be drawn from the

results presented in Tables 3, 4 and 5 is that some opti-

mization strategies lead to a consistent reduction in CPU

frequency during the inference stage of the optimized

model, regardless of the batch size used to perform the

prediction. This is the case for the optimization strategy

consisting of applying pruning-aware model fine-tuning

and the one consisting of applying neural architecture

search and knowledge distillation. In both cases, the

reduction in frequency is due to the fact that the application

of these techniques leads to a reduction in the number of

operations to be performed by the CPU to carry out the

inference. In the case of model pruning, the reduction in the

number of operations is due to the use of sparse matrices in

the calculation of the operations performed by the model,

which can be accelerated by using appropriate optimization

algorithms. In the case of the strategy of neural architecture

search and knowledge distillation, the reduction in the

number of operations is due to the smaller number of

parameters to be evaluated in the inference stage, which

translates directly into a reduction in the number of oper-

ations to be performed.

Finally, we can see that CPU utilization was hardly

affected by any of the optimization strategies, so the results

presented in Tables 3, 4 and 5 show that the percentage of

CPU utilization remains virtually constant regardless of

which optimization strategy was applied.

Analysis of memory usage

Regarding memory usage, we observe in the results pre-

sented in Tables 3, 4, and 5 that all optimization strategies

that have been applied in the inference stage lead to a

consistent but small reduction in memory usage, regardless

of the batch size used to perform the prediction. A reduc-

tion in memory usage can be potentially obtained by

reducing the number of parameters (in the case of applying

knowledge distillation or pruning techniques) or the size of

the parameters in memory (in the case of optimization

strategies involving weight quantization techniques).

Although not measured, this reduction in memory con-

sumption also contributes to reducing the amount of energy

required to carry out the inference stage of the ML process,

since the smaller the number of data to be stored in

memory, the lower the amount of energy required to per-

form data storage and retrieval operations. In addition, this

reduction in memory usage also increases the inference

speed of the optimized model, since the number of read

operations to load parameters from the main memory to the

cache and CPU registers is reduced. Finally, minimizing

memory usage is crucial to allow more models to be

deployed on the same device, reducing infrastructure costs,

and improving system scalability. In this case, the most

favorable results in terms of reduced memory usage are

obtained with the application of 8-bit integer weight

quantization, leading to a reduction of approximately

0.33% in memory usage relative to the baseline model.

However, if we ignore this technique due to the consider-

able reduction in balanced accuracy it causes, the opti-

mization strategy that provides the most favorable results

in terms of memory usage reduction is the optimization

strategy consisting of applying half-precision floating-point

activations and quantization of 8-bit weights, the one

consisting of applying model fine-tuning with quantization,

and the one consisting of applying neural architecture

search and knowledge distillation, three of which provide

between 1.5% and 3% memory usage reduction. As can be

seen, the reduction in memory usage obtained with the

application of weight quantization techniques is relatively

low, with the exception of full quantization of 8-bit integer

weights. This is due to the fact that half-precision floating-

point weights are not natively supported by standard

desktop CPUs, which means that the optimized model

parameters will have to be converted to a single-precision

floating-point format to be processed by the hardware. This

conversion to a single-precision floating-point format will

ultimately increase the total size of the parameters stored in

memory. The small reduction observed is due to the

elimination of some redundancy during the lossy com-

pression that occurs when the parameters are converted

from the half-precision floating-point format to the single-

precision floating-point format. However, if instead of

using the CPU, a specialized accelerator with hardware

support for half-precision floating-point parameters is used

to perform the inference, such as an NVIDIA GPU, Goo-

gle’s TPU or NVIDIA Jetson embedded computing boards,

it will be possible to operate directly on the half-precision

floating-point parameters without incurring the overhead of

converting them to single-precision floating-point format.

This will result in significantly lower memory usage,

leading to lower power consumption during the model

inference stage, and will improve the scalability of the

system, as potentially more models can be deployed on the

same device. On the other hand, this problem is not

observed with the optimization strategy based on the

application of full 8-bit integer weight quantization, since

integer matrix multiplications are natively supported by

most hardware architectures, including standard desktop

and mobile CPUs.

Neural Computing and Applications

123

Analysis of disk usage

Also, the size of the model on disk is another factor that

influences the energy consumed by the model. When a

model is deployed in a production environment, it must be

stored on a persistent storage medium, such as a flash drive

or hard disk. The smaller the size of the model, the less

energy is required to store it and the less energy is required

to load it from persistent storage to main memory. Opti-

mizing the size of the model in terms of the number of

parameters also allows maximizing the number of models

that can be stored on a given persistent storage medium,

thus eliminating the need to add new storage devices each

time new models are produced, which also results in lower

energy consumption. In the results presented in Table 7, the

size of the compressed model file in persistent storage is

included. In this table, we can observe that the size of the

non-optimized model on disk is 13,194 bytes, while the

smallest optimized model obtained after applying the

optimization strategy consisting of applying neural archi-

tecture search and knowledge distillation to the model has a

size of only 1660 bytes, which is an 87.42% reduction in

model size. The second smallest optimized model is the

one obtained by applying the neural architecture search and

knowledge distillation optimization strategy to the model

followed by a half-precision weight quantization, which is

a slightly bigger model with a size of 1808 bytes. The third

smallest optimized model is the one obtained by applying a

pruning-aware fine-tuning technique to the model followed

by a quantization-aware model fine-tuning technique,

which has a size of 10,992 bytes, which is 16.68% smaller

than the baseline model.

Analysis of additional results

Analysis of the results obtained in the load stage

The results obtained in the load phase are shown in

Table 8. Interestingly, energy efficiency in this phase is

slightly degraded by all optimization strategies. Only two

strategies notably improve energy efficiency, which are

pruning-aware model fine-tuning followed by quantization-

aware model fine-tuning and the one consisting of neural

architecture search and knowledge distillation followed by

half-precision floating-point weight quantization. Both

strategies improve the energy efficiency of the model load

by approximately 3%. The combination of neural archi-

tecture search, knowledge distillation, and pruning-aware

model fine-tuning also improves energy efficiency, but to a

lesser extent (0.376%). These results suggest that improv-

ing the energy efficiency of the model loading process

using these techniques provides small benefits and that for

specific scenarios where models are loaded frequently,

such as mobile applications, these gains may be difficult to

justify and alternative techniques, such as using more

efficient hardware designs, may be more beneficial.

Analysis of the inference, training, and load times

The results obtained in the training, loading, and inference

stages of the optimized models are summarized in Table 9.

The results shown in this table correspond to the mean,

standard deviation, and maximum time (in seconds)

obtained at each stage over five iterations for each opti-

mization strategy. The most important result that can be

observed in this table is the reduction of the inference time

of the optimized models with respect to the baseline model.

Achieving a high speed-up in the inference time is essential

Table 7 Size of the compressed (Deflate) model file in persistent storage obtained with each optimization strategy

Opt. Strategy Id. 0 1 2 3 4 5 6þH 7 8 9 10 11 12 13

Model Size (B) 13,194 12,415 45,977 12,722 27,929 12,028 1660 10992 27,917 12,326 11,345 27,909 1662 27,886

Accuracy 1 0.996 1 1 1 1 0.984 1 1 1 1 1 0.997 1

Balanced

Accuracy

0:995 0.5 0:995 0:995 0:995 0:995 0:987 0:995 0:995 0:995 0:995 0:995 0.708 0:995

F1-score 1 0.993 1 1 1 1 0.989 1 1 1 1 1 0.997 1

þ Optimization strategy that minimizes model size

H Optimization strategy that minimizes model size and satisfies the minimum acceptable threshold as measured by the user-defined performance

target metric

Underlined values: Top three optimization strategy that resulted in the best improvement in the measured statistic

Bold and underlined values: Optimization strategy that resulted in the best improvement in the measured statistic

Double underlined values: Optimization strategy that results in a model with performance above the minimum acceptable performance threshold

B: bytes

Neural Computing and Applications

123

from a scalability point of view when the system must

process large amounts of data in real-time. In this context,

increasing the number of predictions the system can per-

form per second can have a significant impact on system

performance, reducing the need to add more resources to

the system to meet the real-time deadline required by the

application, and thus reducing infrastructure costs and

power consumption. The results presented in Table 9 show

that the optimization strategy that minimizes model infer-

ence time is the one based on the neural architecture search

and knowledge distillation techniques followed by pruning-

based model fine-tuning, which speeds up model inference

by 3.78 times. However, this optimization strategy does not

meet the minimum performance that was set as a threshold

for the optimization process (0.9 for balanced accuracy)

and is therefore discarded in favor of the optimization

strategy based on half-precision floating-point weight

quantization, which accelerates model inference by 2.02

times with respect to the baseline model and without any

performance degradation.

Another interesting point to analyze is the time required

to train the model that is the target of the optimization

process and the time required to apply the optimization

strategy to it. In the results shown in Table 9, it is observed

that the optimization strategies that have a higher training

cost are the ones that include the knowledge distillation

technique, as this strategy requires a neural architecture

search procedure to find the most suitable structure for the

student model. Although the time required to complete this

search is a one-time process to be executed offline, it

should be taken into account as it can potentially involve a

large number of training processes and decrease or even

nullify any potential energy efficiency gains that may be

achieved by the optimization strategies during model

application. However, this problem can be solved by

manually finding a suitable student model architecture or at

least alleviated by reducing the search space through

manual experimental analyses. On the other hand, pruning-

aware and quantization-aware model fine-tuning tech-

niques are much faster than knowledge distillation, since

the fine-tuning process to be performed by these two

techniques is much faster than training the model from

scratch and they do not require a neural architecture search

procedure as the knowledge distillation technique, thus the

total time required to apply these techniques is consider-

ably less. Finally, post-training weight quantization tech-

niques are also much faster than knowledge distillation and

similar to fine-tuning techniques, being also unaffected by

the high variance caused by the neural architecture search

and training procedures.

Additionally, the reduction of loading times is also of

great importance when the application requires a dynamic

instantiation of the models or when the system must be ableTa
bl
e
8

T
o
ta
l
av
er
ag
e
en
er
g
y
co
n
su
m
p
ti
o
n
o
b
ta
in
ed

b
y
ag
g
re
g
at
in
g
th
e
m
ea
su
re
d
v
al
u
es

co
ll
ec
te
d
o
v
er

m
u
lt
ip
le

ex
ec
u
ti
o
n
s
an
d
o
v
er

th
e
d
u
ra
ti
o
n
o
f
th
e
ex
p
er
im

en
t
d
u
ri
n
g
th
e
m
o
d
el

lo
ad

O
p
t.
S
tr
at
eg
y
Id
.

0
1

2
3

4
5

6
7
þ
H

8
9

1
0

1
1

1
2

1
3

T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y
C
o
n
su
m
p
ti
o
n
(J
)

0
:3
8
3

0
.3
8
9

0
:3
9
3

0
.3
9
3

0
:4
0
2

0
.3
9
1

0
.3
9
5

0
:3
6
9

0
:3
8
2

0
.4

0
.3
8
4

0
.3
9
5

0
:3
7
2

0
.3
9
1

P
er
ce
n
ta
g
e
o
f
T
o
ta
l
A
v
g
.
C
P
U

E
n
er
g
y
C
o
n
su
m
p
ti
o
n

R
ed
u
ct
io
n
(%

)

N
=
A

�
1
.4
5
9

�
2
:5
4
1

�
2
:5
4
6

�
4
:7
5
9

�
1
:8
5
3

�
2
.9
4
6

3
:6
6
8

0
:3
7
6

�
4
:2
7
1

�
0
:1
3
6

�
2
:9
1
4

2
:9
7

�
1
:9
3
3

A
cc
u
ra
cy

1
0
.9
9
6

1
1

1
1

0
.9
8
4

1
1

1
1

1
0
.9
9
7

1

B
al
an
ce
d
A
cc
u
ra
cy

0
:9
9
5

0
.5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
8
7

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
.7
0
8

0
:9
9
5

F
1
-s
co
re

1
0
.9
9
3

1
1

1
1

0
.9
8
9

1
1

1
1

1
0
.9
9
7

1

þ
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

m
in
im

iz
es

to
ta
l
av
er
ag
e
en
er
g
y
co
n
su
m
p
ti
o
n

H
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

m
in
im

iz
es

to
ta
l
av
er
ag
e
en
er
g
y
co
n
su
m
p
ti
o
n
an
d
sa
ti
sfi
es

th
e
m
in
im

u
m

ac
ce
p
ta
b
le

th
re
sh
o
ld

as
m
ea
su
re
d
b
y
th
e
u
se
r-
d
efi
n
ed

p
er
fo
rm

an
ce

ta
rg
et

m
et
ri
c

U
n
d
er
li
n
ed

v
al
u
es
:
T
o
p
th
re
e
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

B
o
ld

an
d
u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

D
o
u
b
le

u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
s
in

a
m
o
d
el

w
it
h
p
er
fo
rm

an
ce

ab
o
v
e
th
e
m
in
im

u
m

ac
ce
p
ta
b
le

p
er
fo
rm

an
ce

th
re
sh
o
ld

J:
Jo
u
le
s

Neural Computing and Applications

123

Ta
bl
e
9

A
v
er
ag
e,

st
an
d
ar
d
d
ev
ia
ti
o
n
an
d
m
ax
im

u
m

o
f
tr
ai
n
in
g
,
in
fe
re
n
ce
,
an
d
lo
ad

ti
m
es

av
er
ag
ed

o
b
ta
in
ed

fo
r
ea
ch

o
p
ti
m
iz
at
io
n
st
ra
te
g
y
ac
ro
ss

fi
v
e
d
if
fe
re
n
t
ex
ec
u
ti
o
n
s

O
p
t.
S
tr
at
eg
y
Id
.

0
1

2
3

4
5

6
H

7
8

9
1
0

1
1

1
2
þ

1
3

A
v
g
.
In
fe
re
n
ce

T
im

e
(s
)

0
.3
1
8

0
.2
7
3

0
:1
5
7

0
.5
8
4

0
.1
5
9

0
.2
8

0
:0
8
8

0
.2
7
8

0
.1
5
9

0
.2
8
6

0
.2
8
7

0
.1
6
1

0
:0
8
4

0
.1
6
4

S
td
.
D
ev
.
In
fe
re
n
ce

T
im

e
(s
)

0
.0
0
7

0
:0
0
5

0
:0
0
2

0
.0
1
2

0
.0
0
7

0
.0
0
6

0
:0
0
4

0
.0
0
8

0
.0
1

0
.0
1
8

0
.0
1
7

0
.0
0
6

0
.0
0
6

0
.0
0
9

M
ax
.
In
fe
re
n
ce

T
im

e
(s
)

0
.3
2
9

0
.2
8
1

0
:1
5
8

0
.6
0
3

0
.1
6
6

0
.2
9
2

0
:0
9
2

0
.2
8
8

0
.1
7
7

0
.3
2
2

0
.3
2
1

0
.1
7
1

0
:0
9

0
.1
7
9

A
v
g
.
T
ra
in
in
g
T
im

e
(s
)

1
0
.5
5
3

1
6
.0
3
4

1
1
.5
3
3

2
0
.4
0
7

1
3
.7
7
3

1
9
.2
5
9

2
5
.1
2
5

(4
2
1
7
.2
5
4
*
)

3
1
.5
9
3

3
9
.8
6
4

(4
2
3
1
.9
9
3
*
)

3
8
.0
7
1

(4
2
3
0
.2
*
)

5
2
.0
3
8

(4
2
4
4
.1
6
7
*
)

1
3
.8
1
2

2
8
.9
7

(4
2
2
1
.0
9
9
*
)

3
3
.2
8
2

(4
2
2
5
.4
1
1
*
)

S
td
.
D
ev
.
T
ra
in
in
g
T
im

e
(s
)

0
.1
5
6

0
.0
4
5

0
.0
3

0
.0
7
1

0
.0
8
5

0
.0
8
9

6
.4
5
2

(5
8
.7
3
4
*
)

0
.1
5
3

4
.6
6
1

(5
8
.6
0
7
*
)

2
.6
0
9

(5
8
.6
4
6
*
)

3
.3
7
6

(5
8
.5
4
8
*
)

0
.0
3
2

2
1
.1
4
8

(6
2
.2
5
1
*
)

4
.6
3
4

(5
8
.7
3
2
*
)

M
ax
.
T
ra
in
in
g
T
im

e
(s
)

1
0
.8
6
4

1
6
.1
1
9

1
1
.5
8

2
0
.4
8
4

1
3
.9
2
2

1
9
.3
5
7

3
5
.6
0
2

(4
2
7
1
.5
0
8
*
)

3
1
.7
6
7

4
5
.8
1
2

(4
2
8
1
.7
1
8
*
)

4
1
.6
1
4

(4
2
7
7
.5
2
*
)

5
7
.8
5

(4
2
9
3
.7
5
6
*
)

1
3
.8
4

7
1
.0
7
3

(4
3
0
6
.9
7
9
*
)

3
9
.3
9
7

(4
2
7
5
.3
0
3
*
)

A
v
g
.
L
o
ad

T
im

e
(s
)

0
.0
8
6

0
:0
6
2

0
.0
6
5

0
.0
6
3

0
.0
6
5

0
.0
7
1

0
.0
6
4

0
.0
6
9

0
:0
6
1

0
.0
6
4

0
:0
6

0
:0
6
2

0
:0
6
2

0
.0
6
3

S
td
.
D
ev
.
L
o
ad

T
im

e
(s
)

0
.0
0
5

0
:0
0
2

0
:0
0
2

0
:0
0
2

0
.0
0
3

0
.0
1
5

0
:0
0
2

0
.0
1
5

0
.0
0
6

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
6

0
.0
0
3

M
ax
.
L
o
ad

T
im

e
(s
)

0
.0
9
2

0
:0
6
6

0
.0
6
8

0
:0
6
6

0
.0
7
1

0
.1
0
1

0
.0
6
7

0
.0
9
8

0
.0
7
2

0
.0
6
9

0
:0
6
5

0
.0
6
7

0
.0
7
3

0
.0
6
8

A
cc
u
ra
cy

1
0
.9
9
6

1
1

1
1

0
.9
8
4

1
1

1
1

1
0
.9
9
7

1

B
al
an
ce
d
A
cc
u
ra
cy

0
:9
9
5

0
.5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
8
7

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
:9
9
5

0
.7
0
8

0
:9
9
5

F
1
-s
co
re

1
0
.9
9
3

1
1

1
1

0
.9
8
9

1
1

1
1

1
0
.9
9
7

1

þ
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

m
in
im

iz
es

av
er
ag
e
in
fe
re
n
ce

ti
m
e

H
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

m
in
im

iz
es

av
er
ag
e
in
fe
re
n
ce

ti
m
e
an
d
sa
ti
sfi
es

th
e
m
in
im

u
m

ac
ce
p
ta
b
le

th
re
sh
o
ld

as
m
ea
su
re
d
b
y
th
e
u
se
r-
d
efi
n
ed

p
er
fo
rm

an
ce

ta
rg
et

m
et
ri
c

�
C
o
n
si
d
er
in
g
th
e
ti
m
e
re
q
u
ir
ed

fo
r
th
e
n
eu
ra
l
ar
ch
it
ec
tu
re

se
ar
ch

p
ro
ce
d
u
re

u
se
d
to

fi
n
d
th
e
o
p
ti
m
al

m
o
d
el

st
ru
ct
u
re

U
n
d
er
li
n
ed

v
al
u
es
:
T
o
p
th
re
e
o
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

B
o
ld

an
d
u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
ed

in
th
e
b
es
t
im

p
ro
v
em

en
t
in

th
e
m
ea
su
re
d
st
at
is
ti
c

D
o
u
b
le

u
n
d
er
li
n
ed

v
al
u
es
:
O
p
ti
m
iz
at
io
n
st
ra
te
g
y
th
at

re
su
lt
s
in

a
m
o
d
el

w
it
h
p
er
fo
rm

an
ce

ab
o
v
e
th
e
m
in
im

u
m

ac
ce
p
ta
b
le

p
er
fo
rm

an
ce

th
re
sh
o
ld

s:
se
co
n
d
s

Neural Computing and Applications

123

to change the model it uses in real-time, especially when

the number of models it must handle simultaneously is

large. In this sense, in Table 9, we can observe that all the

optimization strategies that have been applied lead to

models that can be loaded faster than the baseline model.

The optimization strategy that allows the optimized model

to load faster is the one based on the application of neural

architecture search and knowledge distillation, followed by

pruning-aware model fine-tuning and quantization-aware

model fine-tuning as the last step. This optimization strat-

egy speeds up the model loading time by 1.43 times rela-

tive to the baseline model.

Acknowledgements This work was partially supported by the Euro-

pean Union’s Horizon 2020 Research and Innovation Programme

under Grant 101015857 (TeraFlow), and through the HORIZON-JU-

SNS-2022 ACROSS project with Grant Agreement number

101097122, and the Spanish Ministerio de Asuntos Económicos y

Transformación Digital, Programa UNICO under project B5GEMINI-

AIUC (TSI-063000-2021-79).

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Data availability Access to the repository containing the experimental

data generated in this study is available at github.com/amitkbatra/

EnergyNet. The dataset used in this study originates from Telefónica

I?D, but certain restrictions limit their public availability. This

dataset was utilized under a specific license for this study and is

therefore not accessible to the general public. Nevertheless, they can

be obtained from the authors upon a reasonable request, provided that

permission from Telefónica I?D is granted.

Code availability Access to the repository containing the framework’s

source code, installation instructions, documentation, and example

code is available at github.com/amitkbatra/EnergyNet.

Declarations

Conflict of interest The authors declare that they do not have any

conflicts of interest to disclose.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Chen Y-H, Krishna T, Emer JS, Sze V (2017) Eyeriss: an energy-

efficient reconfigurable accelerator for deep convolutional neural

networks. IEEE J Solid-State Circuits 52(1):127–138. https://doi.

org/10.1109/JSSC.2016.2616357

2. Qiu J, Wang J, Yao S, Guo K, Li B, Zhou E, Yu J, Tang T, Xu N,

Song S, Wang Y, Yang H (2016) Going deeper with embedded

fpga platform for convolutional neural network

3. Li L, Zhu J, Sun M-T (2019) Deep learning based method for

pruning deep neural networks. In: 2019 IEEE international con-

ference on multimedia expo workshops (ICMEW), pp 312–317 .

https://doi.org/10.1109/ICMEW.2019.00-68

4. Gholami A, Kim S, Dong Z, Yao Z, Mahoney MW, Keutzer K

(2021) A survey of quantization methods for efficient neural

network inference. arXiv:2103.13630 [cs] [cs]

5. Pastor A, Mozo A, Vakaruk S, Canavese D, López DR, Regano

L, Gómez-Canaval S, Lioy A (2020) Detection of encrypted

cryptomining malware connections with machine and deep

learning. IEEE Access 8:158036–158055

6. Vilalta R, Muñoz R, Casellas R, Martı́nez R, López V, de Dios

OG, Pastor A, Katsikas GP, Monti P, Mozo A, et a(2021) Ter-

aflow: Secured autonomic traffic management for a tera of sdn

flows. In: 2021 joint European conference on networks and

communications & 6G summit (EuCNC/6G Summit). IEEE,

pp 377–382

7. Mozo A, Karamchandani A, de la Cal L, Gómez-Canaval S,

Pastor A, Gifre L (2023) A machine-learning-based cyberattack

detector for a cloud-based SDN controller. Appl Sci 13(8):4914.

https://doi.org/10.3390/app13084914

8. Strubell E, Ganesh A, McCallum A(2019) Energy and policy

considerations for deep learning in NLP

9. Canziani A, Paszke A, Culurciello E (2017) An analysis of deep

neural network models for practical applications

10. Li D, Chen X, Becchi M, Zong Z (2016) Evaluating the energy

efficiency of deep convolutional neural networks on cpus and

gpus. In: 2016 IEEE international conferences on big data and

cloud computing (BDCloud), social computing and networking

(SocialCom), sustainable computing and communications (Sus-

tainCom) (BDCloud-SocialCom-SustainCom), pp 477– 484 .

https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.

76

11. Garcı́a-Martı́n E, Lavesson N, Grahn H, Casalicchio E, Boeva V (

2019) How to measure energy consumption in machine learning

algorithms. In: Alzate C, Monreale A, Assem H, Bifet A, Buda

TS, Caglayan B, Drury B, Garcı́a-Martı́n E, Gavaldà R,

Koprinska I, Kramer S, Lavesson N, Madden M, Molloy I,

Nicolae M-I, Sinn M (eds) ECML PKDD 2018 Workshops.

Lecture notes in computer science. Springer, Cham, pp 243– 255.

https://doi.org/10.1007/978-3-030-13453-2_20

12. Garcı́a-Martı́n E, Rodrigues CF, Riley G, Grahn H (2019) Esti-

mation of energy consumption in machine learning. J Parallel

Distrib Comput 134:75–88. https://doi.org/10.1016/j.jpdc.2019.

07.007

13. Patterson D, Gonzalez J, Le Q, Liang C, Munguia L-M, Roth-

child D, So D, Texier M, Dean J (2021) Carbon emissions and

large neural network training. arXiv:2104.10350 [cs]

14. Sharma H, Park J, Mahajan D, Amaro E, Kim JK, Shao C, Mishra

A, Esmaeilzadeh H (2016) From high-level deep neural models

to fpgas. In: 2016 49th Annual IEEE/ACM international sym-

posium on microarchitecture (MICRO), pp 1– 12 . https://doi.org/

10.1109/MICRO.2016.7783720

15. Ma Y, Cao Y, Vrudhula S, Seo J-s (2017) An automatic rtl

compiler for high-throughput fpga implementation of diverse

deep convolutional neural networks. In: 2017 27th international

conference on field programmable logic and applications (FPL),

pp 1–8 . https://doi.org/10.23919/FPL.2017.8056824

16. Rodrigues C, Riley G, Luján M (2018) Synergy: an energy

measurement and prediction framework for convolutional neural

networks on jetson tx1. In: PDPTA’18 - The 24th international

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/ICMEW.2019.00-68
http://arxiv.org/abs/2103.13630
https://doi.org/10.3390/app13084914
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76
https://doi.org/10.1007/978-3-030-13453-2_20
https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/10.1016/j.jpdc.2019.07.007
http://arxiv.org/abs/2104.10350
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.23919/FPL.2017.8056824

conference on parallel and distributed processing techniques and

applications

17. Yang T-J, Chen Y-H, Sze V (2017) Designing energy-efficient

convolutional neural networks using energy-aware pruning. In:

2017 IEEE conference on computer vision and pattern recogni-

tion (CVPR). IEEE, Honolulu, HI, pp 6071–6079. https://doi.org/

10.1109/CVPR.2017.643

18. Cai E, Juan D-C, Stamoulis D, Marculescu D (2017) Neu-

ralpower: predict and deploy energy-efficient convolutional

neural networks. arXiv:1710.05420 [cs, stat]

19. Gordon A, Eban E, Nachum O, Chen B, Wu H, Yang T-J, Choi E

(2018) Morphnet: fast & simple resource-constrained structure

learning of deep networks. arXiv:1711.06798 [cs, stat]

20. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning trans-

ferable architectures for scalable image recognition. arXiv:1707.

07012 [cs, stat]

21. Liu H, Simonyan K, Yang Y(2019) Darts: differentiable archi-

tecture search. arXiv:1806.09055 [cs, stat]

22. Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized

evolution for image classifier architecture search. arXiv:1802.

01548 [cs]

23. Jin H, Song Q, Hu X (2019) Auto-keras: an efficient neural

architecture search system. arXiv:1806.10282 [cs, stat]

24. Pham H, Guan MY, Zoph B, Le QV, Dean J (2018) Efficient

neural architecture search via parameter sharing. arXiv:1802.

03268 [cs, stat]

25. Cai H, Zhu L, Han S (2019) Proxylessnas: direct neural archi-

tecture search on target task and hardware. arXiv:1812.00332 [cs,

stat]

26. Rouhani BD, Mirhoseini A, Koushanfar F (2016) Delight: add-

ing energy dimension to deep neural networks. In: Proceedings of

the 2016 international symposium on low power electronics and

design. ACM, San Francisco Airport CA USA, pp. 112–117.

https://doi.org/10.1145/2934583.2934599

27. Rouhani BD, Mirhoseini A, Koushanfar F (2017) Deep3: Lev-

eraging three levels of parallelism for efficient deep learning. In:

Proceedings of the 54th annual design automation conference

2017. DAC ’17. Association for Computing Machinery, New

York, NY, USA, pp. 1–6. https://doi.org/10.1145/3061639.

3062225

28. Stamoulis D, Cai E, Juan D-C, Marculescu D (2018) Hyper-

power: Power- and memory-constrained hyper-parameter opti-

mization for neural networks. In: 2018 Design, automation test in

europe conference exhibition (DATE), pp. 19–24 . https://doi.org/

10.23919/DATE.2018.8341973

29. Dai X, Zhang P, Wu B, Yin H, Sun F, Wang Y, Dukhan M, Hu Y,

Wu Y, Jia Y, Vajda P, Uyttendaele M, Jha NK (2018) Chamnet:

Towards efficient network design through platform-aware model

adaptation. arXiv:1812.08934 [cs]

30. You Y, Gitman I, Ginsburg B (2017) Large batch training of

convolutional networks. arXiv:1708.03888 [cs]

31. Lin Y, Han S, Mao H, Wang Y, Dally WJ (2020) Deep gradient

compression: Reducing the communication bandwidth for dis-

tributed training. arXiv:1712.01887 [cs, stat]

32. Vogels T, Karimireddy SP, Jaggi M (2020) Powersgd: practical

low-rank gradient compression for distributed optimization.

arXiv:1905.13727 [cs, math, stat]

33. Tang H, Gan S, Awan AA, Rajbhandari S, Li C, Lian X, Liu J,

Zhang C, He Y (2021) 1-bit adam: communication efficient large-

scale training with adam’s convergence speed. arXiv:2102.02888

[cs]

34. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R

(2020) Albert: a lite bert for self-supervised learning of language

representations. arXiv:1909.11942 [cs]

35. Xue F, Shi Z, Wei F, Lou Y, Liu Y, You Y (2021) Go wider

instead of deeper. arXiv:2107.11817 [cs]

36. Guo, Y (2018) A survey on methods and theories of quantized

neural networks. *[1081] arXiv: 1808.04752 [cs, stat]

37. Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y (2018) Dorefa-net:

training low bitwidth convolutional neural networks with low

bitwidth gradients. arXiv:1606.06160 [cs]

38. Yang J, Shen X, Xing J, Tian X, Li H, Deng B, Huang J, Hua X

(2019) Quantization networks. arXiv:1911.09464 [cs, stat]

39. Yu X, Liu T, Wang X, Tao D(2017) On compressing deep

models by low rank and sparse decomposition. In: 2017 IEEE

conference on computer vision and pattern recognition (CVPR),

pp. 67–76 . https://doi.org/10.1109/CVPR.2017.15

40. Gou J, Yu B, Maybank SJ, Tao D (2021) Knowledge distillation:

a survey. Int J Comput Vis 129(6):1789–1819. https://doi.org/10.

1007/s11263-021-01453-z. arXiv:2006.05525

41. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a

neural network. arXiv: 1503.02531 [cs, stat]

42. Sanh V, Debut L, Chaumond J, Wolf T (2020) Distilbert, a dis-

tilled version of bert: Smaller, faster, cheaper and lighter. arXiv:

1910.01108 [cs]

43. Yang G, Hu EJ, Babuschkin I, Sidor S, Liu X, Farhi D, Ryder N,

Pachocki J, Chen W, Gao J (2022) Tensor programs v: Tuning

large neural networks via zero-shot hyperparameter transfer.

arXiv:2203.03466 [cond-mat]

44. Canziani A, Paszke A, Culurciello E (2017) An analysis of deep

neural network models for practical applications. https://doi.org/

10.48550/arXiv.1605.07678

45. Post-Training Quantization - TensorFlow Lite. https://www.ten

sorflow.org/lite/performance/post_training_quantization

46. Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for

hyper-parameter optimization. In: Advances in neural informa-

tion processing systems, vol. 24. Curran Associates, Inc.

47. Zhu M, Gupta S (2017) To prune, or not to prune: exploring the

efficacy of pruning for model compression

48. Pastor A, Mozo A, Lopez DR, Folgueira J, Kapodistria A (2018)

The mouseworld, a security traffic analysis lab based on nfv/sdn.

In: Proceedings of the 13th international conference on avail-

ability, reliability and security, pp. 1–6

49. Mozo A, Morón-López J, Vakaruk S, Pompa-Pernı́a ÁG, Gon-

zález-Prieto Á, Aguilar JAP, Gómez-Canaval S, Ortiz JM (2022)

Chlorophyll soft-sensor based on machine learning models for

algal bloom predictions. Sci Rep 12(1):13529. https://doi.org/10.

1038/s41598-022-17299-5

50. Vakaruk S, Sierra-Garcı́a JE, Mozo A, Pastor A (2021) Fore-

casting automated guided vehicle malfunctioning with deep

learning in a 5g-based industry 4.0 scenario. IEEE Commun Mag

59(11):102–108

51. Karamchandani A, Mozo A, Vakaruk S, Gómez-Canaval S,

Sierra-Garcı́a JE, Pastor A (2023) Using N-BEATS ensembles to

predict automated guided vehicle deviation. Appl Intell. https://

doi.org/10.1007/s10489-023-04820-0

52. Mozo A, Vakaruk S, Sierra-Garcı́a JE, Pastor A (2023) Antici-

patory analysis of agv trajectory in a 5g network using machine

learning. J Intell Manuf:1–29

53. Vakaruk S, Karamchandani A, Sierra-Garcı́a JE, Mozo A,

Gómez-Canaval S, Pastor A (2023) Transformers for multi-

horizon forecasting in an industry 4.0 use case. Sensors

23(7):3516

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1109/CVPR.2017.643
https://doi.org/10.1109/CVPR.2017.643
http://arxiv.org/abs/1710.05420
http://arxiv.org/abs/1711.06798
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1806.10282
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1812.00332
https://doi.org/10.1145/2934583.2934599
https://doi.org/10.1145/3061639.3062225
https://doi.org/10.1145/3061639.3062225
https://doi.org/10.23919/DATE.2018.8341973
https://doi.org/10.23919/DATE.2018.8341973
http://arxiv.org/abs/1812.08934
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1712.01887
http://arxiv.org/abs/1905.13727
http://arxiv.org/abs/2102.02888
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/2107.11817
http://arxiv.org/abs/1808.04752
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1911.09464
https://doi.org/10.1109/CVPR.2017.15
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
http://arxiv.org/abs/2006.05525
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2203.03466
https://doi.org/10.48550/arXiv.1605.07678
https://doi.org/10.48550/arXiv.1605.07678
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
https://doi.org/10.1038/s41598-022-17299-5
https://doi.org/10.1038/s41598-022-17299-5
https://doi.org/10.1007/s10489-023-04820-0
https://doi.org/10.1007/s10489-023-04820-0

	A methodological framework for optimizing the energy consumption of deep neural networks: a case study of a cyber threat detector
	Abstract
	Introduction
	Contributions
	Paper structure

	Related work
	Energy efficiency optimization techniques for deep neural networks
	Methodology and design of the proposed machine learning energy efficiency optimization framework
	Overview of the proposed methodology
	Measuring energy, performance and resource consumption
	Selection of the best optimization strategy: optimization profiles
	Framework requirements
	Supported model optimization strategies
	Overview of the selected optimization techniques
	Optimization strategies sets

	Use case: supervised machine learning for cryptomining detection and mitigation
	Use case description
	Analysis of the baseline deep neural network model
	Training of the baseline deep neural network model
	Performance evaluation of the baseline deep neural network model

	Experimental evaluation
	Framework setup and environmental configuration
	Selection of hyperparameters used for the application of optimization techniques
	Energy cost analysis in the inference stage
	Small batch size (32)
	Medium batch size (256)
	Large batch size (1024)

	Energy cost analysis of the model training and optimization

	Discussion
	Summary of the results obtained
	Considerations on the scalability of the proposed framework
	Application of the framework for simultaneous model optimization
	Simultaneous execution of multiple models

	Limitations and challenges of the proposed framework
	Impact of model inference rates on energy efficiency
	Evaluation of the energy costs and efficiency in centralized and edge inference scenarios
	Optimizing energy efficiency in dynamic environments

	Conclusions and future work
	Appendix
	Analysis of resource usage in inference time
	Analysis of CPU consumption
	Analysis of CPU frequency
	Analysis of memory usage
	Analysis of disk usage

	Analysis of additional results
	Analysis of the results obtained in the load stage
	Analysis of the inference, training, and load times

	Code availability
	References

