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Abstract
Ant Lion Optimization (ALO) method is one of the population-based nature-inspired optimization algorithms which

mimics the hunting strategy of antlions. ALO is successfully employed for solving many complicated optimization

problems. However, it is reported in the literature that the original ALO has some limitations such as the requirement of

high number of iterations and possibility of trapping to local optimum solutions, especially for complex or large-scale

problems. For this purpose, the SHuffled Ant Lion Optimization (SHALO) approach is proposed by conducting two

improvements in the original ALO. Performance of the proposed SHALO approach is evaluated by solving some

unconstrained and constrained problems for different conditions. Furthermore, the identified results are statistically

compared with the ones obtained by using the original ALO, two improved ALOs which are the self-adaptive ALO

(saALO) and the exponentially weighted ALO (EALO), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO)

approaches. Identified results indicated that the proposed SHALO approach significantly improves the solution accuracy

with a mean success rate of 76% in terms of finding the global or near-global optimum solutions and provides better results

than ALO (22%), saALO (25%), EALO (14%), GA (28%), and PSO (49%) approaches for the same conditions.

Keywords Ant Lion Optimization (ALO) � SHALO � Boundary shrinking procedure � Shuffling

1 Introduction

Reaching the global optimum solution is quite a difficult

task for many engineering optimization problems. For this

purpose, various deterministic and meta-heuristic opti-

mization methods are developed in the literature. Deter-

ministic methods mostly use the gradient and sometimes

the hessian information to find a search direction. Although

these methods are enormously efficient for finding the

global optimum solutions for convex optimization prob-

lems, they are highly dependent on the initial solutions for

the non-convex and multimodal optimization problems.

Furthermore, these methods may be inadequate for solving

the optimization problems where the objective functions

cannot be differentiated. For this reason, meta-heuristic

methods are generally preferred to solve these kinds of

optimization problems [1, 2].

Meta-heuristic optimization methods are the approaches

which mimic the processes observed in natural phenomena

by considering some stochastic components [3]. In the

literature, these methods are classified under two cate-

gories: local search-based optimization methods and pop-

ulation-based optimization methods [4]. In local search-

based optimization methods, the search process is started

with a single solution and the objective function value is

continuously improved by means of the considered

heuristic processes. On the contrary, in the population-

based optimization methods, the same tasks are conducted

by considering a population rather than a single solution

[5–7]. Note that the local search-based meta-heuristic

optimization methods have some advantages including fast

convergence, strong exploitation capability. However, use

of the population-based methods is usually preferred for
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solving the complex problems since performance of the

local-search-based methods is lower than the population-

based methods especially during the global exploration

process [6]. In the literature, there are different population-

based metaheuristic optimization methods such as Genetic

Algorithm (GA) [8], Ant Colony Optimization (ACO) [9],

Particle Swarm Optimization (PSO) [10], Differential

Evolution (DE) [11]. There exist a huge number of studies

which employ these meta-heuristic optimization methods

for solving different optimization problems in different

disciplines of science.

Ant Lion Optimization (ALO) method [7] is one of the

population-based nature-inspired optimization algorithms

which mimics the hunting strategy of antlions. The ALO

has been used in different studies and applications in the

literature such as feature selection [12–15], data clustering

[16–18], machine learning [19–22], and various engineer-

ing optimization problems [23–29]. Although ALO is

successfully employed for solving many complicated

problems, there are some reported limitations such as the

requirement of high number of iterations, possibility of

trapping to local optimum solutions, and the premature

convergence especially for the complex or large-scale

problems [30–32]. To overcome these limitations, different

improved versions of ALO are proposed in the literature.

Yao and Wang [33] proposed a Dynamic Adaptive Ant

Lion Optimization (DAALO) approach by including the

Levy flights to random walk process in ALO. The results of

the DAALO approach are compared with GA, PSO, arti-

ficial bee colony (ABC), and original ALO. Dinkar and

Deep [30] improved ALO by replacing the uniform dis-

tribution with Laplace distribution during generation of the

random numbers. Furthermore, they considered an Oppo-

sition-Based (OB) Learning model for exploring the better

candidate solutions. The performance of their proposed

OB-L-ALO approach is evaluated with some benchmark

and engineering design problems. Rajan et al. [34]

improved ALO by replacing the elitism process of the

original ALO with the weighted elitism concept by

including a weight parameter to update ant positions. Their

modified ALO approach (MALO) is used for solving the

optimal reactive power dispatch problem. Wu et al. [35]

improved the original ALO (IALO) by mapping the initial

positions of ants and antlions to chaos space. They evalu-

ated the performance of their IALO approach by solving

some benchmark problems and by comparing the identified

results with PSO, bat algorithm (BA), and ALO. Kilic and

Yuzgec [36] improved the original ALO by modifying the

process of returning the ants to the search space and used

tournament selection instead of roulette wheel selection to

solve the problem of parallel machine scheduling. Yang

et al. [37] introduced an escape strategy and adaptive

convergence criterion for improving the original ALO.

Their proposed approach is used for estimating the support

vector machine (SVM) parameters. Their results indicated

that the proposed approach provided better results than

ALO-, GA-, and PSO-based approaches. Toz [38] proposed

a new boundary shrinking procedure for ALO which is

based on the inverse of the incomplete Gamma function.

This improved ALO (IALO) approach handles the problem

of sudden boundary changes due to the stationary points in

boundary shrinking procedure of the original ALO. Results

of the proposed IALO approach indicated that this modi-

fication improved the performance of the original ALO

during solution of the image clustering problem. Guo et al.

[31] proposed a new search pattern consisting of a spiral

complex path for the random walk process in the original

ALO method. Their proposed approach aims to accelerate

the convergence speed and evaluate its performance by

solving some benchmark problems. Kilic et al. [39] applied

the same modifications of Kilic and Yuzgec [36] for

training an Adaptive Neuro-Fuzzy Inference System

(ANFIS) model parameters. The performance of their

Improved ALO approach with Tournament selection

(IALOT) is also evaluated by solving some engineering

optimization problems, and the obtained results are com-

pared with DE, PSO, ABC, simulated annealing (SA), and

touring ant colony optimization (TACO). Liu et al. [40]

proposed a method called self-adaptive ALO (saALO) by

using the trigonometric Sine function in random walk

process to accelerate the convergence speed. Chaitanya

et al. [41] modified the original ALO (MALO) by including

a new tuning parameter in the elitism process. They used

the proposed approach to solve the optimal reactive power

dispatch problem and compared the results with original

ALO, moth-flame optimization technique (MFO), PSO,

and tabu search (TS). Singh and Singh [42] proposed an

improved ALO (IALO) by shrinking of the radius of ant’s

random walks to avoid over-exploitation process. Their

approach also aims to replace the averaging process with

the blend crossover (BLX) operation for improving the

exploration and exploitation capabilities. Yao et al. [43]

proposed virtual force-directed ant lion optimization

algorithm (VF-IALO) by including adaptive boundary

shrinkage factor, dynamic weight coefficient for updating

ant positions and improving selection of elite antlions.

They used VF-IALO for coverage control of wireless

sensor networks. El Bakrawy et al. [44] modified the

original ALO (MALO) by including a new parameter

which depends on the step length of each ant for updating

their positions. Their proposed approach MALO is evalu-

ated with some benchmark functions, and the identified

results are compared with the original ALO. Chen et al.

[32] proposed an exponential-weighted ant lion optimiza-

tion algorithm (EALO) to increase the diversity of the

random walks of the ants. The performance of EALO is
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evaluated by solving some benchmark problems, and the

obtained results are compared with original ALO, saALO,

PSO, and grey wolf optimization (GWO). Yan et al. [45]

proposed a new approach which mutually integrates the

original ALO with Levy flight and golden Sine algorithm

(LGSALO). The main objective of their proposed

LGSALO approach is to avoid trapping to local optimum

solutions and increase the convergence accuracy. The

performance of LGSALO is evaluated with benchmark

problems and the obtained results compared with PSO and

original ALO. Lin and Ouyang [46] implemented a anti-

collision factor in the seagull optimization to the random

walk of ants around antlion phase for improving the search

capability of ALO. Moreover, they proposed an elimina-

tion probability for eliminating the last ants sorted by fit-

ness and updating their position. Shen and Liu [47] are

proposed an improved ALO algorithm in four phases:

initialization, updating ant position, random walk around

ant lion, and elitism. The performance of their proposed

approach is evaluated with the layout optimization problem

of branch pipelines. Lu et al. [48] introduced the chaotic

strategy in the initial stage of each iteration and used the

Gaussian mutation after the ant lion iteration to improve

the performance of algorithms. They evaluated the per-

formance of the algorithm using benchmark problems and

then combined it with SVM to solve feature selection

problem.

As can be seen from the aforementioned studies,

improvements and modifications are mostly conducted in

the random walk around antlions process of the original

ALO method. The reason of these modifications is asso-

ciated with the importance of this process for increasing the

diversity of the solutions. In this context, the SHuffled Ant

Lion Optimization (SHALO) approach is proposed in this

study. In SHALO, the original ALO is modified by con-

ducting two improvements. The first improvement deals

with the boundary shrinking procedure of the random walk

around antlions process. For this purpose, a new expo-

nentially weighted approach is proposed. The second

improvement is associated with the shuffling process which

aims to increase the diversity of the random walk vector of

the original ALO. The performance of the proposed

SHALO approach is evaluated by solving four uncon-

strained and two constrained benchmark problems, and two

constrained engineering design problems. All the problems

are solved 100 times for different random number seeds,

and the identified results are statistically compared with the

ones obtained by using the original ALO, saALO [40],

EALO [32], GA [8], and PSO [10]-based optimization

approaches. The results of this analysis indicated that the

proposed SHALO approach significantly improves the

solution accuracy and can find the global or near-global

optimum solutions with high success rates.

2 Ant Lion Optimization (ALO) method

ALO is a population-based meta-heuristic optimization

method which is first developed by Mirjalili [7] depending

on the hunting strategy of antlions in nature. Note that

antlions belong to the family of Neuroptera (web-winged

insects) which are carnivorous in both larvae and adult

phases. In larvae phase, the antlions dig a cone-shaped sand

pit and hide under the sand at the bottom of the pit for

hunting insects, especially the ants (Fig. 1). When the

antlion realizes that a prey (e.g., ant) walks inside pit, it

starts throwing sand particles to the ant for sliding toward

the bottom of the pit. After hunting and consuming the

prey, the antlion repairs the shape of the pit to prepare for

the next hunt. Depending on this philosophy, solution of an

optimization problem by using ALO can be mathematically

formulated as follows:

Let T is the maximum number of itera-

tionsðt ¼ 1; 2; 3; � � � ; TÞ; xt and ext be the population

matrices of ants and antlions, respectively; n be the number

of ants or antlions (candidate solutions) in the population; d

be the number of decision variables of the problem; xtij and

extij are the elements of xt and ext matrices at ith candidate

solution, jth decision variable, and tth iteration ði ¼
1; 2; 3; � � � ; n ; j ¼ 1; 2; 3; � � � ; d ; t ¼ 1; 2; 3; � � � ;TÞ,
respectively. Under these definitions, the population

matrices of ants and antlions at tth iteration can be defined

as follows:

xt ¼

xt11 xt12 . . . xt1d
xt21 xt22 . . . xt2d
..
. ..

. . .
. ..

.

xtn1 xtn2 . . . xtnd

2

6

6

6

4

3

7

7

7

5

ð1Þ

ext ¼

ext11 ext12 . . . ext1d
ext21 ext22 . . . ext2d
..
. ..

. . .
. ..

.

extn1 extn2 . . . extnd

2

6

6

6

4

3

7

7

7

5

ð2Þ

The elements of xt and ext are calculated randomly at the

start of optimization ðt ¼ 0Þ by considering the lower and

upper bounds of the decision variable as follows:

xt¼0
ij ¼ xt¼0

min;j þ rand 0; 1ð Þ � xt¼0
max;j � xt¼0

min;j

� �

ð3Þ

where xt¼0
min;j and xt¼0

max;j are the lower and upper bounds of

the jth decision variable at initial stage of the optimization,

and rand 0; 1ð Þ is a uniform random number in the range of

0; 1ð Þ. After initial generation of xt¼0 and ext¼0
randomly,

the corresponding fitness values are calculated as follows:
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F t ¼

f xt11
��

xt12 . . . xt1d
��

f xt21
��

xt22 . . . xt2d
��

..

. ..
. . .

. ..
.

f xtn1
��

xtn2 . . . xtnd
��

2

6

6

6

4

3

7

7

7

5

ð4Þ

eF
t ¼

f ext11
��

ext12 . . . ext1d
��

f ext21
��

ext22 . . . ext2d
��

..

. ..
. . .

. ..
.

f extn1
��

extn2 . . . extnd
��

2

6

6

6

4

3

7

7

7

5

ð5Þ

where F t and eF
t
represent the fitness vector of the ants and

antlions at tth iteration, respectively. After this step, a

roulette wheel (RW) approach is employed to mimic the

hunting behavior of antlions. This is an important stage in

ALO since the selection of antlions is conducted based on

their calculated fitness values. By applying the roulette

wheel approach, the fitter antlions get higher chance to

catch the ants for consuming [7]. After selection of the

antlions by means of the roulette wheel approach, the

sliding behavior of ants toward the bottom of the pit is

simulated based on a boundary shrinking procedure in

which the lower and upper bounds of the variables are

adaptively decreased as follows:

xtmin;j ¼
xtmin;j

I
ð6Þ

xtmax;j ¼
xtmax;j

I
ð7Þ

I ¼ 10x
t

T
ð8Þ

As can be seen from Eqs. (6) and (7), the search space of

the ants is decreased by dividing the corresponding lower

and upper bounds to parameter I given in Eq. (8). Note that

the value of I is dynamically calculated depending on the

ratio of t=T and x. The value of x is used for adjusting the

accuracy of exploitation and calculated by dividing the

iteration domain into several segments as follows:

x ¼

1 if t[ 0

2 if t[ 0:10T
3 if t[ 0:50T
4 if t[ 0:75T
5 if t[ 0:90T
6 if t[ 0:95T

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð9Þ

To simulate the entrapment process of the ants inside the

cone-shaped pit, the lower and upper bounds of the ants are

updated by using the position of the antlions as follows:

xtj;min ¼
extij;RW þ xtj;min if rand 0; 1ð Þ\0:5

extij;RW � xtj;min otherwise

(

ð10Þ

xtj;max ¼
extij;RW þ xtj;max if rand 0; 1ð Þ� 0:5

extij;RW � xtj;max otherwise

(

ð11Þ

where extij;RW is the position of the selected ith antlion at

tth iteration by means of the RW approach. After this step,

the random walk process of the ants to find a forage is

modeled based on the following equation:

Fig. 1 Hunting strategy of

antlions in the constructed cone-

shaped pit
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X j ¼ 0;X 1
j ;X

2
j ; � � � ;X t

j; � � � ;X T
j

h i

ð12Þ

X t
j ¼ C 2 � r tð Þ � 1ð Þ ð13Þ

r tð Þ ¼ 1 if rand 0; 1ð Þ[ 0:5
0 otherwise

�

ð14Þ

where X j is the random walk vector for jth decision

variable ðj ¼ 1; 2; 3; � � � ; dÞ; X t
j is the t

th element of the X j

vector; r tð Þ is a stochastic step function; C �ð Þ is a function
which calculates the cumulative sum of the given input.

Note that the elements of the random walk vector are

normalized to ensure satisfying the specified lower and

upper bounds of the decision variables based on the fol-

lowing min–max normalization equation:

X t
j ¼

X t
j � aj

� �

� xtj;max � xtj;min

� �

bj � aj
þ xtj;min ð15Þ

where aj ¼ min X j

� �

and bj ¼ max X j

� �

. During solution

of the optimization problem, keeping the elite solution is an

important step in any phase of the search process. Thus, the

best solution should be stored to guarantee the improved

convergence in every iteration. Note that in ALO, new

positions of the ants are calculated by using the random

walk around the selected antlion by roulette wheel

approach and the elite antlion in terms of the output of

Eq. (15) as follows:

xtij ¼
Ratj þRetj

2
ð16Þ

where Ratj and Retj are the random walk around the

selected (RW approach) and the elite antlions for jth deci-

sion variable at tth iteration, respectively. When the ants get

trapped at the bottom of the pit, the antlion updates its

position to prepare the trap for a new prey. According to

the provided source code of ALO [7], this process is

described based on the following steps: (i) determine fit-

ness vector for the recently calculated ant positions; (ii)

append the fitness vector of ants to the bottom of the fitness

vector of antlions (double fitness vector); (iii) append the

position matrix of ants to the bottom of the position matrix

of antlions (double position matrix); (iv) sort double fitness

vector in ascending order and determine the corresponding

sort index values; (v) re-order the double position matrix

based on the sort index values; (vi) assign new positions

and fitness values of antlions from the first half of the

sorted double position matrix and double fitness vector,

respectively. It should be noted that the computational

scheme described above is iterated until reaching the

maximum number of iterations in the original ALO.

3 The proposed SHuffled Ant Lion
Optimization algorithm (SHALO)

As indicated previously, the ALO method is applied for

solving many different optimization problems in the liter-

ature due to its interesting philosophy and simple compu-

tational structure. However, ALO has some limitations in

the random walk around antlions process. Therefore, a

significant number of the improved ALO approaches in the

literature focus on this issue and try to improve the solution

accuracy by modifying this process [30–45]. Depending on

this issue, the SHALO approach is proposed in this study

for increasing the solution accuracy of ALO approach.

Note that the computational structure of the proposed

SHALO approach also focuses on modifying the random

walk around ant lions process with two improvements in

the current ALO structure. The first improvement is related

to the boundary shrinking procedure of ALO approach

which is an important and essential part since the original

procedure depends on a step-by-step decreasing procedure

for shrinking the boundary. This procedure is controlled

with the parameter x in Eq. (9) which is used to adjust

level of exploitation. Note that the value of x in Eq. (9) is

suddenly increased at some stationary points and this

change results with a suddenly increased value of I as

given in Eq. (8). Although this procedure can be useful for

conducting the boundary reduction around the solutions, it

can reduce the random search capability of the algorithm

due to a sudden increase of the value of I at stationary

points [38]. Therefore, a new exponentially weighted

boundary shrinking approach is proposed to solve this

problem as follows:

I ¼ 1 if k ¼ 0
eI if k ¼ 1; 2; 3; 4; 5

�

ð17Þ

eI ¼ Imin
k þ I

max

k

� �

� Imax
k

� e Lk � t�tmin
kð Þ½ � þ k � rand 0; 1ð Þ � Lkj j � t � tmin

k

� �

n o

ð18Þ

Lk ¼
ln

Imin
k

Imax
k

� �

tmax
k � tmin

k

ð19Þ

where eI is the value of the proposed exponentially

weighted function, Imin
k and Imax

k are the minimum and

maximum I values for kth region in Fig. 2, tmin
k and tmax

k are

the minimum and maximum t values for kth region in

Fig. 2, Lk is a function whose value is calculated loga-

rithmically based on Eq. (19) for kth region in Fig. 2, �j j is
the absolute value, and k is the parameter controlling the

magnitude of the random deviations from the value of eI .
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The detailed representation of the parameters used in

Eqs. (18) and (19) can be seen in Fig. 2.

As can be seen from Fig. 2, the iteration domain of the

optimization problem is partitioned into 6 regions

k ¼ 0; 1; 2; � � � ; 5ð Þ. According to the original ALO for-

mulation, the value of I is suddenly increased at starting

points of the 1st to 5th regions. On the other hand, the value

of I linearly increases inside of each region depending on

the ratio of t=Tð Þ. Figure 2 shows the variation of I for

each region in the original ALO method with the black

lines. Note that the minimum and maximum values of I for

each region are taken as Imin
k and Imax

k in SHALO. Simi-

larly, for each region, the minimum and maximum values

of t are considered as tmin
k and tmax

k in Eqs. (18) and (19).

Note that Fig. 2 also includes the variation of the proposed

exponentially weighted function of eI . As can be seen, for

k ¼ 0 (red line), the proposed exponentially weighted

function does not have any random deviations in terms of

the calculated eI values. This means that the proposed

function behaves just as the one given in the original ALO

method. The key difference between the proposed function

and the one given in the original ALO is that the proposed

function does not have any stationary points where the

value of I suddenly increases. Instead, the function value

exponentially increases between the same minimum and

maximum values for each region. This kind of use

increases the random search capability of the approach

rather than the original ALO method. Note that the random

search capability of the proposed exponential function can

also be increased by perturbing the calculated eI values with

random deviations. This perturbation is also given in Fig. 2

for k ¼ 1 (blue line). As can be seen, although trend of the

calculated eI values remains the same, their values have

strong local oscillations depending on the considered value

of k. Therefore, the proper selection of the value of k is

very important since it adjusts the magnitude of random

deviations from the calculated value of eI .

The second improvement of the SHALO approach is

related to the modification of the min–max normalization

process given in Eq. (15) in original ALO. As indicated

previously, the generated random walk vector cannot be

directly used for updating the position of ants. Therefore,

values in this vector are normalized by using Eq. (15) in

the original ALO by considering the minimum and maxi-

mum values of the random walk vector. In the proposed

SHALO approach, the associated min–max normalization

is modified as follows:

X t
j ¼

X t
j � eaj

� �

� xtj;max � xtj;min

� �

ebj � eaj
þ xtj;min ð18Þ

eaj ¼ mean X j

� �

�min X j

� �

ð19Þ

ebj ¼ max X j

� �

�mean X j

� �

ð20Þ

where mean X j

� �

is the arithmetic mean of the random

walk vector for jth variable. As can be seen from Eq. (20),

the values of aj and bj in Eq. (15) are replaced with eaj and

ebj by including the mean of the random walk vector as an

additional variable. This inclusion significantly increases

the diversity of random walk vector since it shuffles the

content of the random walk vector. During this process, the

two cases given in Fig. 3 are observed.

As can be seen from Fig. 3, the cases where the

mean X j

� �

values are lower and greater than median X j

� �

are named as Case 1 and 2, respectively. Although these

two cases are not important in the original ALO, they are

Fig. 2 Variation of I versus t
for ALO (black lines) and

SHALO (red k ¼ 0ð Þ and blue

k ¼ 1ð Þ lines) approaches (color
figure online)
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important in SHALO for understanding the nature of the

shuffling process. As an example, Fig. 4a–c compares the

random walks for both ALO and SHALO approaches at

10th, 100th, and 800th iterations in terms of trends and

statistics. Note that both approaches in Fig. 4 are executed

by considering the same random number seeds to eliminate

the influence of random numbers. As can be seen from

Fig. 4a, the calculated random walks are in the same trend

although the corresponding values in SHALO are much

greater than the ones obtained in the original ALO. The

random walks in Fig. 4a represent the behavior of Case 2

for both ALO and SHALO approaches where the calcu-

lated mean is greater than the median. On the other hand, in

Fig. 4b, the calculated random walks also have greater

values than those obtained in ALO. However, the corre-

sponding values of SHALO are all obtained as upside down

compared to the ones in the original ALO. The reason for

this change is associated with the conditions given in Fig. 3

such a way that ALO represents the behavior of Case 2,

whereas the SHALO is Case 1. Finally, in Fig. 4c, the same

outcome is also observed where random walks in SHALO

are all obtained as upside down compared to the original

ALO due to their differences in terms of the cases in Fig. 3.

Note that comparison of Fig. 4a–c also indicates the

decreased values of the random walks in SHALO. As an

example, Fig. 5 shows the variation of random walks

through iterations for both ALO and SHALO approaches.

As can be seen, the random walk vector of SHALO gets

significantly greater values than those calculated values for

ALO in early iterations. However, these big differences

decrease in later iterations and values of the random walk

vector approach to the optimum values. It is concluded

from these results that the proposed SHALO approach

significantly increases the diversity of random walk vector,

especially in early iterations by increasing and shuffling the

random walks.

4 Comparison with other approaches

As indicated previously, there are various modified ver-

sions of ALO in the literature for improving the quality of

random walks around antlion process. Since SHALO also

aims to improve this process, it is essential and required

task to compare its performance with these approaches. In

this context, the identified results of SHALO are compared

with the original ALO for the same initial populations,

optimization parameter values, and random number seeds.

Similarly, all the identified results are compared with two

improved versions of ALO which are the self-adaptive

ALO (saALO) [40] and the Exponential-weighted ALO

(EALO) [32] approaches. Both saALO and EALO

approaches aim to improve the boundary shrinking proce-

dure by modifying the variable I. These modifications are

conducted by introducing the sinusoidal and exponential

terms to saALO and EALO approaches, respectively, as

follows:

saALO : I ¼ 10x
t

T
0:5þ sin

pt
2T

� �

� rand 0; 1ð Þ
� �

ð23Þ

EALO : I ¼ 10x
t

T
exp

t

T

� �

� rand 0; 1ð Þ � g
� �

ð24Þ

As can be seen from Eqs. (23) and (24), both saALO

and EALO approaches use the same structure with Eq. (8)

such a way that the value of I linearly increases with the

ratio of t=T together with a dynamic change with the

parameter of x. The key difference is that in saALO, an

additional term is introduced to Eq. (8) to include the

sinusoidally changed random perturbations. Similarly, in

EALO, this random perturbation is included to Eq. (8) by

means of an exponential term together with a weight of g
which controls the magnitude of random perturbations.

Note that the performance of the proposed SHALO

approach is also evaluated by solving the same problem via

GA and PSO optimization approaches by using the same

random number seeds with the other approaches.

5 Numerical applications

The applicability of the proposed SHALO approach is

evaluated by solving four unconstrained and four con-

strained benchmark problems. The last two of the con-

strained problems are related with the solution of well-

known engineering design problems. These problems are

also solved with the original ALO, saALO, EALO, GA,

and PSO approaches. All the approaches are executed by

Fig. 3 The two cases observed during the shuffling process
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considering the number of candidate solutions (population)

as 50 and the maximum iteration (generation) number of

1000. To make an exact comparison for all the approaches,

a data set including 100 different uniform random number

seed values is randomly generated for statistically evalu-

ating the model results. For this purpose, commonly used

statistical measures (minimum, maximum, mean, median,

and standard deviation) are used together with a measure of

Fig. 4 Comparison of the trends statistics of random walks for both

ALO and SHALO approaches for a: 10th iteration; b: 100th iteration;

c: 800th iteration (the figures on the right side represent the statistics

of the random walks in terms of the minimum (black), maximum

(green), mean (red), and median (blue) metrics (color figure online))

Neural Computing and Applications

123



Success Rate ðSRÞ, given in Eq. (25), which is calculated

by dividing the number of successful solutions ðSSÞ to the

number of total solutions ðTSÞ [49]. A model execution is

assumed to be successful depending on the mathematical

definition given in Eqs. (26).

SR %ð Þ ¼
P

SS

TS
� 100 ð25Þ

SS ¼

1 if f xð Þ � f x�ð Þj j � e

0 otherwise

	

if f x�ð Þ ¼ 0

1 if
f xð Þ � f x�ð Þj j

f x�ð Þj j � e

0 otherwise

2

4 if f x�ð Þ 6¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð26Þ

where f x�ð Þ is the global optimum solution of the opti-

mization problem, and e is a threshold value. As can be

seen from Eq. (26), the value of SS equals to 1 if absolute

or absolute relative error values are lower than the given e
value depending on the value of the global optimum

solution. Note that the measure of SR is used to evaluate

the model results in terms of the calculated objective

function values. Evaluation of model results in terms of the

relative closeness to the optimum solution is conducted

based on the accuracy metric ACð Þ as follows [36, 39]:

AC %ð Þ ¼ 1�
x0k � x�k












xt¼0
max;k � xt¼0

min;k



















0

B

@

1

C

A
� 100 ð27Þ

where x0k and x�k represent the calculated and the optimum

solution of the kth decision variable k ¼ 1; 2; 3; � � � ; dð Þ.
Note that performance of the proposed SHALO approach is

evaluated for 12 different k values k 2 0; 1; 10; 20; 50;½ð
100; 200; 500; 1000; 2000; 5000; 10000�Þ where the model

is executed 100 times for each k values by considering the

generated random number seed data set. The reason for this

evaluation is to assess the applicability of the proposed

boundary shrinking procedure for different magnitudes of

random perturbations.

5.1 Unconstrained optimization applications

5.1.1 Michalewicz’s test function

Michalewicz’s test function is a nonlinear multimodal test

function which contains d local optimum [50]. The math-

ematical description of the function together with the lower

and upper bounds of the decision variables is given in

Eq. (28).

min f xð Þ ¼ �
X

d

k¼1

sin xkð Þ sin
k:x2k
p

� �	 
2l

ð28Þ

s:t: 0� xk � p ; k ¼ 1; 2; 3; � � � ; d ð28aÞ

where the parameter l describes the ‘‘steepness’’ of the

valleys or sides and is assumed to be 10 for this solution.

This function has a global optimum solution at

x� ¼ 2:202906 1:570796 1:284992 1:923058 1:720470½ �

with a function value of f x�ð Þ ¼ �4:688 for d ¼ 5. Fig-

ure 6 shows three-dimensional representation of this

function for d ¼ 2. As can be seen, the function has many

local optimum solutions around global optimum that is

why it may be classified as a difficult optimization test

problem. As indicated previously, this problem is solved

for different k values in SHALO; each of them consists of

100 model executions. For these model executions, the

calculated SR values are given in Fig. 7.

As can be seen from Fig. 7, the maximum value of SR is

obtained for the solution with k ¼ 20. For this solution, the

results of the corresponding 100 model executions are

compared with the ones obtained by using ALO, saALO,

EALO, GA, and PSO approaches, respectively. As

Fig. 5 Variation of random

walks through optimization

iterations for both ALO and

SHALO approaches (color

figure online)
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indicated previously, all these approaches are also executed

100 times for the same random number seed data set.

Table 1 compares the identified results of these model

executions.

It is seen that each approach determined the global

optimum solution (- 4.688) at least one time for the

conducted 100 model executions. When the obtained

results are evaluated, the associated SR values of ALO,

saALO, and EALO approaches are obtained as 3%, 4%,

and 3%, respectively. However, the corresponding SR

value is obtained as 48% and 32% for GA and PSO,

respectively. For this example, the proposed SHALO

approach is resulted with a SR value of 69% which is better

than the other approaches. This outcome can also be seen

from the mean and median values where the calculated

values are very close to the global optimum solution in

SHALO. For the calculated AC values, while the original

ALO has the mean accuracy of 90%, all the other

approaches have the mean accuracy 97% and over. These

results indicate that there are significant local optimum

solutions around the global optimum. The convergence

plots for ALO, saALO, EALO, GA, PSO, and SHALO

approaches are compared in Fig. 8. Note that these plots

are composed by taking the arithmetic mean of the 100

model executions for each optimization approach. Results

of these plots indicate that the proposed SHALO approach

converges to the better mean objective function values than

the other approaches when considering overall 100 model

executions. For the best solutions in Table 1, the final

decision variables and objective function values are com-

pared in Table 2. As can be seen, all the identified values

are the same since all the approaches converged to the

global optimum solution at least once.

5.1.2 Rastrigin’s test function

Rastrigin’s test function is also a nonlinear and multimodal

test function containing the large number of local optimum

solutions [51]. The mathematical form of the function

together with the considered lower and upper bounds of the

decision variables is given in Eq. (29).

Minf xð Þ ¼ 10d þ
X

d

k¼1

x2k þ 10cos 2pxkð Þ
� �

ð29Þ

s:t: � 5:12� xk � 5:12 k ¼ 1; 2; � � � ; d ð29aÞ

This function has a global optimum solution at x�k ¼ 0

k ¼ 1; 2; � � � ; dð Þ with a function value of f x�ð Þ ¼ 0 for any

given value of d. In this study, the problem is solved by

considering d ¼ 5: Figure 9 demonstrates three-dimen-

sional representation of this function for d ¼ 2. As can be

seen, the function has many local optimums, and therefore,

it may also be classified as a difficult optimization test

problem. By applying the same solution scheme, this

function is also solved 100 times for different k values.

Fig. 6 Michalewicz’s test function

Fig. 7 Variation of SR (%) for different k values for Michalewicz’s

test function

Table 1 Evaluation of the 100

model executions for

Michalewicz’s test function for

different optimization

approaches

Measure ALO saALO EALO GA PSO SHALO

SRð%Þ 3 4 3 48 32 69

ACð%Þ 90 97 97 99 99 99

Best - 4.688 - 4.688 - 4.688 - 4.688 - 4.688 - 4.688

Worst - 3.151 - 3.151 - 2.948 - 4.333 - 4.059 - 4.496

Mean - 4.119 - 4.122 - 4.040 - 4.616 - 4.596 - 4.668

Median - 4.251 - 4.251 - 3.923 - 4.646 - 4.646 - 4.688

Std. deviation 0.435 0.436 0.464 0.087 0.100 0.040
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Figure 10 shows the final SR values for these model exe-

cutions with different k values.

As can be seen from Fig. 10, the maximum SR value is

obtained as 95% which is obtained for the solution with

k ¼ 100. For this solution, the results of the corresponding

100 model executions are compared with the ones obtained

by using ALO, saALO, EALO, GA, and PSO approaches,

respectively. The identified results of these model execu-

tions are compared in Table 3. As can be seen, the original

ALO is not successful in determining the global optimum

solution for any of the 100 model executions. Similarly, the

saALO and EALO approaches obtained the global opti-

mum solution only once. For the same conditions, GA and

PSO approaches determined the global optimum solution

46 and 36 times, respectively. On the other hand, the

proposed SHALO approach determined the global opti-

mum solution 95 times out of 100 model executions. This

outcome can also be seen from the calculated mean and

median values which are close to the global optimum

solution in SHALO although there are some differences in

the other approaches. When the results of AC measure are

evaluated, ALO, saALO, and EALO approaches resulted

with the same mean AC value of 93%. On the other hand,

GA, PSO, and SHALO approaches resulted with the mean

AC values of 99%, 98%, and 100%, respectively.

The convergence plots of each approach for the mean

objective function values of 100 model executions are

compared in Fig. 11. Results of these plots demonstrate

Fig. 8 Comparison of the convergence histories of different

approaches for the Michalewicz’s test function

Table 2 The final decision

variables and objective function

values for Michalewicz’s test

function for the best solutions in

Table 1

Variables and function values ALO saALO EALO GA PSO SHALO

x1 2.203 2.203 2.203 2.203 2.203 2.203

x2 1.571 1.571 1.571 1.571 1.571 1.571

x3 1.285 1.285 1.285 1.285 1.285 1.285

x4 1.923 1.923 1.923 1.923 1.923 1.923

x5 1.720 1.720 1.720 1.720 1.720 1.720

f ðxÞ - 4.688 - 4.688 - 4.688 - 4.688 - 4.688 - 4.688

Fig. 9 Rastrigin’s test function

Fig. 10 Variation of SR (%) for different k values for Rastrigin’s test

function

Table 3 Evaluation of the 100 model executions for Rastrigin’s test

function for different optimization approaches

Measure ALO saALO EALO GA PSO SHALO

SRð%Þ 0 1 1 46 36 95

ACð%Þ 93 93 93 99 98 100

Best 0.995 0.000 0.000 0.000 0.000 0.000

Worst 14.924 13.929 14.924 3.980 5.970 0.995

Mean 5.253 4.686 4.457 0.746 1.094 0.050

Median 4.975 3.980 3.980 0.995 0.995 0.000

Std. deviation 3.224 2.922 2.953 0.825 1.165 0.217
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that the proposed SHALO approach converges to the

minimum mean objective function value compared to the

other approaches used. For the best solutions in Table 3,

the final decision variables and objective function values

are compared in Table 4. As can be seen, all the identified

variables are very close to 0 which is the global optimum

solution for this problem.

5.1.3 Trefethen’s test function

Trefethen’s test function [52] is an unconstrained nonlinear

multimodal test function. This function includes two

decision variables d ¼ 2ð Þ and combines exponential,

trigonometric, and arithmetic expressions in a single

function. The mathematical form of the function together

with the search domain is given in Eq. (30).

Minf xð Þ ¼ esin 50x1ð Þ þ sin 60ex2ð Þ þ sin 70sin x1ð Þð Þ
þ sin 80sin x2ð Þð Þ � sin 10 x1 þ x2ð Þð Þ

þ 1

4
x1

2 þ x2
2

� �

ð30Þ

s:t: � 6:5� x1 � 6:5 ð30aÞ
�4:5� x2 � 4:5 ð30bÞ

The global optimum solution of this function is observed

at x� ¼ �0:0244031 0:2106124½ � with a function value of

f x�ð Þ ¼ �3:307. Three-dimensional representation of the

Trefethen’s test function is given in Fig. 12. As can be

seen, the function has many local oscillations which behave

as the local optimum solutions. This example is also solved

100 times for different k values. Results of the proposed

SHALO approach in terms of the calculated SR values are

given in Fig. 13 for different k values.

As can be seen from Fig. 13, the solution with k ¼ 1 is

selected as the best since the calculated SR value of that

solution is maximum. For this solution, the results of the

corresponding 100 model executions are compared with

the results which are obtained by using ALO, saALO,

EALO, GA, and PSO approaches, respectively. Similarly,

all the approaches are also executed 100 times for the same

random number seed data set. A comparison of the

obtained results of all model executions is given in

Table 5.

As can be seen, all the approaches determined the global

optimum solution of - 3.307 for the conducted 100 model

executions. Results of the calculated SR values for ALO,

saALO, EALO, GA, and PSO approaches are obtained as

47%, 56%, 20%, 36%, and 63%, respectively. For this

function, the corresponding SR value in SHALO is

obtained as 66% which is the best compared to the other

approaches. The calculated mean AC values are obtained as

98% for EALO and 99% for the other approaches. Note

that the Trefethen’s test function has many local optimums

around global optimum solution and this result can be

clearly seen from Table 5 that the EALO-based optimiza-

tion approach is resulted with a SR value of 20% although

the calculated mean AC value of the same approach is

98%. Figure 14 shows the convergence plots of all

approaches in terms of the mean objective function values.

As can be seen, the proposed SHALO approach again

converges to the minimum mean objective function value

than the other approaches. For the best solutions given in

Table 5, the final decision variables and objective function

values are compared in Table 6. As can be seen, all the

identified values are the same since all the approaches

converged to the global optimum solution at least once.

5.1.4 De Villiers–Glasser 1 function

De Villiers–Glasser 1 test function is a continuous non-

linear test function which has a differentiable, non-sepa-

rable, and non-scalable multimodal mathematical solution

space [53]. The mathematical form of the function together

with the search space is given in Eq. (31).

Minf xð Þ ¼
X

24

i¼1

x1x
ti
2sin x3ti þ x4½ � � yi

� �2 ð31Þ

ti ¼ 0:1 i� 1ð Þ ð31aÞ

yi ¼ 60:137 � 1:371ti � sin 3:112ti þ 1:761ð Þ ð31bÞ
s.t. 1� xk � 100 k ¼ 1; 2; � � � ; d ð31cÞ

This function has a global optimum solution at x� ¼
60:137 1:371 3:112 1:761½ � with a function value of

f x�ð Þ ¼ 0 for d ¼ 4. Similarly, this problem is also solved

for different k values in SHALO; each of them consists of

100 model executions. Figure 15 shows the final SR values

for these model executions.

As can be seen from Fig. 15, the maximum value of SR

is obtained for the solution with k ¼ 2000. After selecting

the best k value, the results of the corresponding 100 model
Fig. 11 Comparison of the convergence histories of different

approaches for the Rastrigin’s test function
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executions are compared with the ones those obtained by

using ALO, saALO, EALO, GA, and PSO approaches,

respectively (Table 7). As can be seen from Table 7, the

original ALO, saALO, EALO, and GA could not reach the

global optimum in any of the 100 model executions.

However, the problem is successively solved for 60 and 77

times out of 100 model executions by PSO and SHALO

approaches, respectively. The calculated mean AC values

are all obtained over 65% for all the approaches. Note that

this function also has many local optimums around global

optimum solution. For instance, while the mean value of

AC is obtained as 68% for ALO, the corresponding value

of SR is 0% for the same approach.

Table 4 The final decision variables and objective function values for Rastrigin’s test function for the best solutions in Table 3

Variables and function values ALO saALO EALO GA PSO SHALO

x1 - 9.95E–01 3.68E–08 2.40E–08 1.47E–09 2.95E–09 - 2.53E–08

x2 - 3.87E–08 2.06E–07 - 4.08E–08 2.36E–09 - 5.25E–10 2.37E–08

x3 2.52E–07 - 1.66E–07 2.68E–08 - 3.53E–09 - 3.28E–09 - 1.69E–08

x4 3.15–07 - 1.39E–07 2.89E–08 4.58E–10 2.29E–09 9.31E–09

x5 - 3.42E–07 - 4.28E–08 - 1.99E–08 3.05E–09 - 1.79E–09 2.83E–08

f ðxÞ 9.95E–01 1.83E–11 8.24E–13 0.00E ? 00 0.00E ? 00 4.62E–13

Fig. 12 Trefethen’s test function

Fig. 13 Variation of SR (%) for different k values for Trefethen’s test

function

Table 5 Evaluation of the 100

model executions for

Trefethen’s test function for

different optimization

approaches

Measure ALO saALO EALO GA PSO SHALO

SRð%Þ 47 56 20 36 63 66

ACð%Þ 99 99 98 99 99 99

Best - 3.307 - 3.307 - 3.307 - 3.307 - 3.307 - 3.307

Worst - 2.643 - 2.643 - 2.428 - 2.729 - 3.063 - 2.761

Mean - 3.126 - 3.201 - 3.039 - 3.163 - 3.248 - 3.254

Median - 3.176 - 3.307 - 3.063 - 3.208 - 3.307 - 3.307

Std. deviation 0.221 0.159 0.215 0.146 0.088 0.090

Fig. 14 Comparison of the convergence histories of different

approaches for the Trefethen’s test function
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The convergence plots for ALO, saALO, EALO, GA,

PSO, and the proposed SHALO approaches are compared

in Fig. 16 for the mean objective function values of 100

model executions. Results of these plots demonstrate that

the proposed SHALO approach again converges to the

minimum mean objective function value compared to the

other optimization approaches. For the best solutions in

Table 7, the final decision variables and objective function

values are given in Table 8. As can be seen, only PSO and

SHALO approaches determined the global or near-global

optimum solution and the other approaches could not

determine it.

5.2 Constrained optimization applications

In this section, the performance of the proposed SHALO

approach is evaluated by solving two constrained bench-

mark problems and two well-known engineering design

problems. For these problems, general form of the con-

strained optimization model can be mathematically

described as follows:

min f xð Þ ð32Þ
s:t: gi xð Þ� 0 i ¼ 1; 2; 3; � � � ;m ð32aÞ
hjðxÞ ¼ 0 j ¼ 1; 2; 3; � � � ; n ð32bÞ

where m is the number of inequality constraints; gi xð Þ is

the ith inequality constraint; n is the number of equality

constraints; and hjðxÞ is the jth equality constraint. Since

ALO is a meta-heuristic optimization method, it can only

be used for solving the unconstrained optimization prob-

lems in its original form. Therefore, solution of the con-

strained problems is conducted by converting them to the

unconstrained problems by means of the penalty function

approach as follows:

min f 0 xð Þ ¼ f xð Þ þ
X

m

i¼1

ai � Pg
i þ

X

n

j¼1

bj � Ph
j ð33Þ

Table 6 The final decision

variables and objective function

values for Trefethen’s test

function for the best solutions in

Table 5

Variables and function values ALO saALO EALO GA PSO SHALO

x1 - 0.024 - 0.024 - 0.024 - 0.024 - 0.024 - 0.024

x2 0.211 0.211 0.211 0.211 0.211 0.211

f ðxÞ - 3.307 - 3.307 - 3.307 - 3.307 - 3.307 - 3.307

Fig. 15 Variation of SR (%) for different k values for De Villiers–

Glasser 1 test function

Table 7 Evaluation of the 100

model executions for De

Villiers–Glasser 1 test function

for different optimization

approaches

Measure ALO saALO EALO GA PSO SHALO

SRð%Þ 0 0 0 0 60 77

ACð%Þ 68 69 68 58 65 74

Best 0.990 1.210 2.034 0.050 0.000 0.000

Worst 11,786.676 12,355.975 23,644.427 50,179.865 35,863.062 41,453.299

Mean 2649.741 2619.385 3528.969 4851.426 2845.219 886.577

Median 1713.426 1693.898 1374.254 138.214 0.000 0.000

Std. deviation 2840.333 3032.582 4974.243 10,817.759 7014.526 5822.534

Fig. 16 Comparison of the convergence histories of different

approaches for the De Villiers–Glasser 1 test function
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Pg
i ¼

0 if gi xð Þ� 0

gi xð Þ½ �2 otherwise

�

ð34Þ

Ph
j ¼

0 if hj xð Þ ¼ 0

hj xð Þ
� �2

otherwise

�

ð35Þ

where f 0 xð Þ is the transformed objective function; Pg
i and

Ph
j are the penalty functions for inequality and equality

constraints, respectively; ai and bj are the corresponding

penalty coefficients for inequality and equality constraints,

respectively. As can be seen from Eqs. (33) to (35), the

given constrained problem is transformed to the uncon-

strained optimization problem with inclusion of penalty

functions. These functions get a value of zero when all the

constraints are satisfied, whereas they get a penalty value

depending on constraint violation when the constraints are

not satisfied. These penalty functions are integrated to the

objective function by using the penalty coefficients of ai
and bj which are used to adjust the magnitude of penalty

terms. Note that selection of ai and bj values are the mostly

problem dependent. Therefore, values of them are selected

by conducting some trials before execution of the opti-

mization model. Depending on these previous trials, values

of penalty coefficients are taken as 1000 for all the

problems.

5.2.1 Floudas and Pardalos’s function

Floudas and Pardalos’s function is a nonlinear constrained

optimization test function which includes 13 decision

variables and 9 inequality constraints [54]. The mathe-

matical form of the objective and constraint functions

together with the lower and upper bounds of the decision

variables is given in Eq. (36).

Minf xð Þ ¼ 5
X

4

k¼1

xk � 5
X

4

k¼1

x2k �
X

13

k¼5

xk ð36Þ

s.t. g1 xð Þ ¼ 2x1 þ 2x2 þ x10 þ x11 � 10� 0 ð36aÞ
g2 xð Þ ¼ 2x1 þ 2x3 þ x10 þ x12 � 10� 0 ð36bÞ
g3 xð Þ ¼ 2x2 þ 2x3 þ x11 þ x12 � 10� 0 ð36cÞ

g4 xð Þ ¼ �8x1 þ x10 � 0 ð36dÞ
g5 xð Þ ¼ �8x2 þ x11 � 0 ð36eÞ
g6 xð Þ ¼ �8x3 þ x12 � 0 ð36fÞ
g7 xð Þ ¼ �2x4 � x5 þ x10 � 0 ð36gÞ
g8 xð Þ ¼ �2x6 � x7 þ x11 � 0 ð36hÞ
g9 xð Þ ¼ �2x8 � x9 þ x12 � 0 ð36jÞ
0� xk � 1; k ¼ 1; 2; � � � ; 9 ð36kÞ
0� xk � 100; k ¼ 10; 11; 12 ð36lÞ
0� xk � 1; k ¼ 13 ð36mÞ

Floudas and Pardalos’s function has a global optimum

solution at x� ¼ 1 1 1 1 1 1 1 1 1 3 3 3 1½ � with a function

value of f x�ð Þ ¼ �15. As conducted previously, this

problem is also solved for different k values in SHALO for

100 model executions. Figure 17 shows the variation of SR

for different k values.

As can be seen from Fig. 17, the maximum SR value is

obtained as 62 for the solution with k ¼ 100. Therefore,

this solution is selected to compare the performance of the

proposed SHALO approach with the ALO, saALO, EALO,

GA, and PSO approaches. Similarly, all the approaches are

executed 100 times for the same random number seed data

set with SHALO. Table 9 compares the identified results of

100 model executions using different approaches.

As can be seen from Table 9, the original ALO, saALO,

and EALO approaches could not find the global optimum

solution for any of the 100 model executions. On the other

Table 8 The final decision

variables and objective function

values for De Villiers–Glasser 1

test function for the best

solutions in Table 7

Variables and function values ALO saALO EALO GA PSO SHALO

x1 60.625 60.676 59.441 60.141 60.137 60.138

x2 1.365 1.364 1.380 1.371 1.371 1.371

x3 65.942 65.942 3.115 3.111 3.112 3.112

x4 52.029 64.595 8.041 96.010 1.761 1.761

f ðxÞ 0.990 1.210 2.034 0.050 0.000 0.000

Fig. 17 Variation of SR (%) for different k values for Floudas and

Pardalos’s test function
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hand, GA, PSO, and the proposed SHALO approaches

found the global optimum solution 8, 10, and 62 times,

respectively. These results indicate that the proposed

SHALO approach provides the best identification results in

terms of the calculated SR measure. For the AC measure,

while the original ALO and EALO approaches resulted

with the mean AC value of 58%, this measure is obtained

for the saALO approach as 59%. However, the GA, PSO,

and the proposed SHALO approach provided the mean AC

value of 90%, 88%, and 97%, respectively. When the

results are evaluated statistically, the mean and the median

values of the objective function are very close to the global

optimum solution in SHALO compared to the other

approaches in Table 9. The convergence plots of each

approach are compared in Fig. 18 in terms of the mean

objective function values of 100 model executions. It is

seen from Fig. 18 that the proposed SHALO approach

converges to the minimum mean objective function value

compared to the other approaches.

For the best solutions in Table 9, the final decision

variables, objective, and constraint function values for each

approach are given in Table 10. As can be seen, GA, PSO,

and the proposed SHALO approach determined the opti-

mum decision variable values, while the original ALO,

saALO, and EALO approaches could not fully determine

them. When the results are evaluated in terms of the

constraint violations, all the constraint functions are satis-

fied without any violation by each approach.

5.2.2 Rastrigin’s constrained function

Rastrigin’s constrained function, proposed by Poole and

Allen [49], is a modified version of Rastrigin’s uncon-

strained test function. It includes a parameter controlling

the number of global optimums, the Heaviside function,

and a constrain function for transforming the original

Rastrigin’s function to a constrained one. The mathemati-

cal form of the objective and constraint functions together

with the lower and upper bounds of the decision variables

is given in Eq. (37).

Minf xð Þ ¼
X

d

k¼1

10 1þ cos 2pKkxkð Þð Þ þ 2Kk xk � 1ð Þ2H xk � 1ð Þ
n o

ð37Þ

s.t. g xð Þ ¼
X

d

k¼1

20cos 4pKkxkð Þ� 0 ð37aÞ

H yð Þ ¼ 1 if y[ 0

0 otherwise

�

ð37bÞ

0� xk � 2; k ¼ 1; 2; 3; � � � ; d ð37cÞ

where H yð Þ is the Heaviside function; and Kk 2 K is a

parameter which controls the number of global optimums

for each search direction. Note that this modified problem

has 2d
Qd

k¼1 Kk global optimum solutions having the same

objective function value of f ¼ 10d � 5d
ffiffiffi

2
p

[49]. For

d ¼ 2, Fig. 19 shows 2-dimensional representation of the

Rastrigin’s constrained function. As can be seen, the

function has 24 different locations where global optimum

exists. For this case, the problem is solved for d ¼ 5

decision variables and the corresponding Kk values for

each variable are selected from the set of K ¼ 1 1 1 1 2½ �.
As conducted previously, the problem is solved 100

times for each k values. Figure 20 shows the variation of

the calculated SR measures for different k values. Among

the obtained results, the solution of k ¼ 1 is selected as the

best solution since it has the highest SR value. After this

Table 9 Evaluation of the 100

model executions for Floudas

and Pardalos’s test function for

different optimization

approaches

Measure ALO saALO EALO GA PSO SHALO

SRð%Þ 0 0 0 8 10 62

ACð%Þ 58 59 58 90 88 97

Best - 10.655 - 9.536 - 10.774 - 15.000 - 15.000 - 15.000

Worst - 2.536 - 2.510 - 2.507 - 6.000 - 6.000 - 11.420

Mean - 5.051 - 5.077 - 4.878 - 10.598 - 10.357 - 14.260

Median - 4.922 - 4.867 - 4.698 - 11.413 - 9.000 - 14.970

Std. deviation 1.454 1.319 1.415 2.613 2.470 1.105

Fig. 18 Comparison of the convergence histories of different

approaches for the Floudas and Pardalos’s test function
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process, the solution corresponding to the selected k value

compared with the original ALO, saALO, EALO, GA, and

PSO approaches. Similarly, each approach is executed 100

times with the same random number seed data set for

comparing the identified results. The results of this com-

parison are given in Table 11.

As can be seen from Table 11, the calculated SR values

of the original ALO, saALO, and EALO approaches are

obtained as 30%, 37%, and 30%, respectively. For the

same conditions, while the GA found the global optimum

solution with a SR value of 43%, this value is obtained as

58% and 59% for PSO and the proposed SHALO approa-

ches, respectively. As indicated previously, the number of

global optimum solutions is given as 2d
Qd

k¼1 Kk. By

considering d ¼ 5 decision variables and Kk 2 1 1 1 1 2½ �,

Table 10 The final decision

variables, objective, and

constraint function values for

Floudas and Pardalos’s test

function for the best solutions in

Table 9

Variables and function values ALO saALO EALO GA PSO SHALO

x1 0.575 0.529 0.566 1.000 1.000 1.000

x2 0.794 0.852 0.798 1.000 1.000 1.000

x3 1.000 0.998 0.998 1.000 1.000 1.000

x4 0.994 0.928 1.000 1.000 1.000 1.000

x5 0.784 0.794 0.802 1.000 1.000 1.000

x6 0.992 0.865 1.000 1.000 1.000 1.000

x7 0.996 0.998 1.000 1.000 1.000 1.000

x8 0.838 0.742 0.817 1.000 1.000 1.000

x9 0.491 0.450 0.529 1.000 1.000 1.000

x10 2.772 2.649 2.802 3.000 3.000 3.000

x11 2.980 2.728 2.999 3.000 3.000 3.000

x12 2.166 1.935 2.163 3.000 3.000 3.000

x13 0.707 0.596 0.708 1.000 1.000 1.000

g1ðxÞ - 1.510 - 1.860 - 1.470 0.000 0.000 0.000

g2ðxÞ - 1.913 - 2.361 - 1.907 0.000 0.000 0.000

g3ðxÞ - 1.266 - 1.636 - 1.247 0.000 0.000 0.000

g4ðxÞ - 1.825 - 1.587 - 1.730 - 5.000 - 5.000 - 5.000

g5ðxÞ - 3.374 - 4.092 - 3.384 - 5.000 - 5.000 - 5.000

g6ðxÞ - 5.832 - 6.049 - 5.819 - 5.000 - 5.000 - 5.000

g7ðxÞ 0.000 0.000 0.000 0.000 0.000 0.000

g8ðxÞ 0.000 0.000 0.000 0.000 0.000 0.000

g9ðxÞ 0.000 0.000 0.000 0.000 0.000 0.000

f ðxÞ - 10.655 - 9.536 - 10.774 - 15.000 - 15.000 - 15.000

Fig. 19 Two-dimensional representation of the Rastrigin’s con-

strained function (the black diamonds represent the locations of the

global optimum solution)

Fig. 20 Variation of SR (%) for different k values for Rastrigin’s

constrained test function
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the number of global optimum solutions having the same

objective function value (14.645) is calculated as 64.

Therefore, the measure of AC is not calculated for this

example since there is no single optimum solution. The

convergence plots for each approach in terms of the mean

objective function values are compared in Fig. 21.

It can be seen from Fig. 21 that the proposed SHALO

approach converges to the minimum mean objective

function values than the other approaches. For the best

solutions in Table 11, the final decision variables, objec-

tive, and constraint function values are compared in

Table 12. As can be seen, different decision variables are

obtained by each approach although their corresponding

objective function values are the same. This is an expected

outcome since the modified problem has 64 different global

optimum solutions.

5.2.3 Pressure vessel design problem

The pressure vessel design problem is a popular con-

strained engineering design problem which is suggested by

Kannan and Kramer [55]. The purpose of the problem is to

minimize the total cost including the material, forming, and

welding costs. A general schematic view of the considered

pressure vessel is given in Fig. 22. There are four design

variables in this problem which are Ts (shell thickness), Th

(head thickness), R (inner radius), and L (length of the

cylindrical section). These variables are denoted as x1 to x4,

respectively. Note that among these design variables, Ts

and Th get discrete values which consist of the integer

multipliers of 0.0625 inch, whereas R and L are continuous

variables. The mathematical form of the design problem is

given as follows:

minf xð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x21x4

þ 19:84x21x3

ð38Þ
s.t. g1 xð Þ ¼ �x1 þ 0:0193x3 � 0 ð38aÞ
g2 xð Þ ¼ �x2 þ 0:00954x3 � 0 ð38bÞ

g3 xð Þ ¼ �px23x4 � 1:3333px33 þ 1296000� 0 ð38cÞ

g4 xð Þ ¼ x4 � 240� 0 ð38dÞ
0:0625� x1; x2 � 99	 0:0625 ð38eÞ
10� x3; x4 � 200 ð38fÞ

Note that Yang et al. [56] proved that this function has a

near-global optimum solution at x� ¼
0:8125 0:4375 42:0984 176:6366½ � with a function value of

f x�ð Þ ¼ 6059:7143. This engineering design problem is

also executed 100 times for each k values for the proposed

SHALO approach. Figure 23 compares the final calculated

SR values for these model executions. As can be seen, the

maximum SR value is obtained as 95% and this result is

observed for the solution with k ¼ 1. This solution is again

compared with the original ALO, saALO, EALO, GA, and

PSO approaches which are also executed 100 times with

the same random number seed data set. The identified

results of each approach are compared in Table 13.

As can be seen from Table 13, the SR values of the

ALO, saALO, EALO approaches are obtained as 84%,

88%, and 52%, respectively. On the other hand, the same

measure is obtained in GA, PSO, and the proposed SHALO

approach as 36%, 84%, and 95%, respectively. The cal-

culated mean AC measures are obtained over 87% for each

approach. The convergence plots of each approach for the

mean objective function values are compared in Fig. 24.

As can be seen from Fig. 24, the proposed SHALO

approach converges to a lower mean objective function

value than the other approaches. For the best solutions in

Table 13, Table 14 compares the final decision variables,

Table 11 Evaluation of the 100

model executions for

Rastrigin’s constrained test

function for different

optimization approaches

Measure ALO saALO EALO GA PSO SHALO

SRð%Þ 30 37 30 43 58 59

Best 14.645 14.645 14.645 14.650 14.645 14.645

Worst 17.573 17.572 17.580 16.036 16.113 16.248

Mean 15.408 15.330 15.442 15.027 15.007 15.002

Median 15.273 15.203 15.347 14.969 14.927 14.924

Std. deviation 0.608 0.619 0.640 0.263 0.318 0.286

Fig. 21 Comparison of the convergence histories of different

approaches for the Rastrigin’s constrained test function
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objective, and constraint function values for each approach.

As can be seen, all the identified design variables are close

to each other, and the constraints are satisfied without any

violation for all the approaches.

5.2.4 Trapezoidal channel design problem

Design of the trapezoidal composite channels is an

important problem in water resources engineering. The

reason for using these channels is to transmit the water over

long distances for various purposes including irrigation,

flood control, or water supply, etc. Therefore, a small

amount of reduction on their dimensions corresponds to the

significant savings in the project budget. In this context,

this problem is considered as an important engineering

design problem and examined by several researchers in the

literature [57–60]. Figure 25 shows the schematic view of

the considered trapezoidal channel cross section. The

design variables of this problem are the bed width ðbÞ, the
flow depth ðyÞ, and the slopes of the left and right faces of

the channel (z1 and z2). These variables are denoted as x1 to

x4, respectively.

Table 12 The final decision

variables, objective, and

constraint function values for

Rastrigin’s constrained test

function for the best solutions in

Table 11

Variables and function values ALO saALO EALO GA PSO SHALO

x1 0.625 0.626 0.625 0.378 0.375 0.375

x2 0.625 0.625 0.375 0.624 0.375 0.375

x3 0.375 0.625 0.625 0.623 0.375 0.375

x4 0.625 0.625 0.375 0.373 0.625 0.625

x5 0.187 0.188 0.187 0.685 0.313 0.687

gðxÞ 0.000 0.000 0.000 0.000 0.000 0.000

f ðxÞ 14.645 14.645 14.645 14.650 14.645 14.645

Fig. 22 The pressure vessel

design problem

Fig. 23 Variation of SR (%) for different k values for pressure vessel

design problem

Table 13 Evaluation of the 100

model executions for pressure

vessel design problem for

different optimization

approaches

Measure ALO saALO EALO GA PSO SHALO

SRð%Þ 84 88 52 36 84 95

ACð%Þ 91 92 91 87 93 95

Best 6059.714 6059.714 6059.714 6059.769 6059.714 6059.714

Worst 7332.842 7332.842 10,841.412 7551.971 7353.978 6820.422

Mean 6307.377 6288.707 6687.230 6685.965 6277.594 6174.185

Median 6090.527 6090.527 6410.087 6566.208 6090.526 6090.528

Std. deviation 326.329 317.147 796.002 457.941 338.994 198.342
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where Tt is the top width of the cross section; Tw is the

top width of flow section, f is the freeboard, n1,; n2, and n3
are the Manning’s surface roughness coefficient values for

the left and right faces, and the bed of the channel,

respectively. The objective of the channel design problem

is to minimize the cost function which can be written in

mathematical form as follows:

minf xð Þ ¼ c1At þ c2P1 þ c3P2 þ c4P3 ð39Þ

s.t. g xð Þ ¼ Qne
ffiffiffiffiffi

S0
p � A5=3

w

P2=3
w































� e� 0 ð39aÞ

where c1 is the cost of excavation per unit cross-sectional

area for a unit length of the channel; c2, c3, and c4 are the

costs of the lining per unit length of the perimeter of left-

side face, right-side face (including the freeboard), and

channel bed, respectively; At is the total cross-sectional

area of the channel; P1, P2, and P3 are perimeters of left

and right side faces (including the freeboard), and channel

bed, respectively; e is the allowable threshold value; Q is

the flow rate in the channel; S0 is the bed slope; Aw is the

wetted flow area; Pw is the wetted perimeter; and ne is the

equivalent Manning’s surface roughness coefficient. The

mathematical forms of these parameters are given in

Eqs. (39b)–(39l) [60].

Aw ¼ byþ z1 þ z2ð Þ y
2

2
ð39bÞ

Pw ¼ z21 þ 1
� �1=2 þ z22 þ 1

� �1=2
h i

yþ b
n o

ð39cÞ

Tw ¼ bþ z1 þ z2ð Þy ð39dÞ

ne ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

z21 þ 1
p

� n3=21 þ
ffiffiffiffiffiffiffiffiffiffiffiffi

z22 þ 1
p

� n3=22

� �

yþb � n3=23

Pw

2

4

3

5

2=3

ð39eÞ

At ¼ b yþ fð Þ þ z1 þ z2ð Þ yþ fð Þ2

2
ð39fÞ

Pt ¼ z21 þ 1
� �1=2 þ z22 þ 1

� �1=2
h i

yþ fð Þ þ b
n o

ð39gÞ

P1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 þ 1
� �

q

yþ fð Þ ð39hÞ

P2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 þ 1
� �

q

yþ fð Þ ð39kÞ

P3 ¼ b ð39lÞ

Similarly, this constrained design problem is also exe-

cuted 100 times for each different k values by considering

the previously generated random number seeds. During

Fig. 24 Comparison of the convergence histories of different

approaches for the pressure vessel design problem

Table 14 The final decision

variables, objective, and

constraint function values for

pressure vessel design problem

for the best solutions in

Table 13

Variables and function values ALO saALO EALO GA PSO SHALO

x1 0.813 0.813 0.813 0.813 0.813 0.813

x2 0.438 0.438 0.438 0.438 0.438 0.438

x3 42.098 42.098 42.098 42.098 42.098 42.098

x4 176.637 176.637 176.637 176.642 176.637 176.637

g1ðxÞ 0.000 0.000 - 0.033 0.000 0.000 0.000

g2ðxÞ - 0.036 - 0.036 - 0.021 - 0.036 - 0.036 - 0.036

g3ðxÞ - 0.011 - 0.012 - 0.001 0.000 0.000 - 0.007

g4ðxÞ - 63.363 - 63.363 - 81.500 - 63.358 - 63.363 -63.363

f ðxÞ 6059.714 6059.714 6059.714 6059.769 6059.714 6059.714

Fig. 25 Composite channel design problem: trapezoidal cross section
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these solutions, the constants which are required to solve

the channel design problem are taken as: Q ¼ 100, f ¼ 0:5,

S0 ¼ 0:0016, n1 ¼ 0:018, n2 ¼ 0:020, n3 ¼ 0:015,

c1 ¼ 0:60, c2 ¼ 0:25, c3 ¼ 0:20, c4 ¼ 0:30, and e ¼ 0:001.

Figure 26 compares the determined SR values for these

model executions. As can be seen, the best solution is

obtained for k ¼ 0 which gives a SR value of 84%. By

considering this solution, the performance of SHALO is

also compared by solving the same problem with the

original ALO, saALO, EALO, GA, and PSO approaches

for the same conditions. Table 15 compares the statistical

results of these model executions for each approach.

As can be seen from Table 15, the SR values of the

original ALO and saALO are obtained as 13%, while the

same measure in EALO is obtained as 3%. On the other

hand, the GA, PSO, and the proposed SHALO approaches

solved the problem with the SR values of 4%, 46%, and

84%, respectively. This outcome can also be seen from the

statistical results in Table 15 that the obtained standard

deviation value in SHALO is lower than the ones obtained

by using the other approaches. For the AC values, the

original ALO, saALO, EALO, and GA approaches resulted

with the mean AC values of 79%, 80%, 75%, 84%,

respectively. On the other hand, the same measure is

obtained for PSO and SHALO as 93% and 96%, respec-

tively. The convergence plots for ALO, saALO, EALO,

GA, PSO, and SHALO approaches are compared in Fig. 27

for the mean objective function values of the 100 model

executions. It can be seen from Fig. 27 that the proposed

SHALO approach converges to a lower mean objective

function value than the other approaches. For the best

solutions in Table 15, the final decision variables, objec-

tive, and constraint function values are given in Table 16.

As can be seen, although there are some differences in the

identified design variables, they do not produce significant

variations in the calculated objective function values.

Furthermore, all the solutions are obtained without any

constraint violations.

6 Conclusions

In this study, the SHuffled Ant Lion Optimization

(SHALO) approach is proposed. The main contribution of

this approach is to improve the random walk around

antlions process of ALO by means of two new modifica-

tions. As the first modification, a new exponentially

weighted approach is proposed for the boundary shrinking

procedure to increase the random search capability of the

algorithm. The second modification deals with increasing

the diversity of the random walk vector by means of the

proposed shuffling approach. The performance of the pro-

posed SHALO approach is evaluated by using four

unconstrained and two constrained benchmark problems,

and two constrained engineering design problems. These

problems are solved 100 times for performance evaluation

of the proposed approach in terms of different random

number seed values. Furthermore, the performance of the

proposed boundary shrinking procedure is evaluated for 12

different cases in terms of different magnitudes of random

perturbations. All the identified results are also compared

with the ones which are obtained by using the original

ALO, two modified versions of ALO which are the saALO

and EALO, GA, and PSO approaches. Although the overall

results of the proposed SHALO approach are quite effec-

tive, the following critical issues need to be taken into

account when solving an optimization problem:

The main critical point of ALO-based approaches is the

necessity of completing the given number of iterations to

obtain a solution. This is important since the boundary

shrinking procedure in random walk around antlions

Fig. 26 Variation of SR (%) for different k values for composite

channel design problem

Table 15 Evaluation of the 100

model executions for composite

channel design problem for

different optimization

approaches

Measure ALO saALO EALO GA PSO SHALO

SRð%Þ 13 13 3 4 46 84

ACð%Þ 79 80 75 84 93 96

Best 22.961 22.959 22.984 22.968 22.958 22.958

Worst 29.379 28.697 29.666 27.702 24.400 23.993

Mean 24.652 24.511 25.111 23.975 23.202 23.041

Median 24.221 24.117 24.852 23.854 23.080 22.968

Std. deviation 1.494 1.370 1.518 0.717 0.290 0.182

Neural Computing and Applications

123



process requires of specifying the dynamic change points

(e.g., 0:10T , 0:50T , 0:75T; 0:90T , and 0:95T given in

Fig. 2) for the iteration domain. Therefore, the optimiza-

tion process requires to proceed until satisfying the maxi-

mum number of iterations. The proposed SHALO approach

also uses this solution strategy and requires solving the

problem until reaching the maximum iteration number

without considering any other termination criterion. This

solution strategy may increase the required CPU times,

especially for the real-world engineering optimization

problems.

One of the important contributions of this study is the

newly proposed exponentially weighted boundary shrink-

ing approach. Note that in original ALO, the boundary

shrinking procedure is conducted by suddenly changing the

value of I at some stationary points (Fig. 2). These sta-

tionary points may decrease the performance of the random

search feature of the algorithm. This issue is eliminated by

means of the proposed exponentially weighted boundary

shrinking approach such a way that the value of I is con-

tinuously and exponentially increased between given

minimum and maximum points for each region in Fig. 2.

Note that these minimum and maximum I values are used

as the same with the original ALO to make an exact

comparison of the approaches. It may be possible to

achieve better results for different minimum and maximum

I values for each region in Fig. 2. However, this issue is

beyond the scope of this work and can be examined in

different studies.

The other issue of the proposed exponentially weighted

boundary shrinking procedure is to control the magnitudes

of the random perturbations. For this purpose, a weight

parameter of k is used such a way that big values of this

parameter increase the random perturbation in the calcu-

lated value of I. Since there is no any systematic way of

determining the k values, the performance of the proposed

SHALO approach should be evaluated for different values

of k as conducted in this study.

Another contribution of the proposed SHALO approach

is to shuffle the elements of the random walk vector. This

process is conducted by modifying the min–max normal-

ization equation as given between Eqs. (20) and (22). This

modification significantly increases the diversity of the

random walk vector and improves the local optima prob-

lem by altering the magnitudes and trends of random walks

as indicated in Fig. 4. Note that these changes are partic-

ularly significant in early iterations (while shuffling in early

iterations, the proposed SHALO approach may return NaN

values for some variable values and this problem is handled

by randomly generating those variable values in the fea-

sible search space). In this context, with the proposed

approach, it is possible to explore the search space more

comprehensively at the beginning of the optimization.

The performance of the proposed SHALO approach is

compared with the original ALO, saALO, and EALO

approaches by solving each problem for the same random

number seed values. Therefore, all the problems are solved

by considering the same initial populations and sequence of

the random numbers. This outcome can be clearly seen

from the convergence plots such that the original ALO,

saALO, and EALO approaches start the search process

from the same function value since the initial population of

them are the same. Although the same initial populations

are used, the proposed SHALO approach starts the search

process from different function values. This result is

associated with the shuffled random walk vector which

influences the function values at the start of the search

process.

Fig. 27 Comparison of the convergence histories of different

approaches for the composite channel design problem

Table 16 The final decision

variables, objective, and

constraint function values for

composite channel design

problem for the best solutions in

Table 15

Variables and function values ALO saALO EALO GA PSO SHALO

x1 5.942 5.787 6.039 6.020 5.854 5.839

x2 4.041 4.049 4.026 3.906 4.048 4.047

x3 0.258 0.289 0.297 0.286 0.263 0.262

x4 0.209 0.244 0.138 0.262 0.239 0.248

gðxÞ 0.000 0.000 0.000 0.000 0.000 0.000

f ðxÞ 22.961 22.958 22.959 22.984 22.968 22.958
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The performance of the SHALO approach is also eval-

uated by solving the same problems on GA and PSO

approaches. During these solutions, built-in GA and PSO

optimization modules of the MATLAB platform are used.

Since the solutions in ALO, saALO, EALO, and SHALO

approaches are conducted by considering the population

number of 50 and the maximum number of iterations of

1000, the same values are also used for both GA and PSO

to make an exact comparison in terms of the total number

of function evaluations. However, different values of these

parameters may provide better results for GA and PSO

which is out of scope of this work. Furthermore, although

the same random number seeds are also used, both GA and

PSO approaches start the search process from different

initial points since the solution sequence of the

MATLAB’s built-in modules are different.

The reason for solving all the problems 100 times is to

evaluate the performance of the SHALO approach for

different random number seeds. This is an important

analysis to evaluate the robustness of the approach. In this

context, the outcome of these 100 model executions is

evaluated by using different statistical metrics (minimum,

maximum, mean, median, and standard deviation). Fur-

thermore, all the solutions are evaluated in terms of the

success rate ðSRÞ and accuracy ðACÞ metrics. These model

evaluations indicate that the proposed SHALO approach

statistically provides better results than all the other

approaches. The same outcome is also observed for the

other measures that the mean SR values of the solved

problems are obtained as 22% for ALO, 25% for saALO,

14% for EALO, 28% for GA, and 49% for PSO. On the

other hand, this mean SR value is obtained as 76%for the

proposed SHALO which is significantly better than the

other approaches. Similarly, the mean AC values for each

solved example are obtained as: 83% for ALO and EALO,

84% for saALO, 88% for GA, and 91% for PSO. For the

same measure, the proposed SHALO approach is resulted

with a mean AC value of 91%. These results indicate that

use of the SHALO optimization approach can increase the

rate of reaching the global optimum solutions for the

problems solved in this work.
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