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Abstract
Robust reliability Generation Expansion Planning (GEP) turns out to be a crucial step for an efficient energy management

system in a modern power grid, especially under renewable energy employment. The integration of all such components in

a GEP model makes it a large-scale, nonlinear, and mixed-variable mathematical modeling problem. In this paper, the

presence of wind energy uncertainty is analyzed. Both long and short-term uncertainties are incorporated into the proposed

GEP model. The first step concerns the impact of long-term wind uncertainties through the annual variations of the

capacity credit of two real sites in Egypt at Zafaranh and Shark El-ouinate. The second step deals with the short-term

uncertainties of each wind site. The wind speed uncertainty of each wind site is modeled by probability distribution

function. Then, wind power is estimated from the wind power curve for each wind site and Monte-Carlo Simulation is

performed. Fast Gas Turbine and/or Pump Hydro Storage are incorporated to cope with short-term uncertainties. Sensi-

tivity analysis is implemented for 3, 6, and 12 stages as short and long planning horizons to minimize the total costs with

wind energy penetration and emission reduction over planning horizons. Also, a novel Honey Badger Algorithm (HBA)

with model modifications such as Virtual Mapping Procedure, Penalty Factor Approach, and the Modified of Intelligent

Initial Population Generation is utilized for solving the proposed GEP problem. The obtained results are compared with

other algorithms to ensure the superior performance of the proposed HBA. According to the results of the applicable test

systems, the proposed HBA performs better than the others, with percentage reductions over CSA, AO, BES, and PSO

ranging up to 4.2, 2.72, 2.7, and 3.4%, respectively.

Keywords Emission reduction constraint � Honey badger algorithm � Monte-Carlo simulation � Reliability constrained

generation expansion planning � Virtual mapping procedure � Wind uncertainties

List of symbols
i Discount rate

K Added unit in stage t which

are selected of different

technologies

N Number of selected candi-

date units of technology k

ut Capacity vector of all candi-

date unit types in the stage

to Number of years between the

reference date for discount-

ing and the first year of study

s Number of years in each

stage t

CIk Investment cost of each new

candidate unit k added in

stage t

SV utð Þ Salvage value cost

EENS Expected energy not served

O Xtð Þ Expected energy not served

cost

& Ragab A. El-Sehiemy

elsehiemy@eng.kfs.edu.eg

1 Electrical Engineering Department, Faculty of Engineering,

Menoufiya University, Shebeen El-Kom 32511, Egypt

2 Electrical Engineering Department, Faculty of Engineering,

Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt

3 Department of Electrical Engineering, Faculty of

Engineering, Suez University, Suez 43221, Egypt

4 Middle Delta Electricity Production Company (MDEPCo),

Talkha, Mansoura, Egypt

123

Neural Computing and Applications (2024) 36:7923–7952
https://doi.org/10.1007/s00521-024-09485-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-3340-4031
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09485-5&amp;domain=pdf
https://doi.org/10.1007/s00521-024-09485-5


dk;t Salvage factor of unit

k added in stage t

T Number of stages in the

planning horizon

Xt, Gt;k The capacity and the expec-

ted energy produced for all

existing and selected candi-

date units of each type k

FOMk; VOMk Fixed and variable operating

and maintenance costs

CEENS Cost of EENS in $/MWh

k Percent reduction in total

emission from the base case

V Wind speed

xi Honey badger position

lbi, ubi Lower and upper limits of

each position in the search

space

r1; r2; r3; r4; r5; r6; r7 A random number between 0

and 1

S Source strength

di Distance between xprey prey

and ith badger position

itermax Maximum iterations number

Ch Constant equal to 2

b Ability of the honey badger

to get food which is greater

than or equal to 1

(default = 6)

T
^ Number of hours

LOLE Loss of load expectation

IC Total installed capacity

LP Peak load

Ei Expected energy produced of

the ith generator

pi Availability of the ith

generator

Ui Sum of capacities from 1st to

ith generator

invadd, operadd, fixadd, and

Sadd

Investment, salvage, fixed

and operation costs of FGT

and PHS generating units

EEF Equivalent energy function

PDF Probability distribution

function

MCS Monte-Carlo Simulation

Xt;k Total capacity of existence

and new units

Umax;t Maximum construction

number of each generation

type at stage t

LDt Peak load in stage t

Xt;j Capacity of fuel type j in

stage t

SRmin; SRmax Minimum and maximum

required reserve capacity in

stage t

e Maximum reliability criteria

LOLP Loss of load probability

ELDC Effective load distribution

curve

CF Capacity factor

vi, vr, vo Cut-in, rated, and cut-out

wind speeds

K, C Shape and scale Weibull

parameter

FR
j
min, FR

j
max

Lower and upper bounds of

jth fuel type mix ratio in

stage t

Xt;w Wind output power of each

wind site

emj Emission coefficient

c Discrete step size of the load

Yw State of wind site penetration

in stage t

LDe Effective load

LDd Original load

LDoi Probabilistic load caused by

the forced outage of the ith

generator.

qi FOR of the ith generator

TCi Objective function modified

by PFA of ith individual

Obi Objective function value

without addition penalty fac-

tors for any constraints

x Penalty factor for the con-

straints validated

p1; p2; p3; p4; p5 Violation amounts of the

constraint of spinning reserve

margin; fuel mix ratio,

LOLP, wind penetration

level, and emission reduc-

tion, respectively

a1, a2, a3 and a4 Polynomial coefficients

using polyfit function in

MATLAB

xi Honey badger position

VMP Virtual mapping procedure

MIIPG Modified of intelligent initial

population generation

CAPmin;t, CAPmax;t Minimum and maximum

required capacities for a

stage t
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CAPmin;t�1;CAPmax;t�1 Minimum and maximum

capacities in the previous

stage

PFA Penalty factor approach

TCi Objective function modified

by PFA of ith individual

PHS Pump hydro storage

Obi Objective function value

without additional penalty

factors

FGT Fast gas turbine

1 Introduction

1.1 Motivation and main concepts

Generation Expansion Planning (GEP) is one of the most

relevant problems in the planning of electric energy sys-

tems. It addressed the problem of identifying the most

adequate technology, expansion size, sitting, and timing for

the construction of new plant capacity considering eco-

nomic criteria and technical power system constraints.

However, it is necessary to guarantee that demands will be

continuously supplied in all conditions were either an

unexpected peak demand is occurred or an important unit

fails [1]. The expansion planning criteria can be considered

as conditions and limitations based on the decision-making

process [2]. They are reflections of the positive features,

which the planners would like to have in any future plan

[3, 4] and preparing preventive control actions for active

power [5] and reactive power issues [6].

Recently, the inclusion of uncertainties with various

aspects has been considered in the GEP model as an

effective approach to energy efficiency, conservations, CO2

emission and environmental concerns. Thus, the planning

should be investigated to affect by changing in parameters

due to uncertainties and its capability to accommodate any

changes [7]. In general, uncertainty analysis is critical for

assessing the risks of any system that contains any type of

uncertainty. The uncertainty which depends on nondeter-

ministic in nature cannot be reduced while the uncertainty,

which caused by limited knowledge about the system, is

reduced as the search space expands [8]. However, inte-

grating high share Renewable Energy Sources (RESs)

within the power system planning had imposed a signifi-

cant impact of uncertainties. Therefore, ignoring the vari-

ability and stochastic nature of RES within the GEP model

may result in a lack of robustness of the planning results.

Due to the fluctuation and the unpredictable characteristics

of wind speed, wind power will have significant impact on

the system security, stability, and reliability [9]. Therefore,

techniques and approaches for dealing with such wind

uncertainties should be more efficient and accurate which

can be classified as probabilistic and possibilistic approa-

ches [10]. Besides wind power uncertainty, there are other

uncertainty sources such as load growth, fuel price, fuel

costs, and the outage of generating units have also impact

on expansion plans. Moreover, there are several studies

considering wind energy penetration and PV as renewable

sources for microgrid system such as [11, 12].

1.2 Literature review

In the planning process, the nature of the GEP problem is

nonlinear, mixed-integer, highly constrained, and dynamic.

The study of GEP without considering RESs has been

introduced such as [13, 14] based on minimizing the total

costs and satisfying reliability constraints. In recent years,

several studies have been conducted on the reflection of

environmental protection by adding emission limit con-

straints. Also, the impact of integrated RESs in power

systems and their resulting uncertainties has been treated in

the modeling of GEP problem. Expansion capacity plan-

ning requires not only total costs minimization, but also

wind power uncertainty analysis and emission control

should be handled over the planning horizon [15, 16].

The GEP problem has been solved by several analytical

and optimization techniques without considering uncer-

tainty analysis such as a Non-dominated Sorting Genetic

Algorithm version II (NSGA-II), Modified Shuffled Frog

Leaping Algorithm (MSFLA) that have been used in Refs.

[14, 18 and 17], respectively. Also, Loss Of Load Proba-

bility (LOLP) has been computed as a reliability criterion

in GEP problem which is evaluated based on the cumula-

tive method as [19] where it has been modeled as Mixed

Integer Programming (MIP). As a result, a model of least

cost generation capacity expansion to control carbon

dioxide emissions was presented, taking into account the

effects of uncertain load and wind power generation

[20, 21]. Moreover, the generation and transmission

expansion planning (TEP) has been addressed without

considering RESs uncertainty as [22]. The GEP dimen-

sionality is large which the length of a string is equal to the

product of the number of planning stages and the number

of candidate unit’s types. So that, the Virtual Mapping

Procedure (VMP), Penalty Factor Approach (PFA), and the

Modified of Intelligent Initial Population Generation

(MIIPG) have been accomplished to decrease the GEP

problem search space and reduce the computational time

[17, 23].
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In addition to the above, RES uncertainty is incorpo-

rated into generation and transmission expansion planning

for a long and short-term planning horizon. In [24], the

GEP problem with a certain penetration level of RESs has

been solved by dynamic programming, while the wind and

solar plants was modeled in Wein Automatic System

Planning (WASP-IV).Besides, the effect of renewable

energy uncertainties was assessed in the reliability and

stability of power system. So that, it is important to develop

decision support tools to help generation companies for

achieving maximum their profit in a deregulated electricity

market as [25, 26]. Also, a coordinated generation and

transmission expansion planning in a deregulated electric-

ity market have been addressed with wind power uncer-

tainty analysis as [27]. The wind farm uncertainty was

modeled by a normal PDF, and MCS has been utilized to

include the uncertainty into the GEP or GEP/TEP problem.

The combined GEP and TEP were handled with correlation

of load and generation uncertainties that system uncer-

tainties have been modeled with PDF and MCS to generate

different random scenarios [28]. Also, Particle Swarm

Optimizer (PSO) has been used to solve the TEP problem

with reactive power planning and consideration of wind

and load uncertainties as [29] while SFLA was performed

in [30]. MCS was utilized to simulate the wind output

power based on its PDF. Also, a deep learning method is

one of the recent methods to deal with time series data such

as the long short-term memory (LSTM) network algorithm

which have been used for the same problems as in [31, 32].

But it has more steps to create output and consume more

time which is not effective for expansion planning. How-

ever, the wind power uncertainty has been represented by

annual variation of capacity factor based on historical data

of wind location where the effect of wind power variation

is analyzed at a certain probability of expectation [33].

Furthermore, both long and short-term wind power uncer-

tainties were modeled within the GEP problem. The annual

variation of the capacity credit was used to simulate the

wind power long-term uncertainty. On the other side, the

short-term uncertainty was simulated based on the hourly

variation of wind power as [34]. Added to that, reserve

margin has been adopted to cope with the uncertainty effect

[34], while additional capacities of Pump Hydro Storage

(PHS) and Fast Gas Turbine (FGT) have been utilized to

cope with short-term uncertainty problems [35]. The

problem of short-term uncertainty was modeled using the

autoregressive moving average model. The main shortage

in [33–35] is that the forced outage rate (FOR) of gener-

ating units was not taken into account at variable cost

calculations where the FOR constitutes serious impacts on

energy supplied of each generating units and reliability

indies.

Furthermore, different battery technologies and demand

side management options have been used to cope with the

renewable energy uncertainties for off-grid hybrid renew-

able energy systems [36]. In this paper, the PV and biomass

as renewable energy sources have been considered but the

wind energy, which has more intermittent and variability of

output power and affect the cycling charge of batteries, was

not considered. However, the wind energy penetration in

microgrid system design is considered in [37, 38], but it

was dispatched as a certain value and wind energy uncer-

tainty, and variability was not taken into account that has

big effect on the system reliability. Furthermore, For the

optimal sizing and techno-economic assessment of the

intended hybrid microgrid system consist of solar diesel

generator, PV, battery storage, and wind turbine, four

dispatch approaches have been unitized: load following,

generator order, combined dispatch, and cycle charging

strategy while the system reliability study were carried out

using Dig-SILENT Power Factory [39, 40]. Also, uncer-

tainty of wind energy was not considered through system

reliability calculation. Moreover, the wind speed and

power conversions uncertainties are ignored in [41] and the

wind power is calculated by specified model not based on a

wind site study.

For reliability indies and variable cost calculations, the

probabilistic production cost simulation using the Equiva-

lent Energy Function (EEF) [14, 42] and Effective Load

Distribution Curve (ELDC) [43] methods shows suit-

able accuracy with small computational time. Moreover,

the RES uncertainties have been handled by the point

estimate method for yearly peak loads uncertainties [44]

and for distributed GEP in power distribution networks

[45]. In [46, 47], the uncertainty of wind power has been

modeled as a constraint depending on the wind availability

in each hour. Therefore, the adoption of an hourly com-

mitment of generating unit was considered to show the

short-term impacts of long-term strategies through the

decision-making process. In [15], the GEP analysis with

different electricity scenarios for a mixed hydro-thermal

and wind plants was performed which have impact in terms

of costs and CO2 emissions over the planning period. The

carbon emissions have been added as an objective function

as in [48].

Considering the incorporation of RESs into GEP prob-

lem, a whale optimization algorithm was carried out with

adjustment strategies to decrease the GEP problem search

space such as MIIGP, VMP, and PFA [49]. However, wind

and solar output power have been studied at certain sce-

narios of penetration and emission reduction levels. In [50],

differential evolution algorithm was used for minimizing

the least cost GEP with certain penetration levels of wind

capacity with emission reduction with certain penetration

levels of solar power plants as [51, 52]. Also, wind power
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was considered at only specific capacities through the

modeling of GEP problem without discussing varied sce-

narios [53]. However, there are several wind scenarios

which are not considered to lead to negative impact in

reliability and security system.

1.3 Research gap and main contribution

RESs uncertainty consideration has a vital role in the

planning and operation analysis of power system. Uncer-

tainty analysis has an impact on the reliability and stability

of the power system. So that, it is necessary, integrating the

RES uncertainty analysis into the expansion planning

problems. The presence of wind energy uncertainties is

incorporated into the proposed GEP model in this paper.

The first step is to assess the impact of long-term wind

uncertainties using annual variations in capacity credit at

two real-world sites in Egypt, Zafaranh and Shark El-oui-

nate. The second step addresses each wind site’s short-term

uncertainties. A PDF is used to model the wind speed

uncertainty at each wind site. The wind power curve for

each wind site is then used to estimate wind power, and

MCS is performed. Sensitivity analysis is used for three,

six, and twelve stages as short and long planning horizons

to reduce total costs associated with wind energy penetra-

tion and emission reduction constraints over planning

horizons.

The contributions of this paper can be summarized as

follows:

• A robust multi-stage reliability constrained GEP model

with wind power uncertainty and emission reduction is

proposed to minimize the total costs under satisfaction

constraints.

• The wind power is modeled by a PDF and MCS to

simulate their accompanied uncertainties into the GEP

model where two real wind sites with different mean

and variance wind speeds are simulated.

• PHS and FGT are proposed to cope with the impact of

short-term uncertainty.

• ELDC as a probabilistic production simulation (PPS)

method is utilized to calculate the reliability indies and

variable costs.

• The GEP results are analyzed at different reserve

margins.

• A novel HBA with adjustable strategies of VMP, PFA,

and MIIPG is proposed to achieve optimal and robust

expansion planning.

1.4 Paper structure

The following portions of this work are organized as fol-

lows: Section II presents the conventional GEP model,

whereas Section III establishes the proposed GEP model

including the wind power uncertainty. Section IV describes

the developed HBA for reliability constrained dynamic

GEP. Section V defines the discussions and simulation

findings. Finally, section VI concludes this paper.

2 Conventional GEP model

The Conventional GEP model as base case study can be

formulated [14, 17, and 49] as follows:

2.1 Objective function

The objective function of the GEP problem is to minimize

total costs over the planning period. In this context, the

candidate units are responsible for the investment and

salvage costs, but the candidate and existing units are

jointly responsible for the operation, maintenance, and

outage expenses.

Capital investment cost (I utð ÞÞ is the cost of purchasing

new candidate units that can be provided by

I utð Þ ¼ ð1þ iÞ�tc �
XN

k¼1

CIk � ut;k
� �

ð1Þ

tc ¼ to þ s� t � 1ð Þ ð2Þ

• Salvage value cost SV utð Þ is the actual cost of

producing a unit at a specific time, considering the

depreciation rate, which is determined as follows:

SV utð Þ ¼ ð1þ iÞ�Ts �
XN

k¼1

dk;t � CIk � ut;k
� �

ð3Þ

Ts ¼ to þ s� T ð4Þ

The investment cost for a candidate unit chosen by

the expansion plan is assumed at the start of the stage

when it enters service. The salvage value, on the other

hand, is determined at the conclusion of the planning

horizon [54].

• Operating and maintenance cost (M Xtð ÞÞ is the oper-

ational and maintenance costs for existing and new

candidate units which is assumed to occur in the middle

of the corresponding planning stage as follows:

M Xtð Þ ¼
Xs�1

y¼0

1þ ið Þ� tcþ0:5þyð Þ
h

�
XN

k¼1

FOMk � Xt;k þ VOMk � Gt;k

� �
# ð5Þ
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Each generation unit’s fixed cost is determined by its

capacity, and its variable cost is determined by the antici-

pated amount of energy that each generation unit will

produce at each stage. Therefore, good prediction of the

variable costs and reliability indies is essential to provide

more precise estimation of the predicted energy produced

by each generation unit.

Based on the expected energy not served (EENS), it is

possible to calculate the anticipated energy generated by

each generation unit. The EENS and LOLP, which are

reliability indies, can be calculated by conventional method

or PPS method to obtain cost modeling. The established

capacity outage probability table, load probability table,

and margin between them are the components of the tra-

ditional technique, which is used to compute reliability

indies [55]. Because of the generous size of the GEP

problem, this conventional method is not suitable and takes

more computational time. Thus, there are other PPS

methods that are more efficient for estimating the variable

costs and the reliability indies with smaller computational

time. In this context, the EEF method is one of PPS

methods, but it depends on the greatest common factor for

all adding capacities of existing and candidate units

[42, 49]. Also, the ELDC is another method for any addi-

tional capacity in the planning [43].

• Expected energy not served (EENS) cost

The EENS reflects an important reliability status in

electrical power systems where customer satisfaction

with continuous supply will influence the utility’s

competitive ability. Thence, continuous energy supply,

which indicates better system reliability, can achieve

customer satisfaction. However, depending on its FOR,

any generating unit might not be available at any given

time. As a cost term, EENS should be minimized

because it cannot be made zero. This can be stated as

follows:

O Xtð Þ ¼
Xs�1

y¼0

½ð1þ iÞ�ðtcþ0:5þyÞ � EENSt � CEENS�

ð6Þ

As a result, finding the best expansion planning is

comparable to finding the objective function for solving

the reliability restricted GEP problem as follows:

Ob ¼
XT

t¼1

I utð Þ þM Xtð Þ þ O Xtð Þ � SV utð Þ½ � ð7Þ

2.2 Constraints

• Upper construction limit (utÞ: the quantity of all tech-

nology that has committed to meeting the stage t

maximum construction number is as follows:

0� ut �Umax;t ð8Þ

• Spinning reserve constrain (SR)t: The existing and new

selected candidate units must meet the predicted load

demand and capacity reserve margin limitation, which

is represented as follows:

1þ SRminð Þ � LDt �
XN

k¼1

Xt;k � 1þ SRmaxð Þ � LDt

ð9Þ

• Fuel mix ratio: The capacity of all the existing units

must be limited when choosing candidate technology

for expansion planning as follows:

FR
j
min �

Xt;jPN
k¼1 Xt;k

� FR j
max ð10Þ

Reliability constraint (LOLP): To continue supplying

electricity continuously, both the new and current units

need to meet the reliability criterion. A reliability metric

called Loss of Load Probability (LOLP) is typically used to

show how robust a system is in the face of unforeseen

events.

LOLPðXtÞ� e ð11Þ

2.3 Effective load distribution curve (ELDC)

The calculation of expected energy produced by each

generation unit, and reliability indices are especially criti-

cal issues for solving the GEP problem. For that purpose,

PPS methods have been widely used for such calculations.

The ELDC is used in this study for LOLP, and EENS

calculation. Then, expected energy produced is calculated

based on EENS calculation [43]. In the ELDC, the capacity

and FOR of the generator i are equivalent to ci and 0 with

the fictitious load added to the original load. The sum of the

original load and the probabilistic additional load is called

effective load as formulated as:

LDe ¼ LDd þ
XN

i¼1

LDoi ð12Þ

The ELDC is described in Fig. 1 can be calculated as:

Ui LDeð Þ ¼
Z

Ui�1 LDe � LDoið Þfoi LDoið ÞdLDoi ð13Þ

where Ui LDeð Þ is the PDF of the ELDC convolved with the
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PDFs of the outage capacities of the generators, 1st to

ith;Ui�1 LDe � LDoið Þ is the PDF of the ELDC convolved

with the PDFs of the outage capacities of all the generator,

1st to N-1. Also,f oi LDoið Þ is the PDF of the outage capacity

of the ith generator. The ELDC can be generated by con-

volving the load curve and the plant outage capacity which

leads to the following:

�PnðxÞ ¼ 1� qið ÞPn xð Þ þ qiPn x� cð Þ ð14Þ

Using the UN xð Þ, LOLE and EENS can be calculated

using ELDC as following:

EENS ¼
ZICþLP

IC

UN xð Þdx ¼
Xx¼ICþLP

x¼IC

P
n
ðxÞ ð15Þ

EENS ¼
ZICþLP

IC

UN xð Þdx ¼
Xx¼ICþLP

x¼IC

�P xð Þ ð16Þ

The expected energy produced Ei of the ith generator

can be derived as follows:

Ei ¼ T pi

Z Ui

Ui�1

Ui�1 LDð ÞdLD ð17Þ

The probabilistic generated energy DEi of the ith gen-

erator can be calculated as following:

DEi ¼ EENSi�1 � EENSi ð18Þ

3 Proposed GEP model including wind
power uncertainty

The impacts of long and short-term wind power uncer-

tainties are considered in the proposed robust GEP model.

The long-term uncertainty is represented based on the wind

capacity credit of each wind site which achieves the

expansion constraints. Also, the short-term uncertainty is

tackled by the MCS model.

3.1 Proposed GEP considering wind energy long-
term uncertainty

Long-term uncertainty of the wind power is embedded into

the planning model through the variation of the wind

capacity credit of each site. The reliability indices such as

LOLP and EENS are calculated based on existing and

candidate units by PPS methods. FOR of wind plants are

calculated, in this study, by sliding window technique as

[49, 50]. It is assumed that FOR values for wind energy are

constant over the study period. Based on that technique, the

capacity factor of each wind site is estimated by annual

wind energy produced divided by the rated capacity. The

capacity factor is calculated using Weibull distribution

parameters of wind speed [35] which is different for each

wind site as follows:

CF ¼ e�ðviCÞ
K

� e�ðvrC Þ
K

ðvrCÞ
K � ðviCÞ

K � e�ðvoC Þ
K

" #
ð19Þ

However, the FOR values for wind plant of each site are

calculated as follows:

FOR ¼ 1� CF ð20Þ

The output of a wind site is related to the output of a

single wind turbine, and it scales linearly with the number

of wind generators. All wind turbines have similar input–

output characteristics since installing different wind tur-

bines in the same wind site is not usual.

Consequently, the wind power from two Egyptian wind

sites (Zafaranh and Shark El-Ouinate) is added to candidate

units in the base case. The long-term uncertainty of the

wind power is imposed into the planning model through the

variation of the wind capacity credit of each site. The

traditional objective function of GEP model described in

Eq. (7) is updated by adding the costs of investment invw,

operating operw, and fixed fixw terms of each wind site as

follows:

oblong ¼ obþ obw ð21Þ

obw ¼ invw þ operw þ fixw � Sw ð22Þ

Fig. 1 Reliability indices and

ELDC
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Also, additional constraints related to the two wind sites

should be merged which are the wind level penetration and

emission reduction constraints over all planning period as

follows:

0:1�
X

Xt;k �
XT

t¼1

X2

w¼1

Xt;w � 0:2�
X

Xt;k ð23Þ

X
Xt;w [ 0 ð24Þ

XT

t¼1

XN

j¼1

ðXt;jðjÞ � emjÞ\k ð25Þ

For ease of the construction and manpower, two wind

sites should not be selected in the same stage which is

represented in the following constraint:

X2

w¼1

Yw � 1 ð26Þ

3.2 Proposed GEP considering wind energy
short-term uncertainty

The MCS is used to include wind short-term uncertainty in

the problem. Each site of Zafaranh and Shark El-ouinate

has different mean and variance wind speed which affect

the output capacity of it. Therefore, Weibull distribution

parameters are assessed individually for each site. More-

over, there are two main sources of uncertainties related to

wind RESs: wind speed forecast uncertainty and the wind-

electrical power conversion curve [8]. The wind speed

uncertainty is simulated by accurate estimation of Weibull

parameters, while the wind speed power conversion curve

is selected based on each wind site characteristics. The

scenario-based MCS is a commonly used tool to deal with

wind speed uncertainty in the problem [56]. For each

scenario of MCS, the wind speed is a randomly generated

based on its Weibull PDF which is characterized by the

following equation [57, 58]:

f vð Þ ¼ K

C

� �
v

C

� 	K�1

exp � v

C

� 	K� �
ð27Þ

where v is the wind speed.

The most efficient model for each site is applied based

on the minimum error of energy density for Zafaranh gz vð Þ
and Shark El-ouinate gs vð Þ sites, respectively [59] as

follows:

gz vð Þ ¼ v� vi
vr � vi

� �2

ð28Þ

gs vð Þ ¼ a1v
3 þ a2v

2 þ a3vþ a4 ð29Þ

The general form can be represented as the following

equation:

p vð Þ ¼
pr vr � v� vo

pr � g vð Þ vi � v� vr
0 otherwise

8
<

: ð30Þ

The objective function of the proposed GEP model with

short-term uncertainty ðobscÞ is defined as adding the costs

of adding units ðobaddcapÞ to the base case ðobÞ and wind

costs ðobwÞ as follows:
obsc ¼ oblong þ obaddcap ð31Þ

obadd ¼ invadd þ operadd þ fixadd � Sadd ð32Þ

For each scenario, all constraints for the base case and

long-term uncertainty are examined. The addition of new

FGT and/or PHS units under a wind power violation sce-

nario could alter the system’s fuel mix ratio Eq. (10) and

overall emission Eq. (25). Therefore, whenever a new unit

is added, those constraints need to be checked again.

4 Developed HBA for reliability constrained
dynamic GEP Problem

4.1 Honey badger algorithm

HBA is an entirely novel meta-heuristic technique that is

based on how honey badgers hunt for their prey in an

intelligent way. It is brave and prefers to spend time alone

in self-made burrows, only meeting other badgers to mate.

To access bird nests and beehives for food, it can also

climb trees. A honey badger finds its prey through sniffing,

digging, or following a honey guide bird, which can find

beehives but cannot obtain honey. Exploration and

exploitation phases are developed from the honey badger’s

dynamic search behavior using digging and honey-finding

methods [60]. Firstly, an initial population is generated

based on the number of honey badger and their respective

positions as follows:

xi ¼ lbi þ r1 � ubi � lbið Þ ð33Þ

The intensity (Ini), which is related to concentration,

prey strength, and the distance between the prey and the

honey badger, is then specified. The motion of the prey will

be fast at high smell intensity and vice versa. The intensity

is defined as follows:

Ini ¼ r2 �
S

4pd2i
ð34Þ

S ¼ ðxi � xiþ1Þ2 ð35Þ
di ¼ xprey � xi ð36Þ
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The density factor að Þ is specified and updated which

controls time varying randomization to ensure a smooth

transition from exploration to exploitation phase. So that,

this factor decreases with iterations to decrease random-

ization with time as follows:

a ¼ Ch� exp
�t

itermax

� �
ð37Þ

A flag (F), which alters the search direction, is generated

to enhance escaping from local to optima regions. The

positions of the agents are then updated, and xnew is mod-

ified in accordance with the two stages of the digging phase

and the honey phase as follows:

F ¼ 1 if r3 � 0:5
�1 otherwise



ð38Þ

Then, the positions of agent’s xnew are updated via

digging and honey phases A. The honey badger’s digging

phase resembles the shape of a cardioid, which can be

simulated by doing the following:

xnew ¼ xprey þ F � b� I � xprey þ F � r4 � a� di
� cos 2pr5ð Þ � 1� cos 2pr6ð Þ½ �j j ð39Þ

where b is the ability of the honey badger to get food which

is greater than or equal to 1 (default = 6).

In the honey phase, a honey badger follows the honey

guide bird to reach beehive which is simulated as follows:

xnew ¼ xprey þ F � r7 � a� di ð40Þ

The flowchart diagram of the HBA is shown in Fig. 2.

Therefore, a honey badger performs search closed to prey

location, and the searching process is influenced by time

varying (a). Also, the HBA performance is significantly

affected by two user-defined parameters (bandCh) so that

these parameter values should be selected carefully. In this

context, the best parameter values (b ¼ 6; andCh ¼ 2) of

the proposed algorithm are taken from [60].

B. Enhanced HBA for the proposed large-scale GEP

model.

The proposed GEP problem is a high large dimensional

problem with multiple conflicting objectives, uncertainty

analysis and nonlinear constraints which represents a

complex optimization problem. Thus, some modifications

are proposed to enhance the HBA to deal with this prob-

lem. VMP, PFA, and MIIPG improve the effectiveness of

the meta-heuristic algorithm as follows [23, 49]:

(1) VMP

This step aims to transform each combination of

candidate units into a dummy variable which repre-

sents a position of each agent in the search space.

Thus, the decision variable of each stage is repre-

sented by single variable only which needs less

memory space. Further, if the mapped variable took

part in all related solutions, a slight change in the

mapped variable will reduce the infeasible solutions.

Thus, a multivariable could be mapped into a single

variable, which is the decision variable in this

problem. As five diverse types of units are assumed

to be decision variables for each stage, the array size

of the problem solution is increased by multiples of

5.

(2) MIIPG

Generation of initial population is incorporated to

decrease the search space and improve performance

of heuristic algorithm. Thus, the minimum and

maximum cumulative capacity is assumed to be

available in the previous stages. Consequently, the

minimum and maximum required capacity for each

stage can be calculated based on reserve margin as

follows:

CAPmin;t ¼ 1þ SRminð Þ � LDt � CAPmin;t�1 ð41Þ

CAPmax;t ¼ 1þ SRmaxð Þ � LDt � CAPmax;t�1 ð42Þ

whereCAPmin;t and CAPmax;t are the minimum and

maximum required capacities for a stage t which are

based on forecasted load demand and reserve mar-

gin; CAPmin;t�1 and CAPmax;t�1 are minimum and

maximum capacities in the previous stage which are

the sum of capacities of existence and selected units.

Their values are always updated with each selected

candidate combination.

Figure 2 shows the flowchart illustrating the detail

of the proposed robust expansion model with long-

term uncertainty representation. According to block

(A), the constraints (8–11) are checked for each

particle. Then, the infeasible particles are penalized

as in block (B) while the wind short-term uncertainty

is studied for feasible solutions only as in block (C).

For each feasible particle in the population, by using

the MCS, the wind speed is randomly generated

based on it is a Weibull PDF. Then, the output power

for each wind site is calculated based on the power

curve for each site. For each wind power scenario,

the reserve, fuel mix ratio and reliability constraints

are checked. If any constraint is violated, additional

capacities are added to cope with wind energy short-

term uncertainty effects.

The wind capacity credit from each wind site is

considered trough the wind long-term uncertainty

analysis. Then for each feasible solution, the wind

speed scenarios are generated based on PDF by MCS

technique to deal with wind short-term uncertainty.

The number of scenarios is 500 to model the

uncertainties. The wind speed scenarios and
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constraints checked are established for any stage

containing wind power penetration. But the con-

straints are only checked for stages that have no wind

power with a mean value of wind power scenarios of

previous stages. Moreover, the wind power for all

previous stages is taken into account at current stage

study as mean value of wind power scenarios. The

constraints are checked for each scenario, and FGT

and PHS units are used to adapt the scenarios vio-

lated constraints. The LOLP is used as a reliability

criterion which calculated by ELDC. As LOLP value

is proportional to reserve capacity over the planning

horizon, the GEP with uncertain analysis is studied at

different reserve margin. Then, the results of the

wind uncertainty analysis, total expansion planning

cost, and LOLP are compared.

(3) Modified objective function with PFA

The PFA can be used to convert a constrained

problem into an unconstrained problem. As a result,

the objective function is modified to include propor-

tional penalty values for each violated constraint,

avoiding the infeasible solutions in later iterations.

Fig. 2 Flowchart for the

proposed HBA for solving the

GEP incorporating wind power

uncertainty
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The total costs are given as the objective function

with the PFA (TC):

TCi ¼ Obi þ x� ð
X

p1 þ
X

p2 þ p3 þ p4 þ p5Þ
h i

ð43Þ

Figure 3 describes the evaluation of the expected total

costs with short-term uncertainty representation based on

scenarios of MCS. As shown, each scenario is checked for

the constraints and other generating units of PHS and/or

FGT can be added as referred in block (D), in some cases,

to meet the constraints. Then, the objective function of the

current scenario is calculated, which is saved and MCS is

reiterated. After convergence of MCS, the meaning of all

expected values of scenarios is evaluated. For each sce-

nario, the objective function is calculated after adding the

costs due to addition capacities. Then, the mean value of all

scenarios is considered as the objective function for this

particle.

5 5 Simulation results

5.1 Test system description

The test system consists of 15 existing generation units

(Oil, Liquid Natural Gas (LNG), coal and Nuclear) is

tabulated in Table 1. Five different new generation tech-

nologies are selected as candidate conventional units (Oil,

LNG, Coal, and Nuclear) as in Table 2. The forecasted

peak load is illustrated in Table 3, with initial peak load of

5000 MW, and other data of existing and candidate gen-

eration units are taken from [14, 23, and 61]. In this study,

the discount rate is taken 8.5%; LOLP criterion at each

stage is considered of 0.01. The lower and upper limits for

reserve margin are set at 20 and 50%, respectively. EENS

cost is assumed to be 0.05 $/kWh. The bounds of capacity

mixes by fuel types are 0% and 30% for oil-fired power

plants, 0 and 40% for LNG-fired, 20 and 60% for coal-

fired, and 30 and 60% for nuclear, respectively. The

emission coefficient for oil is 0.85, LNG is 0.5, and coal is

1.05 while the reduction in total emission is considered as

Fig. 3 Evaluation of the

expected total costs

incorporating wind power short-

term uncertainty
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10% of base case [49, 50, and 62]. The cost of unserved

energy, or EENS, which is calculated by ELDC method, is

set at 0.05 $/kWh. The initial period is set as two years

while the economic and technical characteristics of the

additional units are listed in Table 2 as [35].

The candidate wind sites, in this study, are Zafranah,

and Shark El-ouinate wind farm sites. The first site,

Zafaranh wind farm, is in the Suez Gulf which is approx-

imately 200 km southeast Cairo. While the second site,

Shark El-ouinate, is in depth southern Egyptian desert. The

operational data of wind turbines and their descriptive

statistics, which are considered in this study for the two

sites, are recorded in Table 4. Added to that, the time series

data of the wind speed for the year 2019 in hourly basis of

Zafranah, and Shark El-ouinate wind farm sites are taken

from [63]. As shown in Table 4, the mean wind speed

value of Zafaranh site is greater than its value for Shark El-

ouinate site. But the variance and standard deviation for

Zafaranh site are less than it values for Shark El-ouinate.

Thus, most values of the generated wind speed scenarios

based on PDF for Zafaranh site will be around the corre-

sponding mean and below its maximum speed other than

Shark El-ouinate site which reaches maximum speed val-

ues with a smaller number of scenarios. So, studying each

wind site with its characteristics is especially important for

the reliability, and security of the power system.

5.2 GEP results and discussion

HBA is used to solve the GEP problem as base case and

wind energy uncertainty analysis based on the considered

three policies planning horizon as follows:

Table 1 Technical and economic data of existing generating units

Name No. of units Unit capacity (MW) FOR% Operating cost ($/kWh) Fixed O&M cost ($/kW-Mon)

Oil#1 1 200 7.0 0.024 2.25

Oil#2 1 200 6.8 0.027 2.25

Oil#3 1 150 6.0 0.030 2.13

LNG G/T #1 3 50 3.0 0.043 4.52

LNG C/C #1 1 400 10.0 0.038 1.63

LNG C/C #3 1 400 10.0 0.040 1.63

LNG C/C #4 1 450 11.0 0.035 2.00

Coal #1 2 250 15.0 0.023 6.65

Coal #2 1 500 9.0 0.019 2.81

Coal #3 1 500 8.5 0.015 2.81

Nuclear #1 1 1000 9.0 0.005 4.94

Nuclear #2 1 1000 8.8 0.005 4.63

Table 2 Technical and economic data of candidate plants

New units Umax Capacity (MW) FOR % Operating cost ($/kWh) Fixed O&M cost ($/kW-Mon) Capital cost ($/kW) Lifetime (yrs)

Oil 5 200 7.0 0.021 2.20 812.5 25

LNG C/C 4 450 10.0 0.035 0.90 500.0 20

Coal (bit) 3 500 9.5 0.014 2.75 1062.5 25

Nuclear #1 3 1000 9.0 0.004 4.60 1625.0 25

Nuclear #2 3 700 7.0 0.003 5.50 1750.0 25

FGT 4 150 0.8 53.23*10–3 0.5725 71.474 25

PHS 3 200 5.0 0.227*10–3 0.4363 154.377 50

Table 3 Forecasted peak

demand in Gwatts
Stage 1 2 3 4 5 6 7 8 9 10 11 12

7 9 10 12 13 14 15 17 18 20 22 24
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• Policy-1: short-term GEP problems with 6-year plan-

ning horizon

• Policy-2: long-term GEP problems with 12-year

horizon

• Policy-3: long-term GEP problems with 24-year

horizon

Two cases are considered in the first two polices in this

paper. The first case study is performed using the proposed

framework, and results are compared with different other

techniques in the literature. This case study is the base case

in which the original problem is solved without wind

energy penetration and emission reduction constraint.

Then, the second case study is implemented for solving the

GEP problem which includes wind energy uncertainty

analysis and emission reduction objective function. Added

to that, an extra scenario that aims at minimizing the total

GHG emission as an objective function:

min GHG Emission ¼
XT

t¼1

XN

j¼1

ðXt;jðjÞ � emj

 !
ð41Þ

The long-term and short-term wind uncertainties are

studied with 500 MCS scenarios of wind speed based on

PDF of each wind site. Each planning horizon consists of

two years of stage, making them to be 3, 6, and 12 stages in

short- and long-term planning horizons. The number of

years between the reference date of cost calculations and

the first year of study (t) are assumed to be 2 years.

5.3 Policy-1: simulation results for 3-stages case
study

5.3.1 GEP results as base case of 3-stages case study

For policy-1, as a base case study, the GEP model is

solved, without considering wind energy penetration and

emission reduction constraints, using different optimization

techniques. The competitive techniques of Particle Swarm

Optimization (PSO) [23], Crow Search Algorithm (CSA)

[64], Aquila Optimizer (AO) [65], Blad Eagle Search

(BES) [66], and the proposed HBA are carried out for

solving the GEP. For all techniques, the specified param-

eters are 200 of iteration number, 60 of population size and

30 simulation runs while the population size is taken 30 for

BES only since each individual per each iteration has two

times for function evaluations. Moreover, the penalty fac-

tor value (x), which is used to penalize the infeasible

solutions, is equal to 1015. PSO, CSA, AO, BES, and HBA

are executed and their optimal results, and the associated

statistical indices of each applied algorithm are recorded in

Table 5. This table displays the total number of each type

of power plant in the planning model for comparative

algorithms.

The obtained comparative results show that the pro-

posed HBA has achieved the best total costs compared to

the other applied algorithms, whereas the improvement of

the objective function is equal to 3.2, 1.1 and 0.081% in

costs over the CSA, AO, and BES, respectively. Also, the

proposed HBA provides the smallest standard error and

deviation of 2.27*107 and 1.25*107, respectively. More-

over, the best cost of PSO and HBA are the same and the

average cost of PSO is less than HBA, but HBA provides

the smallest worst total cost with 7.1736*109 $ where the

CSA, AO, BES and PSO achieve 7.3464*109, 7.3267*109,

7.1976*109 and 7.2265*109 $, respectively. In the context,

the HBA is more staple during transfer from run to another

one as shown in Fig. 4. Also, the LOLP values are shown

in Table 6 which indicates that the reliability criterion is

satisfied for each applied algorithm. Moreover, Fig. 5

describes the convergence curves of CSA, AO, BES, PSO

and the proposed HBA. It can be observed from Fig. 5 that

the HBA algorithm shows better convergence rates com-

pared to the others. As shown, it provides a higher con-

vergence rate in finding the least objective in

approximately 140 iterations.

Table 4 Candidate wind turbine

characteristics
Site Zafranah Shark El-ouinat

Wind turbine type Nordex N43 Nordex-N100

Rated power (Pr) (kw) 600 2500

Hub height (m) 55 100

Cut-in wind speed (m/s) 2.5 3

Cut-off wind speed (m/s) 25 25

Rated wind speed (m/s) 15 12.5

Mean (m/s) 7.1468 6.4966

Maximum (m/s) 15.897 13.508

Minimum (m/s) 1.8 0.077

Standard deviation / Variance (m/s) 1.8666 / 3.4844 / 6.3198
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5.3.2 GEP results considering wind energy uncertainty
3-stages case study

The previous base case for 3-stages GEP model is resolved

considering wind energy long-term and short-term uncer-

tainty analysis. While the emission reduction contraint is

taken into account based on emission value in the base

case. In this policy, a wind power plant source from two

different wind sites are added as two wind plants to the

Table 5 Total Number of newly candidate units at each stage for case 1 and the related Descriptive statistics

Algorithm Candidate units Descriptive statistics ($)

Oil LNG Coal Nuclear

#1

Nuclear

#2

Best cost

*109
Average cost

*109
Worst cost

*109
Standard error

*107
Standard dev.

*108

CSA 6 5 4 3 0 6.7331 7.0613 7.3464 2.58 1.41

AO 3 8 3 3 0 6.5924 7.0511 7.3267 2.99 1.64

BES 1 9 3 3 0 6.5734 6.963 7.1976 2.53 1.38

PSO 1 8 3 3 0 6.5204 6.8125 7.2265 3.09 1.69

HBA 1 8 3 3 0 6.5204 6.856 7.1736 2.27 1.25

Fig. 4 Recorded total cost

characteristics of the

competitive algorithms for

policy 1

Table 6 Values of LOLP criterion for policy 1-A

Stages CSA AO BES PSO HBA

1 0.009787 0.009787 0.009787 0.009787 0.009787

2 0.00879 0.007991 0.005251 0.005251 0.005251

3 0.005648 0.00374 0.003686 0.008899 0.008899

Fig. 5 Converging

characteristics of the

competitive algorithms for

policy 1
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candidate units in the base case. The total wind contribu-

tion level is up to 10–20% of the installed capacity as an

alternative candidate plant. Also, the emission reduction

coefficient is taken as 10% reduction percent from the base

case over the planning horizons. The proposed HBA are

utilized while the penalty factor value (x) is equal to 1020.

Table 7 summarizes the optimal results obtained for 50 and

60% two reserve capacity margin cases considering the

wind speed scenarios by MCS via PDF for each feasible

particle, as shown in Fig. 6. After generating wind speed

scenarios based on its PDF, wind output power for each

wind site is estimated for Zafaranhand Shark El-Ouinate

site, respectively. Then, the reserve, fuel mix ratio, and

LOLP constraints are checked for each scenario, and the

total cost is calculated for scenarios which satisfy the

constraints. When the particle with wind power scenario

does not satisfy all constraints, the addition capacities of

FGT and/or PHS are added to cope with wind power short-

term uncertainty. Figure 7 shows the total costs for each

scenario as example that are combines the costs of existing,

candidate and addition units.

For scenarios which violate the constraints, the FGT

and/or PHS are added until the constraints are satisfied and

the economic effect is added to total costs of scenario. The

total cost of the scenario is saved, and MCS is reiterated

until the scenario’s number is ended. The proposed HBA is

applied for the two different specified levels of the reserve

margin and the number of newly candidate technology

type, FGT and PHS number units at each planning stage are

tabulated in Table 7 at different reserve margin. The PDF

and CDF of LOLP values of each scenario before and after

adding the FGT and/or PHS units are shown in Fig. 8 as

related to 50% reserve capacity and in Fig. 9 as related to

60% reserve capacity.

The PDF and CDF of LOLP values at each stage

demonstrate the positive impacts of the FGT and/or PHS

additional units on the reliability system target. At stage 1,

as shown in Fig. 8A, the number of scenarios which satisfy

the LOLP constraint is less than 40% of the total scenarios

before adding FGT and/or PHS units. At the same stage,

100% of the scenarios satisfy the LOLP constraint after

adding FGT and/or PHS units. On the other side, at stage 2,

the values of LOLP criteria are achieved without any

addition of FGT and/or PHS units as shown in Fig. 8B.

Moreover, at wind penetration level constraints over the

planning horizon, which mean wind power from previous

stages are considered, no constraints are satisfied for all

scenarios at the stage 3 without adding any capacity as

shown in Fig. 8C. Because of the reliability criteria is

affected by reserve capacity, the GEP with wind uncer-

tainty analysis is solved at 60% maximum threshold of the

reserve margin. As shown in Fig. 9A, all wind power

scenarios achieve all the constraints without adding FGTTa
bl
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and/or PHS units at stage 1. On contrary, adding capacities

FGT and/or PHS units are required for stage 2 in order to

achieve the reliability criteria where at increased wind

penetration level as shown in Fig. 9B. Increasing the nec-

essary reserve margin results in violating the LOLP con-

straint for many scenarios. Therfore, installing more units

of FGT and/or PHS is required as illustrated in Fig. 9C at

stage 3. Thus, the total cost of expansion planning is

increased considering 60% reserve margin, which is

8.205*109 $, which is higher than the case of 50% reserve

margin, which is 8.183*109 $.

5.4 Policy-2: Simulation results for 6 stages case
study

5.4.1 GEP results as base case of 6 stages case study

In this policy, a long-term planning horizon of 12-year (6

stages) is managed. In the first case, wind penetration and

emission reduction constraint are not included where the

CSA, AO, BES, PSO, and the proposed HBA are

employed. Their optimal results in terms of the total

number of new conventional candidate generation units for

each stage of the planning horizon and the accompanied

statistical indices are recorded in Table 8.

From Table 8, it is found that the proposed HBA pro-

vides the minimum total costs and better performance than

other algorithms. The proposed HBA has achieved a 2.5,

4.5, 2.5, and 5.16% enhancement in costs over CSA, AO,

BES, and PSO, respectively. It should be noted that the

performance of PSO algorithms is affected by the planning

horizon than the others.

The proposed HBA derives the best performance over

the other competitive algorithms since it achieves the least

total costs of their best, average, worst, standard error, and

standard deviation of 1.2996*1010, 1.3675*1010,

1.4211*1010, 4.43*107 and 2.43*108, respectively. More-

over, the recorded costs of the comparative algorithms

indicate that the proposed HBA has smallest and

stable values of the worst, average, and best of total costs

over all runs as shown in Fig. 10. Also, the proposed HBA

shows the best convergence rate compared to the others in

finding the least objective target as displayed in Fig. 11.

5.4.2 GEP results considering wind energy uncertainty
via 6 stages case study

In this case, the proposed HBA is utilized for solving the

GEP problem at 50% and 60% reserve margin. The optimal

results of the number of newly candidate technology type,

Fig. 6 Example 500 scenarios

of wind output power of each

wind site

Fig. 7 Expected costs of the

generated scenarios of wind

power in Fig. 5
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Fig. 8 PDF and CDF of LOLP

values before and after adding

FGT and/or PHS units at 50%

reserve capacity
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Fig. 9 PDF and CDF of LOLP

values before and after adding

FGT and/or PHS units at 60%

reserve capacity
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FGT and PHS number units at each planning stage are

recorded in as shown in Table 9. As shown, the wind

power is penetrated at 1, 2 and 6 stages for GEP model at

50% or 60% reserve margin.

In addition to that, the LOLP values are represented as

PDF and CDF before and after adding capacities of FGT

and/or PHS for stages 1, and 2 as shown in Fig. 12. As

shown, the number of scenarios which satisfy the LOLP

constraint is less than 40% of the total scenarios before

adding FGT and/or PHS units. At the same stage, 100% of

the scenarios satisfy the LOLP constraint after adding FGT

and/or PHS units. At stage 2, the values of LOLP criteria

Table 8 Total number of newly candidate units in each stage for the base case of policy 2 and the associated Statistical

Algorithm Candidate units Statistical results

Oil LNG Coal Nuclear

#1

Nuclear

#2

Best cost

*1010 $

Average cost

*1010 $

Worst cost

*1010 $

Standard error

*107 $

Standard dev.

*108 $

CSA 8 11 6 4 0 1.3327 1.4306 1.445 6.42 3.51

AO 13 9 7 4 0 1.362 1.4473 1.5319 6.87 3.76

BES 14 10 5 4 0 1.3335 1.3982 1.4477 5.57 3.05

PSO 11 12 5 4 0 1.3702 1.4179 1.5179 6.32 3.46

HBA 5 13 6 4 0 1.2996 1.3675 1.4211 4.43 2.43

Fig. 10 Recorded total cost

characteristic of the competitive

algorithms for policy 2

Fig. 11 Converging

characteristics of the

competitive algorithms for

policy 2
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are improved as well. At stage 3, there is no wind power

penetration whereas the LOLP criterion is preserved at the

mean value of wind power scenarios of the previous stages

and additional units. At stage 4, no new wind power is

installed. Despite the LOLP constraint is violated in this

stage with 0.02 value, it is maintained to 0.005 after con-

sidering the previous additional units. Moreover, at stages

5, and 6, the wind power is added and checked the con-

straints with previous additional units; the LOLP criterion

is guaranteed within the prescribed limit. Considering the

constraint of the reserve margin at 60%, total planning

costs and reliability criteria are affected which depend on

the timing of wind power deployed.

The results of expansion planning at 60% reserve mar-

gin indicate that the wind power plants are deployed in

later planning stages of 3, 4, 5 and 6, as shown in Table 9

where the LOLP values at stage 3 are displayed in Fig. 13.

The constraints, especially reliability constraint, are not

affected by wind power deployed in later stages and LOLP

criterion is preserved inside the permissible limit and less

than 0.01 without any additional capacities due to increase

spinning reserve and wind power penetrated in the last

stages. Even though no additional units are added, the total

expansion planning costs at 50% reserve margin is less

than it at 60% reserve margin which are 1.6017*1010, and

1.6665*1010, respectively.

5.4.3 Policy- 3:Simulation results for 12 stages case study

GEP results as base case of 12 stages case study

In this policy, a long-term planning horizon 24-year (12

stages) is conducted. CSA, AO, BES, PSO, and the pro-

posed HBA are employed for solving reliability constraint

GEP for this policy. Table 14 shows the total number of

new candidate generation units for each stage. Also, their

achieved result in terms of the statistical indices of each

applied algorithm is recorded in Table 10.

As shown, the proposed HBA has the best performance

compared to the others with percentage reductions of 4.2,

2.72, 2.7, and 3.4% over CSA, AO, BES and PSO,

respectively. Thus, the HBA achieves the optimum relia-

bility constrained GEP with the minimum total cost. It

achieves the least total costs of their best, average, worst,

standard error, and standard deviation of 2.3706*1010,

2.4953*1010, 2.6569*1010, 1.33*108 and 7.31*108,

respectively. The total cost results of each run of the

comparative algorithms are drawn as displayed in Fig. 14

which indicates that the proposed HBA has the least sta-

tistical results compared to others. Also, the proposed HBA

shows the best convergence rate compared to the others in

finding the least objective target as displayed in Fig. 15.

These figures show the fast response rate of the proposed

HBA in reaching the most economical solutions.Ta
bl
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Fig. 12 PDF and CDF of LOLP

values before and after adding

capacity at 50% reserve

capacity

Fig. 13 PDF and CDF of LOLP

values before and after adding

capacity at 60% reserve

capacity
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Table 10 Total Number of newly candidate units in each stage for the base case of policy- 3-a

Stages Oil LNG Coal Nuclear

#1

Nuclear

#2

Best cost

*1010 $

Average cost

*1010 $

Worst cost

*1010 $

Standard error

*108 $

Standard dev.

*108 $

CSA 21 19 12 9 3 2.4753 2.6369 2.8054 1.48 8.13

AO 18 17 18 9 0 2.4369 2.595 2.8125 1.86 10.2

BES 21 12 12 8 4 2.4366 2.5521 2.7434 1.34 7.35

PSO 16 20 14 9 3 2.4541 2.5687 2.7193 1.34 7.35

HBA 10 19 10 8 4 2.3706 2.4953 2.6569 1.33 7.31

Fig. 14 Recorded costs

characteristics of the

competitive algorithms for

policy 3

Fig. 15 Converging rates of the

competitive algorithms for

policy 3
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Fig. 16 PDF and CDF of LOLP

values before and after adding

capacity at 50% reserve

capacity for policy 3-b
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5.4.4 GEP results considering wind energy uncertainty
for 12 stages case study

In this case of policy 3, for 12 stages (24 year planning

horizon), the proposed HBA is utilized for solving the GEP

problem at 50% and 60% reserve margin. The optimal

results of the total number of newly candidate technology

type are tabulated in Table 11. Also, FGT and PHS number

units at each planning stage are recorded in the two col-

umns Table 11, at different reserve margins. However, the

PDF and CDF of LOLP values for this policy at 50%

reserve margin for stages 1, 2, 6 and 9 are shown in

Fig. 16. For stage 1, less than 40% of the scenarios are

achieved all constraints before adding any units. On the

other side, the LOLP values are achieved for all scenarios

after adding one unit of FGT and one of PHS as shown in

Fig. 16A. The number of addition units for stage 2 is more

than respect to stage 1 because of the number of scenarios

in stage 2, which achieved the constraints, is less than 10%

of total scenarios as shown in Fig. 16B. In stages 3, 4, 5,

6,7, and 8, LOLP target is satisfied within the prescribed

limit without any addition units which LOLP value is less

than 0.01 as shown in Fig. 16C. Also, the LOLP constraint

at stage 9 requires addting a nother FGT unit to achieve the

target value. As shown in Fig. 16D, the required addition

capacity is 150 MW of FGT because of 10% of the sce-

narios is infeasible of LOLP constraint. Considering the

constraint of the reserve margin at 60%, the results of

expansion planning is recorded in Table 11 where the

LOLP values at stages a, 10 and 12 are displayed in

Fig. 17. From Fig. 17A, less than 40% scenarios have

LOLP value greater than the limit before adding one unit of

FGT and one of PHS to correct this situation. More addi-

tional units are required at stage 10 to increase the LOLP

value as shown in PDF and CDF in Fig. 17B. At stage 11,

although no wind plant is deployed, the LOLP values are

checked at the mean value of wind power scenarios, which

penetrated in the previous stages, and has 0.089 value.

Therefore, the LOLP target is achieved when checked with

previous adding units at stage 11 while four FGT and three

PHS units are required to adjust the LOLP value at stage

12.

5.4.5 GEP Emission reduction strategy results considering
wind energy uncertainty

The applications are extended to apply the proposed pro-

cedure on two test systems. Each system has two scenarios

the first is based on the cost minimization while the second

is based on the minimization of the emission. An assess-

ment of the four scenarios is added. In addition to the

previous four scenarios, the cost based scenario is imple-

mented for large-scale test system. Tables 12 and 13

summarize the comparative 3-stages GEP model results

obtained of two cases of objective functions at 60% reserve

capacity margin for two cases that aimed at minimizing the

total costs and minimizing the GHG emission in Cases 1

and 2, respectively. Similarly, Tables 14 and 15 summarize

the comparative 6 stages GEP model results obtained of

two cases of objective functions at 60% reserve capacity

margin.

Fig. 16 continued
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Fig. 17 PDF and CDF of LOLP

values before and after adding

capacity at 60% reserve

capacity for policy 3-b
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6 Conclusion

Reliability constrained GEP problem is a highly complex,

nonlinear, multiple constraints and dynamic problem.

Firstly, the GEP problem is solved without wind energy

penetration and emission reduction constraint as the base

case. The proposed HBA algorithm is applied with GEP

model modifications to solve GEP problem and compared

with other algorithms in the base case. Thus, the perfor-

mance of the proposed HBA is better than other techniques.

Also, reliability indies such as EENS and LOLP are cal-

culated by ELDC as one of production simulation methods.

The base case results indicate that the proposed HBA has

effective and better performance than compared algo-

rithms. Moreover, the robust GEP model as the short and

long-term planning horizon is proposed in this paper and

solved as the base case. Then, it is presented considering

long and short-term wind uncertainties effect of the high

share of wind energy from two different wind sites. Wind

capacity credit from each wind site is considered during

long-term uncertainty analysis as the first step. In the

second step, wind power uncertainty from each site is

modeled by wind speed scenarios based on its PDF and

included in the planning by using MCS. For each scenario,

all constraints are checked and addition capacities by FGT

and/ or PHS units are added to deal with wind short-term

uncertainty. The total costs are calculated in case of

infeasible particles after adding penalty factor, and it cal-

culated for feasible particles with wind scenarios after

addition economic effect of the required capacities. The

GEP models as reference case study and considering wind

long and short-term uncertainties are analyzed for 3, 6, and

12 stages as short and long planning horizons. Simulation

results indicated that considering wind long and short-term

uncertainties in the expansion planning leads to a robust

and flexible planning and guarantees the safe operation of

system under uncertainty conditions. In the future work,

the correlation factor between wind uncertainty scenarios

and using other techniques for uncertainty analysis is

suggested in the search space of the GEP problem with

considering wind uncertainty. However, it is advised that

the system’s reliability be examined during the planning

and operating phases to maintain it at target value, partic-

ularly when wind energy is penetrated. Additionally,

Table 12 Comparative 3-stages

GEP model results
Objective function Total cost *109 ($) GHG emission*103 (Ton. CO2)

Case 1: total Cost minimization 8.21 5.4075

Case 2: GHG emission minimization 8.51 5.0525

Table 13 Number of newly

candidate units for 6 stages at

60% reserve Margin

Stages Oil LNG Coal Nuclear #1 Nuclear #2 Wind (Zaf) Wind (Shark) FGT PHS

1 3 0 3 2 0 1 0 2 2

2 0 0 0 2 0 0 1 1 0

3 0 0 0 1 0 0 1 0 0

Total 3 0 3 5 0 1 2 3 2

Table 14 Comparative 6 stages

GEP model results
Objective function Total cost *1010 ($) GHG emission *103 (Ton. CO2)

Case 1: total Cost minimization 1.6665 8.4325

Case 2: GHG emission minimization 1.7603 7.8125

Table 15 Number of newly

candidate units for 6 stages at

60% reserve Margin

Stages Oil LNG Coal Nuclear #1 Nuclear #2 Wind (Zaf) Wind (Shark) FGT PHS

1 3 3 2 2 0 0 1 0 0

2 0 0 2 2 0 0 1 0 0

3 0 0 0 0 1 0 0 0 0

4 0 1 1 0 2 1 0 0 0

5 0 0 0 1 0 0 1 0 0

6 3 0 1 0 0 1 0 0 0

Total 6 4 6 5 3 2 3 0 0
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during the economic dispatch phase of the available gen-

erating units, the emission costs as an objective function

should be taken into consideration. Also, the network-

based GEP can be changed the problem complexity and

therefore needs deep machine learning algorithms to han-

dle the increased complexity.
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