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Abstract
Parkinson’s disease (PD) arises from brain cell damage and necessitates early detection for effective treatment and

symptom management. While various methods such as voice, speech, and written exams have been explored, utilizing

automated tools is crucial to enhance accuracy. Recent advancements in artificial intelligence (AI) and deep learning (DL)

provide an opportunity for precise early-stage PD identification. This study introduces a novel approach known as

Quantum Mayfly Optimization-based feature subset selection with hybrid convolutional neural network (QMFOFS-

HCNN) to improve PD detection and classification. QMFOFS-HCNN is designed to identify optimal feature subsets and

overcome the dimensionality challenge. It combines a quantum mayfly optimization approach for feature selection with a

convolutional neural network with attention-based long short-term memory for PD detection and classification. Addi-

tionally, hyperparameter selection is optimized using the Nadam optimizer. Experimental validation using benchmark

datasets yielded compelling results. The QMFOFS-HCNN technique achieved accuracy rates: 96.35% for HandPD Spiral,

96.7% for HandPD Meander, 98.5% for Speech PD, and a perfect 100% for Voice PD datasets. These quantitative findings

underscore the potential of AI and DL to enhance early PD detection accuracy significantly. These results offer promising

prospects for improving healthcare outcomes in managing PD and related neurological disorders.
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AI Artificial intelligence

DL Deep learning

ECSO Expanded cat swarm optimization

EDF-EMD Energy direction feature based empir-

ical mode decomposition

MGOA Modified grasshopper optimization

algorithm

MGWO Modified grey wolf optimizer

OCFA Optimized cuttlefish algorithm

IFSO-DL Improved sailfish optimization algo-

rithm with deep learning

CNN-ALSTM Convolutional neural network with

attention-based long short-term

memory

QMFOFS-HCNN Quantum mayfly optimization-based

feature subset selection with hybrid

convolutional neural network

RF Random forest

SVM Support vector machine

K-NN K-nearest neighbour

MLP Multilayer perceptron

PD Parkinson’s disease

MF Male and female flies

DNN Deep neural network

FAR False alarm rate

FS Feature selection

ANN Artificial neural network

IMF Intrinsic mode function

FF Fitness function

QMFO Quantum mayfly optimization
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1 Introduction

Parkinson’s disease (PD), initially developed by James

Parkinson, affects an individual’s movement, leading to

muscle stiffness, tremors, and changes in speech and

writing skills [1]. This condition occurs when nerve cells

produce a chemical called dopamine that breaks down,

making nerve cells unable to transmit messages accurately,

this condition occur may be due to genetic factors. It can

result in depression, nervous disorders, and memory

impairment [2]. Several authors have been conducted to

diagnose the disease at its earlier stage, though not with

great accomplishment. Identifying the disease in its earlier

stages is significant so patients can live quality lives [3].

The disease at its advanced stage affects the day-to-day

tasks, and the person might need help from others. The

later stages of PD are sufficiently severe as the patient gets

stiffness in the legs, making it impossible to stand or walk

and might cause freezing on standing. Several methods

have been utilized for identifying the disease correctly such

as writing, speech, and voice exams [4]. The handwritten

exam is widely employed for diagnosing PD, because it is

easier to get data and inexpensive.

In recent times, data have been enhanced by the amount

of features and instances that make data noisier [5]. The

noisier data sets construct the algorithm to increase the

computational cost, decrease the predicted accuracy, train

the data slower, and increase the complexity. Thus, the

feature selection (FS) method designed a significant pro-

cess for the machine learning (ML) approach before

training the model [6]. The task of processing and pre-

processing data is a complex, as the increase in feature and

instance count results in an increase in the quantity of data.

Growth in data makes it more vulnerable to noise, which

might result in degraded results and a drop in performance.

Therefore, it becomes indispensable for treating the data

[7]. Complexity tends and computational cost to increase

when a large amount of data is used. Hence, the FS method

plays an important role in building architecture in ML. In

the FS method, also called parameter selection, a feature

subset is selected from existing features.

The primary objective is to improve the algorithm’s

accuracy before and after FS. The FS method assists in

resolving the problems by reducing the computation com-

plexity and cost of datasets [8]. Information has been

enhanced by using many instances and features, which

makes data noisier. The noisier dataset causes the algo-

rithm to reduce the accuracy predicted by models, increa-

ses computational costs, increases complexity, and trains

the data slower [9]. Consequently, the FS method has

become an essential process for ML before training the

model. The FS approach focuses on finding a subset from

the entire set of features and less downgrade performance

of the network; so, the subset of features forecasts the

target with performance similar to the accuracy of the

novel set of features and reduced of computation cost.

Feature selection helps to understand the causes of disease,

reduces the computational requirements, and prevents

degradation in performance that contributes to better/faster

convergence of the deep training method.

The FS model is classified into wrapper—and filter-

based models [10]. The FS algorithms use MLs in wrapper-

based approaches to check the accuracy of the selected

subset of features with high accuracy. However, these

approaches could be more effective with high dimensional

datasets due to high training time [11]. Subsequently, filter-

based approaches use statistical data dependency methods

to reach the best subset faster. Filter-based approaches are

less accurate, more scalable, faster, and less computation-

ally expensive than wrapper-based approaches [12].

The QMFOFS-HCNN technique aims to improve

Parkinson’s disease (PD) detection and classification by

utilizing Quantum Mayfly Optimization (QMFO) for fea-

ture selection, a Convolutional Neural Network with

Attention Long Short Term Memory (CNN-ALSTM) for

classification, and hyperparameter tuning with the Nadam

optimizer. The contributions of the given study are: (i) It

uses QMFO to select relevant features, enhancing classi-

fication accuracy and reducing computational complexity.

(ii) It employs CNN-ALSTM for PD classification, which

is well-suited for biomedical time series data with an

attention mechanism to capture important information. (iii)

It fine-tunes model parameters with Nadam optimizer,

improving overall performance. (iv) It demonstrates supe-

rior accuracy and detection rates compared to existing

methods on benchmark PD datasets. (v) It efficiently

selects minimal features while maintaining high accuracy,

which is crucial for real world applications. (vi) It is

effective across various PD datasets, suggesting broader

applicability.

Thus, this study develops a quantum mayfly optimiza-

tion-based feature subset selection with a hybrid convolu-

tional neural network (QMFOFS-HCNN) technique for PD

detection and classification. The principal intention of the

QMFOFS-HCNN technique is to identify the optimal fea-

ture subsets and enhance the classification accuracy of the

PD diagnosis. The QMFOFS-HCNN technique initially

designs a novel QMFO approach for the optimum feature

choice and resolves the curse of dimensionality problem. In

addition, an optimal CNN with attention long short-term

memory (CNN-ALSTM) model is employed to detect and

classify PD. In order to effectively boost the PD classifi-

cation outcomes, the Nadam optimizer can be utilized to

select the hyperparameters. The experimental validation
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takes place using the benchmark datasets, and the results

are assessed under several aspects.

2 Literature survey

The authors in [13] developed a cloud-based PD predictive

model for making medical decisions that assist physicians

in identifying the Parkinson-affected person from a remote

place. An efficient expanded cat swarm optimization

(ECSO)-based FS method has been examined to resolve the

problems of data dimensionality. The classification method

can considerably enhance the disease predictive perfor-

mance by utilizing the FS method in the K-nearest neigh-

bour (K-NN). Solana-Lavalle et al. [14] focused on

increasing the accuracy and reducing the amount of

selected vocal features in PD diagnoses while utilizing the

most extensive and newest open-source dataset. While the

number of features in this public dataset is 754, the number

of selected features for classification ranges from 8 to 20

after utilizing the Wrapper feature subset selection. The

KNN, multilayer perceptron (MLP), support vector

machine (SVM), and random forest (RF) classifiers are

employed for detecting vocal-based PD.

Mathur et al. [15] use different ML methods, which

could enhance the efficiency of data sets and play a sig-

nificant part in making the earlier disease prediction.

Afterward, the comparison of this algorithm selects the

efficient one in terms of accuracy. The experiment out-

comes show that the performance attained from the inte-

grated effects of artificial neural network (ANN) and KNN

algorithm is more effective than other approaches. The

authors in [11] introduced two NN-based methods, voice

impairment classifier and spectrogram detector that focus

on helping people and doctors identify disease at earlier

stages. A wide-ranging assessment of CNN has been con-

ducted on a large image classifier of gait signal transformed

to spectrogram image and deep dense ANN on the voice

recording to forecast the disease. El Maachi et al. [12]

developed a smart PD method-based deep learning (DL)

method for analysing gait data. Then, 1D-Convnet is used

to construct the deep neural network (DNN) classification.

The presented method processes eighteen 1D signals from

the foot sensor, evaluating the classifier. Haq et al. [16]

introduced an ML and DNN-based non-invasive predictive

model for timely and accurate diagnoses of PD. The ML

prediction methods, namely SVM, linear regression (LR),

and DNN, have been utilized for classifying healthier

people and PD. Zhang et al. [17] proposed an energy

direction feature-based empirical mode decomposition

(EDF-EMD) feature to display the distinct features of voice

signals among healthy and PD patients. At first, the

intrinsic mode function (IMF) was attained by using the

decomposition of voice signal with empirical mode

decomposition.

In Parkinson’s disease (PD) research, several previous

studies have aimed to diagnose the condition in its early

stages but have had limited success [18, 19]. Detecting PD

early on is crucial for improving the quality of life for

patients. Existing approaches have explored methods such

as handwriting analysis, speech assessment, and voice

examinations, with handwriting being a preferred choice

due to its ease of data collection and affordability [20–22].

However, contemporary data sets have grown in size and

complexity, introducing noise that can hinder algorithm

accuracy, increase computational costs, and slow down

data processing [23]. Researchers have turned to feature

selection (FS) techniques to address these challenges as a

critical step in machine learning (ML) model development.

FS helps optimize algorithm performance by selecting a

subset of relevant features, reducing computational com-

plexity, and mitigating data noise. The QMFOFS-HCNN

technique presented in this study represents a significant

advancement in PD detection and classification. It lever-

ages Quantum Mayfly Optimization (QMFO) for feature

selection, employs a Convolutional Neural Network with

Attention Long Short Term Memory (CNN-ALSTM) for

classification, and fine-tunes model parameters using the

Nadam optimizer. The key contributions of this research

include improved accuracy, feature subset optimization,

and enhanced classification performance. Importantly, this

technique efficiently selects minimal features while main-

taining high accuracy, making it suitable for real-world

applications across various PD datasets. Compared to prior

work, this study introduces a comprehensive and innova-

tive approach to PD detection, offering the potential for

more accurate and efficient diagnoses. While previous

research has explored various machine learning methods

and feature selection techniques [24], the QMFOFS-HCNN

method stands out for its superior accuracy, computational

efficiency, and adaptability across diverse PD datasets.

3 Material and methods

3.1 Dataset

The proposed method has been employed with datasets

related to Parkinson’s disease, encompassing diverse types

of sound recordings, as well as data from Parkinson’s

HandPD, which are as follows:

In the Speech PD dataset, a set of biomedical voice

measurements has been gathered from 23 individuals. Each

dataset column corresponds to a particular voice mea-

surement, and each dataset row links to one of the 195

recordings of voice taken from these individuals. The main
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aim of this dataset is to classify between healthy individ-

uals (coded as 0) and those with PD (coded as 1). The

dataset was curated by Max Little from the University of

Oxford, in partnership with the National Centre for Voice

and Speech in Denver, Colorado, where the speech signals

were acquired .

In the Voice PD dataset, the training data comprises of

records from 20 individuals with PD (14 male and 6

female) and 20 healthy (10 male and 10 female) individ-

uals, who were seen at the department of neurology in

Cerrahpasa faculty of medicine, Istanbul University. In

data acquisition process, 28 PD patients were suggested to

repeat the vowels ’a’ and ’o’ three times each, ensuing total

168 voice recordings. This dataset acts as a valuable

independent test set for results validation obtained from the

training dataset.

In the HandPD meander dataset, data has been collected

from a total of 158 individuals, including 74 in patient

group and 18 in healthy group. Dataset comprises 632 data

instances encompassing 13 distinct features. Furthermore,

the dataset involves 632 images of meanders drawn by the

patients. These individuals represented the age ranges,

from 14 to 79 years old. The handwritten examinations

were comprised at Botucatu Medical School, São Paulo

State University, Brazil.

In the HandPD spiral dataset, participants were recom-

mended to sketch spirals instead of meanders. This dataset

comprises of data from 158 individuals. It involves 632

data instances and contains 13 distinct features. The

handwritten examinations were collected at Botucatu

Medical School, São Paulo State University, Brazil.

3.2 Methods

3.2.1 Design of QMFOFS-HCNN model

This study has developed a novel QMFOFS-HCNN tech-

nique for detecting and classifying PD. It aimed to identify

the optimal feature subsets and optimize the classification

performance of the PD diagnosis. The suggested

QMFOFS-HCNN technique encompasses several pro-

cesses such as QMFO-based feature subset selection, CNN-

ALSTM-based classifier, and Nadam-based hyper-param-

eter tuning. Using QMFOFS and Nadam techniques helps

boost the PD classification outcomes effectively. Figure 1

depicts the entire working process of the proposed

QMFOFS-HCNN technique. Figure 1 depicts the entire

working process of the proposed QMFOFS-HCNN tech-

nique. First, the Parkinson dataset has been given as input

for its pre-processing in order to remove artefacts. Subse-

quently, the dataset is divided into the training and testing

datasets for providing training and testing. Afterward, a

novel QMFO-based feature selection (FS) method has been

used to resolve the curse of dimensionality problem by

reduction of computational complexity. Information has

been enhanced by using many instances and features,

which makes data noisier. The noisier dataset causes the

algorithm to reduce the accuracy predicted by models, the

computational costs, increases the complexity and slows

the training process.

Consequently, the FS approach focuses on finding an

appropriate subset from the entire set of features with high

performance of the network and less computational cost. In

order to optimize the efficiency of the MFO algorithm, the

QMFO technique is derived; for details, refer to [25].

Subsequently, the Nadam optimizer has been used to boost

the classification outcome for hyperparameter tuning. At

this stage, the CNN-ALSTM model is employed for PD

classification. The CNN-ALSTM is a hybrid DL approach

for extracting features in the raw information and imple-

menting predicting utilizing the LSTM-NN [26]. The CNN

uses LSTM for optimum extracting the features of exper-

imental data. The attention method is a procedure for

allocating weight. Thus, the proposed work develops a

QMFOFS-HCNN technique for PD detection and classifi-

cation. The primary intention of the proposed technique is

to identify the optimal feature subsets and enhance the

classification accuracy of the PD diagnosis.

3.2.2 Algorithmic design of QMFOFS technique

The MFO algorithm derives from the social activity of MFs

[27]. MFs were generated by adults, and afterward, the

fittest lived. Two sets of populations were primarily cre-

ated. It can signify both males as well as female popula-

tions. The candidate is signified by d dimension vector

x ¼ x1; . . .; xdð Þ. The fitness of candidates is estimated by

computing the fitness function (FF) fnfxÞ. The velocity v ¼
ðv1; . . .; vdÞ has been modified from the candidate place. All

the candidates alter their trajectory based on their optimum

place (pbest) and an optimum place for every MF (gbest).

Collecting male MFs reflects all males’ knowledge from

defining their place in terms of neighborsI places deter-

mining xti as present place of candidate solutions i at time t,

the place was changed by adding a velocity vtþ1
i as [28]:

xtþ1
i ¼ xti þ vtþ1

i ð1Þ

With x0
i Uðxmin; xmaxÞ. Considering the minimum veloc-

ity of the male population, the velocity is computed as

follows:

vtþ1
ij ¼ vtij þ a1e

�br2
p pbestij � xtij

� �

þ a2e
�br2

g gbesti � xtij

� �
; ð2Þ

, where vtij refers to the velocity of MFs i; xtij signifies the
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place of MFs i; a1, and a2 are determined as positive

constants signifying the attractive. pbesti stands for the

optimum place that candidate solution i had always

obtained, and pbestij at the subsequent step t ? 1 was

defined in Eq. (3).

pbesti ¼ xtþ1
i ; iff xtþ1

i

� �
\f pbestið Þ

same as before; otherwise

�
ð3Þ

, where f : Rn ) R refers to the function minimizing,

gbest signifies the global optimum attained from the issue

ever at time t: The co-efficient in Eq. (2) limits the

populationIs visibility. rp implies the distance among xi
and pbesti: In the meantime, rg determines the distance in

xi to gbest. rp and rg are defined in Eq. (4).

kxi � Xik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
ðxij � XijÞ2

r
ð4Þ

, where xij refers the jth component of ith candidate. Xi is

connected to pbest.

An optimum fit candidate keeps implementing up and

down motions by different velocities. The velocity is

defined as in Eq. (5).

vtþ1
ij ¼ vtij þ d � r ð5Þ

, where d denotes the co-efficient compared with up and

down motions, and r represents the arbitrary value between

�1 and 1. Figure 2 demonstrates the flowchart of the MFO

technique.

Fig. 1 Overall working process of QMFOFS-HCNN technique
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The female MFs do not gather, but they move near

males. Assume that yti is the present place of female MF i at

time t. The alteration from the place was computed as:

ytþ1
i ¼ yti þ vtþ1

i ð6Þ

With y0
i Uðxmin; xmaxÞ. The female MFs’ velocity is defined

as in Eq. (7).

vtþ1
ij ¼ vtij þ a2e

�br2
mf xtij � ytij

� �
; if f yið Þ[ f xið Þ

vtij þ fl� r; if f yið Þ� f xið Þ

(

ð7Þ

, where vtij refers to the velocity of ith female at time t; ytij

signifies the place of ith female candidate solution at time t;

a2 signifies the positive constants, b stands for the set co-

efficient, rmf indicates the distance between the male can-

didate solution and female ones that are calculated utilizing

in Eq. (4), fl signifies the co-efficient that relates the female

which is not attractive. r implies the arbitrary number

between �1 and 1. The mating was demonstrated by an

operator that is a crossover operator. The pair of male, as

well as female parents are selected.

off spring l ¼ L� male þ 1 � Lð Þ � female

off spring 2 ¼ L� female þ 1 � Lð Þ � male
ð8Þ

, where L refers to the arbitrary number. Primarily, the

velocity of offspring is equivalent to 0. In order to optimize

the efficiency of the MFO algorithm, the QMFO technique

is derived [25]. With the quantization of grasshopper

individuals, the feature search space has improved to bal-

ance exploitation and exploration. A vital unit of QC is

qubit. The two important forms j0[ and j1[ way a qubit

which has been formulated as a linear grouping of these

two essential forms as:

jQ[ ¼ aj0[ þ bj1[ : ð9Þ

jaj2 refers the probability of identifying form j0[ , jbj2
signifies the probability of detecting state j1[ , where

jaj2 þ jbj2 ¼ 1: The quantum is composed of n qubits.

Because of the form of quantum superposition, all quantum

has 2n probable values.

W ¼
X2n�1

x¼0

Cxjx[ ;
X2n�1

x¼0

jCxj2 ¼ 1: ð10Þ

Quantum gates have modified the state of qubits as

Hadamard, rotation, and NOT gates, among others. The

rotation gate was explained as a mutation function to make

quanta model optimal solutions and finally determined the

global optimal solutions.

The rotation gate is shown as follows:

ad t þ 1ð Þ
bd t þ 1ð Þ

� 	
¼ cos Dhd

� �
�sin Dhd

� �
sin Dhd

� �
cos Dhd

� �
" #

ad tð Þ
bd tð Þ

� 	
for d

¼ 1; 2; . . .; n:

ð11Þ

Dhd ¼ D� S ad; bd
� �

, Dhd stands for the rotation angle

of qubit, whereas D and S ad; bd
� �

are size and way of

rotation correspondingly.

The mathematical model of the QMFOFS approach was

established. Generally, some data sets’ classification (i.e.

supervised learning) is size NS � NF , whereas NS refers to

the number of instances, and NF implies the number of

features. An important objective of the FS issue is to select

a subset of features S in the entire amount of features ðNFÞ
in which the size of S is lesser than NF . It is obtained by

minimizing the subsequent primary function:

Fig. 2 Flowchart of MFO

algorithm
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Fit ¼ k� cS þ 1 � kð Þ � Sj j
NF


 �
ð12Þ

, where cS denotes the classification error utilizing S and jSj
is the amount of chosen features. k is utilized for balancing

among
Sj j
NP

� �
and cS:

3.2.3 The process involved in CNN-ALSTM-based
classification

At this stage, the CNN-ALSTM model is employed for PD

classification. The CNN-ALSTM is a hybrid DL approach

for extracting features in the raw information and imple-

menting predicting utilizing the LSTM-NN [26]. The CNN

layer has been utilized for extracting the suitable features

in the time series data, demonstrating extra hidden data has

the potential for improving the forecast accuracy. The

experimental outcomes illustrate that the CNN layer

comprises one 16 3 � 1 convolutional kernel layer and one

32 3 � 1 convolutional kernel layer, which optimizes the

forecast efficiency. The feature vector attained in the sec-

ondary layer of CNN is input to the LSTM layer to fore-

cast. All the elements of feature vectors are similar to most

32 units from the LSTM layer. The attention process sets

the superior weight to feature quantity, undoubtedly asso-

ciated with the present output. Eventually, the FC layer

managed the resultant vector of the attention process uti-

lizing the unfolding function. The forecasted value of AC2

at the following moment was the outcome. The LSTM is

well suited to forecast experimental time series data. The

recent mechanism depicts the maximum predicting effi-

ciency relating CNN and LSTM to distinct applications.

The CNN uses LSTM for optimum extracting the features

of experimental data. The attention method is a procedure

for allocating weight. Inverse normalized prediction power

was attained based on Eq. (13).

PrP ¼ PrIac2 � Pmax � Pminð Þ þ Pmin; ð13Þ

where Prp refers to the forecasted value of powers and

PrIac2 signifies the forecasted value of AC2:

The presence of LSTM cell infrastructure efficiently

solves the gradient explosion or vanishing issues. There are

four essential components from the flowchart of the LSTM

technique: cell status, output, input, and forget gates. Those

gates were utilized to control the upgrading, maintaining,

and deleting of data from cell status. The forward com-

putation procedure is referred to as:

fz ¼ r Wf � hz�1; xz½ � þ bf
� �

;

iz ¼ r Wj � hz�1; xz½ � þ bi
� �

;

Oz ¼ r WO � hz�1; xz½ � þ boð Þ;
~Cz ¼ tanh WC � hz�1; xz½ � þ bcð Þ;

Cz ¼ fz � Cz�1 þ iz � ~Cz

hz ¼ Oz � tanh Czð Þ;

ð14Þ

, where Wf ; Wj, and Wo refer to the weight matrix of

forgetting, input, and output gates correspondingly; bf ; bj;

and bo signifies the offset item of forget, input, and output

gates correspondingly; r signifies the sigmoid activation

functions; tanh denotes the hyperbolic tangent activation

functions.

The attention process is a brain signal-processing

method peculiar to human vision. It rapidly scans the

global image to obtain the destination region, which

requires attention and ignores other regions of unnecessary

data. The attention process technique was effectively exe-

cuted and implemented to train the model and other con-

nected areas. The proposed model utilizes the LSTM

hidden neuron resultant vector H ¼ fh1; h2; � � � ; htg as

input of the attention process, and the attention process will

determine the attention weight ai of hi that is computed as

shown in Eq. (15).

ei ¼ tanh Whhi þ bhð Þ;

ai ¼
exp eið ÞPt

i¼1 exp eið Þ
;

ð15Þ

whereas ai signifies attention to weight, Wh refers to the

weight matrix of hj, and bh represents the bias.

3.3 Hyperparameter tuning

For optimally tuning the hyperparameters of the CNN-

ALSTM model, the Nadam optimizer is used. Nadam is an

extended version of Adam optimizer [29], which can be

applied to optimize the efficiency of the DL approaches.

The upgrading rules of the Adam optimizer can be attained

using the following equations:

gt ¼ rhf J htð Þ ð16Þ

mt ¼ b1mt�1 þ 1 � b1ð Þgt ð17Þ

vt ¼ b2vt�1 þ 1 � b2ð Þg2
t ð18Þ

m̂t ¼
mt

1 � bt1
ð19Þ

v̂t ¼
vt

1 � bt2
ð20Þ
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htþ1 ¼ ht �
gffiffiffî
v

p
þ e

m̂t ð21Þ

, where gt indicates the gradient vector of the CNN-

ALSTM model at the time of training; g denotes the

learning rate of the CNN-ALSTM model training; JðhtÞ is

the divider function of the CNN in the CNN-ALSTM

model; rht is the partial derivative of JðhtÞ and h; mt and vt
denotes 1st and 2nd order moment of the gradient at the

time of training the CNN-ALSTM model; mt and bv rep-

resents the deviation corrections of mt and vt, that can be

utilized for offsetting the variation; b1 and b2 indicate

exponential decay rate of mt and vt; e is the correction

variable used for ensuring that the denominator is not zero;

t represents the number of iterations involved in the

training process of the CNN-ALSTM model. Utilizing

Eq. (17) into Eqs. (19) and (21) provides,

htþ1 ¼ ht �
gffiffiffiffiffiffiffiffiffiffiffibv þ e

p b1mt�1

1 � bt1
þ ð1 � b1Þgt

1 � bt1


 �
ð22Þ

The mt�1=1 � bt1 presents the deviation correction esti-

mation of the momentum vector at an earlier moment of

the CNN-ALSTM model that can be attained by substi-

tuting mt�1 with:

htþ1 ¼ ht �
gffiffiffiffiffiffiffiffiffiffiffibv þ e

p b1 bmt�1 þ
ð1 � b1Þgt

1 � bt1


 �
ð23Þ

With the addition of the Nesterov momentum, the

deviation correction estimation mt of the present momen-

tum vector of the CNN-ALSTM model is straightaway

utilized for replacing the deviation corrected estimates

mt�1 of the earlier momentum that results in the updating

rule of the Nadam, as provided below.

htþ1 ¼ ht �
gffiffiffiffiffiffiffiffiffiffiffibv þ e

p ðb1 bm þ ð1 � b1Þgt
1 � bt1

ð24Þ

The conventional momentum approach has the demerit

that the learning rate remains the same in the training

procedure and utilizes an individual learning rate for

updating weights.

4 Experimental validation

The performance validation of the QMFOFS-HCNN

technique uses four benchmark datasets: HandPD meander,

HandPD spiral, voice PD, and speech PD [30] using vari-

ous evaluation metrics. The metrics used for performance

evaluation are accuracy, detection, and false alarm rate.

The accuracy rate is defined as the proportion of observa-

tions that have been correctly classified. A detection rate is

defined as an outcome where the model correctly predicts

the positive class. It measures the percentage of actual

positives that are correctly identified. A false alarm rate

(FAR) is defined as an outcome where the model incor-

rectly predicts the positive class.

Figure 3 shows the FS results of the QMFOFS-HCNN

system with existing methods on four data sets. The results

showed that the QMFOFS-HCNN technique has shown an

effectual outcome by selecting the least number of features.

For instance, under HandPD Spiral dataset, the QMFOFS-

HCNN technique has elected three features while the

modified grasshopper optimization algorithm (MGOA)

[31], modified grey wolf optimizer (MGWO) [32], opti-

mized cuttlefish algorithm (OCFA) [30], and improved

sailfish optimization algorithm with deep learning (IFSO-

DL) [33] systems have selected 5, 7, 8, and 4 features

correspondingly. Similarly, under the voice PD dataset, the

QMFOFS-HCNN technique has picked six features, while

the MGOA, MGWO, OCFA, and IFSO-DL systems have

elected 8, 9, 17, and 7 features, respectively.

Table 1 demonstrates the comparative PD detection

analysis of the QMFOFS-HCNN system with existing

approaches on the HandPD spiral and HandPD Meander

dataset [31, 33].

Figure 4 exhibits the comparative accuy analysis of the

QMFOFS-HCNN system with existing techniques on

HandPD spiral and HandPD Meander datasets. The results

show that the QMFOFS-HCNN technique has accom-

plished enhanced classification outcomes with higher

accuracy than the other techniques on both datasets. For

instance, on HandPD spiral datasets, the QMFOFS-HCNN

technique has reached to maximum accuy of 96.35%,

whereas the MGOA-KNeN, MGOA-RANDF, MGOA-DT

(C4.5), MGWO-KNeN, MGWO-RANDF, MGWO-DT

(C4.5), and IFSO-DL techniques have obtained minimum

accuy values of 75.54%, 92.62%, 89.88%, 74.13%,

92.62%, 92.03%, and 93.61%, respectively.

Figure 5 demonstrates the comparison study of the

QMFOFS-HCNN technique with recent models in terms of

detection rate drate on HandPD spiral and HandPD Meander

datasets. The experimental values indicated that the

Fig. 3 FS analysis of QMFOFS-HCNN technique
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QMFOFS-HCNN system has demonstrated improved

classifier results with the maximum drate values over the

other techniques on both datasets. For instance, on HandPD

spiral dataset, the QMFOFS-HCNN technique has offered

increased drate of 99.22%, whereas the MGOA-KNeN,

MGOA-RANDF, MGOA-DT (C4.5), MGWO-KNeN,

MGWO-RANDF, MGWO-DT (C4.5), and IFSO-DL

techniques have resulted in reduced drate values of 84.89%,

97.99%, 95.58%, 82.54%, 94.99%, 93.65%, and 98.04%,

respectively.

Figure 6 provides the accuracy and loss graph analysis

of the QMFOFS-HCNN system under HandPD spiral and

HandPD meander datasets. The outcomes shown that the

accuracy value tends to be higher, and the loss value tends

to decrease with an increase in epoch count. It is also

observed that the training loss is low, and validation

Table 1 Results analysis of

existing with proposed model

on HandPD spiral dataset and

HandPD meander dataset

Methods Accuracy Detection rate False alarm rate (FAR)

HandPD spiral dataset

MGOA-KNeN 75.54 84.89 24.46

MGOA-RANDF 92.62 97.99 08.72

MGOA-DT (C4.5) 89.88 95.58 10.22

MGWO-KNeN 74.13 82.54 25.87

MGWO-RANDF 92.62 94.99 08.07

MGWO-DT (C4.5) 92.03 93.65 08.52

IFSO-DL Model 93.61 98.04 07.96

QMFOFS-HCNN 96.35 99.22 04.12

HandPD meander dataset

MGOA-KNeN 74.31 86.34 25.69

MGOA-RANDF 93.81 99.64 06.19

MGOA-DT (C4.5) 88.53 91.01 11.47

MGWO-KNeN 72.75 85.04 27.25

MGWO-RANDF 93.91 98.35 06.19

MGWO-DT (C4.5) 88.25 91.39 11.71

IFSO-DL Model 93.75 99.71 07.25

QMFOFS-HCNN 96.70 99.89 09.11

Bold indicates the output of our method

Fig. 4 Accy analysis of

QMFOFS-HCNN technique

under HandPD spiral and

HandPD meander datasets
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Fig. 5 Detection rate analysis of

QMFOFS-HCNN technique

under HandPD spiral and

HandPD meander datasets

Fig. 6 Accuracy and Loss analysis of QMFOFS-HCNN method under HandPD spiral and HandPD meander datasets
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accuracy is maximum on HandPD spiral and HandPD

meander datasets. Table 2 demonstrates the comparative

PD detection result analysis of the QMFOFS-HCNN

technique with existing approaches on the speech PD and

voice datasets. Figure 7 depicts the comparative accuy

analysis of the QMFOFS-HCNN technique with existing

methods on speech PD and voice PD datasets. The results

showed that the QMFOFS-HCNN system has accom-

plished enhanced classification outcomes with higher

accuracy than the other techniques on both datasets. For

instance, on the speech PD dataset, the QMFOFS-HCNN

technique has reached to maximum accuy of 98.50%,

whereas the MGOA-KNeN, MGOA-RANDF, MGOA-DT

(C4.5), MGWO-KNeN, MGWO-RANDF, MGWO-DT

(C4.5), and IFSO-DL approaches have obtained lesser

accuy values of 89.69%, 95.56%, 85.53%, 92.35%,

93.64%, 90.18%, and 96.19%, correspondingly.

Figure 8 examines the comparison study of the

QMFOFS-HCNN approach with recent models in terms of

detection rate drate on speech PD and voice PD datasets.

The experimental values indicated that the QMFOFS-

HCNN system had outperformed higher classifier results

with higher drate values over the other techniques on both

datasets. For instance, on speech PD dataset, the QMFOFS-

HCNN approach has offered increased drate of 99.98%,

whereas the MGOA-KNeN, MGOA-RANDF, MGOA-DT

(C4.5), MGWO-KNeN, MGWO-RANDF, MGWO-DT

(C4.5), and IFSO-DL systems have resulted in lower drate

values of 96.56%, 90.17%, 97.21%, 99.95%, 94.28%,

99.16%, and 99.98%, correspondingly.

Figure 9 offers the accuracy and loss graph analysis of

the QMFOFS-HCNN methodology under speech PD and

voice PD Datasets. The outcomes outperformed that the

accuracy value tends to increase, and the loss value tends to

Table 2 Results analysis of existing with proposed model on speech

PD dataset and voice PD dataset

Methods Accuracy Detection rate False alarm rate

Speech PD dataset

MGOA-KNeN 89.69 96.56 31.00

MGOA-RANDF 95.56 99.16 21.52

MGOA-DT (C4.5) 85.53 90.17 29.76

MGWO-KNeN 92.35 97.21 30.52

MGWO-RANDF 93.64 99.95 30.57

MGWO-DT

(C4.5)

90.18 94.28 30.25

IFSO-DL Model 96.19 99.16 18.32

QMFOFS-HCNN 98.50 99.98 12.45

Voice PD dataset

MGOA-KNeN 91.70 83.50 00.89

MGOA-RANDF 100 100 –

MGOA-DT (C4.5) 100 100 –

MGWO-KNeN 85.70 80.20 08.20

MGWO-RANDF 100 100 –

MGWO-DT

(C4.5)

100 100 –

IFSO-DL Model 100 100 –

QMFOFS-HCNN 100 100 –

Bold indicates the output of our method

Fig. 7 Accy analysis of

QMFOFS-HCNN technique

under speech PD and voice PD

datasets
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Fig. 8 Detection rate analysis of

QMFOFS-HCNN technique

under speech PD and voice PD

datasets

Fig. 9 Accuracy and Loss analysis of QMFOFS-HCNN technique under speech PD and voice PD datasets

8394 Neural Computing and Applications (2024) 36:8383–8396

123



reduce with a higher epoch count. It can also be observed

that the training loss is lesser, and validation accuracy is

high on speech PD and voice PD Datasets. From these

results, it is ensured that the proposed model is superior to

other methods of PD classification.

The study compared the QMFOFS-HCNN technique to

existing methods for Parkinson’s disease (PD) detection

using four benchmark datasets. The QMFOFS-HCNN

technique demonstrated several strengths: QMFOFS-

HCNN selected fewer features while maintaining or

improving classification performance, reducing data

dimensionality, thus, providing Efficient Feature Selection.

It consistently outperformed existing methods in accuracy,

enhancing PD patient classification and, thus, high accu-

racy. It achieved higher detection rates, crucial for accurate

PD diagnosis, and exhibited lower FAR, reducing the risk

of misdiagnosis. It consistently outperformed existing

methods across various datasets, demonstrating its versa-

tility. The model showed increasing accuracy and

decreasing loss during training, indicating effective

learning.

5 Conclusion

This study has developed a novel QMFOFS-HCNN

method for detecting and classifying PD. It aimed to

identify the optimal feature subsets and enhance the clas-

sification accuracy of the PD diagnosis. The proposed

QMFOFS-HCNN technique encompasses several pro-

cesses, such as QMFO-based feature selection, CNN-

ALSTM based classification, and Nadam-based hyperpa-

rameter tuning. Using QMFOFS classify Nadam tech-

niques helps to boost the PD classification outcomes

effectively. The experimental validation takes place using

the benchmark datasets, and the results are assessed under

several aspects. The comparative results indicated the

QMFOFS-HCNN technique’s promising performance in

several evaluation metrics. Therefore, the QMFOFS-

HCNN technique can be utilized as a proficient tool for PD

detection and classification. It offers a proficient PD

detection and classification tool, contributing to medical

diagnostics. However, it is important to acknowledge some

limitations of this study. Firstly, the performance evalua-

tion was conducted on benchmark datasets, and the real-

world applicability of the technique may require further

validation with diverse and more extensive datasets. Sec-

ondly, while the QMFOFS-HCNN method shows promise,

it may benefit from additional optimization and fine-tuning

to achieve even higher accuracy levels.

In the future, outlier detection techniques can be incor-

porated into the QMFOFS-HCNN technique to improve the

classifier results and robustness. Additionally, exploring

the integration of real time data collection and analysis for

PD diagnosis could improve the practicality and timeliness

of the method. Overall, this study lays the foundation for

more advanced and effective PD diagnostic tools, and

further refinement and validation in clinical settings will be

essential for its successful implementation.
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