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Abstract
Alternative energy sources are needed for a sustainable world due to rapidly increasing energy consumption, fossil fuels,

and greenhouse gases worldwide. A hybrid renewable energy system (HRES) must be optimally dimensioned to be

responsive to sudden load changes and cost-effective. In this study, the aim is to reduce the carbon emissions of a

university campus by generating electricity from a hybrid energy production system with solar panels, wind turbine, a

diesel generator, and battery components. On the university campus where the hybrid energy system will be installed, the

ambient temperature, solar radiation, wind speed, and load demands have been recorded in our database. Optimization

algorithms were used to select the power values of the system components to be installed using these data in an efficient

and inexpensive manner according to the ambient conditions. For optimal sizing of HRES components, gray wolf opti-

mizer combined with cuckoo search (GWOCS) technique was investigated using MATLAB/Simulink. In this way, it has

been tried to increase their efficiency by combining current optimization techniques. The cornerstone of our optimization

efforts for both on-grid and off-grid models pivots on a constellation of critical decision variables: the power harvested

from wind turbines, the productivity of solar panels, the capacity of battery storage, and the power contribution of diesel

generators. In our pursuit of minimizing the annual cost metric, we employ a tailor-made function, meticulously upholding

an array of constraints, such as the quotient of renewable energy and the potential risk of power disruption. A robust energy

management system is integral to our design, orchestrating the delicate power flow balance among micro-grid compo-

nents—vital for satisfying energy demand. Upon analyzing the outcomes of the study, it is apparent that the proposed

Scenario 1 HRES effectively utilizes solar and battery components within the off-grid model, surpassing the efficiency of

four other hybrid scenarios under consideration. Regarding optimization processes, the off-grid model exhibits superior

results with the implementation of the GWOCS algorithm, delivering faster and more reliable solutions relative to other

methodologies. Conversely, the optimization of the on-grid model reaches its optimal performance with the application of

the cuckoo search algorithm. A comprehensive comparison from both technical and economic view points suggests the on-

grid model as the most feasible and suitable choice. Upon completion of the optimization process, the load demand is

catered to by a combination of a 2963.827-kW solar panel, a 201.8896-kW battery, and an additional purchase of 821.9

MWh from the grid. Additionally, an energy surplus sale of 1379.8 MWh to the grid culminates in an annual cost of system

(ACS) of 475782.8240 USD, a total net present cost of 4815520.2794 USD, and a levelized cost of energy of 0.12754

USD/kWh. Solar panels cover the entire system, and the renewable energy fraction is 100%.

Keywords Hybrid gray wolf-cuckoo search � Techno-economic optimization � Energy management � Optimal sizing �
Renewable energy

List of symbols
LCOE Levelized cost of energy ($/kWh)

TNPC Total net present cost ($)

PV Photovoltaic

WT Wind turbine

ACS Annual cost of the system

DG Diesel generator

Batt Battery

RES Renewable energy sources

HRES Hybrid renewable energy system

GWO Gray wolf optimizer

CS Cuckoo searchExtended author information available on the last page of the article

123

Neural Computing and Applications (2024) 36:7559–7594
https://doi.org/10.1007/s00521-024-09585-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-1071-9700
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09585-2&amp;domain=pdf
https://doi.org/10.1007/s00521-024-09585-2


GWOCS Hybrid gray wolf optimizer cuckoo search

CRF Capital recovery factor

DOD Depth of discharge

LPSP The possibility of loss of power supply

REF The renewable fraction

RE Renewable energy

EMS Energy management system

PWT tð Þ Wind turbine power generation

PPV tð Þ PV Power generation

PL tð Þ Load energy demand

gInv Efficiency of an inverter

Pch tð Þ Power available for battery charging

Ech tð Þ Energy charged to the battery

Pdistch tð Þ Discharge battery power

Edistch tð Þ Energy discharged from battery.

Ebmin
Minimum battery energy

Ebmax
Maximum battery energy

Eb tð Þ Energy of the battery

Edump tð Þ Energy dumped/wasted

DG hr tð Þ DG is running at time t

DG P Power produced by DG

SOCmax State of charge (max value)

SOCmin State of charge (min value)

O&M Operation and maintenance

1 Introduction

In recent years, population density and technological

development, especially in developing countries, have

increased global energy demand. Today, electrical power

generation is mainly based on exhaustible fossil fuels.

Fossil fuels are a source of greenhouse gas emissions that

have negative impacts on the environment. Therefore,

photovoltaic (PV) solar energy and wind turbines (WT) are

the most important renewable energy sources (RES) and

are the mainstay of independent microgrids [1].

Recent developments in renewable energy (RE) tech-

nology and power electronics have been supported world-

wide to ensure the economic availability and sustainability

of electrical energy. Despite the high capital cost, wind and

solar power plants are being installed all over the world

because of their desirable carbon-free contribution to

reducing the load demand gap [2–4]. Considerable research

has been conducted on effectively utilizing RES alongside

fossil fuels for energy production [5, 6]. Turkey and other

countries have accepted both wind and solar energy as

standard sources of green energy [7].

Solar irradiance and wind speed, which are crucial

parameters for solar and wind energy generation, can

fluctuate significantly on an hourly and daily basis. In a

hybrid energy system, this creates massive uncertainty.

Although using storage and backup resources eliminates

this problem, it raises production costs [8]. As a result,

measuring numerical data from wind and solar energy

sources, as well as efficient planning, management, and

operation of the electric power generation system, can help

reduce uncertainties. The basic and most important solution

to overcome these uncertainties is the use of systems that

contain multiple RES and are called hybrid renewable

energy systems (HRES). During the required hours and

seasons, using more than one energy source in a hybrid

energy system can provide energy production that costs

less than energy from a single source. Furthermore,

because of the difficult processing steps of the optimization

algorithms, the variability of energy sources, and the dif-

ficulty of cost calculation, optimizing the size of the HRES

to meet the load demand is complex [9].

A considerable body of research has harnessed the

capabilities of the HOMER software to identify the most

favorable operational conditions for either on-grid or off-

grid systems in the realm of HRES [10–14]. Optimization

studies based on metaheuristic algorithms are also acces-

sible. In a study by HRES, the effects of HRES on size

optimization were investigated with the help of particle

swarm optimization (PSO) algorithm preference, taking

energy efficiency and climate diversity into account [15].

Fodhil et al. used a PSO-based approach to optimize PV-

diesel generator (DG)-battery (Batt) HRES for rural areas.

It was emphasized that the PSO algorithm is less expensive

than the software HOMER [16]. Maleki and Askarzadeh,

who used a harmony search (HS) algorithm for right sizing

of hybrid PV-Batt systems, compared their results with a

diesel production system with regards to total annual cost

and environment [17]. Elnozahy et al. determined the

optimal configuration of the power system with PV, WT,

Batt and DG hybrid component by comparing their results

with genetic algorithm (GA), PSO and HOMER software

[18]. Wang et al. proposed a non-dominant sorting algo-

rithm combined with reorder-based genetic operators to

determine system reliability, total gas emission (TGE), and

life cycle cost for optimal sizing of HRES. They imple-

mented the sizing of HRES using crow search algorithm

(CSA) and PSO algorithms [19]. Himri et al. and Malik

conducted studies on the implementation of RES in Algeria

and Brunei, respectively. The studies analyzed various

aspects of renewable resources as potential future energy

sources [20, 21]. These studies showed the potential of

integrating RES with a diesel generator to reduce energy

costs and increase the reliability of power systems. An

extensive system will result in high costs, while under
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sizing the system will result in power shortages to meet the

targeted demand. Therefore, considering the above prob-

lems, optimal sizing of HRES units is essential in power

system design and operation. There are numerous studies in

the literature on the optimal sizing of hybrid microgrid

systems [22].

For performance analysis, researchers in the literature

prefer software tools such as HOGA, HOMER Pro, RAP-

SIM, and methods based on traditional and metaheuristic

optimization algorithms. Software tools, despite their sig-

nificant drawbacks, necessitate more computation time

than existing optimization techniques. However, there are a

lot of studies where different researchers propose different

traditional and evolutionary algorithms to obtain the opti-

mum size of components used in hybrid systems. A variety

of metaheuristic evolutionary algorithms have been intro-

duced to tackle the issue of conventional methods

plateauing at local minima. Some of the algorithms that

help achieve better working conditions for the systems that

are off-grid including PV/WT/DG/Batt components are

GA, evolutionary algorithm, PSO, grasshopper optimiza-

tion algorithm, firefly algorithm, modified discrete bat

search algorithm, simulated annealing, gray wolf opti-

mization (GWO), and deep learning methods [23–30]

The essence of this study is the design, optimization, and

attainment of the most advantageous technical and eco-

nomic outcomes for HRES that operate both independently

of and in connection with the grid. This is focused within a

region that is characterized by a reliable supply of energy

demand, relatively low costs, and a less harmful impact on

the environment. The output of wind turbines and solar

panels is rigorously calculated using meteorological

numerical data. By deploying algorithmic techniques such

as GWO, cuckoo search (CS), and hybrid gray wolf opti-

mizer cuckoo search (GWOCS) to both grid-connected and

off-grid HRES, we aid in minimizing the annual cost of

system (ACS), levelized cost of energy (LCOE), and total

net present cost (TNPC). This also helps in determining the

optimal sizes of the components used, and contrasting the

numerical results produced by each algorithm. Further-

more, the influence and outcomes of a hybrid algorithm on

both systems are thoroughly examined. The paramount

contribution of this paper lies in completely satisfying the

electricity load demand in a region rich in natural resour-

ces, coupled with the achievement of a TGE value reaching

zero.

The remainder of the study is planned as follows.

This article is structured into five distinct sections.

Section 2 focuses on elucidating the modeling of the hybrid

energy system and its renewable energy (RE) components,

setting the stage for deeper understanding. Sect. 3 will

present a comprehensive overview of the methodology,

encompassing system modeling, strategies for energy

management, load demand, and the optimization algo-

rithms along with the overall procedural outline. Section 4

is dedicated to delivering the simulation outcomes and

deliberations concerning the HRES, and it delves deeply

into the statistical analyses, offering an in-depth under-

standing of the system’s performance and implications.

Finally, Sect. 5 will address the principal conclusions and

identify potential paths for subsequent inquiries, setting a

course for future research.

2 Materials and methods

This section encompasses a broad range of topics, includ-

ing the appraisal of renewable energy sources, load

demand, economic computations, cost optimization,

techno-economic limitations, and optimization techniques,

as well as the procedural steps for designing a HRES. We

also delve into system sizing, component detailing, and

modeling. Among the available renewable energy resour-

ces, solar and wind power are considered to yield the

highest social, economic, and environmental benefits,

making their amalgamation a favorable option [31]. Hybrid

energy systems often amalgamate resources capable of

counterbalancing each other’s weaknesses. The potential

adoption of solar and wind energy sources could signifi-

cantly diminish the system’s storage capacity requirements.

Meeting electricity demands at the lowest possible cost

necessitates the meticulous design of both on-grid and off-

grid hybrid energy systems. In this study, a micro-energy

system undergoes optimization through the hybrid opti-

mization of multiple energy resources (HOMER) software,

employed in conjunction with various hybrid algorithms.

Figure 1 offers a block diagram that illustrates the research

methodology. Here, the required annual profile and hourly

climate data are maintained in a database. Initially, the

system is designed using the HOMER software, followed

by the programming of algorithms related to the opti-

mization process using MATLAB 2022b software. Upon

the completion of the optimization process, the results

obtained from all algorithms are compared, and evaluations

are presented with the aid of technical and economic

energy analyses of the system.

2.1 Modeling of hybrid renewable energy
system

In this study, the HRES under scrutiny comprises seven

main components, of which three are related to direct

current (DC) power and four to alternating current (AC)

power. The DC components of the hybrid system include a

photovoltaic plant, a battery group, and a discharge load,

while the household load, diesel generator, wind farm, and
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grid constitute the AC components. An ınsulated gate

bipolar transistor (IGBT)-based high-powered bidirectional

converter is responsible for the conversion of AC to DC

and vice versa. However, as the dynamics of the converter

are associated with high frequencies, they will not be

considered in the optimization formulation. The energy

management system (EMS) monitors and controls the

power sharing among each component of the HRES. Fig-

ure 2 illustrates the configuration of the microgrid under

study. In Fig. 2, the HRES is structured with separate AC

and DC buses, utilizing a single DC/AC inverter to convert

the form of electric power. All seven generation elements,

along with the load and the DC/AC inverter, continuously

relay their component states to the EMS, maintaining

bidirectional communication with it. Each device, in turn,

receives control signals from the EMS for the optimal

operation of the HRES. The hybrid microgrid consists of

PV, WT, DG, and Batt. Prior to the optimal sizing of the

microgrid, the modeling of the system components is a

prerequisite. The parameters of the hybrid system compo-

nents exert a significant impact on the system’s LCOE and

reliability. Hence, a detailed mathematical modeling of the

system components is extensively discussed in the fol-

lowing subsections [32].

Fig. 1 Block diagram of the research methodology

Fig. 2 Schematic representation

of the suggested PV/WT/DG/

Batt components for the hybrid

energy system
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2.2 Modeling of photovoltaic energy system

In a PV system, the total power generated by each solar

panel equals the total power produced by the system.

Equation (1), known as the simplified PV model, calculates

the power produced by each panel per hour using ambient

temperature and solar radiation [33].

Ppvout tð Þ ¼ P PVratedð Þ �
G

1000
� 1þ Kð Tamb þ 0:0256� Gð Þð Þ � Tref½ � ð1Þ

The term Ppvout tð Þ denotes the output power (W) from

the PV module, while G signifies the value of solar radi-

ation (W/m2). The nominal PV power under standard

conditions is represented by P PVratedð Þ. The coefficient of

temperature, denoted by, K, is calculated using (3.7 9 10–3

(1/�C)). The reference temperature under standard condi-

tions, Tref , is set at 25 �C, and Tamb indicates the ambient

temperature (�C).
The characteristics of the photovoltaic panel include a

rated capacity of 0.345 kW, a temperature coefficient

of - 0.390, and an operational temperature of 44 �C. The
panel’s efficiency rate stands at 17.8%, with a lifecycle

spanning 20 years and a capital cost fixed at 650 $/kW. Its

replacement cost is also pegged at 650 $/kW, while the

yearly expenditure for maintenance and operations totals

50 $/year.

2.3 Modeling of wind energy system

To figure out how much power a wind turbine can produce,

it is really important to use the best model you can find.

Mostly, how much power you’ll get from a wind turbine

depends on how windy it is at its location. You can use

Eq. (2) from reference [34] to work out the turbine’s power

output

PWT ¼
0 v tð Þ� vcut�inorv tð Þ� vcut�out

Pr
v tð Þ � vcut�in

vr � vcut�out

vcut�in � v tð Þ� vr

Pr vr � v tð Þ� vcut�out

8
><

>:

ð2Þ

Pr is the WT nominal power (kW), v tð Þ is the wind

speed (m/s), vcut�out is the low shear speed of WT (m/s), vr
is the WT nominal speed (m/s), vcut�in is the high shear

speed values of WT (m/s).

Vt ¼ Vm � Ht

Hm

� �ah

ð3Þ

In Eq. (3), Ht is the WT hub height (m), Hm is the WT

reference height (m), Vm is the wind speed at WT hub

height (m/s), Vt is the speed at reference height (m/s), and

ah is the exponential power law values.

The value of a_h, which is influenced by surface

roughness and environmental stability, ranges from 0.05 to

0.5. In the selected locations, a_h is presumed to be 0.14

[35]. A typical wind turbine features a rated power of

1 kW, a tower height of 17 m, a capital cost of $2000/kW,

and a replacement cost likewise at $2000/kW. It carries an

operation and maintenance cost of $200/year, with a pro-

jected service life of 20 years.

2.4 Modeling of battery bank storage

To regulate the ranges and load demand of renewable

energy, a storage system is required. When the energy

produced by renewable energy sources exceeds the total

load demand, batteries are charged. When the load demand

exceeds the generated power, however, the batteries are

discharged to fill the energy gap. Equations 4 and 5 are

used to evaluate the battery’s charging and discharging

processes, respectively [36].

Ech tð Þ ¼ EBatt t � 1ð Þ � 1� rð Þ

þ EWT tð Þ þ EPV tð Þ � EL tð Þ
gInv

� �

� gBC; Charging mode ð4Þ

Edch tð Þ ¼ EBatt t � 1ð Þ � 1� rð Þ

þ EL tð Þ
gInv

� ðEWT tð Þ þ EPV tð ÞÞ
� �

� gBD; Discharging mode ð5Þ

The variable EBatt tð Þ denotes the available capacity of

the battery at hour t (expressed in kWh), while EBatt t � 1ð Þ
signifies the capacity at the preceding hour (t–1). The

symbol r is representative of the battery’s self-discharge

rate. Furthermore, EPV and EWT correspond to the energy

output from the photovoltaic module and the wind turbine

at hour t, respectively. The demand load at hour t is

denoted by EL.

Efficiencies related to battery charging, discharging, and

inverter operation are represented by gBC , gBD, and gInv,
respectively. These efficiencies, particularly gBC and gBD,
are integral to the charging process and are subject to

variation depending on the charging current at each stage.

For the purposes of this study, the charging efficiency is

presumed to be a constant 90%.

Excess energy production from renewable resources is

diverted into battery storage systems. Nonetheless, these

storage systems have a definitive limit and cannot indefi-

nitely store energy. When the battery is at its maximum

capacity, any additional surplus energy has to be dis-

charged. The highest permissible discharge depth (DOD),

generally represented as a percentage, signifies the pro-

portion of the battery’s total energy that has been expen-

ded. This research adopted a DOD of 80%. The least
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battery capacity was calculated by employing Eq. (6) as

indicated in the reference [37].

EBatt min tð Þ ¼ 1� DODð Þ � EBatt max ð6Þ

Furthermore, the Batt’s capacity constraint at any given

hour is articulated through Eq. (7).

EBatt min �EBatt tð Þ�EBatt max ð7Þ

Here, DOD maximum permissible depth of Batt dis-

charge (%), EBatt max and EBatt min are the Battery’s

maximum and minimum capacity, respectively.

The particular battery under consideration showcases a

voltage of 600 V, and it commands a nominal capacity of

100 kWh coupled with a peak capacity of 167 Ah. Fur-

thermore, it displays a round trip efficiency of 90%.

Impressively, its maximum charging current is rated at 167

A, its minimum state of charge is set at 20%, and it can

withstand a maximum discharging current of 500 A.

Anticipated to remain operational for ten years, this battery

holds both a capital cost and a replacement expense of

$550.00 per kW.

2.5 Modeling of diesel generator

In a hybrid energy system, a DG is used to balance the lack

of sufficient power output from the PV, wind, and battery

bank. The efficiency and fuel consumption of diesel gen-

erators have to be considered in designing an HRES and

are presented in Eq. (8) [38].

q tð Þ ¼ m� PDG tð Þ þ n� Pr ð8Þ

In the equation, PDG tð Þ represents the power output of

DG at hour t (kW), q tð Þ represents consumption of fuel (L/

h), Pr represents average DG power, while m and n (L/kW)

are constants that represent the parameters of standard fuel

consumption, which were 0.246 and 0.08415, respectively.

The diesel generator in focus boasts a considerable

capacity of 1000 kW, along with a replacement cost esti-

mated at $175 per kW. Its operation and maintenance

charges stand at $30 per kWh, with an initial capital outlay

of $175 per kW. The cost of fuel is a modest $1 per liter.

Anticipated to function for a period of 10 years, this diesel

generator constitutes a significant investment in the field of

energy generation.

2.6 Inverter

An inverter is a piece of electronic equipment that converts

the DC power generated by RESs into AC. Equation 9 can

be used to calculate the inverter’s input power ðPinvÞ [39].
Equation (9) is applicable for determining the input power

of the inverter, denoted as ðPinvÞ [39].

Pinv tð Þ ¼ PL tð Þ=ginv ð9Þ

here PL tð Þ and ginv are load power and inverter efficiency,

respectively.

This study involves a system converter inverter with a

power capacity of 1 kW. The financial considerations

include an initial investment and a potential replacement

cost, each valued at $300, supplemented by an annual

expense of $50 for operations and maintenance. The

inverter, known for its impressive efficiency of 95%, is

expected to provide reliable performance over a period of

15 years.

2.7 Grid modeling

A grid functions as an apparently limitless energy conduit,

proficient at both power production and absorption. When

the combined energy output from the PV, WT, and Batt

fails to meet the electrical load demand at a specific

moment, the energy shortfall is compensated by drawing

power from the grid, with the DG acting as a safety net.

Equation (10) is utilized to calculate the income generated

from returning surplus energy to the grid, as noted in ref-

erence [40].

Rgrid ¼
X8760

t¼1

rfeed in � Egrid s tð Þ ð10Þ

here rfeed in represents the feed-in tariff guarantee rate,

which is provided as 0.01 $/kWh and is the actual value.

The anticipated power purchase from the grid is computed

utilizing Eq. (11).

Cgrid ¼ Cp �
X8760

t¼1

Egrid p tð Þ ð11Þ

here Cp represents the estimated 1 kW electricity purchase

from the grid for the central campus, which is designated as

the operating area. This value is provided by the Univer-

sity’s Department of Facilities Management at a rate of

0.25 $/kWh, which is the actual value.

2.8 Economic parameters

In conducting the financial analysis, it is critical to account

for the influence of sensitive variables on the viability of

the hybrid energy system. In this research, the key eco-

nomic factors were established as a 20% real interest rate, a

17% inflation rate, and a 9% discount rate. The hybrid

energy system is anticipated to have a lifespan of 20 years.

Actual cost figures for the HRES components, provided by

the manufacturers, were utilized in the simulations to

derive the results.
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2.9 Load analysis of the selected region

For this investigation, the study focused on a university

campus. Figure 3 displays the geographic coordinates of

the selected region on the campus. Meteorological fig-

ures for 2021, including hourly wind velocities, levels of

solar irradiance, ambient temperature readings, and full-

year load distributions, were sourced from the General

Directorate of State Meteorology. The university’s peak

hourly load was recorded at roughly 1281.23 kW/year, and

the lowest demand noted was 425.84 kW/year. On average,

the campus consumed 10,220.26 kWh of electricity daily.

Figure 4 outlines the annual load distribution for the case

study, covering 8760 h, based on the actual data recorded

for the specific area.

3 Methodology

Hybrid energy systems facilitate more balanced power

production by integrating various renewable energy sour-

ces. Nevertheless, the design of these systems is complex

due to the dependency of renewable sources’ energy output

on meteorological data. Therefore, the sizing of the com-

ponents in hybrid energy systems should be optimized in

accordance with energy demands and the output of

renewable energy sources. This necessitates accurate sizing

and component selection, which ensures maximum effi-

ciency and stability from renewable energy sources and

guarantees optimal energy utilization. This is, indeed, the

cornerstone of the transition to sustainable energy sources.

Our hybrid energy system model encompasses photo-

voltaic PVs, WTs, DGs, and a Batt group. The performance

and cost of each component have been meticulously

modeled. Moreover, we have modeled an EMS to regulate

the energy flow within the system.

The subsequent section provides a summary of the

adopted approaches to address the research questions.

Specifically, the subsections elaborate on the methodology

used for HRES sizing, the energy management strategy, the

objective function, and optimization algorithms.

3.1 Optimization and sizing of HRES

The intricate process of optimizing and appropriately siz-

ing HRES necessitates a comprehensive analysis of vital

parameters. These integral parameters include data on wind

speed, ambient temperature, solar radiation, and load

demand, which directly influence the performance capa-

bility of the renewable energy sources harnessed and

ensure the efficient sizing of the system. In order to facil-

itate this complex task, we employed MATLAB software

for organizing real-time values of techno-economic

parameters related to HRES components into an exhaustive

database. This strategy fostered efficient data management

and enabled a more profound analysis.

Visual representations of this data are depicted in

Fig. 5a–c, displaying annual data for solar radiation, wind

speed, and ambient temperature, respectively. These fig-

ures offer a holistic perspective on the operating conditions

of the HRES throughout the year, thereby refining the

precision of our system optimization. Our methodology for

assessing the performance and efficiency of the system

incorporates several key criteria and objectives, including

the ACS, LCOE, LPSP, and REF. These crucial metrics

guide our evaluation process, assisting in identifying areas

for improvement and potential enhancements. To capture

the dynamic nature of environmental conditions and load

demands, the simulation was meticulously carried out in

hourly increments over the project’s lifespan of 8760 h.

This detailed approach ensures the accurate representation

of fluctuating conditions in the optimization process.

Our approach leverages the power of MATLAB soft-

ware to identify the most suitable solutions, based on the

established evaluation criteria and constraints. After a

comprehensive and in-depth analysis, it was found that the

Fig. 3 The case study location

(Turkey) on the world map
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HRES configuration with the smallest ACS, TNPC, and

LCOE values proved to be the most favorable solution in

the scope of this study. This comprehensive approach

underscores the significance of diligent data analysis and

systematic system evaluation in achieving effective opti-

mization and accurate sizing of hybrid renewable energy

systems.

3.2 Off-Grid and on-grid model energy
management strategy

Energy management, viewed as the mathematical repre-

sentation of a methodology that orchestrates inputs, out-

puts, goals, and constraints, directs the flow of energy

within a hybrid energy system [41]. This study focuses on

maximizing the use of renewable energy sources, which

has implications for extending battery life, reducing fuel

consumption, and enhancing system efficiency.

The optimization of the energy management strategy is

integral, as it must align with prevailing conditions and

projected energy demands. Consequently, the functioning

of the EMS controller is influenced by specific off-grid and

on-grid scenarios, dictated by the strategy implemented for

the battery charging cycle.

A well-conceived energy management strategy ensures

efficient distribution of energy derived from various

renewable energy sources, resorting to energy storage

solutions when necessary. This approach guarantees a

consistent and reliable energy supply to meet demand.

Thus, the insights gleaned from this study are set to sig-

nificantly contribute to the evolution of hybrid energy

systems and their respective energy management strategies.

Fig. 4 Annual load profile for

the campus

Fig. 5 The weather patterns of the study area. a solar radiation ðW=m2Þ, b wind speed (m/s), c ambient temperature (�C)
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Under the framework of an off-grid energy management

system, we can distinguish four unique operational modes:

Case 1: Wind and solar energy sources provide enough

energy to meet load demand. Excess energy from these

sources will charge the Batt banks (EBatt tð Þ\EBatt max tð Þ).
Case 2: Produced wind and solar energy exceeds the

load demand. A discharge charge will be used to waste this

excess energy (EBatt tð Þ\EBatt max tð Þ).
Case 3: If the generated by wind and solar energy is

insufficient, the available energy stored in the banks will

contribute meeting the load demand

(EBatt tð Þ[EBatt min tð Þ).
Case 4: If the energy generated by wind and solar

energy sources is insufficient to meet load demand and

there is no energy available in the battery banks, the diesel

generator will kick in for meeting load demand, while also

charging Batt banks. As soon as renewable energy sources

begin producing power again, the diesel generator will

cease to operate (EBatt tð Þ[EBatt min tð Þ).
In the context of an on-grid energy management system,

there are four distinct operational scenarios:

Case 1: The wind and solar energy sources generate

sufficient energy to fulfill the load demand. Surplus power

from these renewable sources proceeds to charge the bat-

tery storage units, provided that the stored energy does not

exceed the maximum battery capacity

(EBatt tð Þ\EBatt max tð Þ).
Case 2: When the energy produced by wind and solar

systems surpasses the load demand and the battery units are

at maximum capacity (EBatt tð Þ\EBatt max tð Þ), excess

energy is expelled through a discharge charge process.

Case 3: In situations where the energy generated from

wind and solar resources is inadequate to meet the load

demand, the power stored in the battery units is called upon

to contribute toward fulfilling this demand, given that the

stored energy is above the minimum limit

(EBatt tð Þ[EBatt min tð Þ).
Case 4: When both the energy production from wind

and solar resources falls short of the load demand, and the

battery units are devoid of power, the diesel generator is

engaged to meet the load demand. Simultaneously, the

generator also charges the battery units. As soon as the

renewable energy sources resume power production, the

operation of the diesel generator is suspended

(EBatt tð Þ[EBatt min tð Þ).
This section expounds on the power flow algorithms of

the HRES illustrated in Fig. 6 for off-grid setups, and the

energy management scheme is depicted in Fig. 7 for on-

grid scenarios. Within the optimal operational strategy,

diesel generators and battery banks serve as backup power

sources for managing energy demand. The commencement

of this energy management strategy begins by interpreting

the input data, namely solar power, wind power, and load

demand. The process hinges on a comparison between the

total energy produced by wind and solar resources and the

existing load demand. This comparison provides crucial

insights into the use and storage of energy resources.

In an off-grid system, if the renewable resources pro-

duce sufficient energy to meet the load demand, the excess

energy is directed to charge the battery banks. Conversely,

if the energy production is insufficient, battery banks or

diesel generators are brought into operation to meet the

shortfall. This strategy guarantees an efficient and effective

use of energy resources, enhancing overall energy effi-

ciency. For on-grid systems, if renewable energy produc-

tion surpasses load demand, the surplus energy is fed into

the grid, resulting in a fully charged battery.

3.3 Formulation of the optimization problem

The microgrid system optimization was approached as a

multi-criteria problem, generally formulated as depicted in

Eq. (12).

Minimize f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . .fk xð Þ½ �
Subject to h xð Þ� 0

and g xð Þ ¼ 0

ð12Þ

Within the scope of multi-objective optimization, the

following terms are defined:

• x: This term indicates the vector in the design search

space.

• f xð Þ: This represents a vector consisting of objective

functions to be optimized.

• fi xð Þ: This is the ith objective function within the

collection of objectives.

• h xð Þ and g xð Þ: These symbols are employed to denote

the collection of inequality and equality constraints,

respectively.

In multi-objective optimization processes, several cru-

cial elements combine to delineate the landscape of

potential solutions and the constraints that shape them. The

design variable vector x occupies a central role in this

framework, embodying the domain of potential solutions

within our search space. Often, this vector is a reflection of

the design parameters of the system under scrutiny.

In concert with x, we find f xð Þ, a vector that encapsu-

lates the objective functions we aim to optimize. Given the

nature of multi-objective optimization, it is not unusual for

f xð Þ to comprise a multitude of functions, reflecting the

diverse, and occasionally conflicting, objectives inherent to

these problems. Each of these functions is specified as

fi xð Þ, representing the ith objective function.

The boundaries within which our solutions must operate

are defined by the constraint functions h xð Þ and g xð Þ…h xð Þ
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represents a series of inequality constraints—necessary

conditions the solutions must fulfill. For example, if hj xð Þ
is the jth inequality constraint, the solution must ensure that

hj xð Þ� 0.

Conversely, g xð Þ defines a set of equality constraints—

additional conditions the solution must meet. When gk xð Þ
is the kth equality constraint, the solution must satisfy the

condition gk xð Þ = 0.

In summary, the primary objective of the optimization

problem is to discover an x that maximizes or minimizes all

fi xð Þ while simultaneously complying with all constraints

defined by h xð Þ and g xð Þ. However, due to the inherent

complexity of multi-objective optimization, it is unlikely to

find a single x that optimally satisfies all objectives, often

necessitating calculated trade-offs. In such instances,

solutions typically manifest as a set of Pareto-optimal

points, representing the optimal trade-offs between the

competing objectives.

3.4 Objective function

The main objective function for analyzing the hybrid

energy system is the ACS. The goal here is to optimize the

system to ensure a reliable power supply at the lowest

possible cost. The trio of primary factors influencing the

optimal configuration includes the quantity of batteries, the

power capacity of the WT, and the power output of the PV.

The most favorable result, adhering to all other stipulated

parameters and limitations, is identified by the lowest ACS

value in the techno-economic analysis. The objective

function encompasses total capital and replacement

expenses, along with operational and maintenance costs.

Capital costs for each component also account for

Fig. 6 Power management of the PV/WT/DG/Batt off-grid hybrid energy system
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installation and construction expenses. Key decision vari-

ables consist of ACS, LCOE, TNPC, capacities of PV, WT,

DG, Batt, and the inverter. The formulation of the ACS is

specified in Eq. (13)

Objective Function ¼ Min ACS; TNPC;ð
LCOEÞ RWT ; RPV ; RBT ; RDGf g

ð13Þ

CPV
t ¼ NPV CPV

C þ CPV
O&M � 1þ ið Þn�1=i 1þ ið Þnð Þ

� �

ð14Þ

CWT
t ¼ NWT CWT

C þ CWT
O&M � 1þ ið Þn�1=i 1þ ið Þnð Þ

� �

ð15Þ

Fig. 7 Power management of the PV/WT/DG/Batt on-grid hybrid energy system
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CBatt
t ¼ CBatt

C þ CBatt
O&M � 1þ ið Þn�1

i 1þ ið Þn
� �

þ CBatt
R

�
X
n

nBatt
�1

� 	

j¼1

1þ 1

1þ ið ÞjnBatt

 !

ð16Þ

Cdiesel
t ¼ Cdiesel

C þ Cdiesel
O&M � 1þ ið Þn�1

i 1þ ið Þn
� �

þ Cdiesel
R

�
X
n

ndiesel
�1

� 	

j¼1

1þ 1

1þ ið Þjndiesel

 !

ð17Þ

The LCOE, inherently dependent on the TNPC, com-

prehensively includes the expenses related to O&M and

subsequent replacements [42]. Within this framework, the

expenditure components of PV, WT, Batt, and DG are

meticulously accounted for. Subsequent formulae are uti-

lized to methodically derive the LCOE, with an objective

of achieving its minimization.

The total net current cost value can be calculated as in

Eq. (18):

TNPC ¼ CPV
t þ CWT

t þ CBatt
t þ Cdiesel

t þ CInv
C þ Cgrid

� Rgrid

ð18Þ

NPV and NWT are the PV and WT numbers, respectively.

CPV
C , CWT

C , CBatt
C , Cdiesel

C and CInv
C are the PV, WT, Batt, DG

and the investment costs of inverter. CPV
O&M , C

WT
O&M , C

Batt
O&M

and Cdiesel
O&M are the PV, WT, Batt and the O&M of DG. CBatt

R

and Cdiesel
R are the replacement costs of Batt and DG. i

stands for the interest (per year) of the HRES, n represents

system’s life cycle, nBatt and ndiesel are the lifetimes of Batt

and DG. Rgrid, represents the revenue derived from selling

excess energy back to the grid, while Cgrid denotes the

expected power purchase from the grid.

The LCOE is an esteemed and extensively utilized

indicator for evaluating the economic sustainability of

microgrid systems [43]. The precise calculation of LCOE is

delineated in Eq. (19).

LCOEð=kWhÞ ¼ TNPC
P8760

t¼1 Pload

� CRF ð19Þ

In this context, Pload represents the quantum of power

consumed each hour. To ascertain the annualized capital

cost from the initial outlay, one employs Eq. (20). The

term ’CRF’ is an abbreviation for the capital recovery

factor, integral to this calculation. Furthermore, the tem-

poral span of the HRES project, denoted by ’n’ (in years),

and the real interest rate, indicated by ir, are pivotal

parameters within this framework.

CRF ir; nð Þ ¼ ir � 1þ irð Þn½ �= 1þ irð Þn�1½ � ð20Þ

3.5 Loss of power supply probability (LPSP)

LPSP let us calculate the microgrid system’s reliability.

LPSP reliability index indicates the likelihood that the

power supply will fail to meet the energy demand. This is

caused by a fault in the hybrid energy system or by the low

power generation of renewable energy sources. Equa-

tion (21) is used to calculate it [44].

LPSP %ð Þ ¼
XT

0

Pload � PPV � PWT � PDG � EBat�EBat minð Þ
 !,

XT

0

Pload

ð21Þ

Also, the condition in Eq. (22) was applied in the cal-

culation of system reliability.

P tð Þload [P tð Þgeneration ð22Þ

LPSP, with a range from 0 to 1, serves as an indicator of

energy sufficiency: a value of 0 denotes complete fulfill-

ment of energy demand, whereas 1 signifies a total lack of

provision [45]. For this simulation, the LPSP is configured

to zero, indicating an expectation of fully meeting the

energy demand.

3.6 Renewable energy factor (REF)

A suite of indices is employed to evaluate the contribution

of renewable sources within the hybrid system, among

which REF is pivotal for diminishing reliance on nonre-

newable energy. The REF, indicating the proportion of

energy supplied by renewables, is calculable via Eq. (23)

when HRES includes a diesel generator:

REF %ð Þ ¼ 1� PDG= PPV þ PWTð Þð Þ � 100 ð23Þ

Here, optimizing the system involves maximizing REF

by reducing the denominator of the equation. However, it is

important to note that REF is inherently capped at 100%.

Consequently, during the optimization process, as articu-

lated in Eq. (24), the REF must invariably remain beneath

a predetermined threshold (eREF) [46].

REF %ð Þ� eREF ð24Þ

3.7 Greenhouse gases emission optimization
model

Another important factor to consider when designing a

hybrid renewable energy system is the emission of green-

house gases (GHG). As the system emits more greenhouse

gases, the negative impact on the environment corre-

spondingly increases. Conversely, fewer emissions mean a

lesser environmental footprint. The primary contributors to
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these emissions within the system are predominantly three

types of DG emitting gases [47]: CO2, SO2 and NOx. The

TGE of the system is calculated using the formula pre-

sented in Eq. (25).

TGE ¼
X8760

t¼1

aCO2
þ aSO2

þ aNOx
ð Þ � PDG tð Þð Þ ð25Þ

where TGE is the total greenhouse gases emission and

aCO2
, aSO2

and aNOx
are the emission factor of CO2, SO2

and NOx, respectively.

PDG tð Þ is the rated power of the DG. In the study,

emission factors of CO2, SO2 and NOx have been deter-

mined as 697, 0.5, and 0.22, respectively.

3.8 Dump energy evaluation

An additional reduction target in the algorithm explored in

this study is dump energy. This discharge occurs when an

excess of renewable energy is generated and the battery’s

state of charge reaches its maximum, leading to undesir-

able energy waste. To mitigate this, strategies such as bulk

energy management and controlled discharge are

employed. It is imperative to conduct a thorough exami-

nation into methods that can effectively utilize this surplus

energy, potentially contributing to reduced energy costs.

This study achieves the minimization of discharge energy

by employing an efficient hybrid GWOCS-based optimal

system design. Equation (26) calculates the total dump

energy over the system’s lifecycle.

Dtotal ¼
X8760

t¼1

D tð ÞEWT tð Þ þ EPV tð Þ � ELoad tð Þ
gInv

ð26Þ

3.9 Design variables

Design variables are critical in optimization, employed to

define system characteristics and performance. For

instance, in a solar energy system, parameters such as the

number and capacity of panels, the quantity and capacity of

batteries, and the efficiency of the inverter are optimized to

enhance performance and reduce costs.

The boundaries of these variables are typically deter-

mined by physical properties, design constraints, and

objectives. Lower and upper limits represent the minimum

and maximum values a variable can take. Engineers set

these boundaries based on experience, experimental

results, and similar problems, while optimization software

can also automatically designate the range of constraints.

Penalty functions may be employed for values outside the

boundaries, mitigating their negative impact on the opti-

mization result.

In this study, our decision variables are solar panel

power (RPV ), wind turbine power (RWT ), battery power

(RBatt), and diesel generator power (RDG). Equation (24)

specifies the accepted variables’ boundaries for the off-grid

system, and Eq. (27) does the same for the on-grid system.

Design Variables ¼

1 kW�RWT � 5000 kW

1kW�RPV � 5000 kW

1kW�RBatt � 5000 kW

1kW�RDG � 1000 kW

8
>><

>>:

ð27Þ

In conclusion, for optimizing both on-grid and off-grid

systems, we have utilized the values in Eq. (27) to expedite

the convergence of the algorithms toward the optimal

solution.

3.10 Simulation and optimization techniques

Optimization is the process of designing or configuring a

system or process to achieve the best possible results,

generally aimed at maximizing or minimizing a specific

objective such as cost, performance, or efficiency. How-

ever, in certain circumstances, such as the sizing opti-

mization problem of a HRES, specific constraints can make

it difficult or impossible to maximize or minimize the

objective. These constraints can arise from a variety of

factors such as design, material selection, physical space

limitations, production capacity, budget, or time. Opti-

mization constraints are used to impose certain limitations

on the system or process to be optimized. In this study,

specific constraints, such as a minimum renewable energy

ratio (minimum 10%) and a maximum annual cost limit

(annual cost = 109), were used when designing a HRES.

These constraints enable the optimization algorithm to

adjust the design parameters to provide a design that meets

the constraints.

In this section, we delve into the simulation and opti-

mization methodologies utilized in sizing both off-grid and

on-grid hybrid energy systems, comprised of PV/WT/DG/

Batt elements, as per the four distinct scenarios outlined in

the study. Initially, the simulation conducted via HOME-

RPro software is expounded, which is subsequently fol-

lowed by an in-depth look into the GWO, CS, and the

hybrid GWOCS algorithms.

3.10.1 HOMER simulation of HRES

The HOMER software, which stands for hybrid optimiza-

tion of multiple energy resources, is extensively utilized in

sizing and optimization. This software facilitates the exe-

cution of a pre-feasibility test for various RE configurations

of varying sizes, as well as the execution of various con-

figuration and sensitivity analyses for desired energy sys-

tems. Figure 8 presents single-line diagram for HRES, and
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the simulation results obtained by HOMER are presented

in Table 1. According to the optimization results obtained

here, the load demand can be met throughout the year with

the Scenario 1 PV/battery hybrid energy system, which is

one of the three most suitable scenarios. Using a 5785-kW

solar panel, 936 batteries, and 1384 kW converter, the

LCOE was calculated as $0.185, TNPC as $11.2M, and

REF as 100%.

3.10.2 Gray Wolf optimizer (GWO)

The GWO algorithm is a metaheuristic optimization tech-

nique. It is often used in the solution of optimization

techniques. This technique models the life and hunting of

gray wolves in their communities. The selected gray wolf

species are a, b, d ve x. The alpha group is a dominant

species as the wolf group follows its rules. Beta group

refers to the secondary wolves that help Alpha in decision

making. Omega represents the lowest-ranking gray wolves.

If a wolf does not belong to any of the above species, it is

referred to as delta. The hunting process consists of

finding/tracking the prey, then encircling/guarding the

prey, and finally attacking the prey. The major advantages

of the GWO algorithm are that it is simpler, more flexible,

and free of derivations. The first step in the GWO opti-

mization procedure is to generate a random gray wolf

population. Iterations can be used to estimate the likely

location of prey by a, b ve d wolves to represent the

optimal solution. Gray wolves update their locations based

on their distance from the prey [48].

Wolves have different fitness levels in the GWO algo-

rithm. Wolves are ranked from best to worst alpha, beta,

and delta. This gives a set of three wolf-level keys. Other

wolves make up the omega group. When gray wolves go

out to hunt, they first follow the prey, then approach it and

continue to surround and harass until the prey stops. In the

last step, they attack the prey.

3.10.2.1 Encircling prey Gray wolves encircle and

enclose their prey while hunting. The following equations

were used to model the behavior of wolves encircling the

prey:

D~ ¼ C~:X~P tð Þ � X~ tð Þ












 ð28Þ

X~ t þ 1ð Þ ¼ X~P tð Þ � A~D~ ð29Þ

here D~ is the distance between the preys, X~P is the prey

location vector, t is the current iteration, A~ and C~ represent

the vector of coefficients, and X represents the gray wolf

location vector. A~ and C
!

vectors are calculated as:

A~¼ 2a~r~1 � a~ ð30Þ

C~ ¼ 2r~2 ð31Þ

here the components of a~ are linearly reduced from 0 to 2

throughout iteration and r1; r2 are random vectors in the

range 0; 1½ �.

Fig. 8 HOMER HRES single-line diagram

Table 1 Optimal sizing results obtained with HOMER under scenarios 1, 2, 3, 4 of the proposed HRES

Architecture Cost Renewable

Fraction (REF)

(%)Solar

Panel

(kW)

Wind

Turbine

(kW)

Diesel

Generator

(kW)

Battery

(Adet)

Converter

(kW)

TNPC

($)

LCOE

($)

Operating

Cost

($=Yıl)

Initial

capital

($)

Scenario 1(PV ? Bat) 5785 – – 936 1384 11.2

M

0.185 401,109 4.69 M 100

Scenario

2(PV ? WT ? Bat)

6243 15 – 755 1279 11.6

M

0.191 411,642 4.88 M 100

Scenario 3

(PV ? DG ? Bat)

15,672 – 1500 384 1602 28.3

M

0.467 1.06M 11.2 M 99.9

Scenario 4

(PV ? WT ? DG ? Bat)

10,635 1583 1500 384 1465 26.2

M

0.432 933,437 11 M 99.99
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3.10.2.2 Hunting In gray wolves, alpha leads the hunt.

Beta and delta sometimes join alpha as well. However,

there is no information about the prey. In the software, prey

is searched for at specific intervals in space. When hunting,

it is presumed that alpha, beta and delta know the location

of the prey better than others. Therefore, three of the

optimal solutions are stored. The GWO algorithm recal-

culates the positions of these dominant wolves after each

run. The positions of the other wolves are also taken into

account. The updating of the representative positions can

be formulated as follows [49].

D~a ¼ C~1X~a � X~












;D~b ¼ C~2X~b � X~













;D~d ¼ C~3X~d � X~















ð32Þ

X~1 ¼ X~a � A~1D~a; X
!

2 ¼ X~b � A~2D~b;X~3 ¼ X~d � A~3D~d

ð33Þ

X~ t þ 1ð Þ ¼ X~1 þ X~2 þ X~3

3
ð34Þ

3.10.2.3 Seeking and attacking prey As mentioned

above, when the stopping location is reached, the gray

wolves attack the prey, ending the hunt. For mathematical

modeling of closeness to prey, the value of a~ should be

reduced. Also, the amplitude oscillation of A is reduced by

a~. In other saying, A~ is a random value between �2a~; 2a~½ �,
where a~ will reduce from 2 to 0 throughout the iterations.

While A~ is random values in distance between [- 1, 1], the

next location of a search factor can be anywhere between

the location of the prey and the current location. The gray

wolf seeks for prey, principally taking into consideration

the locations of alpha, beta, and delta. The wolves branch

out and move away in search of prey and then unite to

attack. For mathematical modeling of going away, A~ with

random values greater than 1 or less than -1 was used so

that it helps the search factor to branch out from prey. The

mathematical expression of a gray wolf attacking its prey

was shown by Eq. (35). Here, t represents the number of

times the algorithm is run between zero and the maximal

number of iterations (Max) [50].

A ¼ 2� 2
t

Max

� 	
ð35Þ

The code of the GWO algorithm is shown in Fig. 9.

3.10.3 Cuckoo search algorithm (CS)

The CS algorithm is a novel evolutionary algorithm suit-

able for continuous nonlinear optimization problems,

developed by Xin-She Yang and Suash Deb, inspired by

the breeding behavior of cuckoos [51]. The special

lifestyles of the birds and their characteristic properties in

ovulation and reproduction have been the main motivation

for the development of the algorithm. Cuckoos have

interesting aggressive breeding strategies; for example,

they put their eggs in the nests of other birds and can

discard other eggs in the nest to increase the likelihood of

their own eggs hatching. If the nester notices that the bird

has eggs in its nest that do not belong to it, it either expends

the foreign eggs from the nest or leaves its own nest and

builds a new nest elsewhere.

As delineated by Eq. (34), the algorithm of GWO

implements a process of updating the loci of individuals

exhibiting a superior measure of fitness values through the

method of trend search. This subset of individuals is

identified as a pivotal cohort within the system. This

operational model, unfortunately, hampers the algorithm’s

competence in effectively executing a global search. Fur-

thermore, it manifests an increased propensity toward

being entrapped in local optima, a tendency which

becomes more pronounced in scenarios dealing with an

extensive volume of datasets. Contrarily, the CS algorithm,

equipped with the mechanism of a random walk inter-

twined with Levy flights, embarks on the task of updating

nest positions. The trajectory of the search operation could

exhibit variations in length—it could either exceed or fall

short of its predecessor, with the probabilities of these

outcomes being nearly equal. The course of direction in

this model remains predominantly arbitrary. Such a con-

figuration paves the way for enhanced fluidity in translo-

cating from one sector of the search space to an alternate

one in subsequent operations.

The CS algorithm is based on three simplified basic

rules:

• Each cuckoo makes one egg at a time and lays it in a

randomly selected nest.

Fig. 9 GWO algorithm pseudo-code

Neural Computing and Applications (2024) 36:7559–7594 7573

123



• The best nests with high-quality eggs are transported to

the next generations.

• Thirdly, both the count of bird nests and the likelihood

of locating eggs remain constant. In the event that the

host bird detects an intruder’s egg, the host bird departs

from the nest and proceeds to construct a fresh one.

In each nest, every egg opposes a solution, and the

algorithm is further streamlined to allow only one egg per

nest. As a result, distinctions between the egg, the nest, or

the cuckoo are eliminated, as each nest encapsulates an

egg, which inherently symbolizes a cuckoo. The CS algo-

rithm leverages both global and local random walk strate-

gies, guided by the pa transition parameter. The local

random walk can be articulated as follows:

Within the context of the CS operation, a population,

delineated as Ek Xk
1;X

k
2; . . .;X

k
N

� �
, of N individuals evolves

from an initial point (k ¼ 0Þ toward a cumulative total of

iterations (gen). Each individual Xk
i (where i belongs to the

set 1; . . .;N½ �) is an n-dimensional vector, with the

dimensions Xk
i;1;X

k
;2; . . .;X

k
i;N

� 	
each representing a deci-

sion variable within the optimization problem to be

resolved. The performance of each individual, Xk
i (termed

as a candidate solution), is gauged using an objective

function, f ðXk
i Þ, where the final outcome epitomizes Xk

i ’s

fitness value.

The employment of levy flights to generate new candi-

date solutions represents one of the most innovative fea-

tures of the CS algorithm. A new candidate solution, Xk
i

(where i belongs to the set [1,…,N]) is conceived by per-

turbing the current Xk
i with a positional change denoted as

ci. To extract ci, a symmetric Levy distribution engenders a

random step, si. Mantegna’s algorithm is utilized to gen-

erate si [52].

si ¼
u~

v~j j1=b
ð36Þ

where u~¼ u1; u2; . . .; unf g and v~¼ v1; v2; . . .; vnf g both n-

dimensional vectors with a dimension of 3/2. Each com-

ponent of u~ and v~ is calculated using the normal distribu-

tions described below [53]:

u�N 0; r2u
� �

; v�N 0; r2v
� �

ð37Þ

ru ¼
C 1þ bð Þ � sin p� b

2

� 	

C 1þbð Þ
2

� 	
� b� 2Þb�1Þ=2

; rv ¼ 1 ð38Þ

The gamma distribution is represented by C (.). Once si
has been determined, the necessary positional adjustment,

ci, is calculated as follows:

ci ¼ 0:01� si 	 ðXk
i � XbestÞ ð39Þ

The operator 	 signifies element-wise multiplication

and Xbest represents the most optimum solution observed up

until this point with respect to its fitness value. Finally, by

employing Eq. 40, we determine the subsequent candidate

solution, which is represented as Xkþ1
i :

Xkþ1
i ¼ Xk

i þ ci ð40Þ

Consequently, the CS algorithm is capable of exploring

the solution space proficiently due to its ability to adjust its

steps according to the detection of small distances and

occasional long-distance strides. Over time, the stride

length tends to be considerably extended, leading to more

efficient exploration [54].

The code of the CS algorithm is shown in Fig. 10.

3.10.4 Hybrid Gray Wolf optimization-cuckoo search
algorithm (GWOCS)

The practice of amalgamating two or more algorithms has

recently garnered attention as a promising approach to

deriving superior solutions for optimization problems. The

assimilation of various renowned optimization techniques

into these hybrid optimized algorithms has amplified their

efficiency in addressing pertinent issues.

The GWO algorithm mirrors the hunting tactics and

leadership hierarchy typical of gray wolves. These crea-

tures ordinarily inhabit groups in wilderness settings, with

the groups comprising four distinct species of wolves. The

leadership role is vested in the alpha (a) wolf, which

occupies the apex of the hierarchical pyramid. Even if the

alpha is not the physically strongest, it must be the most

effective leader, responsible for crucial group decisions

like predatory strategies and food allocation. The beta (b)
wolf, situated on the second tier of the hierarchy, functions

as an assistant to the alpha, aiding in group management. It

needs only to respect the alpha to command others. The

Fig. 10 CS algorithm pseudo-code
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delta (d) wolf, positioned on the third tier, is required to

adhere to the directives of both the alpha and beta. They

replace the alpha and beta once their prime years have

passed, and they are demoted to the delta rank. The omega

(x) wolf, located at the base of the pyramid, must yield to

the rest of the group.

In this study, we introduce an innovative hybrid opti-

mization algorithm, named the GWCSO. This algorithm

seamlessly combines the strengths of the GWO and the CS

and is adeptly used for the efficient optimization of both

on-grid and off-grid HRES. The aim is to determine opti-

mal component sizes to both reduce system costs and meet

load demands. The GWO algorithm, inspired by the

coordinated hunting behavior of gray wolves, is renowned

for its ability to exploit local optima [55]. This feature has

been utilized to identify the optimal sizes of various

components in the system. Despite its advantages, the

GWO often faces the challenge of limited global search

capabilities, which increases its susceptibility to being

trapped in local optima. To address this challenge, the

study incorporates aspects of the CS algorithm. The CS,

inspired by the brood parasitism of cuckoo birds, leverages

a direction-independent and path-agnostic approach for

global search. This ability enhances the algorithm’s tran-

sition capabilities across various solution regions, helping

overcome the local optima challenge associated with

GWO. The hybrid GWCSO algorithm is devised by inge-

niously embedding the position updating functionality of

the CS algorithm within the framework of GWO. This

modification influences the positions, velocities, and con-

vergence accuracies of the gray wolf agents, bolstering the

search efficacy of the algorithm [56].

As a result, this innovative hybrid algorithm, GWCSO,

demonstrates a potent ability to swiftly tackle optimization

problems. The blend of local search capabilities from

GWO and global exploration of CS presents a powerful

tool for solving the complex optimization problems of off-

grid HRES, enabling efficient extraction of sizing units for

solar PVs, WTs, Batts, and DGs.

Additionally, within the context of the on-grid HRES

model, we observed that the CS algorithm procured more

optimal results in comparison to the GWOCS algorithm.

As with all types of algorithms, the notion that hybrid

algorithms consistently deliver precise results is not always

valid. Hybrid algorithms are primarily designed to integrate

the best attributes of multiple methods, aiming to furnish

more efficient or effective solutions. However, this inte-

gration doesn’t always ensure improved outcomes. The

performance of a hybrid algorithm depends on several

factors, including the nature of the problem it addresses,

the design of the algorithm itself, its objectives, and the

proficiency and experience of the individual deploying it.

In some specific scenarios, such as optimization issues, a

hybrid algorithm’s performance might align with or even

surpass that of its constituent algorithms. Conversely, in

other situations, the intricacies of combined algorithms

might negatively affect their performance. Thus, it

becomes crucial to perform exhaustive testing and trials to

verify whether a hybrid algorithm is more effective than

other existing algorithms in solving a particular problem.

As such, while hybrid algorithms do not always guarantee

superior results, when designed and implemented correctly,

they usually outperform other approaches. In the process of

optimizing the HRES for this study, the objective function

of the off-grid model involved three distinct parameters. In

contrast, the on-grid model used four unique parameters for

optimization. It’s normal for algorithms to yield varying or

comparable results based on the complexity and dimension

of the problem.

The pseudocode for the integration of the GWO with the

CS algorithm can be seen in Fig. 11, while Fig. 12 presents

the flowchart illustrating this integration.

4 The results and discussion

Using the methodology described in Sect. 2, we describe

the evaluation of optimization results of a PV-WT-DG-Batt

system to meet the university campus’s electrical load

demand. Four different scenarios were implemented in the

study for the proposed off-grid HRES. The difference

between these scenarios is that they are made up of dif-

ferent HRES components. The following are the definitions

for the first, second, third, and fourth scenarios:

Fig. 11 Hybrid GWOCS algorithm pseudo-code
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• Scenario1 This scenario is executed considering only

solar panels and battery storage, denoted as PV and

Batt.

• Scenario2 Executed with a combination of wind

turbines, solar panels, and battery storage, identified

as PV, WT, and Batt, being the sole components.

• Scenario3 Conducted with an integration of solar

panels, diesel generators, and battery storage, repre-

sented as PV, DG, and Batt.

• Scenario4 Implemented with a comprehensive mix of

solar panels, wind turbines, diesel generators, and

battery storage, referred to as PV, WT, DG, and Batt.

Economic optimization is sought with GWO, CS, and

hybrid GWOCS algorithms using an objective function

based on keeping the annual cost of HRES at the lowest

level. All hybrid system and RES parameters and data,

such as solar energy, wind energy, temperature, load val-

ues, Batt’s charging depth as well as battery dimensions,

type, and size, were recorded in our database, and the

software was developed in the MATLAB environment.

Furthermore, in order to provide practical solutions in a

short period of time, algorithm designs were created first,

taking into account all price details such as the total cost of

all components, maintenance and operating costs, work

area coordinates, project life, number, and prices. The

proposed system’s GWOCS algorithm meets the total

energy demand in Scenario 1, which consists only of PV

and Batt components. Tables 2, 3, 4, and 5 show the results

of hybrid energy system optimization for various scenarios.

PV-battery (Scenario 1), PV-WT-Batt (Scenario 2), and

PV-DG-Batt (Scenario 3) are all applicable schemes. The

PV-Batt hybrid system, consisting of 3641.896 kW PV

arrays and 4767.595 kW battery units, is the most eco-

nomically viable option for the university campus. The

TNPC is $10899774.295 with an ACS of $671570.577 and

a LCOE of $0.1800267/kWh. Furthermore, the proposed

Fig. 12 Flowchart of optimal

design procedure using hybrid

GWOCS algorithm
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system uses 100% renewable energy. It produces no annual

emissions. The annual total gas emission of the hybrid

system in Scenario 3 is 3638986.6 kg/year, and it is

2388426.10 kg/year in Scenario 4. As a result, the PV-Batt

hybrid system is the most cost-effective system with the

lowest CO2 emissions.

To demonstrate its reliability and validity, the hybrid

GWOCS used in solving the optimal size problem of the

grid-independent HRES is compared to two other meta-

heuristic algorithms, namely GWO and CS. The most

appropriate ACS and LCOE values were obtained with the

GWOCS algorithm in Scenario 1, as shown in Table 2. As

a result, any decrease in the objective function is signifi-

cant. This provides more information about the ideal size.

HRES generates an additional 1723177.348 kWh of energy

in addition to meeting load demand. This energy is used in

Table 3 Energy and cost of optimum off-grid HRES using GWO, CS, GWOCS algorithms in different scenario1 and scenario2

Description Scenario 1 (PV ? Bat) Scenario 2 (PV ? WT ? Bat)

GWO CS GWOCS GWO CS GWOCS

Time elapsed (sec) 160.9517 409.9916 221.1076 224.7010 293.3517 254.7987

Total wind energy (kWh) – – – 1883.6 1883.6 472.47

Total solar energy (kWh) 6,462,059 6,461,026 5,489,327 6,471,042 6,460,308 6,541,890

Wasted energy (kWh) 2,637,690 2,636,720 1,723,177 2,647,979 2,637,893 2,713,163

Total load demand (kWh) 3,730,393.65 3,730,393.65 3,730,393.65 3,730,393.65 3,730,393.65 3,730,393.65

Battery input energy (kWh) 2,065,283 2,065,262 205,215 2,064,503 2,064,286 2,066,711

Battery output energy (kWh) 2,167,128 2,167,169 2,212,214 2,165,671 2,166,102 2,163,699

REF (WT) (%) 0 0 0 0.03 0.03 0.01

REF (PV) (%) 100 100 100 99.97 99.97 99.99

Cost of WT ($) – – – 98,638 98,638 24,742

Cost of PV ($) 6,268,291 6,267,289 5,324,727 6,277,005 6,266,593 6,345,728

Cost of DG ($) – – – – – –

Cost of Batt ($) 4,642,087 4,641,256 5,532,899 4,631,667 4,638,350 4,566,894

Cost of inverter ($) 42147.6 42147.6 42147.6 42147.6 42147.6 42147.6

Table 4 Energy and cost of optimum off-grid HRES using GWO, CS, GWOCS algorithms in different scenario3 and scenario4

Description Scenario 3 (PV ? DG ? Bat) Scenario 4 (PV ? WT ? DG ? Bat)

GWO CS GWOCS GWO CS GWOCS

Time elapsed (sec) 222.2749 391.3337 265.0473 240.6874 562.1985 230.2280

Total wind energy (kWh) – – – 123,269 123,143 104,957

Total solar energy (kWh) 13,437,453 13,436,077 13,437,728 6,782,723 6,782,723 6,782,723

Wasted energy (kWh) 9,368,178 9,366,820 9,368,449 3,059,229 3,059,106 3,041,469

Total load demand (kWh) 3730393.65 3730393.65 3730393.65 3730393.65 3730393.65 3730393.65

Battery input energy (kWh) 2,158,592 2,158,592 2,158,592 2,014,339 2,014,394 2,022,399

Battery output energy (kWh) 2,010,316 2,010,324 2,010,314 2,084,118 2,084,169 2,091,446

REF (WT) (%) – – – 1.78 1.78 1.52

REF (PV) (%) 99.86 99.85 99.86 98.12 98.12 98.32

Cost of WT ($) – – – 6,455,220 6,448,592 549,628

Cost of PV ($) 13,034,524 13,033,189 13,034,791 6,579,340 6,579,340 6,579,340

Cost of DG ($) 5,849,700 5,849,736 5,849,693 2,689,708 2,689,769 4,203,411

Cost of Batt ($) 1,160,521 1,160,517

1,160,521 4,061,826 4,061,826 4,061,826

Cost of inverter ($) 42147.6 42147.6 42147.6 42147.6 42147.6 42147.6

7578 Neural Computing and Applications (2024) 36:7559–7594

123



campus irrigation systems, among other things. It is used in

a variety of unloading loads.

The monthly average energy balance for the grid-con-

nected and off-grid HRES over a year is depicted in

Fig. 13a, b. An investigation of the HRES showed that the

solar and wind powers are consistent with the available

solar and wind resources. In January–February–Novem-

ber–December, when PV panels produce less power, the

batteries were activated to meet the load demand. During

the other months, a better amount of energy was produced

from the sun due to better natural resources. However, in

the summer months, the use of the battery bank was

reduced, meaning less power was drawn from the batteries.

It can also be observed that there was excess energy. The

excess energy of 1723177.348 kWh produced can be used

in watering systems within the campus or sold to the grid.

In consequence of optimization, the HRES, which is con-

ceived for the same working space and interconnected with

Table 5 Energy and cost of

optimum on-grid HRES using

GWO, CS, GWOCS algorithms

GWOCS GWO CS

Time elapsed (sec) 689.5103 675.7652 3017.3897

Power of PV (kW) 2960.857 2960.458 2963.827

Battery units 202.8608 206.8653 201.8896

Energy of PV (kWh) 4462817.0305 4462214.9677 4467293.1330

Energy of DG (kWh) 0 0 0

Wasted energy (kWh) 0 0 0

Total load demand (kWh) 3730393.65 3730393.65 3730393.65

TGE (kg/year) 0 0 0

Battery input energy (kWh) 191693.0190 191433.0574 191464.1417

Battery output energy (kWh) 1571252.5745 1572167.7455 1571799.9159

LCOE ($ kWh) 0.12756 0.12755 0.12754

Grid sale (MWh) 1379.8 1378.2 1383.8

Grid purchased (MWh) 821.9 820.8 821.2

TNPC ($) 4813202.8629 4816378.8269 4815520.2794

REF (%) 100 100 100

ACS ($) 475857.3929 475809.9919 475782.8240

Cost of solar ($) 266539.0544 266503.0965 266806.3869

Cost of battery ($) 14495.2237 14781.3663 14425.8325

Cost of inverter ($) 3059.7569 3059.7569 3059.7569

Fig. 13 Share of energy from different HES components
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the grid, has been transacting excess energy back to the

grid. The LCOE, standing at a unit energy expenditure of

0.1275 ($/kWh), perpetually suffices the load requested

throughout the annum. Table 4 elucidates the findings

procured for the grid-connected HRES. As discernible in

Fig. 13b, the grid-connected system’s energy balance

manifests a reliance on the grid to compensate for the

deficiency encountered in fulfilling the load demand during

the months of January, February, November, and

December.

To verify the optimal performance of the proposed

system over the course of a year, two distinct weeks were

selected where load demand was at its peak and its lowest.

The weekly chart, which spans from the 3360th to 3527th

hour (May 19–26th) when the load demand is low, is

presented in Fig. 14. Figure 14a, b exhibit the optimization

results for off-grid and on-grid HRES, respectively. Charts

for the period of high load demand, from the 336th to

503rd hour (January 14th–21st), are provided in Fig. 15,

with Fig. 15a representing the off-grid HRES and Fig. 15b

displaying the on-grid system. In Fig. 14a, the high solar

energy production in May brings the state of charge (SOC)

of the battery close to its maximum, whereas in Fig. 15a,

lower solar energy production in January results in a drop

in the SOC to its minimum levels. Figures 14b and 15b

illustrate the procurement of energy from the grid when

necessary. From this, a detailed understanding of the bat-

tery’s status in relation to other components at different

times of the year can be obtained.

SOC is an important parameter in a system where

energy storage elements are used. The performance and

lifespan of a battery are of vital importance for the effi-

ciency of hybrid energy systems. Therefore, the battery

management system should accurately monitor and opti-

mize the battery’s SOC. The SOC is a measure of how

much of the battery’s accessible capacity has been used. A

battery that is completely drained or fully charged can

shorten its lifespan and reduce its performance. Figure 16a

shows the average SOC of the battery for the off-grid

HRES. The SOC percentages were 66.87% in January,

26.55% in February, 35.64% in March, 69.62% in April,

85.73% in November, 46.62% in December, and 100% in

the remaining months. Figure 16b displays the average

SOC graph for the grid-connected HRES. Here, the SOC

percentages are 24.9% in January, 32.18% in February,

66.21% in March, 76.81% in April, 84.66% in May,

91.72% in June, 89.64% in July, 91.64% in August,

78.62% in September, 49.63% in October, 24.5% in

November, and 22.43% in December.

Figure 17a, b, respectively, depicts the annual hourly

dynamics of battery charging and discharging within HRES

components, for both off-grid and grid-connected scenar-

ios. In these graphs, ’Batout’ represents the instances where

energy is drawn from the battery, signifying the energy

provided by the battery storage system to meet the load

demand. Conversely, ’Batin’ denotes the charging of the

battery or the surplus renewable energy fed into the storage

system once the load demand has been satisfied.

Fig. 14 HRES Energy balance analysis: a off-grid, b on-grid (3rd week of May)
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The weekly energy values of load, battery discharge,

wind and solar energy are shown in Fig. 18. Here you can

see how the load is covered by different sources, battery

discharge, wind power and solar power. Figure 18b is

shown with an additional Batt charging line compared to

Fig. 18a. When there is enough solar energy, we can see

that the Battery is charged at that moment and the Battery

is charged with the extra energy produced by RES at a

certain time in Fig. 18b. As a result of the HRES opti-

mization, all system components are monitored over

weekly or yearly charts on an annual hourly basis for 8760

h. Figure 19 portrays a weekly chart that embodies the

energy balance analysis of HRES within the temporal

interval of 2017–2184 h. Each of the three charts displayed

in Fig. 19 elucidates instances of battery depletion, elec-

tricity demand being catered to by RES and power

Fig. 15 HRES Energy balance analysis: a off-grid, b on-grid (2nd week of January)

Fig. 16 Average monthly

Battery state of charge (%):

a off-grid, b on-grid
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procured from the grid, as well as moments of surplus

energy being transacted back to the grid.

Figure 20 depicts a comparison of load demand and

renewable energy production. Additional graphs highlight

that the energy demand in the off-grid HRES is mainly

satisfied by solar power and battery storage. In the case of

the on-grid HRES, load demand is met using solar power,

battery storage, and additional power drawn from the grid

when battery reserves are depleted. It’s noteworthy that a

substantial part of the load demand is fulfilled by solar

energy, leading to the inference that the DG has not been

engaged at any point. In contrast, Fig. 21 displays the

cumulative amount of energy both sold to and purchased

from the grid over the span of a year. This graph tracks the

total supply and demand trajectory of grid energy

throughout the year, providing numerical values such as the

1383.8 MWh of energy sold and 821.2 MWh of energy

purchased. Both of these graphical representations impart a

comprehensive understanding of the energy demand and

supply patterns.

Fig. 17 Annual battery energy balance (kWh): a off-grid, b on-grid

Fig. 18 Off-Grid HRES optimization balance. a Load, battery discharge, and wind and solar power, b load, battery charge, wind power and

battery discharge, and solar energy (2017–2184 h)
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Within the context of the on-grid system, the proposed

system strategically employs solar, wind, battery storage, a

diesel generator, and the electrical grid in a sequence for

the procurement or disposition of requisite or surplus

energy, thereby accommodating the comprehensive energy

demand. Figure 22 illustrates the monthly average energy

equilibrium extending over an annual period. The cumu-

lative energy engendered by wind, solar, battery (both

ingress and egress), diesel generator, and the grid (inclu-

sive of both sale and acquisition) is exhibited on a monthly

basis for an entire year. Conversely, in the event that the

power generated solely by solar and wind energy does not

suffice to meet the demand, a battery storage system is

deployed to offset the existing power deficit, ensuring

demand is duly met. Subsequently, in circumstances where

an excess of solar and wind energy remains post meeting

the load demand, an assessment must be conducted to

determine whether the entirety of the residual energy can

be conserved within the battery; if feasible, the remnant

energy ought to be stored within the battery. As an alter-

nate strategy, any surplus energy post battery charging is

sold back to the grid. Owing to heightened solar radiation

and temperature levels, the most substantial energy sales

occur during the months of June, July, and August, wherein

the PV units manifest their maximal power output.

Figure 23a, b presents the convergence comparison

curves for the off-grid and on-grid HRES, respectively,

illustrating how the algorithms employed in the optimiza-

tion process approach the optimal and highest-quality

solution. The slope or structure of these graphs indicates

the swiftness with which the algorithm approaches the

optimal solution based on the iterations in optimization. In

Fig. 19 On-grid HRES optimization balance (2017–2184 h)

Fig. 20 Annual profile of

renewable energy generation

and load demand
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the optimization of the off-grid system, it is evident that the

Hybrid GWOCS algorithm performs calculations expedi-

tiously, nearing the optimal value post the 10th iteration,

and captures the optimal solution. In contrast, the opti-

mization results for the on-grid system were noticeably

superior when the CS algorithm was utilized. This

demonstrates that all the algorithms can be applied effec-

tively in the optimization of hybrid renewable energy

systems. The principal factor that significantly influences

the performance of these algorithms is the nature of the

objective functions being optimized. In the on-grid system,

multiple objective functions (ACS, TNPC, and LCOE)

were optimized, whereas in the off-grid scenario, only a

single-objective function (ACS) was optimized. This

discrepancy underscores the variations in the performance

of the different algorithms in use. The complexity of multi-

objective optimization problems is generally greater than

that of single-objective problems. However, there could be

scenarios where an algorithm can approach a single-ob-

jective problem (as in the off-grid case) more efficiently.

4.1 Statistical analysis of the algorithms

Statistical methods are vital for extracting meaningful

insights from complex datasets. These methods help

uncover hidden patterns, trends, and relationships that

might otherwise remain unnoticed. In this study, we

implemented a comprehensive array of statistical tests to

Fig. 21 Comparison of the

energy balance of purchased

from and sold to the grid in an

HRES

Fig. 22 The monthly average energy balance analysis of the HRES over the course of one year (8760 h): a off-grid, b on-grid
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compare the performance of five distinct algorithms thor-

oughly. Our primary goal was to detect significant perfor-

mance discrepancies among the algorithms and confirm the

statistical significance of these differences. This step is

crucial to ensure that our conclusions are robust and not

merely the result of random data fluctuations [57].

Specifically, we conducted a detailed comparative

analysis of the efficacy of various optimization algorithms,

including GWOCS, GWO, and CS. We assessed their

efficiency and robustness by calculating the average of the

results from each run, setting a consistent standard for

success evaluation. The means and standard deviations

were computed using Eqs. (41) and (42), respectively.

Moreover, we analyzed stability to gauge performance

consistency under varying initial conditions and across

multiple iterations, employing standard deviation as a

measurement metric.

lalgorithm ¼ 1

n

Xn

i¼1

xalgorithmi ð41Þ

ralgortihm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xalgorithmi � lalgorithm
� 	2

s

ð42Þ

In this study, we define lalgorithm as the mean effec-

tiveness of a specific optimization algorithm, where ’n’

represents the total count of iterations, and xalgorithmi denotes

the outcome of the ith iteration. We focus our analysis on

several optimization algorithms, including GWOCS,

GWO, and CS, meticulously calculating the average effi-

cacy (lalgorithm) over multiple iterations. Table 6 presents

an extensive compilation of data, detailing the mean,

standard deviation, minimum, and maximum results from

each algorithm.

Our methodology emphasizes a structured approach,

examining the precision and robustness of the model across

40 iterations. We scrutinize the model’s performance,

noting the consistency and variability in results, to provide

a comprehensive understanding of each algorithm’s effec-

tiveness. This structured statistical approach allows us to

measure not just the average outcomes but also the range

and consistency, providing a holistic view of the model’s

reliability and the algorithms’ performance.

In off-grid scenarios, a reassessment of the GWOCS

algorithm’s performance, according to Table 6, is war-

ranted. GWOCS demonstrates a commendable average

ACS, outperforming both GWO and CS by incurring lower

costs. This indicates GWOCS’s superior cost efficiency in

these specific conditions. Moreover, GWOCS maintains a

relatively low standard deviation under off-grid conditions,

signifying consistent and reliable results. In contrast, GWO

exhibits a higher average ACS and the largest standard

deviation among the three, suggesting potential unpre-

dictability and significant cost variations. CS, while offer-

ing competitive average ACS and lower standard deviation

than GWO, doesn’t quite match the cost-effectiveness and

consistency of GWOCS. Therefore, for off-grid scenarios,

GWOCS stands out for its economic efficiency and con-

sistent performance.

In on-grid conditions, the CS algorithm emerges as a

strong performer. It achieves the lowest average ACS,

denoting the most cost-effective solution for these condi-

tions. Its low standard deviation further underscores con-

sistent and reliable performance. The narrow range

Fig. 23 The comparison of the convergence curves for the GWOCS, GWO, and CS algorithms: a off-grid, b on-grid
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between its minimum and maximum values suggests pre-

dictability and robustness, making CS a preferred choice

for optimizing on-grid energy systems. However, the final

selection of an algorithm should always be aligned with

specific application needs and conditions.

Figures 24a (on-grid) and b (off-grid) visually depicts

the distinct performance patterns of GWOCS, GWO, and

CS. In Fig. 24a, CS displays remarkable consistency, evi-

denced by the narrowest interquartile range and minimal

outliers, highlighting its robust and predictable perfor-

mance in on-grid conditions. Conversely, Fig. 24b shows

GWOCS excelling in off-grid scenarios with a higher

median and a comparably narrow interquartile range,

indicating its superior and stable performance. These

observations suggest that while the CS algorithm may be

more suited to on-grid applications, GWOCS appears to be

tailored for off-grid environments, with each algorithm

exhibiting strengths in its respective optimal operating

condition.

Upon examining Figs. 25a, b, we can decipher the

performance metrics distribution for GWOCS, GWO, and

CS algorithms through their respective histograms. In

Fig. 25a, the GWOCS histogram exhibits a tight clustering

of values around the mean, indicative of consistent out-

comes. The distribution is left-skewed, meaning most trials

yield performance above the average, a sign of a generally

reliable algorithm. GWO’s histogram, in contrast, reveals a

broader spread of results, reflecting its greater variability in

performance. However, its more symmetrical distribution

around the mean suggests a balance of outcomes above and

below the average. CS presents a wide distribution, with

the highest frequency of outcomes still near the mean,

indicating that while its performance can vary widely, it

typically hovers around the average.

In Fig. 25b, the distribution for GWOCS is markedly

concentrated around the mean, with a rapid decline in

frequency as one moves away from this central value. This

pattern reflects a robust algorithm where performance

predictably hovers around a central tendency. GWO, while

still displaying a wide range of outcomes, shows a

noticeable concentration of values near the mean, sug-

gesting a fair degree of predictability despite its variability.

CS, with the widest variance, has a less pronounced peak,

indicating that while it has a significant number of trials

achieving near-mean performance, its outcomes are the

least consistent among the three.

These histograms provide crucial insights into the

algorithms’ reliability and predictability under various

conditions. GWOCS stands out for its repeatability and

tight performance range, making it a potentially reliable

choice where consistency is key. GWO, with moderate

variability, might be suited for scenarios where some

degree of unpredictability is acceptable or even beneficial.

CS, with its broad range of outcomes, could be preferred

in situations where the system needs to be robust against a

wide variety of scenarios, even if it means a less consistent

performance.

Understanding these distributions is vital for practical

applications. The trade-offs between consistency, vari-

ability, and the likelihood of extreme outcomes must be

carefully considered against the specific needs and con-

straints of the task at hand. This detailed histogram anal-

ysis, therefore, provides valuable guidance for algorithm

selection in real-world scenarios.

4.1.1 Cohen’s d test analysis

In this study performed, we measured the mean differences

between two separate entities using the Cohen’s d metric

for effect size. This metric quantifies the magnitude of the

difference between two groups and is expressed mathe-

matically in Eq. (43), as referenced in [58]:

d ¼ M1 �M2

SDpooled

ð43Þ

To calculate Cohen’s d, one subtracts the mean (M1) of

the first group from the mean (M2) of the second group and

divides the result by the pooled standard deviation

(SDpooled). The pooled standard deviation is a measure that

combines the standard deviations of the two groups (SD1

Table 6 Average, standard deviation, minimum, and maximum results of the algorithms

On-grid Algorithm Average (l) Median Standard deviation (r) Min Max

GWOCS 478546.018660 475830.755000 12354.495847 475766.647400 552398.640000

GWO 476827.761040 475823.305050 3146.892287 475759.940000 493137.740000

CS 476777.225885 476000.000000 1649.797971 475721.184200 482060.000000

Off-Grid GWOCS 672680.050595 672158.565000 1472.466329 671490.610000 679123.580000

GWO 674161.887135 672492.050000 7212.565689 671494.060000 717108.520000

CS 673948.392703 672486.505000 5933.864893 671558.240100 709225.210000
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and SD2) and considers their respective sample sizes (n1
and n2). The formula for calculating the pooled standard

deviation is provided in reference [59].

According to Cohen’s classification from 1988, as cited

in [60], effect sizes can be interpreted as small (0.20),

medium (0.50), or large (0.80) based on the d value. This

classification aids researchers in understanding the practi-

cal significance of the observed differences. For instance, a

small effect size might indicate a subtle difference between

groups that, while statistically significant, may not have

practical implications. Conversely, a large effect size

suggests a more substantial difference that could be of

significant interest in practical applications or further

research.

Understanding the effect size is crucial in this study as it

helps to quantify the magnitude of the observed differences

and provides insights into their practical significance. By

employing Cohen’s d, we can offer a more nuanced

interpretation of the data, moving beyond merely noting

whether differences exist or not.

Fig. 24 Comparative performance distribution of the GWOCS, GWO, and CS algorithms: a on-grid and b off-grid
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Additionally, the calculation of Cohen’s d involves the

pooled standard deviation, which is computed as shown in

Eq. (44):

SDpooled ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 � 1ð Þ � SD2
1 þ n2 � 1ð Þ � SD2

2

n1 þ n2 � 2

s

ð44Þ

In the analysis presented in Table 7, the performances of

the GWOCS, GWO, and CS algorithms are compared

using Cohen’s d effect size. This statistical method pro-

vides a quantitative measure of the variance in performance

between the algorithms, ensuring an objective assessment.

In the initial simulation study, each algorithm underwent

comparative analysis over 100 iterations. For the statistical

analysis, with the intent to alleviate computational burden,

we incrementally increased the iteration count from the 1st

through the 40th in both on-grid and off-grid optimization

scenarios. This procedure was uniformly applied to all

Fig. 25 Probability distribution of the results for the GWOCS, GWO, and CS algorithms: a on-grid and b off-grid
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three algorithms, culminating in a total of 240 executions.

Our methodological approach in this empirical investiga-

tion facilitated the identification of pronounced perfor-

mance disparities among the algorithms. The Cohen’s d

results, as presented in our results section, affirmed the

superior performance of the GWOCS algorithm in off-grid

environments (d = - 0.28468 with GWO, d = - 0.29339

with CS) and the CS algorithm in on-grid environments

(d = 0.20069 with GWOCS, d = 0.020114 with GWO).

These effect sizes suggest small to moderate performance

differences. These findings align with the fitness curves

depicted in our study, which suggest that GWOCS and CS

are particularly well-suited to their respective operational

conditions. Despite the limited number of iterations, the

robustness of these trends was evident and supported our

premise that conducting a high number of iterations, while

beneficial for comprehensive pattern recognition, is not

strictly necessary to establish reliable algorithmic perfor-

mance trends. The data derived from this study serve as a

strong argument for the strategic deployment of these

algorithms, endorsing GWOCS for scenarios lacking grid

infrastructure and CS for scenarios with available grid

connectivity.

4.1.2 Wilcoxon rank-sum test

The Wilcoxon rank-sum test, also known as the Mann–

Whitney U test, is primarily used for assessing the distri-

butions of two independent samples, as cited in [61]. This

nonparametric test serves as an alternative to the t-test and

is particularly beneficial when the data do not follow a

normal distribution. It is a valuable tool for statistically

verifying whether there is a significant difference in the

medians of two distinct groups. The test’s significance is

typically determined by the p-value it yields. Generally, a

p-value less than 0.05 is considered to suggest a statisti-

cally meaningful difference between the medians of the

groups [62]. The fundamental equation used in the Mann–

Whitney U test, or the Wilcoxon rank-sum test, is denoted

in Eq. (45):

U ¼ n1 � n2 þ
n1 � n1 þ 1ð Þ

2
� R1 ð45Þ

In the analysis conducted, the number of observations in

the first and second groups is denoted by n1 and n2,

respectively. The cumulative ranks of the first group are

indicated by R1. This equation is critical for assessing the

disparities between the two groups. The U statistic plays a

significant role in this context, reflecting the degree of

difference in the distributions of the groups. Typically, a

smaller U value is indicative of a more substantial disparity

between the groups [63].

It is important to understand that employing this equa-

tion and interpreting its results requires an in-depth

knowledge of statistical techniques. The interpretations

made from such statistical tests are contingent upon the

nature of the data, the size of the sample, and other perti-

nent aspects.

Table 8 presents the Wilcoxon rank-sum test results for

pairwise comparisons among various algorithms, providing

insightful perspectives on their relative performance.

Notably, the test results indicate significant disparities in

several comparisons.

In our investigation, the Wilcoxon rank-sum test was

employed to statistically discern performance differences

between the algorithms, as delineated in Table 8. For on-

grid scenarios, the GWOCS-GWO comparison yielded a p-

value of 9.386391 �10�1, indicating no significant differ-

ence in their performance and suggesting similar median

ranks. Conversely, both the GWOCS-CS and GWO-CS

comparisons manifested highly significant p-values of

1.306156 �10�5 and 3.975383 �10�6, respectively. These

results signify substantial performance disparities, partic-

ularly underscoring the superior median performance of CS

in on-grid environments.

In off-grid conditions, the p-values for GWOCS-GWO

(0.4079309), GWOCS-CS (0.2144911), and GWO-CS

Table 7 Average, standard

deviation, minimum, and

maximum results of the

algorithms

GWOCS GWO CS GWOCS GWO CS

On-grid Off-grid

GWOCS – 0.1906 0.20069 GWOCS – - 0.28468 - 0.29339

GWO 0.1906 – 0.020114 GWO - 0.28468 – 0.032327

CS 0.20069 0.020114 – CS - 0.29339 0.032327 –

Table 8 Wilcoxon rank-sum test results

Algorithms Results (p-value)

On-grid GWOCS-GWO 9.386391 �10�1

GWOCS-CS 1.306156 �10�5

GWO-CS 3.975383 �10�6

Off-grid GWOCS-GWO 0.4079309

GWOCS-CS 0.2144911

GWO-CS 0.6912264
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(0.6912264) were all above the conventional alpha level of

0.05, denoting no statistically significant differences in

performance. This implies a relative homogeneity in the

median performance ranks of these algorithms when

operating off-grid, suggesting that no algorithm distinctly

outperforms the others under these conditions.

These statistical insights from the Wilcoxon rank-sum

test provide a rigorous, nonparametric analysis of the

algorithms’ performance, reinforcing our understanding

from previous analyses. The findings elucidate the context-

dependent performance efficacy, pivotal for guiding the

selection of algorithms in practical applications where on-

grid and off-grid scenarios present distinct operational

challenges.

4.1.3 Correlation matrix analysis of algorithm performance

The primary aim of conducting a correlation matrix anal-

ysis is to determine the level of agreement or discrepancy

in the performance of different algorithms, utilizing this

information for enhanced strategic algorithm selection

[64]. Within the matrix, the diagonal represents each

algorithm’s self-correlation, invariably marked with a

value of 1; thus, these figures are omitted from the analysis.

The intensity and shade depicted in the matrix convey

the strength of the relationships between the algorithms

[65]. Remarkably, the matrix showcases a range of corre-

lations, from strong to weak, illustrating various degrees of

concordance or discordance in the performance of the

algorithms. This detailed correlation study not only sheds

light on the relative advantages and disadvantages of each

algorithm but also indicates potential pairings or collective

strategies that could leverage these interrelations to

enhance optimization results. The in-depth insights gained

provide a more intricate understanding of algorithm

behavior and can profoundly influence the strategic choice

and implementation of these techniques in complex opti-

mization scenarios.

The correlation matrices in Fig. 26a, b represent the

relationships between the performance results of the

GWOCS, GWO, and CS algorithms under two distinct

conditions: on-grid and off-grid.

The analysis presented in Fig. 26a demonstrates a strong

positive correlation between the performances of GWOCS

and GWO under on-grid conditions, with a correlation

coefficient determined to be 0.9339. This high correlation

suggests that these two algorithms’ performances are clo-

sely linked under similar conditions, with improvements in

one algorithm’s performance positively influencing the

performance of the other. Although the correlation between

GWOCS and CS is lower, at 0.6382, it still indicates a

significant correlation between the results obtained from

these algorithms. The 0.741 correlation between GWO and

CS indicates a robust relationship between their perfor-

mances, suggesting that improvements in one algorithm are

likely to be mirrored by the other.

In the off-grid scenario, as examined in Fig. 26b, the

correlation coefficients between the algorithms are signif-

icantly lower compared to the on-grid conditions. The

correlation coefficient of 0.3185 between GWOCS and

GWO implies that off-grid conditions may have different

impacts on the performance of these algorithms. The cor-

relation coefficients of 0.2229 between GWOCS and CS

and 0.1399 between GWO and CS suggest that these

algorithms might exhibit independent and variable perfor-

mances under off-grid conditions. This variation under-

scores the necessity of careful consideration of specific

circumstances and requirements when selecting algorithms

for off-grid scenarios.

These statistical insights from the Wilcoxon rank-sum

test provide a rigorous, nonparametric analysis of the

algorithms’ performance, reinforcing our understanding

from previous analyses. The findings elucidate the context-

dependent performance efficacy, which is pivotal for

guiding the selection of algorithms in practical applications

where on-grid and off-grid scenarios present distinct

operational challenges.

5 Conclusions

In this study, we implemented GWOCS, GWO, and CS

metaheuristic algorithms to establish an optimization

model for both on-grid and off-grid hybrid energy systems,

constituted of PV, WT, diesel generator, and battery

components. In each model presented, the main energy

source is renewable energy, with battery banks serving as

intermediary energy sources, and diesel generators and the

grid acting as secondary energy sources. For the off-grid

model, a single-objective function, ACS, was utilized,

while in the on-grid model, ACS, LCOE, and TNPC were

employed. The primary goal of this optimization has been

to meet the university campus’s energy needs fully, mini-

mize total annual costs, and identify the optimal capacities

for PV panels, wind turbines, batteries, and diesel genera-

tors. Both the on-grid and off-grid models were compared

technically and economically, and it was confirmed that the

on-grid model was the more effective of the two.

In this study, we implemented the hybrid GWOCS

metaheuristic algorithm to optimize an off-grid HRES. The

optimization resulted in an ACS of $671570.577, a LCOE

of $0.180026, a TNPC of $10,899,774, and a REF of

100%. The algorithm’s performance, as evidenced by

convergence curves, demonstrated its superior convergence

rate relative to other tested algorithms. The CS algorithm

was employed for the optimization of the on-grid system,
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meeting the current demand with a 2963.827 kW solar

panel array, a battery storage system with a capacity of

201.8896 kW, and drawing 821.2 MWh energy from the

grid. The HRES’s TNPC value is 4815520.2794 USD, the

ACS value is 475782.8240 USD, and the LCOE value is

0.12754 USD/kWh. Throughout the year, an excess energy

of 1383.8 MWh produced from RES is sold back to the

grid, thus generating income.

In our comprehensive statistical analysis, meticulous

attention was paid to the distinct performance character-

istics exhibited by the GWOCS, GWO, and CS algorithms

in various scenarios. This in-depth analysis significantly

highlights the performance differences between the algo-

rithms, bringing to the forefront the unique strengths of

each. Notably, the CS algorithm has demonstrated superior

efficiency in grid-connected HRES environments, deliver-

ing optimal results and reinforcing its suitability for such

settings. Conversely, in off-grid HRES situations, the

GWOCS algorithm has showcased its adaptability and

resilience under isolated and variable conditions by

exhibiting higher performance. These outcomes underscore

the critical importance of contextual factors in the selection

of algorithms. It is concluded that employing the CS

algorithm for grid-connected systems and GWOCS for off-

grid systems is more appropriate in terms of performance

and reliability in practical applications. This study makes a

significant contribution to the nuanced understanding of

algorithmic effectiveness in varying energy system

environments.

Fig. 26 Probability distribution of the results for the GWOCS, GWO, and CS algorithms: a on-grid and b off-grid
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The HRES proposed fulfills the load demand at all times

of the year with a 100% renewable energy factor, and due

to the diesel generator not being operated at any point

during the year, the total gas emission value is null. This

result of optimization has demonstrated that the load is

entirely met at the university campus, the cost is compar-

atively low, and there is minimal environmental damage.

Even though the inherent variability of RES such as

solar and wind energy might prevent their selection in all

optimal systems, the steady energy source provided by the

grid, batteries, and diesel generators deem them indis-

pensable power generators for all optimal systems. The

state of energy sources and loads collectively manage the

optimal architecture of the HRES; while the load defines

the total energy demands to be supplied, the configuration

of the producer apparatus distributing this energy depends

on the conditions of the energy sources. Furthermore, the

ratio between energy sources and storage devices is

determined by both the conditions of energy sources and

loads.

In conclusion, the methodology delineated in this study

can provide an efficient framework for the design and

evaluation of HRES. Moreover, when considering local

resource conditions and load data, this comprehensive

research can be utilized to estimate the performance of any

system in a different city and pinpoint the most suit-

able system for the specified location. In future research,

given that the load used is akin to the type of load stated in

this study (university campus, commercial building, hos-

pital, etc.), and the community is of a comparable size, it

can be directly applied when data on load and climate

conditions are accessible.
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nurcan@kocaeli.edu.tr
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