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Abstract
An accurate prediction of complex product quality parameters from process time series by an end-to-end learning approach

remains a significant challenge in machine learning. A special difficulty is the application of industrial batch process data

because many batch processes generate variable length time series. In the industrial application of such methods,

explainability is often desired. In this study, a 1D convolutional neural network (CNN) algorithm with a masking layer is

proposed to solve the problem for time series of variable length. In addition, a novel combination of 1D CNN and class

activation mapping (CAM) technique is part of this study to better understand the model results and highlight some regions

of interest in the time series. As a comparative state-of-the-art unsupervised machine learning method, the One-Nearest

Neighbours (1NN) algorithm combined with dynamic time warping (DTW) was used. Both methods are investigated as

end-to-end learning methods with balanced and unbalanced class distributions and with scaled and unscaled input data,

respectively. The FastDTW and DTAIDistance algorithms were investigated for the DTW calculation. The data set is made

up of sensor signals that was collected during the production of plastic parts. The objective was to predict a quality

parameter of plastic parts during production. For this research, the quality parameter will be a difficult or only destructively

measurable parameter and both methods will be investigated for their applicability to this prediction task. The application

of the proposed approach to an industrial facility for producing plastic products shows a prediction accuracy of 83.7%. It

can improve the reverence method by approximately 1.4%. In addition to the slight increase in accuracy, the CNN training

time was significantly reduced compared to the DTW calculation.
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1 Introduction

Artificial intelligence (AI) has been widely applied in the

industry over the last two decades [1, 2]. Machine learning

(ML), including deep learning (DL), as a subfield of AI, is

becoming increasingly important for research in image and

signal processing, as well as for industrial applications

[3, 4].

In [5], the focus was on the detection of defects in

plastic parts with a convolutional neural network (CNN)

through image analysis in combination with edge com-

puting and Internet of Things (IoT) systems. Some chal-

lenges of quality prediction in the context of big data in the

field of Industry 4.0 were mentioned in [6].

In this paper, our focus is on time series with a high

sampling rate and different lengths, but a small number of

records. In this context, the topic of TSC has gained

importance as a key component of signal processing from

ML.

In [7] a new approach for adaptive multi-scale pooling

and the use of temporal encoding was used to improve

classification accuracy, especially on short data obtained as

partial time series.

Dempster et al. [8] described the use of the HYbrid

Dictionary-ROCKET Architecture (HydRa) model and

compared it with the RandOm Convolutional KErnel

Transform (ROCKET) algorithm for extracting and

counting symbolic patterns in time series. It is shown that

ROCKET is an outstanding algorithm capable of classify-

ing time series accurately and quickly [9].

In [10], a deep neural network for TSC was used, which

was the most exhaustive study of DNNs for TSC. A total of

8730 deep learning models have been trained on 97 time

series data sets. Another method is the shepard interpola-

tion neural networks (SINN) model which provides a

shallow learning approach with minimal use of training

samples. The SINN networks are more interpret-able than

other neural networks. It learns metric features of the

trained time series. In [11] a leverage novel SINN archi-

tecture was bench-marked to other TSC algorithms. How-

ever, the choice of ML models and algorithms for time

series classification is limited by classification accuracy,

computational time and the ability of interpretation.

Batch production processes are extremely popular in the

process industry. A distinct property of such processes is

that the process data are time series with different lengths

by different batch operations. The analysis of non-periodic

time series from batch production processes is the aim of

this study. Such signals are often measured in discontinu-

ous production processes, e.g. injection moulding of plastic

parts. The product quality of a batch process will be

influenced by the operating parameters.

The first step in obtaining information about the pro-

duction process is data acquisition. It consists of process

parameters, quality values, or sensor signals. Figure 1

illustrates the steps to build a prediction model using ML.

The upper part shows the steps mentioned in [12]. The

lower part of Fig. 1 describes the proposed approach in this

study. The data are accumulated by sensor signals from

inside the mould cavity during the production of plastic

parts. A brief description of the process is given in Sect.

3.1. The next step of the upper part in Fig. 1 would be the

task of feature extraction. Feature extraction can be much

more difficult than building the ML model and in some

cases requires more expertise on the production process.

The advantage of the proposed end-to-end method consists

of the simultaneous computation of the features, prediction

of the product quality, and the visualization by the CAM

algorithm to validate the model decision. This requires

much less effort for feature extraction and helps to get

clues where the ML model makes the decision of the

classification problem.

Another important aspect is to the computation time

taken for training the model. One way is the use of batch

computation. According to [13], when training neural

networks using batch normalization (BN), the batch size is

an important hyper-parameter to speed up the training time.

To optimize the training processes, a batch size greater

than one and parallel computing will be the best solution.

[14] used some regularization techniques with a batch size

greater than one. In general, a convolutional neural net-

work (CNN) with a batch size greater than one cannot be

trained with time series of different lengths. A solution

without using CNN could be realized with 1NN with DTW.

This method is one of the most popular and traditional

algorithms for time series classification [15–17]. In addi-

tion, in [18] the DTW was described for varying time

series. Bagnall and Lines [19] has stated that it is very

difficult to outperform the 1NN-DTW combination.

In this work, we compare this method with a proposed

1D CNN using a masking layer for TSC for varying

lengths. Both methods are investigated without feature

extraction steps. As an application case for verifying the

proposed ML model, discontinuous time series from a

plastics production process are used in this study.

In [20, 21] the focus was on TSC and comprehensible

quality prediction in the plastic injection moulding process.

Monitoring the quality of plastic injection moulded parts is

often difficult and expensive. With rising energy costs,

quality prediction using ML algorithms has become a new

focus for more and more manufacturers. Finding the right

process parameters is a time-consuming task. To reduce

this time and to find suitable process parameters e.g.

pressure, temperature, and injection speed, ML methods

were used in [1, 4].
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In addition, the study of the interpretability of black-box

models from DL is a promising research topic called

eXplainable Artificial Intelligence (XAI) according to

[22, 23]. In [24], Shapley Additive Explanations (SHAP)

are used to interpret neural networks on Process State

Points (PSPs) extracted from cavity pressure profiles. The

study by [25] describes a method for multivariate data

series classification using CNN and CAM.

In this study, we use visualization of the activation for

interpretability of the 1D CNN model using CAM

according to [26]. The input data for the models are sensor

signals from inside the cavity of an injection mould during

the production of the plastic part. The major contribution of

this study lies in the TSC of non-periodic signals with

different lengths. For better comparability, the 1NN with

DTW and the 1D CNN with masking layer will be trained

on the same data set without feature extraction.

1.1 Basic principles of 1NN with DTW

In this section, we give an overview of the reference

method used for TSC. As a reference method without

feature extraction, a DTW with 1NN is chosen. According

to [19], this method is hard to beat for classification

problems. The problem of classification models with

unequal sample lengths was discussed in [17], where the

Proximity Forest and DTW methods were used to deal with

this type of time series.

DTW is a distance-based method for dealing with time

series for clustering, classification and similarity search

[27]. DTW can also be used for time series with unequal

sampling rates or series of different lengths. For classifi-

cation tasks, DTW combined with k-Nearest Neighbours

(kNN) leads to a powerful model with high accuracy.

Therefore, we chose such a model as a reference model to

compare our results. For details of the DTW calculation see

[28] and [29]. In order to gain a better understanding of the

functionality of DTW, a brief overview is given as follows.

DTW compares two signals (x, e.g. Eq. 1 and y, e.g.

Eq. 2) and results in a distance measurement of one signal

to the other series. This matrix is called the cost matrix

Cðm;nÞ, where C 2 RM�N according to [30]. The absolute

cost matrix between the signals is computed using Eq. 3.

The distance can be used for classification problems, for

example with 1NN classifiers. Using this distance value,

the accumulated cost matrix Dðm;nÞ is calculated according

to Eqs. 4 to 8.

xðnÞ ¼ð2; 1; 1; 8; 8; 8; 6; 1; 1Þ ð1Þ

fn 2 N; 1� n�Ng
yðmÞ ¼ð2; 2; 0; 8; 7; 4; 3Þ

ð2Þ

fm 2 N; 1�m�Mg
Cðm;nÞ ¼jxðnÞ � yðmÞj

ð3Þ

Dð1;1Þ ¼Cð1;1Þ ð4Þ

Dðm;1Þ ¼Cðm;1Þ þ Dðm�1;1Þ ð5Þ

Dð1;nÞ ¼Cð1;nÞ þ Dð1;n�1Þ ð6Þ

Dðm;nÞ ¼Cðm;nÞ þ dðm:nÞ ð7Þ

dðm:nÞ ¼argmin

Dðm;n�1Þ;

Dðm�1;n�1Þ;

Dðm�1;nÞ

8
><

>:
ð8Þ

Figures 2 and 3 show the results of the simple example

with x and y.

For the visualization of the difference between the two

signals, the optimal warping path p� with the minimum

costs in the accumulated cost matrix can be calculated.

Algorithm 1 shows the steps for calculating the optimal

warping path in a different manner according to [30].

Fig. 1 Steps to design a prediction model using machine learning. The upper path shows the steps from [12]. The path below shows the steps

proposed in this study using end-to-end learning with explainability for decision-making

Fig. 2 Result of Cðm;nÞ for element-wise absolute differences between

series x and y
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Algorithm 1 Optimal Warping Path

Input: D(m,n)
calculating p∗ in reverse order starting with pl = (M,N), l ∈ N, 1 ≤ l ≤ (M +N)
start with pl = D(m,n)
while m = 1 & n = 1 do

if n = 1 then
p(l−1) := D(m − 1, 1),

end if
if m = 1 then

p(l−1) := D(1, n − 1),
end if
if otherwise then

p(l−1) := d(m.n)
end if

end while
pl = (1, 1), l = 1 finished

The accumulated cost matrix Dðm;nÞ and the calculation

of the optimal warp path are the key elements of the DTW

algorithm. However, this method is not well suited for

obtaining information about regions of interest in the time

series. The reference method used has another disadvan-

tage: prediction of long time series can be very slow for

naive DTW computation. An idea to speed up the full

DTW calculation is to use parallel computing on CPUs or

GPUs [31]. Other ideas to speed up DTW computations as

described in [32] are part of further work. In this study, we

use parallel CPUs for the calculations.

2 Problem description

This study focuses on the following objectives. First, the

classification of time series with varying lengths is con-

sidered. This type of time series is often encountered in

problems with real data, such as data sets with varying

production parameters. This leads to the task of predicting

the quality of injection-moulded plastic parts from sensor

signals during production cycles.

To solve this problem, sensor signals from inside an

injection mould for the production of plastic parts were

collected. The label for the ML model is a quality

parameter of the products. However, this quality parameter

is difficult to measure, which increases the cost of quality

management. To address this problem, we investigate two

classification models to predict the quality parameter in

order to realize comprehensive quality monitoring during

production. As a hard-to-measure critical quality parame-

ter, the force between the part and a force gauge should be

predicted with the ML algorithms.

We use a state-of-the-art ML method, 1NN with DTW,

to treat this type of time series and a CNN with CAM

model for comparison. Our proposed method consists of a

1D CNN layer with a masking layer, a hidden CNN layer

with Global Average Pooling (GAP) and a dense layer.

Detailed information can is given in Sect. 4.1.

The final objective is to make it possible to explain and

understand the classification decision made by the 1D CNN

classificationmodel. For human operators, it will be essential

to recognize or understand the decision from the model.

A CAM algorithm will be used to colour the activation of

some regions in the time signal for the classification decision.

3 Materials

3.1 Data acquisition and preprocessing

In each dataset, we recorded six sensor signals during the

production cycle from inside the cavity of an injection

Fig. 3 Resulting accumulated cost matrix Dðm;nÞ from Fig. 2 accord-

ing to Eq. 7 and visualization of optimal warping path p� for this

example
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mould. All sensor signals were acquired at a sampling rate

of 1000 kHz. The produced parts were numbered, matched

to the dataset and quality checked by quality management

(QM). Two thermocouples in the cavity, two in the mould

and two piezoelectric cavity pressure sensors were used for

data acquisition. Figure 4 shows schematically the mould

cavity with the sensor positions at part 1 (p1) and part 2

(p2), respectively.

The piezoelectric sensors are amplified by a chopper

charge amplifier with an analogue-to-digital converter

(ADC) described in [20, 33].

The course of the cavity internal sensors is available as a

time series, whereby their length differs from product to

product and between the DOE steps. Figure 5 shows two

pressure signals from inside the cavity of part one.

The relevant areas of the plastic part, where the critical

quality parameter corresponds, are in a hard-to-measure

position, and a tactile distance measurement process is too

time-consuming and expensive. In addition, indirectly

measuring the force based on the dimensions is also diffi-

cult to realize. Moreover, the tensile test has an effect on

the surface of the tested parts which have to be destroyed

after inspection. This leads us to an indirect measurement

of the quality parameter. The next section describes the

proposed 1D CNN model with masking layer and its use

for time series classification with different lengths.

3.2 Production process and design
of experiments

To predict the quality from sensor signals during the pro-

duction of plastic products, we first designed a series of

experiments for the production of plastic parts and data

collection. This is made by using the Taguchi method and

Minitab statistical software. This design of experiment

(DOE) method can be used to visualize the effects of

process parameters and product quality. In [34], an over-

view of injection moulding and, in particular, the most

important process parameters for the production of plastic

parts is presented.

Our Taguchi plan consists of the following parameters:

the hot runner temperature THR, the mould temperature TM,

the velocity of the injected melt vm, the post-pressure Pa,

the cooling water flow rate _VW, and the cooling time tc. An

extra parameter is built by the combination of ðTM; tcÞ. All
of the above factors were varied to a high, medium and low

level as applicable by the machine and tool limits. The

combination of two factors is equivalent to a simultaneous

change in the same direction. Details of the Taguchi Plan

are confidential. Further information on the Taguchi

method can be found in [35].

A combination of Taguchi, response surface method,

and nondominated sorting genetic algorithm II (NSGA-II)

was used to optimize the injection moulding process of

fibre-reinforced composites [36]. The advantage of using

DOE is that it helps to collect sensor and production data in

a small space close to the working point for producing

high-quality plastic parts. In fact, it is the easiest way to

produce plastic parts with different quality parameters in a

controlled way.

In addition to the process and quality parameters men-

tioned above, some sensor signals from inside the mould

cavity were also sampled. Now we need to determine

which sensor has the highest effect to predict the product

quality. The sensors we used are shown schematically in

Fig. 4 in Sect. 3.1. To understand the result of the DOE

with the information from the sensor signals, some further

steps are necessary. Here we use Principal Component

Analysis (PCA) in [37] to identify the influence of the

process parameters on the shrinkage behaviour in the

production of plastic moulded gears. PCA or ANalysis Of

VAriance (ANOVA) method is an option to extract infor-

mation about the sensor signals and their influence by the

Fig. 4 Mould design with two cavities and the sensor positions of the

thermocouples and the piezoelectric pressure sensors. The production

machine is an Arburg A 320 S

Fig. 5 An example of piezoelectric pressure signals (p1) from two

different DOE parameter sets. The different lengths can be seen. The

signal ‘A’ (red curve) shows a fast injection process with high

injection pressure and signal ‘B’ (black curve) shows a slow process

with lower injection pressure
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DOE parameter set. This method helps to reduce the

dimension of the classification problem, from a multivari-

ate to a univariate classification model. Thus it also helps to

reduce the training time and the complexity of the model.

The signals with higher fluctuations are more influenced by

the DOE parameters. For the calculation, the mean of the

signals is calculated and used as input to ANOVA. The

results of the DOE and ANOVA are shown in Sect. 5.

Our DOE analysis aims to predict the quality of the

plastic parts. It is shown that the tensile force between the

plastic parts and the gauge used is the critical quality

parameter. If the force is less than a critical value, the

product will be treated as a ‘‘good’’ (P positive) part. All

products with a tensile force greater than or equal to the

critical value will be labelled as ‘‘not good’’ (N negative)

parts. The amount of good and bad parts varies consider-

ably in the data collected. The ratio of good parts to bad

parts is 1:4. Some effects from balanced and unbalanced

data distributions are described in [38]. Table 1 summa-

rizes the properties of the data set, i.e. the collected time

series p2.

It is shown in Table 1 that a property of the recorded

data set is the unbalanced label distribution. To estimate

the influence of the unbalanced data, different data pro-

cessing schemes are employed with adjusted data distri-

butions. As a result, the number of bad and good parts in

the training data is re-distributed. In Tables 2 and 3 the

subdivision of the two variants with the corresponding data

distributions for the 1NN and 1D CNN classifiers are

shown.

Two graphic processing units (GPUs) of an Nvidia

DGX-1 deep learning cluster were used for our computa-

tional implementation. Python and Keras [39] with Ten-

sorflow [40] were used for data preparation, classification

and visualization.

4 Methods

4.1 Proposed 1D CNN model with masking layer

In this study, a method is developed based on a CNN model

with an additional masking layer to deal with variations in

the length of time-series. The feature of the proposed 1D

CNN is that the whole set of signals is examined and not

only parts of it. A major advantage of a masking layer is

that the training time can be reduced by using a batch size

larger than 1 for series with different lengths. In addition,

training with batch normalization can increase the accuracy

of the classification model, according to [14].

The proposed model has two convolutional layers with a

Rectified Linear Unit (ReLU) layer, as shown in Fig. 6.

The masking method is often used for image analysis for

example human pose estimation [41]. Here, we apply this

method for time series analysis. Figure 7 shows the func-

tionality of the masking-layer for time series with varying

lengths.

The description of the masking layer is part of the Keras

deep learning API that we used for our development.

Further information on masking can be found in [42].

For the masking layer, a few more steps need to be

taken. First, the data sets must be stacked. For DataFrames

in Python this step automatically fills all shorter series with

nan values to the length of the largest series. The next step

is to replace the nan values with the masking value. The

masking value has to be a value that doesn’t exist in the

time series. The function of the masking layer is to mask

(skip) all values in the time series that are equal to the

masking value at those time steps. This is carried out in the

first step as shown in Fig. 6. The next step is to perform the

first convolution (orange) layer. At the end of each con-

volution layer, a ReLU layer is used. After the ReLU layer,

the outputs are provided by a blue box. The output (output

2) of the last convolutional layer is the input to the Global

Average Pooling (GAP) layer. Finally, the dense layer

provides the output units to the two final neurons to obtain

Table 1 Properties of the collected time series p2

Max. time length 22.140 s

Total number (n) 726

Quality criterion Force on part 2

Categories F2 \Critical value, good parts

F2 � Critical value, bad parts

Number of good parts 166 (� 23%)

Table 2 Representation of the unbalanced training data distribution

Training data Test data
P

Good 132 34 166

Bad 448 113 561
P

580 147 727

Table 3 Representation of the balanced training data distribution

Training data Test data
P

Good 132 34 166

Bad 132 113 165
P

264 147 331
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Fig. 6 The proposed CNN model for the classification task with two convolutional layers, ReLU, GAP layer inspired by a Fully Convolutional

Neural Network (FCNN) from [16]
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the predicted quality classification. The combination of

output 2, the weights wx and the dense layer forms the

CAM activation. The activation result is mapped onto the

input time series, producing the coloured signal in regions

of high activation for the corresponding class.

To improve the generalization of the model to unknown

or new data and to avoid overfitting, the data are randomly

mixed into training, test, and validation subsets. The vali-

dation data are required for the evaluation of the perfor-

mance of the model. The random mixing ensures that each

subset contains enough data features to reliably guarantee

the model results, even if the data volume is relatively small.

In addition, to bring the features of the dataset to the same

order ofmagnitude, all input data are re-scaled to the interval

[0, 1] using normalization. The corresponding target data are

pre-processed for classification by one-hot coding. Further-

more, to reduce the training time, the sensor signals used are

selected by an ANOVA method. All plastic parts produced

are inspected and labelled by the QM department.

The last step of our study is to explain the classification

results. The CAM algorithm described in [26] is used for

this task with some adjustments. Equations 9 to 11 [26] are

used to calculate the activation back to the GAP layer. This

activation can be visualized as a heat map on the input

signal. As a result, this method helps to better understand

the classification decision and find interesting regions in

the time series to match with the injection moulding

process.

Sc ¼
X

k

wc
k

X

x;y

fkðx; yÞ ð9Þ

¼
X

x;y

X

k

wc
kfkðx; yÞ ð10Þ

Mcðx; yÞ ¼
X

k

wc
kfkðx; yÞ ð11Þ

5 Results

5.1 DOE & ANOVA analysis

Based on the developed DOE, 726 records were collected,

of which 165 are described as good and 561 as bad parts.

The result of the regression analysis by the developed DOE

and the process parameters have a R2 of 91.62%. The

regression equation from the DOE is as follows:

F1 ¼� 8:6� 1:135tc þ 0:4718TM þ�0:189 _V

0:1091vm þ 0:0221THR þ 0:00026Pa
ð12Þ

This result shows which process parameter has more

influence on the DOE regression model. However it is not

possible to determine the influence of environmental con-

ditions, the quality of the plastic, and the sensor properties

from this regression model. The information content of the

process parameters themselves is not the same as the sensor

signals from inside the cavity. The calculation of the

variances leads to the result shown in Fig. 8. It is shown

that the pressure sensor p2 has the highest variance.

ANOVA is used for sensors with similar variances,

types, and positions. Table 4 shows the grouped sensors

and the results of the ANOVA with f-value and its sig-

nificance. Due to some problems with the sensors TM2, the

signals TM1 and TM2 cannot be used for further

investigations.

It is shown from ANOVA that sensor group 1 has a

larger f-value and a smaller significance. Therefore, the

second cavity pressure sensor p2 is selected as a repre-

sentative sensor signal for the classification model. The

following results are divided into classification approaches

by the reference model and the proposed 1D CNN with

masking layer model. In addition, the visualization of the

activation for the interpretability of the 1D CNN classifi-

cation model is compared by using CAM according to [26].

Fig. 7 Functionality of the masking layer. Shorter time series (red

signal) are supplemented by large negative values not included in the

signal itself (masking value / grey values). The information from the

masking layer is passed to the next layers of the CNN model. The

masked values are excluded from the back-propagation algorithm

p1 p2 T1 T2 TM1 TM2

0

200

400

600

sensors

va
ri
an

ce

Fig. 8 Plot of the variances for the investigated sensor signals: p1, p2,

TM1, TM2, T1 and T2. The highest variance of the sensor shows p2

7498 Neural Computing and Applications (2024) 36:7491–7508

123



5.2 Results by 1NN with DTW and 1D CNN
with masking layer

Figure 9 shows a DTW result for two pressure signals from

the injection moulding process. The DTW calculation was

done in parallel with 48 jobs. This reduces the calculation

time to about 12 h by using the DTAIDistance and 24 h for

the FastDTW algorithm. A run of the DTW algorithm on

one job took between 16 s (balanced) and 27 s (unbal-

anced). For the 1NN prediction, the minimum value of the

corresponding input class with the smallest DTW value

leads to the decision for the classification.

Table 5 shows the results for the unbalanced FastDTW

model without scaling. The data distribution of this clas-

sification model is improved to balance the amount of good

and bad parts within the training set. The result for the

balanced model and unknown test data is displayed in

Table 6. For the given training-test split, the results from

the FastDTW calculation are slightly better than those from

the DTAIDistance. The results from the DTAIDistance

DTW and all other results can be found in Sect. 8. The

same unknown test dataset is used to compare the results

for all models. The corresponding overall classification

accuracy for unknown test data of the 1NN with FastDTW

classification model is calculated according to Eq. 13 [43].

The variable ri stands for the correct predictions and S

denotes the total number of predicted records.

Acc ¼ 100% � ri
S

ð13Þ

ri ¼ TN þ TP ð14Þ

S ¼ TPþ FPþ FN þ TN ð15Þ

Table 7 lists the hyperparameters used to train the 1D

CNN models. For training the 1D CNN model, the com-

putation time of an epoch requires 3 s for the unbalanced

training dataset. The prediction time per dataset needs

about 0.0035 s. The same initialization parameters were

used to train all models for unbalanced, unbalanced scaled,

balanced and balanced scaled. The validation split for

Keras was set to 0.3.

The first result represents the data distribution of the 1D

CNN classification model with the unbalanced data distri-

bution. Table 8 shows the corresponding confusion matrix.

The overall classification accuracy using Eq. 13 with 1D

CNN with a masking layer is calculated to 83.7%.

The 1D CNN classification model results with balanced

training data are presented as follows. The results of the

confusion matrix of the test data are presented in Table 9.

The corresponding training process and overall classi-

fication accuracy of the test data of this 1D CNN classifi-

cation model are shown in Fig. 11.

5.2.1 CAM results & visualization

For generating the CAM result, the best models from the

training were loaded. The visualization of CAM activation is

shown in Fig. 12The signal and the implementedCAMof an

Table 4 Sensor groups from ANOVA

Group number Grouped sensors f Value Significance

1 P1, P2 33.01 1.12e�8

2 T1, T2 3.77 0.05

3 TM1, TM2 N/A N/A

Fig. 9 Result of the DTW for two pressure signals. The calculated

DTW distance, in this case, is around 5196. The heat-map shows the

accumulated cost matrix. The red line shows the optimal warping path

between the two signals

Table 5 Confusion matrix result for unknown test data of the 1NN

with FastDTW classification (test case: 1)

1NN with FastDTW

N (bad) P (good)

Experte N 101 (89.4%) 12 (10.6%)

P 14 (41.2%) 20 (58.8%)

The distribution of the training data is unbalanced and without scal-

ing. According to equation 13, the accuracy is 82.3%

For better readability the values for true positive and true negative are

in bold
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unbalanced CNN classification model show the result of a

good predicted part. The heat-map from the CAM algorithm

shows which region of the time series has more influence on

the model decision. The activation process is shown in

Fig. 12 for a good classified and in Fig. 13 for a bad clas-

sified signal. The results from CAM are also mapped to the

sensor signal. This result depends on the DOE parameter set

and may change for other critical quality parameters. Both

results are predicted by model 9 from Sect. 8.

6 Discussion

Figure 8 shows the variance of the sensor signals. A high

variance in this context means a greater influence on the DOE

parameter set. For this type of classification task, the ANOVA

method is suitable to reduce the training time and complexity

of the classification models. Compared to the DOE, it can be

seen that the ANOVA method solves the problem from a

different direction. The result ofDOE represents the influence

of the part quality by the variation of the process parameters.

The quality parameter can also be influenced by the machine,

plastic quality level, environmental conditions, and many

other factors. All these parameters influence the sensor sig-

nals. The position of the sensor, the sensor technology, or the

ADC also affects the significance of the ANOVA result.

However, it is shown from our results that the melt tempera-

ture has less influence on the ANOVA result. For this type of

sensor signal, small changes in the DOE parameter set will

reduce the variance of the mean. Another aspect could be the

size of the plastic part and the sensor positions, but both

parameters cannot be changed. The problem with the TM2

signal could be a hardware problem, but analysis of a single of

this type is impossible.

The results of the DTW algorithms used are very sat-

isfactory. Both DTW algorithms were tested under the

same conditions. The slightly better accuracy of the

FastDTW algorithm compared to the DTAIDistance algo-

rithm is unexpected, but this is not the main aspect of our

study. The training time of the DTAIDistance algorithm is

half that of the FastDTW algorithm, but it is much slower

than that of the proposed 1D CNN with a masking layer.

From Fig. 10, it can be seen that the validation loss of

the 1D CNN classification models falls rapidly at the

beginning of the training and increases during that. This is

an indication of overfitting of the model to the over-rep-

resented labels in the unbalanced training. The high fluc-

tuation at the beginning could be a result of the small

training data and the validation split ratio of 0.8 in com-

bination with the chosen batch size. With an unbalanced

dataset, the probability of picking more bad parts is much

higher than getting good parts for the training batch. This

could be the reason for the high variations at the beginning

of the training process.

Therefore, this could be reduced by using a balanced

dataset for training or increasing the batch size. The bal-

anced training is shown in Fig. 11, resulting in a better

training process during the first training epochs. However,

in the middle of training, the distance between the training

loss and the validation loss increases, and the model starts

to overfit and the validation accuracy cannot be improved.

A possible reason could be the implementation of a dropout

Table 6 Confusion matrix result of unknown test data for the 1NN

FastDTW balanced and without scaling (test case: 2)

1NN with FastDTW

N P

Experte N 67 (59.3%) 46 (40.7%)

P 7 (20.6%) 27 (79.4%)

According to equation 13, the accuracy is 63.9%

For better readability the values for true positive and true negative are

in bold

Table 7 Used hyperparameters in training the experimental 1D model

Hyperparameters Learning rate Batch size Epoch Optimizer

0.0001 32 1500 Adam

Table 8 Confusion matrix for the unknown test data of the 1D CNN

classification model with unbalanced data distribution without scaling

(test case: 9)

1D CNN

N P

Experte N 98 ð86:7%Þ 15 ð13:3%Þ
P 9 ð26:5%Þ 25 ð73:5%Þ

According to Eq.13, the accuracy is 83.7%

For better readability the values for true positive and true negative are

in bold

Table 9 Confusion matrix for the unknown test data of the 1D CNN

classification model with balanced data distribution without scaling

(test case: 10)

1D CNN

Bad Good

Experte N 71ð62:8%Þ 42 ð37:2%Þ
P 8 ð7:1%Þ 26 ð23:0%Þ

According to Eq. 13, the accuracy is 66.0%

For better readability the values for true positive and true negative are

in bold
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layer [44] and early stopping, but we believe that the main

problem would be the small number of recorded datasets.

The results in Fig. 12 from the CAM algorithm show high

activations in the pressure signals during theproductionphase,

which agrees well with the experts’ opinion. A part of the

compression phase, where the internal pressure increases

rapidly, is recognized as an important region for predicting

goodparts. The highestCAMactivation for bad parts is shown

in the middle and the end of the pressure curve where the

cavity pressure drops rapidly or has a step downward. These

areas correspond to the technical meaning of the injection

moulding process and show strong changes where the internal

pressure drops or rises rapidly. Such region of the injection

moulding process is called the after-pressure and holding

phase which has a greater impact on the product quality than

other phases. Some other CAM results are displayed in Sect. 8

which shows how different the CAM results can be for dif-

ferent types of trained models. Some models show a high rise

at the beginning of the pressure signal, others present the step

at the end of the signal. The difference in the accuracy offers

an indication of which model is better and how the model

should be trained for a small number of collected data.

On the other hand, there are results from CAM that are

not easy to understand even for experienced moulders. This

could be caused by a non-optimal experimental design or

overfitting of the classifier. The proposed CNN with CAM

can highlight regions of interest in the pressure curves that

contribute to its prediction. The reference model 1NN with

DTW can also produce graphical output directly from the

distance calculation of DTW. However, its warp path is

difficult to interpret and only contains information about

the phase and periodicity of the inputs. As a result, the

reference model is not able to realize this kind of infor-

mation as the CAM do.

7 Conclusions

The contributions of this study can be summarized as: a)

the development of a fast classification model for TSC with

up to 83.7 % accuracy for a hard-to-measure prediction

task, b) the application of CNN with a masking layer for

time series with different lengths, c) the combination with

the CAM helps to lead to a better understanding of the

classification results, d) better results by CNN with CAM

than a 1NN with DTW for this type of data, and e) using

both methods to predict hard-to-measure quality parame-

ters on real-world data.

Fig. 10 Training process of 1D

CNN classification model with

original data distribution. The

blue lines represent the training

data and the orange is the

validation data set
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Further details on the main findings of this study are as

follows. With the proposed 1D CNN and a masking layer, a

fast classification for TSC of discontinuous signals with

different lengths can be realized. The state-of-the-art 1NN

with DTW is a suitable method to compare the classifica-

tion results, but it is computationally expensive for a large

number of time series. A simple way to decrease the

computation time for the classification models is to reduce

the multivariate classification problem to a univariate one.

This was done by using the ANOVA method to determine

the signal with the largest variance. In comparison to the

1NN with DTW, this makes the prediction task much

faster. The overall classification accuracy of this model

reaches 82.3 %. The confusion matrix and overall classi-

fication accuracy of the 1D CNN models with unbalanced

data distribution is 83.7 % and with balanced distribution

66.0 %. The result of the unbalanced data distribution is

� 1:4%, which is better than the best 1NN with DTW

model. The results for the two DTW algorithms (FastDTW

and DTAIDistance) are also shown in the tables in Sect. 8.

The classification results with the implemented masking

layer are promising especially for the hard-to-predict

quality parameter. The computation time of the reference

model was between 12 and 24 h, which is too slow for

prediction tasks for this type of data. The model calculation

Fig. 11 Training process of the

1D CNN classification model

with balanced training data

distribution. The blue lines

represent the training dataset

and the orange is the validation

dataset

Fig. 12 CAM visualization by the 1D CNN classification unbalanced

trained model from Table 8. The upper time series shows a pressure

signal with the coloured CAM activation (lower curve). The signal

shows a good classified cavity pressure curve resulting from test

scenario 9
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with this train and test subsets for the 1NN with DTW in

12 h/24 h could be realized only by parallel computing

with 48 tasks. The FastDTW [45] is slower than the

DTAIDistance [46] and leads to the same result as in the

literature. A 3.4 % better accuracy by FastDTW compared

to the DTAIDistance algorithm is negligible. The differ-

ence between the computation times was already analysed

in [47] and could therefore be verified.

Compared to the CNN model with a masking layer, the

average training time for the unbalanced dataset is 33 min,

and for the balanced dataset, it is further reduced to 16 min.

In addition, the 1D CNN with a masking layer delivers

significantly faster predictions and has improved accuracy

using the same dataset. This highlights the importance of

training the CNN on diverse series with a batch size greater

than one, which is part of our recommendation.

In subsequent applications, the use of up to 200 epochs

proves to be sufficient for effective training. This large

number of epochs provides a more robust basis for com-

paring different models. Notably, this approach not only

reduces training time but also maintains the superior per-

formance of the developed CNN for this specific data type.

While the accuracy and loss metrics show a favourable

trajectory for the training data, a plateau is observed for the

test data set. This observation is indicative of the complexity

of the learning task, with the training model showing a ten-

dency to overfit due to the limited number of records.

The properties of all models used in this paper are sum-

marized in Sect. 8. The higher activation during the pro-

duction phases in the pressure signals corresponds well with

themeaning of the injection experts. On the other hand, some

CAM results are difficult to understand, which could be due

to the random training initialization. At these points, other

sensors like the temperature may have a slightly greater

influence on the results, but this information is not part of this

work. The classification methods produce good results

without the need for a time-consuming feature extraction

algorithm. Themajor advantage of the 1DCNNmodelwith a

masking layer is the fast training time and the ability to

obtain some regions of interest from the CAM algorithm.

This made the proposed model more efficient for application

to TSC with varying length series, especially in discontinu-

ous production processes.

Regarding future work, the input data of the proposed

1D CNN models are the data sets of only one cavity

pressure. To avoid overfitting or to reduce the scatter of

classification accuracy and loss value, it might be better to

use more signals or simulation data. In addition, a combi-

nation with the second pressure sensor or with the melt

temperature sensors will be interesting for improving the

results. This requires a multivariate method to extract some

information from the sensor signals. PCA in [37] was used

to reduce the influence of process parameters on the

shrinkage behaviour in the manufacture of plastic moulded

gears. In [36], a combination of the Taguchi method,

response surface methodology, and nondominated sorting

genetic algorithm II (NSGA-II) was used to optimize the

injection moulding process of fibre-reinforced composites.

For further work, PCA will be the next method to inves-

tigate the reduction in sensor signals in the context of

multivariate classification tasks.

Another approach could be transfer learning. Some

interesting aspects have been mentioned in [48]. Further-

more, it is conceivable to combine regression and classifi-

cation approaches using so-called multi-output models to

address the problem of unbalanced datasets on the one hand

and to ensure compatibility with other explanatory models

on the other hand. In this way, model-agnostic explanatory

models could complement CAM explanations in the future.

An implementation of our approach as a real-time quality

prediction method for plastic injection moulding in Apache

Spark may be possible. As stated in [49], to meet the

demands of digital transformation in Industry 4.0, a near

real-time quality prediction method for plastic injection

moulding could be effectively realized using Apache Spark.

A final point is the possibility of exploring Batch Nor-

malization (BN) methods and Residual neural NETwork

(ResNET) models for this type of data with masking layers

and varying lengths. This can increase classification

accuracy and may be more efficient for small and unbal-

anced datasets.

Moreover, research on LSTM and GRU models or the

classification of other datasets can be topics of future work.

Fig. 13 CAM visualization result for a bad classified pressure signal,

also resulting from test scenario 9 from Table 8
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Appendix

See Tables 10, 11, 12 and Figs. 14, 15, 16, 17, 18 and 19.

Table 10 Summary of the characteristics of all used models in my master thesis

Reference method 1NN with FastDTW

Test case 1 2 3 4

Training Unbalanced Balanced Unbalanced Balanced

Input scaled – – U U

Confusion matrixa TN FP 101 12 67 46 104 9 74 39

(� %) (� %) (89:4%) (10:6%) (59:3%) (40:7%) (92:0%) (8:0%) (65:5%) (34:5%)

FN TP 14 20 7 27 18 16 11 23

(� %) (� %) (41:2%) (58:8%) (20:6%) (79:4%) (52:9%) (47:1%) (32:4%) (67:6%)

Accuracy 82.3% 63.9% 81.6% 66.0%

aN for negative and P for a positive label, T true and F false prediction

Table 11 Summary of the characteristics of all used models in my master thesis

Reference method 1NN with DTAIDistance DTW

Test case 5 6 7 8

Training Unbalanced Balanced Unbalanced Balanced

Input scaled – – U U

confusion matrixa TN FP 97 16 74 39 101 12 72 41

(� %) (� %) (85:8%) (14:2%) (65:5%) (34:5%) (89:4%) (10:6%) (63:7%) (36:3%)

FN TP 15 19 7 27 17 17 7 27

(� %) (� %) (44:1%) (55:9%) (20:6%) (79:4%) (50:0%) (50:0%) (20:6%) (79:4%)

accuracy 78.9% 68.7 % 80.3 % 67.3 %

aN for negative and P for a positive label, T true and F false prediction

Table 12 Summary of the characteristics of all used models in my master thesis

Proposed method 1D CNN with masking layer

Test case 9 10 11 12

Training Unbalanced Balanced Unbalanced Balanced

Input scaled - - U U

Confusion matrixa TN FP 98 15 71 42 76 37 21 92

(� %) (� %) (86:7%) (13:3%) (62:8%) (37:2%) (67:3%) (32:7%) (18:6%) (81:4%)

FN TP 9 25 8 26 5 29 1 33

(� %) (� %) (26:5%) (73:5%) (7:1%) (23:0%) (14:7%) (85:3%) (0:9%) (29:2%)

Figure CAM good Fig. 12 Fig. 14 Fig. 16 Fig. 18

Figure CAM bad Fig. 13 Fig. 15 Fig. 17 Fig. 19

Accuracy 83.7% 66.0% 71.4% 36.7%

a N for negative and P for a positive label, T true and F false prediction
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Fig. 15 CAM visualization of 1D CNN classification, a balanced

trained model without scaling from test scenario 10 for a bad part

Fig. 14 CAM visualization of 1D CNN classification, a balanced

trained model without scaling from test scenario 10 for a good part
Fig. 16 CAM visualization of 1D CNN classification, an unbalanced

trained model with scaling from test scenario 11 for a good part

Fig. 17 CAM visualization of 1D CNN classification, an unbalanced

trained model with scaling from test scenario 11 for a bad part
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