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Abstract
Insider threats have recently become one of the most urgent cybersecurity challenges facing numerous businesses, such as

public infrastructure companies, major federal agencies, and state and local governments. Our purpose is to find the most

accurate machine learning (ML) model to detect insider attacks. In the realm of machine learning, the most convenient

classifier is usually selected after further evaluation trials of candidate models which can cause unseen data (test data set) to

leak into models and create bias. Accordingly, overfitting occurs because of frequent training of models and tuning

hyperparameters; the models perform well on the training set while failing to generalize effectively to unseen data. The

validation data set and hyperparameter tuning are utilized in this study to prevent the issues mentioned above and to choose

the best model from our candidate models. Furthermore, our approach guarantees that the selected model does not

memorize data of the threats occurring in the local area network (LAN) through the usage of the NSL-KDD data set. The

following results are gathered and analyzed: support vector machine (SVM), decision tree (DT), logistic regression (LR),

adaptive boost (AdaBoost), gradient boosting (GB), random forests (RFs), and extremely randomized trees (ERTs). After

analyzing the findings, we conclude that the AdaBoost model is the most accurate, with a DoS of 99%, a probe of 99%,

access of 96%, and privilege of 97%, as well as an AUC of 0.992 for DoS, 0.986 for probe, 0.952 for access, and 0.954 for

privilege.
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Abbreviations
NSL Network Security Laboratory

KDD Knowledge Discovery in Databases

ML Machine learning

DoS Denial-of-service

LAN Local area network

SVM Support vector machine

DT Decision tree

LR Logistic regression

AdaBoost Adaptive boost

GB Gradient boosting

RFs Random forests

ERTs Extremely randomized trees

CV Cross-validation

CIA Confidentiality, integrity, availability

HTTP Hypertext Transfer Protocol

MIT Massachusetts Institute of Technology

US United States

DFD Data flow diagram

TCP Transmission control protocol

UDP User datagram protocol

ICMP Internet control message protocol

SS Standard scaler

RSA Random search algorithm

SAG Stochastic average gradient

CD Coordinate descent
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MSE Mean squared error

SAMME Stagewise additive modeling with a multi-

class exponential

SAMMER Stagewise additive modeling with a multi-

class exponential real

L-BFGS Limited-memory Broyden–Fletcher–Gold-

farb–Shanno

UFS Univariate feature selection

ANOVA Analysis of variance

RFE Recursive feature elimination

TP True positive

TN True negative

FP False positive

FN False negative

TPR True-positive rate

FPR False-positive rate

Acc Accuracy

Rec Recall

CM Confusion matrix

AUC Area under the curve

ROC Receiver operator characteristic

1 Introduction

Insiders, such as employees, have legal access to an

enterprise’s resources in order to perform their job

duties; as a result, detecting insider threats is one of the

most difficult challenges facing security administrators

and makes it difficult to identify these internal threats

[1, 2]. That is why this study employed a variety of

supervised machine learning classifiers with specific

criteria to find the most accurate classifier to predict

these insider threats, mainly LAN attacks from the NSL-

KDD data set [3–5].

According to [6], 94% of firms have had insider data

breaches in the last 12 months, and 84% have encountered

security difficulties caused by nontechnical errors (Insider

Data Breach Survey, 2021). Humans are the leading cause

of disastrous insider data breaches. Therefore, malicious

insiders are the major concern of department heads, with

28% agreeing to the previous statement.

[7] published a report stating that insider threat occur-

rences increased by 44% over the last two years, with a

cost climb of more than a third to USD 15 million (Cost of

Insider Threats Global Report, 2022). In addition, the cost

of corporate credential theft rose by 65% since 2020, from

USD 2 million to USD 4 million today. Furthermore, the

time to contain an insider threat incident increased from 77

to 85 days, implying that organizations spent more on

containment operations. When issues take more than 90

days to settle, communities incur an average yearly cost of

USD 17 million [5].

The data breach attacks are classified into different

categories [8]: passive attacks, active attacks, close-in

attacks, insider attacks, and distribution attacks. Insider

attacks are among the most significant threats to informa-

tion systems because of their impact on confidentiality,

integrity, and availability (CIA), especially if they occur on

a LAN. These attacks can impact businesses, reputations,

and finances [9].

The purpose of the study is to find the most accurate

classifier for identifying insider attacks that occur on

LANs. Additionally, the significance of the study lies in

locating irregular ’attacked’ LAN traffic by developing a

Python code that uses scikit-learn for backend machine

learning, then by plotting the charts with the Plotly open-

source, Seaborn, and Matplotlib frameworks. To eliminate

bias, a random search algorithm (RSA) is used to tune the

hyperparameter using K-fold and stratified cross-validation

methods to avoid overfitting.

This study is divided into four sections. Section one and

two summarizes related articles and previous studies.

Section 3 discusses the proposed framework. Finally,

Sect. 4 analyzes the study’s findings.

1.1 Tuning hyperparameters and risk
minimization

Hyperparameters, which are also known as nuisance

parameters, are values that must be specified outside of the

training procedure. A regularization hyperparameter is a

process to determine the optimal hyperparameter to send as

input to the estimator, such as the decision tree classifier’s

criteria and maximum depth values. It also indexes the

method in many learning issues. Because the optimum

hyperparameter for one data set is not always the best for

other data sets, the settings must be adjusted for each task.

Before evaluating potential estimators, the hyperparameter

must be modified to decrease the expected risk [10–12].

1.2 Avoid overfitting and model selection

Using a test data set in the model selection procedure can

introduce an overfitting problem due to unseen data leaking

into the model, which depends on the model selection

procedure on the best evaluation metrics. In addition, uti-

lizing the training data set in the model test performance

will also cause an overfitting problem. The overfitting

model produces inaccurate predictions and cannot handle

and generalize all forms of new input (unseen data). As a

result, the model may become useless [13–16].

As a solution, a technique called cross-validation (CV)

is employed to mitigate overfitting. It is a powerful tool for
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developing and selecting ML models. Not only does it

ensure that the data is suitable for the dependability of used

classifiers, but it also prevents the need to split the data set.

So, we are not having the underfitting issue caused by data

division, a lack of samples, or insufficient learning of the

model [13, 14].

Cross-validation randomly separates the training set into

two logical parts: a training set and a validation set. When

the existing test set, as in our NSL-KDD data set, is added,

we will have three sets in total. Each set serves a different

purpose: the training set is used to teach the model, the

validation set is used to solve the above issues such as

choosing the best model and generalizing to new data, and

the test set is used to evaluate the model’s performance

[13, 14].

1.3 Background of the study

ML has proven to be the ideal solution for situations like

anomaly detection and network intrusion detection

[17, 18]. Therefore, supervised ML algorithms are used to

solve the problem of the study due to their speed of

response in detecting threats. Supervised ML algorithms

are divided into two types [19]: classification algorithms

and regression algorithms. First, classification algorithms

address this issue since they can distinguish between two or

more classes (normal, attack), as in the framework, the

outcomes predicted are discrete class labels [20–22]. The

following are the supervised ML classification algorithms:

linear support vector machines (SVMs), decision trees

(DTs), and logistic regression (LR).

In addition to the ensemble algorithms, they aid in

solving both classification and regression problems. The

goal of ensemble techniques is to combine many prediction

models and enhance the outcomes. The following are the

supervised ML classification ensemble algorithms: adap-

tive boosting (AdaBoost), gradient boost (GB), extremely

randomized trees (ERTs), and random forests (RFs) [22].

Insiders exhaust an organization’s resources signifi-

cantly, resulting in huge financial and human losses.

Because of this, insider activities on a LAN must be rec-

ognized and their impact on security politics (CIA) must be

identified. Due to the various motivations of the insider

which can be personal, political, or economic [17, 23, 24],

a plan must be prepared to detect all possible disasters and

security concerns. As a result, the study aims to immedi-

ately characterize these risks on a LAN and instantly

support the security administrators by identifying the most

accurate ML classifier.

There is a need to comprehend the link between insiders

and their threats. Insiders can gain access rights to networks,

either legally or illegally. Legally, various departments can

get access to each other because of variances across

departments, joint ventures, outsourcing, and the potential

of recruiting temporary employees such as consultants.

Thus, there are certainly different levels of authorization

granted to these insiders [5]. Their threats involve the

misuse of legitimate access rights. However, there are

several types of insiders. Each type has its own procedures,

risks, and data sets. The NSL-KDD data set targets anyone

connected either internally or remotely to a LAN [4, 17].

2 Related articles

This section discusses the previous studies and articles

related to the study at hand. In [25], the theoretical obsta-

cles to detecting insider threats are addressed, which helped

define the research topic. The study also lists the existing

insider threat data set types that include emails, authenti-

cation, login, HTTP, and files but exclude insider attacks.

Consequently, the importance of our research contributions

is highlighted. [26] proves that a one-hot-encoding

approach is capable of converting categorical features into

new individual binary features to train the classification

models on them. [3] offers a review of existing insider

threat approaches that use NSL-KDD to detect DOS

attacks. [27] provides context-specific definitions of ML

model hyperparameters as well as their impact on tuning

model hyperparameters for decision-making performance

and various approaches to obtain optimal values. In [28],

the sensitivity of hyperparameter adjustment to eliminate

bias in performance prediction is explored. The researchers

carry out a detailed investigation, but the results are

unsatisfactory, and the classifier cannot be generalized to

another test data set. As a result, there is a need to conduct

additional research to locate the best classifier during the

creation of a machine learning system The problems of

both overfitting and underfitting are presented in [14] along

with their impact on the performance model for decision-

making, as well as cross-validation methods as a solution.

[29] extended and simplified significant CV approaches in

developing a final model based on ML. The researcher

stresses the importance of generalizing to unseen data to

maximize the potential of predictive models and avoid

overfitting. Consequently, the researcher concludes that

generalizing to unseen data cannot be overlooked and

should not become only limited to training and testing to

build models and extract results. [23] explored an in-depth

examination of the NSL-KDD data set. The study also

analyzes the issues found in the kdd99 data set in addition

to evaluation metrics. [17] presents a comprehensive

review and in-depth understanding of insider threats based

on previously published articles and statistical data on both

insiders and methodologies employed to detect them.

However, the reported results of supervised machine
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learning are disappointing. Furthermore, most articles in

the review focus on outside attacks from emails, HTTP,

illegal file access, and devices while ignoring dangers from

within the network. In contrast, this study is concerned

about LAN insider attacks since they are more common,

easily motivated, and cause maximum damage. [30] details

the NSL-KDD data set features as well as both the con-

cerns observed in kdd99 and the attack type classifications.

The researchers in [27] conduct a survey assessment of

insider threat concerns. They state that the extent of the

insider threat is a complicated challenge since it is usually

difficult to distinguish between insiders and outsiders of a

community while operating within a LAN. Furthermore,

some insiders can initiate attacks from the outside, for

example, an employee who left the organization. The

article discusses the challenge of identifying internal

attacks that took place on the internal network. Therefore,

the main motive behind the current study is to find the most

accurate classifier that identifies these threats correctly.

[19] demonstrated supervised machine learning methods

and the significance of classification models in classifying

anomalous behavior from ideal traffic. [31] highlights the

insider threat aspects and the methods to confront these

threats using either machine learning or non-machine

learning techniques. In [32], it is shown that the restoration

of missing values in data sets uses zero as a solution.

After surveying the above-listed studies, we conclude

that ML techniques are the best solution for insider threat

identification. Consequently, one of the reasons behind

conducting our research is to locate the best ML technique

to address the challenge of identifying insider threats.

3 Case study

In this section, the study focuses on clarifying the

methodology utilized in this research paper. Figure 1

depicts the process framework which consists of seven

stages: (1) collect data set, (2) preprocessing, (3) tuning

models, (4) feature selection, (5) avoid overfitting, (6)

training models, and (7) final evaluation. In the following

subsections, each stage is explained in detail.

3.1 Data set description

MIT Lincoln Labs developed and managed the 1998

DARPA intrusion detection evaluation program, and built a

LAN that simulated a US Air Force LAN, conducted

several attacks, and gathered raw TCP dump data. Data

flowed from the source IP address to the destination IP

address depending on a specific protocol to distinguish

between normal and malicious connections [13, 17]. A

connection was defined as a sequence of TCP packets

transmitted at certain times. Afterward, MIT Lincoln Labs

extracted the features from raw DARPA and packaged

them into the first ready-to-use version, known as KDD99.

However, more issues were discovered in the KDD99 data

set [30, 33, 34]. A lot of these issues were solved in the

updated NSL-KDD data set such as removing redundant

records which lead to reducing the size of training and test

sets and doing experiments easier and faster [21, 30, 35].

3.2 Data set analysis

The NSL-KDD data set contains 41 features and is divided

into two files: the training data set file and the test data set

file. On one hand, the test data set file has 125,973 entries,

and on the other hand, the test data set file has 22,544

records [30].

As shown in Fig. 2, the Python code retrieved by Pan-

das, a data analysis tool, classifies the feature data types

into an object (nominal), int64, and float64 [13, 19, 23].

Figure 2 also displays the counting and variation in the

unique values among the nominal features in the training

and test data sets. Finally, Fig. 2 illustrates the service

feature in the training data set equals 70 unique values,

whereas the service feature in the test data set equals 64

unique values. In the preprocessing phase, the researcher

tries to tackle this issue.

The class label contains five main categories of classi-

fications [21, 30, 33]:

i. Normal: normal connections.

ii. DoS: denial-of-service, for example, Smurf.

iii. Probing: surveillance, such as port sweep.

iv. Access: unauthorized remote machine access, e.g.,

spying.

v. Privilege: unauthorized access to local superuser

(root) privileges, e.g., Rootkit.

The probability distribution of the training data set is

different from the test data set. The test data set should

contain a lot more attacks than the training set just until the

estimators can predict new offensives and the system can

simulate reality [21, 30, 33]. Figure 3 shows the class label

sizes in the NSL-KDD training data set, whereas Fig. 4

illustrates the class label sizes in the NSL-KDD test data

set.

3.3 Data preprocessing

This stage is one of the most critical phases in the machine

learning approach. Figure 5 exhibits the data flow diagram

(DFD) for the data preprocessing procedure. As shown in

Fig. 5, we first separate the numerical and categorical

features. Then, we repair the missing in-service feature

between the training and test sets. Afterward, we apply
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transformational techniques to the categorical features.

Finally, we perform scaling methods on all features before

recombining them. The preprocessing principle attempts to

transform the raw data set into a beneficial format while

also ensuring that the data set is clean and noise-free, as a

result, the estimator’s decision is not affected [32]. The

following section describes the preprocessing methods

applied to the training and test data sets:

NSL-KDD 
Data set

-Training set
-Test set

Data 
Transformation

-Encoding CAT. 
Features

-one-hot-encoding

- Standardization
-robust scaler
-standard scaler

Tuning 
hyperparameter

-Randomized 
Search Algorithm

Models

-AdaBoost
-Gradient Boost
-Extra Trees
-Random Forest
-Liner SVM
-Decision Tree
-Logistic 
Regression

Test data set

-Confusion Matrix
-Accuracy
-Recall
-AUC

Cross-
validation

-K-Fold
-Starfield CV

UFS & RFE

-ANOVA

1-Collect Data set   2-Preprocessing     3-Tuning Models     4-Feature Selection  5- Avoid overfitting  6-Training Models   7-Final Evaluation

Fig. 1 The process framework
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Fig. 3 The count of each class label in the training set
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Fig. 4 The size of each class label in the test data set
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3.3.1 Data transformation

After checking the purity of the data, transformation

techniques are applied because most machine learning

models do not accept categorical features. First, categorical

features are converted into numbers, a process known as

’encoding’ the category features [32]. There are four cat-

egorical features in the NSL-KDD data set, namely pro-

tocol type, service, flag, and class label. After that, all the

features are standardized by assigning them the same

weight until the classifiers are not able to choose the values

based on the greater weight. The data transformation

methods used are the following: one-hot-encoding and

class label.

One-hot-encoding is also known as dummy encoding.

This process converts categorical features into binary. This

process is carried out in two stages [26]. First, the unique

values of the categorical features are transformed into new

binary features. Then, the feature’s unique value that the

connection detected is assigned the value of 1, and the

remainder is assigned the value of 0. This methodology

was only used for categorical features [36, 37], namely

protocol type, service, and flag. The class label was han-

dled otherwise.

The protocol type, service, and flag features, which are

displayed in Fig. 2, denote that there is a striking difference

between the service feature offered by the training data set

on one hand and the testing data set on the other. To equate

the testing data set with the training data set, a zero value is

used to compensate for the missing values [32, 38]. Table 1

exhibits samples of the protocol-type feature after applying

dummy encoding.

In addition to the 38 original features [39], the data set

has been increased to include a total of 122. The added

features are three protocol-type features, 70 service fea-

tures, and 11 flag features. Table 2 presents the complete

number of features after encoding.

The class label contains sub-attacks that fall within the

scope of five main categories, namely DoS, probe, access,

privilege, and a normal connection. Each of these attacks is

Preprocessing phase 

(2) Transformation
-one-hot-encoding 
-class label 

(3) Scaling 
-robust scaling 
-standardization 

equal Weight 

Numerical Features 

Categorical Features
-protocol type 
-service
-flag
-label

(1) Repair 
Missing Values 

Se
rv

ic
e

NSL-KDD raw dataset
all features

all features

Fig. 5 DFD for the data

preprocessing stage
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converted into a unique integer in the same class label

column, as shown in Table 3. After converting all cate-

gorical attributes to integers, each group is handled indi-

vidually. As for normal connections, traffic is introduced to

each of them, allowing the models to differentiate between

regular and irregular attacks or connections. Figure 6

depicts the magnitude of each attack type as well as normal

traffic in both the training and test data sets.

3.3.2 Scaling

The feature scale aims to place all features on the same

scale, indicating that all features are equally important [13].

Figure 7 depicts the data set before any scaling is applied.

The approaches listed below are used. Scaling uses the

following: robust scaler and standardization.

First, robust scaler removes outliers by eliminating the

median and scaling the data based on the quantile range

[13, 40]. Figure 8 depicts the data set after applying a

robust scaler. The following formula (1) is used:

Xnew ¼ Xi� Xmedian

IQR Q3 xð Þ � Q1 xð Þð Þ ð1Þ

where: Xnew: Standardized value, Xi: Original values,

Xmedian: sample median, Q1: 1st quartile, and Q3: 3rd

quartile.

Second, standardization in Python is called a standard

scaler (SS). It specifies that the standard deviation is equal

to 1, and the mean of the values changes to 0 [13, 41].

Figure 9 displays data after applying SS. The (Z score)

Eq. (2) determines this SS:

Z ¼ x� l
r

ð2Þ

where: X: values, l: mean, and r: standard deviation.

3.4 Tuning model

The tuning process is a matter of trial and error. The sta-

tistical ML model experiments repeatedly with different

hyperparameter values [13, 14]. After that, its efficiency is

compared to the validation set to determine which set of

hyperparameter results in the most accurate model [6]. The

main technique used in tuning the model is known as RSA.

RSA defines for each hyperparameter a statistical dis-

tribution from which values are randomly picked and uti-

lized to train the model. This step increases the likelihood

of quickly determining practical prime values for each

hyperparameter [6, 12]. The following Table 4 depicts the

results of the RSA for the optimal hyperparameter of each

model, the best hyperparameter affecting the decision

model process, the hyperparameter datatype, the hyperpa-

rameter default values at which each model was operating,

the start–end random values, and finally the chosen optimal

values for each hyperparameter.

In the following paragraphs, we describe the mathe-

matical functions of hyperparameters in our models. First,

the linear SVM model employs two equations to determine

the loss hyperparameter. A hinge is a form of the cost

function in which a margin or distance from the classifi-

cation border is defined according to the following Eq. (3)

and the squared hinge by Eq. (4) [42, 43], where t is the

actual result, either 1 or 0.

hinge yð Þ ¼ maxð0; 1� t:yÞ ð3Þ

squared hinge yð Þ ¼ maxð0; 1� t:yÞ2 ð4Þ

Second, the criterion hyperparameter contains three

arguments in the DT model: Gini, entropy, and log loss.

The equations are as follows [14, 32, 43, 44]:

The Gini determines the splitting for each feature and

quantifies the impurity of Dð Þ. The following formula (5)

determines Gini:

Table 1 An extract of the

protocol-type feature
Original feature

Protocol type Protocol type ICMP Protocol type TCP Protocol type UDP

TCP 0 1 0

ICMP 1 0 0

TCP 0 1 0

TCP 0 1 0

TCP 0 1 0

UDP 0 0 1

UDP 0 0 1
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Table 2 All the features after encoding

Original features Protocol type Service Service cont Flag

F1: Duration F39:

Protocol_type_Icmp

F42: Service_IRC F80: Service_netbios_Ns F112: Flag_OTH

F2: Src_bytes F40: Protocol_type_Tcp F43: Service_X11 F81:

Service_Netbios_Ssn

F113: Flag_REJ

F3: Dst_bytes F41: Protocol_type_Udp F44: Service_Z39_50 F82: Service_netstat F114: Flag_RSTO

F4: Land F45: Service_Aol F83: Service_Nnsp F115:

Flag_RSTOS0

F5: Wrong_fragment F46: Service_Auth F84: Service_Nntp F116: Flag_RSTR

F6: Urgent F47: Service_Bgp F85: Service_Ntp_U F117: Flag_S0

F7: Hot F48: Service_Courier F86: Service_Other F118: Flag_S1

F8: Num_failed_logins F49: Service_Csnet_Ns F87: Service_Pm_Dump F119: Flag_S2

F9: Logged_in F50: Service_Ctf F88: Service_Pop_2 F120: Flag_S3

F10: Num_compromised F51: Service_daytime F89: Service_Pop_3 F121: Flag_SF

F11: Root_shell F52: Service_discard F90: Service_printer F122: Flag_SH

F12: Su_attempted F53: Service_domain F91: Service_private

F13: Num_root F54: Service_domain_U F92: Service_red_I

F14: Num_file_creations F55: Service_echo F93: Service_remote_Job

F15: Num_shells F56: Service_Eco_I F94: Service_Rje

F16: Num_access_files F57: Service_Ecr_I F95: Service_Shell

F17: Num_outbound_cmds F58: Service_Efs F96: Service_Smtp

F18: Is_Host_login F59: Service_Exec F97: Service_Sql_Net

F19: Is_Guest_login F60: Service_Finger F98: Service_Ssh

F20: Count F61: Service_Ftp F99: Service_sunrpc

F21: Srv_count F62: Service_Ftp_Data F100: Service_supdup

F22: Serror_rate F63: Service_Gopher F101: Service_systat

F23: Srv_serror_rate F64: Service_Harvest F102: Service_telnet

F24: Rerror_rate F65: Service_Hostnames F103: Service_Tftp_U

F25: Srv_rerror_rate F66: Service_Http F104: Service_tim_I

F26: Same_Srv_rate F67: Service_Http_2784 F105: Service_time

F27: Diff_Srv_rate F68: Service_Http_443 F106: Service_Urh_I

F28: Srv_diff_host_rate F69: Service_Http_8001 F107: Service_Urp_I

F29: Dst_host_count F70: Service_Imap4 F108: Service_Uucp

F30: Dst_host_Srv_count F71: Service_Iso_Tsap F109: Service_Uucp_Path

F31: Dst_Host_Same_Srv_Rate F72: Service_Klogin F110: Service_Vmnet

F32: Dst_host_diff_Srv_rate F73: Service_Kshell F111: Service_whois

F33:

Dst_host_same_Src_port_rate

F74: Service_Ldap

F34: Dst_host_srv_diff_host_Rate F75: Service_link

F35: Dst_host_serror_rate F76: Service_login

F36: Dst_Host_Srv_Serror_Rate F77: Service_Mtp

F37: Dst_host_rerror_rate F78: service_Name

F38: Dst_host_srv_rerror_rate F79:

Service_Netbios_Dgm

*F: Feature
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Gini Dð Þ ¼ 1�
Xm

i¼1

p2i ð5Þ

where: pi is the probability that a tuple in D 2 Ci and is

estimated by Ci;D

�� ��= Dj j. The total is calculated across m

classes.

Entropy is a metric of information that is used to eval-

uate the impurity or uncertainty in a set of data. It controls

how a decision tree splits data. px indicates the probability

of the x the class in the data set D, where x ¼ 1; 2; . . .:; n.

The following formula (6) is used to compute entropy:

Entropy : H Dð Þ ¼ �
Xn

i¼1

p xið Þ log2 p xið Þ ð6Þ

Log loss is employed when predicting whether a Boo-

lean (true or false) is something with a likelihood range

from certainly true (1) to obviously false (0). The log loss

formula (7) is defined as:

logloss ¼ �1=N
XN

i¼1

ðlog Pið ÞÞ ð7Þ

where: N is the number of instances, and Pi is the model

likelihood.

Third, the solver hyperparameter in the LR model has

five approaches [45]. To begin with, Newton’s approach

employs a quadratic function around xnð Þ to approximate

f xð Þ in each iteration [46, 47]. Then, limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS):

limited memory refers to keeping only a few vectors and

uses an inverse hessian matrix that is estimated using

gradient evaluation-specified updates [46]. In addition, the

library for large linear classification (Lib-linear) employs a

coordinate descent (CD) approach to solve optimization

issues by executing sequential approximation reduction

along coordinate directions [48]. Furthermore, stochastic

average gradient descent (SAG) is an iterative approach for

optimization by gradient descent and incremental aggre-

gated gradient technique modification that uses a random

sample of prior gradient values and is suitable for large

data sets since it can be handled quickly [49, 50]. Finally,

Table 3 The class labels categories to unique integers

Category Class label

Normal connection 0

DoS 1

Probe 2

Access 3

Privilege 4

Fig. 6 The size of each group of attacks in the NSL-KDD data set
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Fig. 7 Unscaled data
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Fig. 8 Data after applying robust scaling
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Fig. 9 The data set’s deviation shape after applying the standard

scaling
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SAGA is an extension of SAG that considers the improved

version to have a quicker convergence than SAG [49, 50].

Fourth, the purpose of the criterion hyperparameter in

the GB model is to evaluate the quality of a data split. The

criterion hyperparameter includes ’friedman_mse’ for

mean squared error (MSE) with Friedman improvement

score and ’squared_error’ for mean squared error. The

’friedman_mse’ Eq. (8) and MSE Eq. (9) are defined as

[51, 52]:

Friedman mse : i2 Rl;Rrð Þ ¼ wlwr

wl þ wr

ðyl � yrÞ2 ð8Þ

where: Wl is the sum of weight for the left part,Wr is the

sum of weight for the left part, and yl and yr are the mean

left and right.

Table 4 Optimum values of hyperparameters for the models

Model Hyperparameter Type Default Strat End RSA

Linear SVM C,

Intercept_scaling,

Loss,

Max_iter,

Verbose

Float

Float

Nominal

Int

Int

1.0

1.0

squared_hine

100

0

0.5

1.0

(3)(4)

@100

0

1.6

6.0

–

130

5

1.5

3.0

hinge

100

3

DT Class_weight

Criterion,

Max_depth,

Max_leaf_nodes,

Min_samples_leaf

Nominal

Nominal

Int

Int/float

Int/float

None

gini

none

none

2

–

(5)(6)(7)

10

10

1

–

–

30

20

4

balanced

entropy

20

10

2

LR C,

Intercept_scaling,

Max_iter,

Solver,

Verbose

Float

Float

Int

Nominal

Int

1.0

1.0

100

Lbfgs

0

0.5

1.0

100

–

0

1.6

6.0

130

–

5

1.55

4.0

110

liblinear

5

GB Criterion,

Learning_rate,

Max_depth,

Max_features,

Min_samples_leaf,

Min_samples_split,

Min_weight_fraction_leaf,

Verbose,

Warm_start

Nominal

Float

Int

Nominal

Int/float

Int/float

Float

Int

Bool

friedman_mse

0.1

3

None

1

2

0.0

0

False

(8)(9)

0.0

1

(10)(11)

1

2

0.0

0

–

–

0.3

5

–

3

4

0.4

4

–

squared_error

0.2

1

Log2

2

3

0.1

3

True

AdaBoost Algorithm,

Learning_rate,

N_estimators

Nominal

Float

Int

SAMME.R

1.0

50

(12)(13)

0.0

30

–

2.0

80

SAMME

0.1

70

RFs Max_depth,

Min_samples_leaf,

Min_samples_split,

Min_weight_fraction_leaf,

Warm_start

Int

Int/Float

Int/Float

Float

Bool

None

1

2

0.0

False

10

1

2

0.0

–

30

4

6

0.3

–

20

3

4

0.1

True

ERTs Criterion,

Max_depth,

Max_leaf_nodes,

Min_samples_leaf,

Min_samples_split,

Warm_start

Nominal

Int

Int/Float

Int/Float

Int/Float

Bool

Gini

None

None

1

2

False

(6)

10

10

1

2

–

–

30

25

5

6

–

Entropy

20

20

4

5

True
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MSE ¼
P

ðyi � piÞ2

n
ð9Þ

where: yi is the i
th observed value, pi is the corresponding

predicted value, and n is the number of observed values.

Fifth, the ’max_features’ hyperparameter utilized in the

GB model is the maximum number of features that are

permitted on each individual tree. In the first selection, Sqrt

will take the square root of the overall number of features.

The sqrt Eq. (10) realized as follows [51]:

max features ¼ sqrt n featuresð Þ ð10Þ

Another option is log2, which will take log2 of the

number of features. The log2 Eq. (11) realized as follows:

max features ¼ log2 n featuresð Þ ð11Þ

Sixth, the algorithm hyperparameter for AdaBoost

Classifier offers two options: ’SAMME.R’ and ’SAMME.’

SAMME is an acronym for stagewise additive modeling

with a multi-class exponential loss function and R is an

acronym for real. For each weak learner, SAMME employs

a separate set of ’decision influence’ weights (alphas).

SAMME.R, on the other hand, allocates an equal weight to

each weak learner and evaluates the class likelihood, which

usually converges faster than SAMME [53–56]. The

SAMME and SAMME.R EQs (12) and (13) are defined as:

SAMME : H xð Þ ¼ argmax
k

XT

t¼1

atI htx ¼ kð Þ ð12Þ

SAMME:R: H xð Þ ¼ argmax
k

XT

t¼1

stk xð Þ ð13Þ

where: H xð Þ classification predictions, T weak learners,

at weight for weak learner t, htx the prediction of weak

learner t, and stk as a multiplier.

3.5 Features selection

This section lists the features that are used throughout the

training models. The following approaches are employed:

3.5.1 Univariate feature selection (UFS)

It is a statistical method that exploits the discrepancy

between the qualities until a threshold value is obtained

from them. This threshold value is used to determine the

real features through the recursive feature elimination

method utilized to train the models [19, 22, 57].

The ’f_classif’ function, named in the scikit-learn ML

framework, finds variance using univariate statistical tests

that rely on the analysis of variance (ANOVA) F value

[19, 22, 58]. It computes the overall comparison error and

finds a greater F value when the variance between groups is

less than within the groups, indicating a higher likelihood

that the observed difference is actual rather than random.

Consequently, it excludes features that differ in variance

and selects features with the same variance. This technique

has picked 13 features for each attack category, and then

the recursive feature elimination approach has used number

13 as the threshold. The F-statistic EQs (14) and (15) in

one-way ANOVA are represented as follows [19, 22, 58]:

F ¼ between - groups variance

within - group variance
ð14Þ

F ¼ MSGroups

MSError
¼

SSGroups
I�1

SSError
nT�I

ð15Þ

where: MS: mean square, SS: sum of squares, I: number

of groups, and nT: sample size.

3.5.2 Recursive Feature Elimination (RFE)

It is a type ofwrapper used for feature selection algorithms. The

RFE seeks to identify acceptable feature subsets. It operates

immediately following the UFS technique. First, each model is

implemented individually using tuned hyperparameters. Then,

all features are passed to establish their relevance to one

another. Ultimately, the least important features are pruned.

The RFE recursively continues this technique on the reduced

set until it obtains the requisite feature count defined as the

threshold by the UFS method [19, 22, 57]. Table 5 reports the

select features of each model using the RFE method for each

attack category based on UFS’s threshold.

3.6 Cross-validation

As previously indicated, cross-validation [13, 14, 22] is an

efficient instrument for designing and choosing ML mod-

els. It is employed in the study to avoid overfitting. The

following methods, which are part of cross-validation, are

used in the study.

3.6.1 K-Fold CV

The original training data set is divided into equal-sized

folds (K subsamples) with random sampling. The model is

trained using the fold by (K-1) as training data and then

verified using the remaining folds. It entails repeating and

recording the arithmetic mean and standard deviation of the

k-folds produced from the evaluation measures on the

various partitions [6, 22]. The following Table 6, 7, 8, 9,

10, 11, and 12 show the outcomes (accuracy, recall, and

area under the curve) of the K-fold CV mean and ± s-

tandard deviation between folds for each model, with the

better results highlighted in bold in Table 10.
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Table 5 Select features of each model for each attack

Method Model Attacks Selected Features No. of Feature

UFS&RFE Linear SVM DoS F1, F5, F7, F10, F14, F19, F21, F35, F37, F40, F41, F42, F92 13

Probe F9, F13, F20, F24, F26, F29, F31, F33, F37, F57, F67, F87, F92

Access F9, F13, F20, F29, F30, F31, F33, F38, F41, F42, F43, F97, F114

Privilege F1, F2, F7, F12, F14, F19, F21, F28, F29, F30, F31, F35, F119

DT DoS F2, F6, F7, F8, F9, F20, F26, F31, F58, F67, F68, F69, F70 13

Probe F2, F3, F7, F8, F9, F32, F33, F37, F63, F67, F92, F121, F122

Access F9, F11, F20, F30, F32, F41, F67, F72, F73, F74, F80, F96, F97

Privilege F3, F7, F8, F9, F10, F13, F26, F29, F30, F31, F32, F67, F68

LR DoS F1, F5, F7, F14, F19, F20, F22, F23, F40, F41, F42, F92, F118 13

Probe F9, F20, F21, F24, F28, F29, F31, F33, F37, F55, F57, F67, F92

Access F9, F13, F20, F26, F27, F29, F30, F31, F41, F42, F67, F97, F114

Privilege F1, F2, F7, F19, F20, F21, F24, F28, F31, F35, F63, F87, F103

GB DoS F2, F3, F5, F10, F20, F23, F26, F31, F34, F35, F58, F67, F122 13

Probe F2, F3, F30, F31, F32, F33, F34, F37, F41, F57, F61, F67, F92

Access F1, F2, F3, F7, F8, F19, F30, F32, F33, F34, F35, F63, F71

Privilege F2, F3, F6, F7, F10, F11, F12, F14, F15, F29, F30, F33, F63

AdaBoost DoS F2, F3, F7, F20, F21, F22, F30, F36, F37, F40, F58, F92, F118 13

Probe F1, F2, F21, F26, F30, F31, F32, F33, F34, F37, F41, F67, F92

Access F1, F2, F3, F7, F20, F29, F31, F32, F33, F34, F35, F67, F71

Privilege F1, F2, F3, F11, F12, F14, F29, F30, F35, F38, F63, F87, F103

RFs DoS F2, F3, F7, F8, F24, F33, F37, F61, F63, F67, F92, F97, F122 13

Probe F2, F3, F7, F8, F24, F33, F37, F61, F63, F67, F92, F97, F122

Access F1, F2, F3, F7, F8, F13, F30, F31, F32, F33, F34, F38, F63

Privilege F1, F2, F3, F7, F11, F14, F15, F29, F30, F31, F33, F37, F63

ETs DoS F2, F5, F9, F20, F26, F31, F35, F36, F58, F67, F117, F118, F122 13

Probe F2, F24, F26, F29, F30, F31, F32, F33, F37, F57, F92, F117, F122

Access F1, F2, F3, F7, F19, F20, F21, F29, F30, F31, F33, F34, F63

Privilege F2, F3, F7, F11, F12, F14, F15, F20, F29, F30, F31, F33, F63

Table 6 Results of K-Fold CV

for linear SVM model
Classifier Attack Measure

Acc (%) Rec (%) AUC

Linear SVM DoS 97 (± 0.00296) 97 (± 0.00257) 0.998 (± 0.00106)

Probe 98 (± 0.00320) 98 (± 0.00314) 0.996 (± 0.00095)

Access 95 (± 0.01605) 95 (± 0.01660) 0.982 (± 0.00485)

Privilege 99 (± 0.00072) 76 (± 0.21124) 0.983 (± 0.05011)

Table 7 Results of K-Fold CV

for DT model
Classifier Attack Measure

Acc. (%) Rec. (%) AUC

DT DoS 99 (± 0.00092) 99 (± 0.00105) 0.999 (± 0.00022)

Probe 99 (± 0.00115) 99 (± 0.00292) 0.995 (± 0.00142)

Access 91 (± 0.00914) 95(± 0.00548) 0.980 (± 0.00666)

Privilege 99(± 0.00030) 80(± 0.11204) 0.984 (± 0.03003)
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Table 8 Results of K-Fold CV

for LR model
Classifier Attack Measure

Acc (%) Rec (%) AUC

LR DoS 99 (± 0.00114) 99 (± 0.00117) 0.999 (± 0.00026)

Probe 98 (± 0.00276) 98 (± 0.00262) 0.997 (± 0.00081)

Access 94 (± 0.00520) 96 (± 0.00875) 0.990 (± 0.00299)

Privilege 97 (± 0.00806) 94 (± 0.11419) 0.977 (± 0.06994)

Table 9 Results of K-Fold CV

for GB model
Classifier Attack Measure

Acc (%) Rec (%) AUC

GB DoS 99 (± 0.00047) 99 (± 0.00047) 0.999 (± 0.00005)

Probe 99 (± 0.00054) 99 (± 0.00166) 0.999 (± 0.00032)

Access 99 (± 0.00107) 95.5(± 0.03091) 0.998 (± 0.00312)

Privilege 99 (± 0.00042) 78(± 0.19788) 0.993 (± 0.01895)

Table 10 Results of K-Fold CV

for AdaBoost model
Classifier Attack Measure

Acc (%) Rec (%) AUC

AdaBoost DoS 99 (± 0.00072) 99 (± 0.00074) 0.999 (± 0.00004)

Probe 99 (± 0.00136) 99 (± 0.00301) 0.999 (± 0.00035)

Access 99 (± 0.00093) 94 (± 0.03454) 0.998 (± 0.00354)

Privilege 99 (± 0.00824) 96 (± 0.12431) 0.969 (± 0.12478)

Table 11 Results of K-Fold CV

for RFs Model
Classifier Attack Measure

Acc (%) Rec (%) AUC

RFs DoS 99 (± 0.00085) 99 (± 0.00091) 0.999 (± 0.00102)

Probe 99 (± 0.00100) 98 (± 0.00320) 0.996 (± 0.00134)

Access 99 (± 0.00155) 92 (± 0.04108) 0.943 (± 0.03075)

Privilege 99 (± 0.00047) 71(± 0.26499) 0.990 (± 0.01711)

Table 12 Results of K-Fold CV

for ERTs model
Classifier Attack Measure

Acc (%) Rec (%) AUC

ERTs DoS 99 (± 0.00042) 99 (± 0.00040) 0.999 (± 0.00017)

Probe 99 (± 0.00111) 98 (± 0.00398) 0.999 (± 0.00052)

Access 99 (± 0.00128) 92 (± 0.03482) 0.992 (± 0.00763)

Privilege 99 (± 0.00039) 74 (± 0.21001) 0.995 (± 0.01095)

Table 13 Results of stratified

K-Fold CV for AdaBoost model
Classifier Attack Measure

Acc (%) Rec (%) AUC

AdaBoost DoS 99 (± 0.00095) 99 (± 0.00100) 0.999 (± 0.00008)

Probe 99 (± 0.00260) 99 (± 0.00701) 0.999 (± 0.00091)

Access 99 (± 0.00227) 95 (± 0.06456) 0.999 (± 0.00633)

Privilege 99 (± 0.00881) 96 (± 0.23824) 0.967 (± 0.23886)
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3.6.2 Stratified K-fold CV

It is the same as a K-fold CV but uses stratified sampling to

avoid two issues: random sampling in the K-fold CV

method and the imbalance in the sample size in the data set.

The strata have nearly the same rate of samples as in the

original data set, and each fold has the same size as normal

and attack samples. Consequently, whichever criteria are

used to evaluate them, the findings will be consistent across

all folds [13, 22, 59]. Table 13 illustrates the results of the

stratified K-fold CV applied to the model which achieved

better results in K-fold CV. Furthermore, the stratified

K-fold CV approach delivers good results for the AdaBoost

model, guaranteeing that the above-mentioned concerns are

addressed.

3.7 Training models

This stage covers how to train machine learning algorithms

on the training data set. Algorithm (1) demonstrates the

implementation phase of the framework. This framework is

written in Python and uses the scikit-learn framework as a

backend ML tool to analyze the predicted data and find the

best model to assess the probable normal and abnormal

behavior on a LAN.

Algorithm 1 Supervised Learning Algorithm

Input: D: Training Data set = (x, y) 

Output: Classify Normal or Malicious behavior in traffic

Step 1: Data Pre-Processing

Step 2: Tuning Classifier Hyperparameter (RSA)

Step 3: Feature Selection (UFS and RFE)  

Step 4: Avoid Overfitting (K-Fold and Stratified K-Fold)

Step 5: Learn Classifier on the Data set. 

Return Classifier 

3.8 Final evaluation

The final evaluation performance is implemented by using

the test set. The primary principles of testing the models

are their capacity to appropriately adjust to new, previously

unobserved data and the model’s quality, which is deter-

mined via some evaluation measures. Performance esti-

mators are derived from the confusion matrix (CM), which

visualizes the prediction results [22, 23, 33, 39], repre-

sented by four rates, as indicated in Table 14 The number

of predicted values is represented in each column of the

CM, while the number of actual values is represented in

each row.

TP = True Positive (Normal Traffic Predicted as

Normal).

TN = True Negative (Malicious Traffic Predicted as

Malicious).

FP = False Positive (Malicious Traffic Predicted as

Normal).

FN = False Negative (Normal Traffic Predicted as

Malicious).

Our research findings reveal that the AdaBoost model

gets a higher accuracy, as exhibited in Fig. 10 which shows

the CMs of the experiment results for predicted values and

actual values based on the above-mentioned rates by the

AdaBoost model.

Accuracy (Acc), recall (Rec), or true-positive rate

[14, 23, 33], and area under the receiver operating char-

acteristic curve (AUC-ROC) are three essential assessment

metrics generated from the rates listed above. The accuracy

score denotes the proportion of true-positive and true-

negative predictions generated by a model as a percentage

of the total number of predictions made by Eq. (16).

Acc ¼ TPþ TN

TPþ TN þ FPþ FN
ð16Þ

Table 14 Confusion matrix

Predicted values

Actual values Normal Attack

Normal TP FN

Attack FP TN

Fig. 10 CMs for the AdaBoost model
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The recall [14, 23, 33, 39] of the ML model indicates its

ability to define the proportion of true positives that are

correctly classified by Eq. (17), while the AUC-ROC

indicates positive predictions that are classified higher than

negative predictions. The ROC-AUC curve is represented

as a plot of the false-positive rate (FPR) as the x-axis

versus the TPR as the y-axis. (17) and (18) EQs are used to

calculate AUC-ROC [13, 14, 22, 39]. Table 15 and Fig. 11

show the findings for the most accurate model (AdaBoost).

Rec ¼ TP

TPþ FN
ð17Þ

FPR ¼ FP

TN þ FP
ð18Þ

Figure 12 describes the AUC-ROC evaluation for

detecting attacks by the AdaBoost model. It accurately

identifies attack samples with an AUC of DoS attaining

0.992 (7410 out of 7460 samples) of Probe reaching 0.986

(2374 out of 2421 samples), of Access totaling 0.952 (2677

out of 2885 samples), and of privilege achieving 0.954 (62

out of 67 samples).

3.8.1 Comparison with related works

We compared our proposed method with the existing

related works that used the NSL-KDD data set in the field.

Three metrics were used to compare the performance of

our method with others: recall, AUC (TPR vs. FPR), and

accuracy. Our current study produces superior results

through employing the AdaBoost model in all attack

branches. For example, our DoS attacks have a recall of

99.3% and an AUC of 0.992, in addition to overall accu-

racy for all attack categories reaching 98.5%. In contrast,

the highest results of [60] were a recall of 96.5%, an AUC

of 0.980, and an overall accuracy of 94%. Table 16 dis-

plays all the results.

4 Conclusion and future work

This study aims to determine the most accurate ML clas-

sifier for detecting LAN attacks. The research findings

demonstrate that the AdaBoost model has the highest

classification accuracy for both insider attacks and normal

traffic behavior, with 99% DoS, 98% probe, 96% access,

and 97% privilege. It also has an AUC of 0.992 DoS, 0.986

probe, 0.952 access, and 0.954 privilege. The study is

carried out using the publicly accessible NSL-KDD data

set, with an AUC rate measure overriding previous

approaches in this data set due to the strategies used to

remove noise from the data set, the choice of relevant

features, the tuning of hyperparameters, and the mini-

mization of bias. As a future recommendation, the tech-

niques used in the study might be integrated into firewall

Table 15 The final evaluation of the AdaBoost model of predicted

attacks

Classifier Attack Measure

Acc (%) Rec (%) AUC

AdaBoost DOS 99.2 99.3 0.992

Probe 99 98 0.986

Access 96.5 92.7 0.952

Privilege 97.3 92.5 0.954

Acc (%)

Rec (%)

AUC
88

90

92

94

96

98

100

DOSProbeAccessPrivilege

99.299

96.5
97.3

99.3
98

92.792.5

99.298.6

95.295.4

Acc (%) Rec (%) AUC

Fig. 11 Representing AdaBoost model results

Fig. 12 AUC-ROC curves of AdaBoost model \* MERGEFORMAT

\* MERGEFORMAT
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configurations to identify insider threats and assist cyber-

security specialists in making the work environment secure

and minimizing risks.
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