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Abstract
Accurately determining whether nodules on CT images of the lung are benign or malignant plays an important role in the

early diagnosis and treatment of tumors. In this study, the classification and segmentation of benign and malignant nodules

on CT images of the lung were performed using deep learning models. A new approach, C?EffxNet, is used for

classification. With this approach, the features are extracted from CT images and then classified with different classifiers. In

other phases of the study, a segmentation between benign and malignant was performed and, for the first time, a com-

parison of nodes was made during segmentation. The deep learning models InceptionV3, DenseNet121, and SeResNet101

were used as backbone models for feature extraction in the segmentation phase. In the classification phase, an accuracy of

0.9798, a precision of 0.9802, a recognition of 0.9798, an F1 score of 0.9798, and a kappa value of 0.9690 were achieved.

During segmentation, the highest values of 0.8026 Jacard index and 0.8877 Dice coefficient were achieved.
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1 Introduction

When the statistical data published by the WHO Interna-

tional Cancer Research Unit are examined, the most

common cancers in all age groups in the world are breast,

prostate,and lung cancer [1]. While 5-year survival rates in

breast and prostate cancer are 90% and 100% [2–4], 5-year

survival rate in lung cancer is 18–20%, and it is the cancer

with the highest mortality [3, 5] [6]. While it was stated in

the articles of 2007 that 5-year survival rates in lung can-

cers diagnosed at an early stage reached 60–70%, these

rates vary between 20.2 [3] and 22% [2] when it comes to

today. In this respect, early diagnosis of lung cancer is

more important than other cancers.

Computed tomography images are used most frequently

in lung cancer screenings and lesions are classified

according to their visual characteristics. It is not always

possible to detect a lesion at an early stage and to differ-

entiate malignant benign with high accuracy [7]. The

development of computer-aided diagnosis systems is

thought to be beneficial for doctors in terms of early and

accurate diagnosis. Therefore, it is very important to find

an effective method to classify and segment nodules.

Traditional methods may be insufficient to analyze such

images, and therefore studies on classification and seg-

mentation of nodules using deep learning (DL) methods

have been carried out in recent years. DL methods consist

of neural networks with the ability to learn datasets, and

due to these networks, they have performed well in clas-

sifying and segmenting nodules. In particular, convolu-

tional neural network (CNN) methods have been effective

in extracting and classifying the features of images, greatly

improving the quality and reliability of treatment, espe-

cially the early diagnosis and screening process [8].
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In this study, DL methods were used for the classifica-

tion and segmentation of nodules on lung CT images, and

the effectiveness of these methods was investigated.

Studies on this subject may help early diagnosis and

treatment of nodules by showing good performance in

terms of accuracy and sensitivity in the classification and

segmentation of nodules. Zheng et al. conducted a study

using the XGBoost classifier, which uses machine learning

algorithms with CT images and clinical data to classify

benign and malignant tumors [9]. Zhu et al. used neural

networks in their study of lung nodules, taking into account

features such as fuzzy boundaries, sparse distribution, and

subtle differences in CT images [10]. Prosper et al. con-

ducted a study that included advances in the characteriza-

tion of pulmonary nodules and early cancers using

radiological features and deep learning architectures in

addition to traditional image analysis approaches in chest

CT [11]. Gugulothu et al. demonstrated the performance of

the Logarithmic Layer Xception Neural Network

(LLXcepNN) classifier using image processing methods to

extract lung regions from CT images [12]. In their study,

Lima et al. used pre-trained VGG16, VGG19, Inception,

Resnet50, and Xception to extract features from each 2D

layer of 3D nodules. They then used principal component

analysis to reduce the dimensionality of the feature vectors

[13]. Saied et al. used machine learning algorithms and

deep learning models together with PCA in their studies

[14]. Qiu et al. introduced a new deep learning model for

the segmentation of small lung nodules [15]. Kido et al.

targeted nodule segmentation in their study by developing

a nested 3D fully connected convolutional network and a

new loss function [16]. Bhattacharjee et al. proposed a fine-

tuned dual skip-connection-based segmentation system that

integrates the pre-trained Residual Neural Network

(ResNet) 152 with the U-Net architecture to achieve a fast

and accurate segmentation algorithm with fewer stages

[17]. Savic et al. proposed a segmentation algorithm based

on the fast-marching method [18].

When we review the literature, the lack of a compre-

hensive study that performs both classification and seg-

mentation for the diagnosis and identification of pulnomer

nodules, as in our study, constitutes the motivation for our

study.

The innovative aspect of our study is that this model was

used for the first time in the classification of pulmonary

nodules. Our study aims to facilitate computer-aided

diagnosis of a critical disease such as pulmonary nodules,

as segmentation and classification of lung diseases is a

technical challenge. Another contribution is the attempt to

show that the model used for classification is structured in

such a way that it can be used for different diseases within

the lung. Our study addresses several shortcomings iden-

tified during our literature searches, including:

1. Overcoming the limitations of CNN networks in

feature extraction by using attention blocks in the

model when CNN fails.

2. Reducing computational costs by extracting the most

effective features using the PCA method instead of a

large number of features.

3. Demonstrate that more efficient results can be achieved

when deep learning and machine learning models are

used together.

4. Shows that segmentation can achieve results that can

be easily evaluated by experts when different segmen-

tation models with different backbones are used.

For this purpose, in our study, first of all, we studied the

C?EffxNet model, which has previously shown success, in

classifying pulnomer nodules as benign and malignant

[19]. In the first version of this model, versions B0 to B3 of

the EfficientNet model were used. In this study, the Effi-

cientNet B4 version was added to these models and deep

features were extracted from it.

The study consists of two stages (classification and

segmentation). Primarily, our original dataset obtained

from Van Yüzüncü Yıl University Dursun Odabaşı Train-
ing and Research Hospital was marked as benign and

malignant on CT by two expert radiologists from this

hospital. In the segmentation phase, three segmentation

algorithms were used and the results were given compar-

atively. To increase the performance of these algorithms,

three different backbones such as InceptionV3, Dense-

Net121, and SeResNet101 were used for better feature

extraction. Our study presents an ablation study that

researchers can compare by using three different segmen-

tation algorithms and three different spine models used

with these algorithms. In addition, another innovative

aspect of our study comes to the fore as it is a study that

provides an in-depth analysis for the pulnomer nodule.

Our study was organized as follows: First, relevant

studies for classification and segmentation in Sect. 2. The

methodologies used in the Sect. 3, the proposed method in

the Sect. 3.5, the experimental studies in the Sect. 4, and

the discussion and conclusion section in the Sect. 5.

2 Related works

In this part of our study, first the pulnomer nodule classi-

fication and then the literature studies published using

segmentation and their use in our study are included in

addition to these studies.
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2.1 Classification works

Al-shabi et al. [20], developed a model called ProCAN on

the LIDC-IDRI dataset. In the study, 98.05% AUC and

95.28% accuracy (Acc.) values were obtained. Fu et al.

[21] presented a CNN approach that includes attention on

CT images. In these studies, a success of 0.94 was obtained

regardless of the size of the nodule. Heuvelmans et al. [22]

trained the lung cancer prediction convolutional neural

network (LCP-CNN) to generate a malignancy score for

each nodule using CT data. They reported that the network

they developed in their study performed well in identifying

benign nodules by excluding malignancy with a high

degree of accuracy in one-fifth of patients with small to

medium nodules. Apostolopoulos et al. [23] used deep-

convolutional Generative Adversarial Networks to train

CNNs to eliminate the lack of large-scale data. They also

developed a CNN network called feature fusion VGG19

(FF-VGG19) to improve feature extraction. This study

shows that if the data to be used in the diagnosis of the

disease are not sufficient, generative networks can be used

and CNN models may be insufficient in feature extraction.

In their study, they obtained an accuracy value of 0.92.

Bening and malignant datasets were presented in their

studies with these nodules completely removed. In our

study, these nodules were tried to be determined with

attention blocks on all CTs. Gu et al. [24]. lung has shown

that it can be more successful than human performance

during automatic nodule detection, especially for smaller

nodules, in review studies examining nodule detection,

segmentation, and classification performances. It has also

been stated that when compared to traditional methods,

deep learning methods show lower false positives although

they provide high sensitivity. He et al. [25] proposed an

interpretation-model-guided classification method based on

ISHAP (improved Shapley Additive ExPlanations) for the

classification of benign and malignant pulmonary nodules.

They obtained a sensitivity of 0.862, a specificity of 0.885,

and an accuracy of 0.873 in the Lung Image Database

Consortium (LIDC) dataset. They reported that estimates

made with the features extracted from the study are

sometimes not understood or interpreted by clinicians. Our

study presents a hybrid model to overcome this problem.

Astaraki et al. [26] conducted a study using supervised and

unsupervised methods using convolutional features. In this

study, after feature extraction, the disease was diagnosed

by the machine learning method. In the study, it was stated

that more training may be needed to generalize machine

learning models. The approach we used in our study has

previously provided good performance in diagnosing

COVID-19 on CT images. Bening malignant discrimina-

tion performance is also shown in this study. Halder et al.

[27] proposed the 2-Pathway Morphology-Based Convo-

lutional Neural Network (2PMorphCNN), which classifies

lung nodules by capturing both textural and morphological

features. In their studies, the LIDC-IDRI dataset had

96.85% accuracy. In addition, it was stated in their studies

that the convolution process was not effective in feature

extraction alone. In order to overcome this in our study, the

CBAM model consisting of attention blocks is included in

the hybrid model. Huang et al. [28]. developed a manifold-

based deep learning model and preprocessed the CT ima-

ges in their study of benign malignant discrimination and

removed relevant nodules. They are then classified through

deep features. In their studies, it was emphasized that the

high number of features could cause problems in classifi-

cation. In our study, the PCA method was used to reduce

the number of features. In this way, an increase in classi-

fication accuracy rates has been observed. Jin et al. [29]

have published a detailed review article on the use of

machine learning algorithms for the diagnosis of lung

nodules. In this article, it is emphasized that deep learning

applications can give better results than machine learning.

In our study, an approach has been used that yields suc-

cessful results as a result of the use of both deep learning

applications and machine learning applications for pul-

monary nodules. Yang et al. [30] proposed an improved

U-Net framework for the 3D U-Net model in their benign

and malignant identification studies, where they used

U-Net for low-level features and CapsNet for high-level

features.

2.2 Segmentation works

Dutande et al. [31] first performed pre-processing on CT

images in their proposed study of the Deep Residual

Separable Convolutional Neural Network for lung tumor

segmentation. It has been emphasized that the standard

U-Net model may be insufficient in feature extraction. In

our study, backbones were used to overcome this inade-

quacy. Additionally, the performance of backbones in

different segmentation models is also demonstrated. Tyagi

et al. [32] obtained a Dice coefficient of 80.74% on the

LUNA16 dataset in their study where they proposed a 3D

conditional, generative, contentious network with simulta-

neous compression and excitation blocks for lung nodule

segmentation. The use of patch-based processing, which

affects the performance of GANs in the study, has also

increased the transaction cost in proportion to accuracy.

Liu et al. [33] proposed a method called the cascaded dual-

pathway residual network (CDP-ResNet) to improve the

segmentation of lung nodules in CT images. They obtained

an 81.58% Dice coefficient on the LIDC dataset. In their

study, they stated that even if it is not necessary to specify

the location of the nodule in all layers, the ROI of a
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particular layer where the nodule is located should be

given. Even if the location of the nodule is not specified in

our study, segmentation algorithms can detect the location

of the nodule.

3 Materials and methods

3.1 Dataset

Our study is retrospective and covers the period from 2015

to 2021. The images were obtained by multislice tomog-

raphy devices with 128 detectors (Siemens SOMATOM

Definition AS?128, Forchheim, Germany) and 16 detec-

tors (Somatom Emotion 16-slice; CT2012E- Siemens AG

Berlin and München, Germany) at the Faculty of Medicine

of Van Yüzüncü Yl University. Patients with nodular mass

lesions on the lungs were detected in the films evaluated by

specialist radiologists. Subsequently, patients with at least

two years of follow-up or a definitive pathological diag-

nosis were included in the study, while patients with arti-

facts in their images and nodules smaller than 5 mm were

excluded from the study.

Our study was in two stages and, in the first stage, it was

aimed at evaluating the classification of lesions first. For

this purpose, patients were evaluated histopathologically

and clinicoradiologically by specialist radiologists, and two

classes labeled as malignant and benign were formed. Then

a total of 199 images were obtained from all axial sections,

including the lesion from 29 (19e/10b) patients in the

Malignant group, and a total of 202 images were obtained

from all axial sections including the lesion of 68 (38e/30b)

patients in the Benign group.

Since normal lung images without any lesions were

needed for artificial intelligence training, 343 normal sec-

tions from 67 (38e/29b) patients were used as a third group,

covering the upper, middle, and lower zones of the lung.

The mean age of the patients included in the malignant

group was 65 ± 10.4 (43–88 years), the mean age of the

patients included in the benign group was 59 ± 12.2

(27–81 years), and the mean age of the patients included in

the normal group was 56.9 ± 14.1 (26–81 years). For the

second stage, the segmentation stage, there were mixed

malignant and benign patients in the dataset. A total of 379

images were obtained from 80 (43e/37b) patients, 229

images from 57 (28 Male/29 Female) patients with benign

diagnosis, and 150 from 23 (15 Male/8 Female) patients

with malignant diagnosis. The mean age of this group was

calculated as 61 ± 12 (27–88). Then, the location of the

lesion in each image was determined by specialist doctors,

and the lesions’ borders were drawn manually using image

processing programs. Thus, two separate copies of each

image were obtained, marked and unmarked. The marked

images are shown in Fig. 1. Masks were removed from the

marked benign and malignant patient data, as shown in

Fig. 2.

3.2 Deep learning models

The C?EffxNet approach, utilized for classification, rep-

resents a novel hybrid deep learning method developed by

Canayaz [19], specifically tailored for COVID-19 CT

images. In the initial phase, we construct a CBAM-based

model with an input layer of (256, 256, 3). This model

incorporates channel attention, spatial attention, and

residual blocks to extract crucial features from the images.

Subsequently, the hypercolumn technique is employed to

amalgamate these extracted features. Moving on to the

second stage, EfficientNet models are integrated into the

CBAM model, resulting in the creation of a third hybrid

model. The final layer of the CBAM model is fused with

the initial input layer of the EfficientNet models, adapting

the shape of the first input layer to match the data output of

the CBAM model. It is noteworthy that the models in this

hybrid approach are not pre-trained; instead, hyperparam-

eters are fine-tuned during the model training process. The

training data for the hybrid model comprises images pro-

cessed in these stages, yielding 1024 features for each

model.

In summary, this approach involves a classification task

employing two hybrid models. The first model consists of

layers comprising CBAM blocks and feature maps of

images utilizing the hypercolumn technique. In the second

model of the hybrid approach, four versions of Effi-

cientNet, a prominent deep learning architecture, are

employed. In this study, the B4 version of EfficientNet is

incorporated into this model, and a performance evaluation

is conducted. This innovative approach is employed for

feature extraction due to its demonstrated high perfor-

mance in CT images.

The InceptionV3, DenseNet121 and SEResNet101

backbones were used for feature extraction from segmen-

tation algorithms used for segmentation. If we briefly

explain these models;

InceptionV3 consists of symmetric and asymmetric

building blocks that include convolutions, mean pooling,

maximum pooling, joins, dropouts, and fully connected

layers [34]. In this network model architecture, there are

factored convolutions to reduce the number of parameters.

In addition, faster computation is provided by using small

convolution windows. The fundamental features of Incep-

tion v3 are as follows: (a) Inception Module: The Inception

v3 model employs Inception modules containing inter-

connected convolution filters of different sizes. These

modules assist in learning various features of the network

and contribute to a more effective representation of
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information. (b) Auxiliary Classifiers: Inception v3 aims to

facilitate the training of deeper networks by incorporating

auxiliary classifiers during the training process. This

approach can enhance learning by utilizing information

from both earlier and deeper layers of the network.

(c) Batch Normalization: Batch normalization is frequently

utilized in Inception v3 as a technique that aids in training

the network faster and improving generalization. This

contributes to the network’s more stable learning. (d) Fac-

torization into Small Convolutions: In Inception v3, the

computation cost is reduced by using factorized small

convolution matrices instead of large convolution matrices.

This helps achieve a lighter and more efficient model.

In the DenseNet121 architecture, each layer is directly

linked to all other layers. In these networks, feature maps

of previous layers are not collected in each layer, they are

only combined and used as input [35]. In this architecture,

there are 1 7 9 7 Convolution, 58 3 9 3 Convolutions, 61

1 9 1 Convolutions, 4 Average Pools, and 1 Fully Con-

nected Layer. DenseNet architecture has denser connec-

tions compared to previous models, allowing the network

to learn more effectively and facilitate information transfer.

The key feature of DenseNet architecture is the inclusion of

direct connections from all layers to each other. In contrast

to traditional CNN models, each layer is connected not

only to the previous layer but also to all preceding layers.

This enhances the flow of information, enabling the net-

work to learn deeper and more effective features. Dense-

Net121 is a specific DenseNet model consisting of 121

layers. This model is commonly used in computer vision

tasks such as object recognition, classification, and seg-

mentation, particularly in tasks related to computer vision.

Additionally, it is popular in transfer learning applications,

as a pre-trained DenseNet model on extensive datasets

tends to perform well in similar tasks.

SEResNet is a variation of ResNet that uses compres-

sion and excitation blocks. ResNet introduces a prominent

architecture to facilitate the training of deep neural net-

works and enhance performance. SEResNet101 is an

enhanced version of ResNet101. By incorporating

Squeeze-and-Excitation (SE) blocks, the goal is to provide

better learning capabilities to the model. These blocks aim

to emphasize important features by focusing on learned

feature maps. Consequently, the objective is to enable the

Fig. 1 Example of marked

dataset

Fig. 2 Malignant patient image

a original image b mask of

image
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network to learn more effective features, ultimately

improving overall performance. ‘‘Squeeze-and-Excitation’’

(SE) blocks are a mechanism used to assist deep neural

networks in learning more effective features. These blocks

aim to focus on crucial features in the feature maps. SE

blocks typically consist of the following two main steps: In

the Squeeze step, channel information in each feature map

is compressed (squeezed) using a learned weight set. This

involves measuring the importance level of each channel

and performing a process that reduces the number of

channels. In the Excitation step, weights are applied to the

feature maps using the summary information obtained from

the compression step. These weights express the impor-

tance level of each channel, creating a mechanism to

determine which channels need more emphasis. This pro-

cess determines the significance of each channel, and the

network optimizes learning by placing greater emphasis on

these important channels. As a result, the model learns

more effective features, leading to an overall improvement

in performance. Squeeze-and-Excitation blocks are

designed to deliver better performance, especially in tasks

that involve large and deep neural networks. It can better

map the channel dependency with the squeeze and exci-

tation block. In this way, it can better calibrate the filter

outputs, leading to performance gains [36].

3.3 Classification

In this section, some of the classifiers used in the study will

be briefly explained. Before moving on to classifiers,

information about PCA, which is the feature reduction

method we used in the study, will be given.

3.3.1 Reduced features with PCA

Principal component analysis (PCA) is an unsupervised

linear transformation technique utilized for dimensionality

reduction [37]. It allows the identification of new subspaces

with the highest variance in high-dimensional data, effec-

tively reducing its size [37, 38].While this reduction may

result in the loss of certain properties, it primarily discards

less informative traits about the population.

PCA brings together highly correlated variables, form-

ing a reduced set of artificial variables known as ’principal

components,’ capturing the most significant variation in the

data [38]. As an orthogonal statistical technique [39]. PCA

aims to project high-dimensional data samples into a

lower-dimensional space through linear transformation

[40], preserving the original data features to the extent

possible.

Through a linear transformation that minimizes redun-

dant covariance information and maximizes variance

information [41], PCA effectively combines highly

correlated variables. The outcome is a concise set of

dummy variables—’principal components’—that represent

the primary sources of variation in the data [38].

Creating principal components in high-dimensional data

begins with normalization of the data.

[p normalized random variables Z
0 ¼ ðZ1; Z2; . . .; ZpÞ].

Eigenvalues and eigenvectors of these standardized data

are obtained from the variance–covariance R matrix. The

eigenvalues of this matrix

R� kIp
�
�

�
� ¼ 0 ð1Þ

are obtained from the roots of the Eq. 1. These obtained

eigenvalues are ordered so that k1 [ k2 [ ; . . .; [ kp [ 0

effectively represents the decreasing variance in the data

[42]. After establishing linear Eqs. 2–3 as:

Y ¼ lTZ; ð2Þ

l as the loading vector, the equation

K ¼ PTRP ð3Þ

is obtained, where K is the eigenvalue matrix and P is the

eigenvalue matrix. The basic assumption of PCA is that the

score and loading vector corresponding to the largest

eigenvalues contain the most useful information, and the

rest mainly contain noise. For this reason, these vectors are

generally created in order of decreasing eigenvalues [43].

3.3.2 Classifiers

The purpose of SVM is to obtain the optimal separation

hyperplane that will separate data belonging to different

classes [44–46]. It uses Lagrangian multipliers to solve the

optimisation problem to find the optimal separation

hyperplane while solving the classification problem. In this

way, the number of transactions is reduced [47]. SVMs are

supervised learning models that analyze data for classifi-

cation [45].

In SVM, the classification process for each sample xi in

the data set can be expressed as in Eq. 4 [46]:

f xið Þ ¼ sign
Xn

j¼1

ajyjK xi; xj
� �

þ b

 !

ð4Þ

where, f(xi): classification score of sample xi, ai: support
vector weights, yj: label (class) of sample xj. K(xi, xj):

Kernel function, b: bias.

KNN is a non-parametric classification method. The

input consists of the k closest training examples in a dataset

[48]. It is determined by the k-value of the sample data

point and the nearest neighbor [37]. The formula for KNN

is given in Eq. 5.

byðxÞ ¼ mode yijxi�NkðxÞf g ð5Þ
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here, byðxÞ: estimated label of point x, NkðxÞ: cluster con-
taining the k closest neighbors of point x, yi: label of point

xi.

The RidgeClassifier is a classifier that utilizes Ridge

regression. Ridge regression [49] is suggested for data with

multicollinearity issues to obtain predictors with smaller

variances. In cases where classification is involved, it

transforms the target variable by considering classes into

[- 1, 1] and constructs the model using Ridge regression to

solve the problem [50]. The loss function and formula for

this classifier are given Eq. 6 [51].

L0 ¼ MeanSquaredErrorþ L2penalty ð6Þ

JðwÞ ¼
Xn

i¼1

l f ðxi
� �

; yiÞ þ akwk22

where, J(w): Loss function representing the total error,

l f ðxi
� �

; yiÞ: Loss function measuring the error between the

model’s prediction and the actual label. a: regularization

parameter, kwk22: L2 norm, represents the sum of squares of

the weight vector.

The Ridge Classifier restricts the weights using this

regularization term, enhancing generalization. As a result,

the risk of overfitting decreases, and a more generalizable

model is obtained.

XGBoost, a machine learning method based on deci-

sion-tree and gradient-boosting proposed by Chen and

Guestrin in 2016 [52], has been defined as a fantastic blend

of hardware and software optimization approaches that

yield excellent results in a short period [53].

XGBoostClassifier is a gradient boosting classifier based

on xgboost. XGBoost is an implementation of the widely

recognized gradient boosting algorithm known for its

efficiency and prediction accuracy [52]. This algorithm is

equipped with methods such as Regularization, Missing

values Imputation, Cross-Validation, Hyperparameter tun-

ing, etc., to enhance the computation time and performance

of the model [53]. The primary goal of XGBoost is to

optimize the performance of the model through a target

function. This function encompasses both loss and regu-

larization terms. This classifier is expressed as in Eq. 7.

Obj ¼
Xn

i¼1

lðyi; cyiÞ þ
XK

k¼1

Xðf kÞ ð7Þ

Here, n: number of samples in the data set,lðyi; cyiÞ:: The
loss function measures the error between the actual label yi
and the predictionbyi . K: Total number of trees, X(f kÞ: The
regularization term controls the complexity of each tree.

3.4 Segmentation

3.4.1 U-Net

Fully Convolutional Network (FCN) architecture is a

highly successful and frequently used basic architecture

recommended for semantic segmentation [54]. The U-Net

architecture is an architecture based on FCN architecture,

which was proposed for the semantic segmentation of

medical images [55]. The architecture of the network

consists of two parts (contraction and expansion path)

[55, 56]. Operations on the left side of the architecture, the

shrinking or contraction path, are used to capture context

information about the image (extract features from the

image). These operations are exactly the same as the

classical CNN architecture logic.

The operations on the right side of the architecture, the

expansion path, are used to precisely position the parts that

need to be segmented in the picture [55, 57]. For the skip

connection between the shrinking path and the expanding

path, a concatenation operator is applied instead of the

sum. This enables spatial information to be applied directly

to deeper layers and obtains a more accurate segmentation

result [58]. Classical deep learning needs abundant exam-

ples and expensive computing resources. However, U-Net

can adapt to minimum training sets [57, 59]. In particular,

this network is suitable for medical image segmentation

tasks [57, 60].

The main strategy that distinguishes U-Net from other

segmentation architectures is to combine feature maps of

the contraction phase and their symmetrical counterparts in

the expansion phase. In this way, it is possible to dissem-

inate context information into high-resolution feature maps

[61]. The U-Net structure is shown in Fig. 3.

3.4.2 LinkNet

LinkNet has a lightweight deep neural network architecture

that allows learning of semantic segmentation tasks with-

out a significant increase in parameters. It is similar to

U-Net and other segmentation networks. There is an

encoder on the left and a decoder on the right [61]. The

encoder functions by encoding the information in the

source space, and the decoder maps this information in

spatial categorization to perform the segmentation [61, 62].

The encoders used in segmentation processes in current

neural network architectures perform more than one

downsampling operation. This process causes some spatial

information to be lost. Some information is lost when going

through cascading convolutions in the encoder part [63].

This lost information is difficult to recover [62]. In Link-

Net, the input of each encoder layer is also assigned to the
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output of the corresponding decoder. The purpose of this

process is to recover lost spatial information that can be

used by the decoder and upsampling processes [62]. Fewer

parameters are used because the information learned by the

encoder is shared with the help of the decoder [62, 64]. The

LinkNet structure is shown in Fig. 4.

3.4.3 FPN

FPN uses the pyramidal hierarchy of deep convolutional

networks to construct feature pyramids at marginal extra

cost [65]. Image pyramids are a data structure designed to

support convolution through reduced imagery. It consists

of a series of copies of the original image in which both

sample density and resolution are reduced in regular steps

[66]. Feature pyramids form the basis of a standard solution

built on image pyramids [67]. It is believed that the pyra-

mid can provide some conceptual unification to the prob-

lem of representing and manipulating low-level visual

information. It offers a flexible, convenient multi-resolu-

tion format that matches multiple scales found in visual

scenes and reflects multiple processing scales in the human

visual system [66]. FPN is a feature extractor based on the

pyramid concept with accuracy and speed [67]. ConvNets

represent a high level of semantics and are resistant to

variance, but pyramids are still needed to obtain the most

accurate results. The main advantage of specifying each

level of an image pyramid is that it produces a multi-scale

feature representation where all levels, including high-

resolution levels, are semantically strong. However, the

disadvantage of an image pyramid is that it causes an

increase in extraction time [67]. FPN combines features

using bottom-up, top-down path and lateral connections by

leveraging feature hierarchy. In this way, it creates a strong

feature pyramid [68].

The bottom-up path provides a top-down way to render

higher-resolution layers than the rich layer. Each stage is

defined as a pyramid level [66]. Among the reconstructed

layers, the final layer output is selected as feature maps to

Fig. 3 U-Net structure [55]

Fig. 4 LinkNet structure [62]
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construct the pyramid [67]. The top-down path is enriched

by adding lateral links between feature maps [64]. The top-

down path provides a top-down way to create spatially

coarser, but semantically stronger feature maps with higher

resolution layers. These features are enhanced by features

on the bottom-up path through lateral links. Each lateral

link joins feature maps of the same spatial dimension from

the bottom–up and top–down path [67]. The FPN structure

is shown in Fig. 5.

3.5 Proposed method

Our benign-malignant analysis study, which is the subject

of the study, consists of two stages. The first stage is the

classification stage. At this stage, the classification per-

formance of the dataset was analyzed. For this, the dataset

given by the C?EffxNet method is trained. The models

obtained as a result of this training were then used in the

extraction of deep features. In the C?EffxNet method,

versions of the EfficientNet deep learning model from B0

to B4 are used. The input value of this method is (256, 256,

3). From this new hybrid method, 1024 features were

extracted for each model. We then subjected these features

to feature selection using the PCA method and extracted

100 best features for each model. For our image dataset,

this value was (744.100). In other words, 100 features of

each image were selected. 20% of this feature dataset are

reserved as test data. First of all, the classification process

was carried out for this dataset using RidgeClassifier,

SVM, KNN and XGBoostClassifier. The operations per-

formed for the classification section are shown in Fig. 6.

Parameters used in training models; optimiser Adam,

learning rate 0.0005, loss function categorical cross_en-

tropy, batch_size 8, epochs set to 100.

The second stage is the segmentation stage of the dis-

ease. At this stage, results were obtained by using three

powerful segmentation algorithms such as U-Net, LinkNet,

and FPNet. InceptionV3, DenseNet121, and SeResnet are

used as backbones for feature extraction in these algo-

rithms. In the running of the algorithms, first of all, benign

and malignant datasets were run separately and the results

were obtained, and then these datasets were combined and

the results were obtained. Parameters used in the seg-

mentation phase; Adam optimizer was used as the opti-

mizer, learning rate, Threshold value of 0.0001 was

determined as 0.5, batch size was determined as 8. The

segmentation process is shown in Fig. 7.

3.6 Metrics

Accuracy is one of the most common criteria in practice

used to evaluate the generalization ability of classifiers

[69]. and is the ratio of the number of correctly diagnosed

nodules to the total number of nodules [37]. Precision is a

measure of how well a model predicts only the positive

outcome of a classification. Recall is the ratio of the

number of correctly classified to the number of condition

positive [37] and is used to measure the proportion of

correctly classified positive patterns [69].

The F1 score is a measure that combines both precision

and recall in a single measure. It is calculated by averaging

the harmonic of precision and recall, and a higher F1 score

performs better [69]. These metrics are Sensitivity (Se),

Specificity (Sp), F-score (F-Scr), Precision (Pre), and

Accuracy (Acc). The True Positive (TP), False Positive

(FP), True Negative (TN), and False Negative (FN) values

are used to calculate the metrics. The equations for these

metrics are given in Eqs. 8–12.

Se ¼ TP

TPþ FN
ð8Þ

Fig. 5 FPN structure [65]
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Fig. 6 Classification process

Fig. 7 Segmentation process
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Sp ¼ TN

TNþ FP
ð9Þ

Pre ¼ TP

TPþ FP
ð10Þ

F-score ¼ 2TP

2TPþ FPþ FN
ð11Þ

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð12Þ

The kappa value is a statistic that is used to measure the

agreement between two raters or annotators who assign

ratings or labels to a set of items. It is calculated by taking

the ratio of the observed agreement between the raters to

the agreement that would be expected by chance and

subtracting the result from 1. This measure is useful

because it takes into account the possibility of chance

agreement between the raters, which can sometimes be

high even if the raters are not actually in agreement [70]. A

kappa value of 1 indicates perfect agreement, while a value

less than 1 indicates less than perfect agreement. The

Kappa coefficient Equation is given in Eq. 13.

k ¼ Pr að Þ � PrðeÞ
1� PrðeÞ ð13Þ

here, Pr(a) is the ratio of the total number of matches

observed for the two values, and Pr(e) is the probability of

this agreement occurring by chance.

The Jaccard index, also known as the Jaccard similarity

coefficient, is a measure of the similarity between two

datasets. Calculated by dividing the intersection size of two

sets by the size of their union. This measure can be used to

compare the similarity of two datasets, and a higher Jac-

card index indicates more similarity [71]. The Jaccard

similarity coefficient Equation is given in Eq. 14.

Jaccard index ¼ TP

TPþ FPþ FN
ð14Þ

The Dice coefficient, also known as the Sørensen-Dice

coefficient, is another measure of the similarity between

two datasets. It is calculated by dividing twice the inter-

section size of two sets by the sum of the sizes of the two

sets. The Dice coefficient can also be used to compare the

similarity of two datasets, with a higher coefficient indi-

cating greater similarity [72]. The equation for the Dice

coefficient is given in Eq. 15.

Dice coefficient ¼ 2TP

2TPþ FPþ FN
ð15Þ

4 Experimental studies

4.1 Pre-processing

No preprocessing has been performed for the dataset used

in the classification process. However, in the preprocessing

stage of segmentation, experts examined the images in the

dataset one by one and labeled the diseased parts in benign

and malignant images. These tags are then separated into

masks by image processing programs. These masks were

used as segmentation tags in segmentation.

4.2 Bening malignant classification

At this stage, C?EffxNet models were run with the dataset.

During the training phase, models saving the lowest vali-

dation loss function were retained. Initial performance

evaluations on the validation dataset were conducted using

these saved models, and the results are presented in

Table 1. It’s important to note that each sample in the

dataset corresponds to an image, and the size of each image

is (256, 256, 3).

When we examine this table, the best result on the

validation dataset was achieved by EffNetB3 with a score

of 0.88. Initially, our plan involved utilizing the C?Effx-

Net model for feature extraction. Through training this

model with the dataset, it learned from the previously

unseen pulmonary nodule dataset and adjusted its weights

accordingly. Consequently, the model became prepared for

feature extraction from this dataset. The purpose of pre-

senting Table 1 is to highlight the importance of deep

feature extraction by showing the performance of this

model before deep feature extraction. Following the

extraction of 1024 features for each image in the dataset,

PCA was employed to select the most influential 100 fea-

tures from this set. Table 2 provides the classification

algorithm performance with the selected features.

When we examine Table 2, we see that the best results

are obtained with the features in which EffB0 is used. With

the features obtained from EffB0, a performance of 0.97

was achieved in all classifiers. While the accuracy value

obtained after training the hybrid model was 0.84, this

Table 1 Results obtained from the validation dataset

Model Precision Recall F1-score Accuracy

EffnetB0 0.89 0.85 0.87 0.8472

EffnetB1 0.82 0.81 0.81 0.8093

EffnetB2 0.86 0.85 0.85 0.8489

EffnetB3 0.86 0.88 0.87 0.8808

EffnetB4 0.81 0.80 0.80 0.8017
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value increased by 0.13 points with the use of deep fea-

tures. The MSE, RMSE, and MAE values obtained with

these features were 0.0402, 0.2006, 0.0268, respectively.

The lowest value of these metrics was realized with the

features obtained with EffnetB2. With these features,

0.0335 MSE values and 0.1831 RMSE values were

obtained, and when we look at the table, it is seen that these

values are the lowest values among other MSE and RMSE

values. The confusion matrix of the EffnetB0 model, where

the best result is obtained, is shown in Fig. 8.

To confirm the reliability of our results, classification

results were obtained using Cross Validation (CV) and

Leave One Out Cross Validation (LOOCV) with a K-fold

10 on the dataset. In these verification methods, in addition

to the above classifiers, classification has been performed

with many classifiers. The correlation between the results

obtained when using these methods is also shown in

Table 3.

When we look at Table 3, it is seen that the best results

are obtained on the features obtained from EffB0 as in

Table 2. In the classification made with these features, first,

RidgeClassifier obtained the best result with 0.98 accuracy,

while SVM became the second classifier with 0.977. The

correlation between these characteristics and the results

obtained is 0.99.

4.3 Bening malignant segmentation

In the segmentation phase, ablation studies were per-

formed, and the results were obtained. First, only the

dataset that contained malignant cells was trained. The

results obtained for malignant are given in Table 4.

When we examine Table 4, we see that the best results

in train data are obtained by using the U-Net model and the

InceptionV3 backbone. While the Jaccard index value

obtained in the Train data was 0.9283, the Dice coefficient

value was 0.9489. The test values obtained in this model

and in the spine are 0.7129 and 0.8214, respectively. The

Table 2 Classification results of selected deep features

Model features Selection Classifier Accuracy Precision Recall F-Score Kappa MSE RMSE MAE

EffnetB0 PCA SVM 0.9731 0.9742 0.9731 0.9731 0.9588 0.0469 0.2167 0.0335

RidgeClassifier 0.9798 0.9802 0.9798 0.9798 0.9690 0.0402 0.2006 0.0268

KNN 0.9731 0.9738 0.9731 0.9730 0.9587 0.0469 0.2167 0.03355

XGBoostClassifier 0.9798 0.9802 0.9798 0.9798 0.9690 0.0402 0.2006 0.0268

EffnetB1 PCA SVM 0.9597 0.9599 0.9597 0.9597 0.9383 0.0604 0.2457 0.0469

RidgeClassifier 0.9530 0.9530 0.9530 0.9530 0.9279 0.0671 0.2590 0.0536

KNN 0.9530 0.9537 0.9530 0.9531 0.9281 0.0671 0.2590 0.0536

XGBoostClassifier 0.9530 0.9537 0.9530 0.9531 0.9281 0.0671 0.2590 0.0536

EffnetB2 PCA SVM 0.9664 0.9663 0.9664 0.9663 0.9484 0.0335 0.1831 0.0335

RidgeClassifier 0.9664 0.9663 0.9664 0.9663 0.9484 0.0335 0.1831 0.0335

KNN 0.9597 0.9597 0.9597 0.9594 0.9380 0.0402 0.2006 0.0402

XGBoostClassifier 0.9463 0.9464 0.9463 0.9459 0.9174 0.0738 0.2717 0.0604

EffnetB3 PCA SVM 0.9530 0.9539 0.9530 0.9530 0.9283 0.0469 0.2167 0.0469

RidgeClassifier 0.9597 0.9601 0.9597 0.9596 0.9384 0.0402 0.2006 0.0402

KNN 0.9664 0.9666 0.9664 0.9663 0.9486 0.0335 0.1831 0.0335

XGBoostClassifier 0.9597 0.9601 0.9597 0.9596 0.9384 0.0402 0.2006 0.0402

EffnetB4 PCA SVM 0.9395 0.9418 0.9395 0.9395 0.9080 0.0805 0.2837 0.0671

RidgeClassifier 0.9530 0.9540 0.9530 0.9529 0.9283 0.0671 0.2590 0.0536

KNN 0.9395 0.9421 0.9395 0.9397 0.9080 0.0604 0.2457 0.0604

XGBoostClassifier 0.9530 0.9540 0.9530 0.9529 0.9283 0.0671 0.2590 0.0536

Fig. 8 EffB0 confussion matrix

7256 Neural Computing and Applications (2024) 36:7245–7264

123



Table 3 CV and LOOCV results of selected traits

Model features Fselection Classifier CV Acc LOOCV Acc Corr

EffnetB0 PCA RidgeClassifier 0.979 0.980 0.99

SGDClassifier 0.970 0.970

PassiveAggressiveClassifier 0.973 0.974

KNeighborsClassifier 0.973 0.973

DecisionTreeClassifier 0.957 0.953

ExtraTreeClassifier 0.806 0.815

LinearSVC 0.970 0.974

SVC 0.977 0.977

GaussianNB 0.965 0.965

RandomForestClassifier 0.976 0.976

EffnetB1 PCA RidgeClassifier 0.949 0.954 0.995

SGDClassifier 0.935 0.937

PassiveAggressiveClassifier 0.945 0.944

KNeighborsClassifier 0.950 0.946

DecisionTreeClassifier 0.921 0.918

ExtraTreeClassifier 0.848 0.823

LinearSVC 0.941 0.946

SVC 0.956 0.956

GaussianNB 0.957 0.958

RandomForestClassifier 0.960 0.960

EffnetB2 PCA RidgeClassifier 0.966 0.966 0.99

SGDClassifier 0.960 0.958

PassiveAggressiveClassifier 0.961 0.958

KNeighborsClassifier 0.958 0.960

DecisionTreeClassifier 0.935 0.952

ExtraTreeClassifier 0.835 0.835

LinearSVC 0.965 0.960

SVC 0.966 0.968

GaussianNB 0.946 0.948

RandomForestClassifier 0.962 0.962

EffnetB3 PCA RidgeClassifier 0.977 0.977 0.997

SGDClassifier 0.972 0.970

PassiveAggressiveClassifier 0.969 0.972

KNeighborsClassifier 0.977 0.977

DecisionTreeClassifier 0.965 0.958

ExtraTreeClassifier 0.863 0.863

LinearSVC 0.970 0.972

SVC 0.975 0.977

GaussianNB 0.961 0.960

RandomForestClassifier 0.974 0.974

EffnetB4 PCA RidgeClassifier 0.940 0.945 0.996

SGDClassifier 0.918 0.933

PassiveAggressiveClassifier 0.932 0.933

KNeighborsClassifier 0.934 0.935

DecisionTreeClassifier 0.909 0.910

ExtraTreeClassifier 0.766 0.751

LinearSVC 0.930 0.934

SVC 0.941 0.941

GaussianNB 0.923 0.923

RandomForestClassifier 0.946 0.946

CV Cross-validation K-fold: 10, LOOCV LeaveOneOut Cross-Validation Accuracy
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best values obtained in the test data were obtained with the

FPN model and DenseNet121 backbone. The resulting

Jaccard index value is 0.8026, while the Dice coefficient

value is 0.8877. Taking into account the values obtained in

the test data in the studies, we can clearly see that the best

results for the Malignant dataset are obtained with the FPN

model and DenseNet121 backbone. Then, model trainings

were carried out on the dataset containing bening. The

results obtained from this dataset are given in Table 5.

When Table 5 is examined, it is seen that the best results

on train data are obtained with the LinkNet model and

DenseNet121 backbone, with the Jaccard index 0.9140 and

Dice coefficient 0.9284.A slight decrease in these valueswas

observed compared with the train data in the malignant

dataset. When we look at the test results for the Bening

dataset, it is seen that the best performance is obtained with

the U-Net model and the InceptionV3 backbone. The values

obtained are 0.5127 for the Jaccard index and 0.5728 forDice

coefficient.Whenwe compare it withmalignant, this value is

quite low. Finally, the training was carried out with the

dataset containing both datasets. The results obtained as a

result of this training are given in Table 6.

When we examine Table 6, we see that the model that

provides the best performance in the training data is the

U-Net model and the SeResNet101 backbone. The resulting

Jaccard Index value is 0.9094, while the Dice coefficient

value is 0.9301. In the test data, it was seen that the best

results were obtained with the FPN model and the Dense-

Net121 backbone. The Jaccard index value and Dice coef-

ficient value obtained in this model and backbone are 0.3263

and 0.3890, respectively. These values were again observed

to be quite low compared with the malignant results.

The application implemented for our study can be

accessed at https://github.com/mcanayaz/

PulnomaryNodules

5 Discussion and conclusions

Examination and classification of pulmonary nodules play an

important role in the rapid diagnosis of lung cancer devel-

opment. Our work consists of two stages. In the first stage,

benign and malignant classification is made. At this stage,

the performance of the C?EffxNet approach, which was

previously recommended in the Covid-19 classification and

had successful results, in the classification of benign and

malignant was first measured. The published study of this

approach used versions B0 through B3 of the EfficientNet

model. In this study, new results were obtained from the B4

version. In the first stage, as a result of model training, the

maximum success rate was 88%. However, the success rate

increased to 97.98% as a result of the extraction of deep

features and classification with feature selection from the

extracted features. This clearly shows us the power of feature

extraction and feature selection. The test size ratio in clas-

sification studies is 0.2. The best results were obtained with

features extracted from theRidge andXGBoost Classifier. In

order to confirm the reliability of the results, CVandLOOCV

cross-validation methods were applied to the obtained fea-

tures. The correlation between the results obtained from

these methods is 0.997.

The second phase of the study is the segmentation phase

of benign and malignant nodules. At this stage, masks were

obtained from the images marked by our radiologists. The

Table 4 Malignant results
Model Backbone Test Train Threshold

U-Net DenseNet121 Jacard index: 0.6396

Dice coefficient: 0.7317

Jacard index: 0.9293

Dice coefficient: 0.9487

0.5

InceptionV3 Jacard index: 0.7129

Dice coefficient: 0.8214

Jacard index: 0.9283

Dice coefficient: 0.9489

0.5

SeResNet101 Jacard index: 0.6294

Dice coefficient: 0.7254

Jacard index: 0.9311

Dice coefficient: 0.9515

0.5

FPN DenseNet121 Jacard index: 0.8026

Dice coefficient: 0.8877

Jacard index: 0.9248

Dice coefficient: 0.9451

0.5

InceptionV3 Jacard index: 0.6782

Dice coefficient: 0.7737

Jacard index: 0.9193

Dice coefficient: 0.9375

0.5

SeResNet101 Jacard index: 0.6076

Dice coefficient: 0.6894

Jacard index: 0.9109

Dice coefficient: 0.9313

0.5

LinkNet DenseNet121 Jacard index: 0.7268

Dice coefficient: 0.8360

Jacard index: 0.9233

Dice coefficient: 0.9426

0.5

InceptionV3 Jacard index: 0.6356

Dice coefficient: 0.7277

Jacard index: 0.9241

Dice coefficient: 0.9449

0.5

SeResNet101 Jacard index: 0.6181 Jacard index: 0.9239 0.5
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results were obtained by running the dataset created from

images and masks with 3 segmentation algorithms. In this

section, the image dataset containing bening was first

obtained, then the image dataset containing malignant, and

finally, the segmentation results with separate backbones

were obtained on the dataset obtained by combining the

two. When we look at the results, the highest Dice coef-

ficient of 0.88 was obtained from the image dataset con-

taining malignant, while a jaccard index of 0.8026 was

obtained. It should also be noted that the results obtained

with this dataset are higher than those obtained with the

Bening dataset and the combined dataset obtained by

combining the two. Among the limitations of our study, it

is thought that the number of images in the dataset should

be increased to increase the success of performance metrics

for segmentation. At the end of the study, segmentation

results were obtained in patients that the models had never

seen, and the results and radiologists’ comments on the

performance of the models are given in ‘‘Appendix’’. We

will continue to work with new models for segmentation.

In addition, it is planned to write an interface where both

classification and segmentation can be used together.

Table 5 Bening results
Model Backbone Test Train Threshold

U-Net DenseNet121 Jacard index: 0.4521

Dice coefficient: 0.5001

Jacard index: 0.8879

Dice coefficient: 0.89929

0.5

InceptionV3 Jacard index: 0.5127

Dice coefficient: 0.5728

Jacard index: 0.8961

Dice coefficient: 0.9111

0.5

SeResNet101 Jacard index: 0.3018

Dice coefficient: 0.3352

Jacard index: 0.8892

Dice coefficient: 0.9004

0.5

FPN DenseNet121 Jacard index: 0.4170

Dice coefficient: 0.4759

Jacard index: 0.8841

Dice coefficient: 0.8953

0.5

InceptionV3 Jacard index: 0.3711

Dice coefficient: 0.4443

Jacard index: 0.8971

Dice coefficient: 0.9110

0.5

SeResNet101 Jacard index: 0.3138

Dice coefficient: 0.3642

Jacard index: 0.8921

Dice coefficient: 0.9051

0.5

LinkNet DenseNet121 Jacard index: 0.4058

Dice coefficient: 0.4638

Jacard index: 0.9140

Dice coefficient: 0.9284

0.5

InceptionV3 Jacard index: 0.4801

Dice coefficient: 0.5566

Jacard index: 0.9024

Dice coefficient: 0.9219

0.5

SeResNet101 Jacard index: 0.2699 Jacard index: 0.8818 0.5

Table 6 Bening and malignant

results
Model Backbone Test Train Threshold

U-Net DenseNet121 Jacard index: 0.3089

Dice coefficient: 0.3559

Jacard index: 0.8879

Dice coefficient: 0.9037

0.5

InceptionV3 Jacard index: 0.1535

Dice coefficient: 0.1832

Jacard index: 0.6532

Dice coefficient: 0.7239

0.5

SeResNet101 Jacard index: 0.2751

Dice coefficient: 0.3208

Jacard index: 0.9094

Dice coefficient: 0.9301

0.5

FPN DenseNet121 Jacard index: 0.3263

Dice coefficient: 0.3890

Jacard index: 0.9052

Dice coefficient: 0.9260

0.5

InceptionV3 Jacard index: 0.2688

Dice coefficient: 0.3255

Jacard index: 0.8907

Dice coefficient: 0.9070

0.5

SeResNet101 Jacard index: 0.2756

Dice coefficient: 0.3514

Jacard index: 0.8056

Dice coefficient: 0.8708

0.5

LinkNet DenseNet121 Jacard index: 0.2487

Dice coefficient: 0.2934

Jacard index: 0.8882

Dice coefficient: 0.9066

0.5

Inceptionv3 Jacard index: 0.2686

Dice coefficient: 0.3223

Jacard index: 0.8824

Dice coefficient: 0.9013

0.5

SeResNet101 Jacard index: 0.2926 Jacard index: 0.8934 0.5
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Appendix

1.

A nodular lesion with an anterior contour that contacts

the pleura is observed in the lower lobe of the left lung.

Our algorithm detected the posterior segments of our

nodule with great accuracy. Additionally, no false

inference was found in any focus other than the lesion.

Here, the algorithms correctly detect the lesion borders

adjacent to the lung parenchyma, and cannot detect

adequately in the area adjacent to the lung membrane.

2.

In this image, a nodular lesion is observed in the upper

lobe of the anterior part of the left lung. Although our

lesion is close to the pleura, contact is not visible. Our

algorithm showed the lesion boundaries almost com-

pletely accurately. There is an inability to detect in the

inner parts of the lesion. In addition, in the right lung,

there are foci that are incorrectly detected in the

vicinity of the vascular structures.
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3.

A nodular mass lesion with irregular borders and

lobulated contours is observed in the upper lobe of the

left lung. The lesion is close proximity to the pleura

(lung membrane), but the lung parenchyma (black

tissue) is selected in between. Our algorithm detected

the lesion with high accuracy and did not detect any

false focus.

4.

There is a nodule close to the pleura in the lower lobe

of the left lung. The algorithm was successful in

showing the lesion and did not extract an incorrect

focus outside the lesion.
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