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Abstract
IoT devices convert billions of objects into data-generating entities, enabling them to report status and interact with their

surroundings. This data comes in various formats, like structured, semi-structured, or unstructured. In addition, it can be

collected in batches or in real time. The problem now is how to benefit from all of this data gathered by sensing and

monitoring changes like temperature, light, and position. In this paper, we propose a predictive analytics framework

constructed on top of open-source technologies such as Apache Spark and Kafka. The framework focuses on forecasting

temperature time series data using traditional and deep learning predictive analytics methods. The analysis and prediction

tasks were performed using Autoregressive Integrated Moving Average (ARIMA), Seasonal Autoregressive Integrated

Moving Average (SARIMA), Long Short-Term Memory (LSTM), and a novel hybrid model based on Convolution Neural

Network (CNN) and LSTM. The purpose of this paper is to determine whether and how recently developed deep learning-

based models outperform traditional algorithms in the prediction of time series data. The empirical studies conducted and

reported in this paper demonstrate that deep learning-based models, specifically LSTM and CNN-LSTM, exhibit superior

performance compared to traditional-based algorithms, ARIMA and SARIMA. More specifically, the average reduction in

error rates obtained by LSTM and CNN-LSTM models were substantial when compared to other models indicating the

superiority of deep learning. Moreover, the CNN-LSTM-based deep learning model exhibits a higher degree of closeness

to the actual values when compared to the LSTM-based model.
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1 Introduction

The Internet of Things (IoT) is a global network that

facilitates communication among individuals, objects, and

objects themselves by allocating a distinct identification to

each entity. Big Data and the IoT are interconnected con-

cepts that are closely related. In recent years, there has

been a significant emphasis and focus on big data analytics

in the context of IoT, mostly because of the substantial

volume, velocity, variety, and veracity of the data

involved. As IoT technology advances [1], an increasing

number of sensors are being implemented in a variety of

sectors, including transportation, industrial manufacturing,

healthcare, and many more. This progression leads to the

continuous generation of a substantial volume of time

series data.
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The sources of the time series data may include envi-

ronmental pollution, architecture, meteorology, finance,

transportation, medical treatment, and more, so this data

mirrors a variety of evolving phenomena and

events. Concurrently with this, the complexity of time

series data is growing. The substantial quantity and com-

plexity of the data causes further difficulties to the process

of analysis to tackle these difficulties, a multitude of

technologies are utilized to manage [2], store [3], process,

and analyze [4] time series data with the objective of

extracting valuable insights, such as providing forecasts.

Time series forecasting can be defined as a technique for

predicting future values by understanding past values; it

involves the use of certain predictive analytics models to

provide forecasts based on historical data in order to create

fitting models that characterize the underlying data struc-

ture and properties [5, 6]. Numerous studies have been

conducted on the topic of time series prediction, employing

a variety of methodologies. Commonly used techniques for

time series forecasting encompass ARIMA [7] and SAR-

IMA models. However, it should be noted that these

models possess inherent constraints and are not proficient

in effectively extracting nonlinear features [8].

ARIMA model [9] has gained widespread attention

because of its statistical flexibility and its use of a number

of exponential smoothing approaches. It takes into account

the past values (autoregressive, moving average) and pre-

dicts future values based on that. However, ARIMA

models work efficiently when the time series is stationary

with no missing values that can be filled using advanced

interpolation techniques [10, 11]. SARIMA works in a

similar way like ARIMA in addition to looking at seasonal

patterns. Since seasonality is a parameter in SARIMA, it is

better than ARIMA at making predictions in complex data

spaces with cycles where seasonality is a factor [12, 13].

The utilization of machine learning has facilitated the

application of many deep learning models in the field of

time series prediction. These models include multilayer

perceptron (MLP), recurrent neural network (RNN), long

short-term memory (LSTM), convolution neural network

(CNN), and gated recurrent units (GRU).

Deep learning techniques are the most popular methods

for developing the current state-of-the-art solutions for

time series forecasting. It outperforms machine learning

models in accuracy and is effective at feature engineering.

LSTM is a model improved by RNN architecture, proposed

by Hochreiter and Schmidhuber in 1997 [14]. LSTMs

preserve memory of the input internally. Therefore, they

are ideal for situations involving sequential data because

they can capture nonlinear trends and dependencies

[15, 16]. It was first introduced to resolves the vanishing

gradient RNN issue because it has a longer memory and

can learn from inputs with substantial time lags [17]. In

recent years, LSTM has shown promising results in time

series analysis as it can figure out what would happen in the

future based on different sequences of different lengths.

Furthermore, unlike most other machine learning models, a

multi-step LSTM network is highly efficient at automati-

cally learning features from time series and sequence data.

To enhance the efficacy of LSTM in processing time

series data, it is proposed to incorporate a CNN to extract

the features from the input dataset. The application of a

composite structural model that combines CNN and LSTM

models for time series prediction demonstrates significant

performance [18].

In this paper, the primary objective is to propose a

comprehensive framework for big data management,

specifically designed to handle IoT sensor data in either

batch or real-time processing scenarios. This approach

integrates both traditional statistical and deep-learning

predictive models. The study continues by conducting a

comparative analysis of the results acquired, with the aim

of selecting the predictive models that have the highest

level of accuracy in making predictions. The case utilized

to assess this framework concerns the temperature of

Delhi’s climate. The work demonstrates innovation

through the demonstration, and the prediction results are

subjected to comparison, evaluation, and visualization.

The main contributions in this paper include the fol-

lowing: (1) the utilization of advanced open-source tools

such as Apache Spark and Kafka for data processing and

analysis, as well as Hadoop Distributed File System

(HDFS) for storage, in the implementation of ARIMA,

SARIMA, LSTM, and hybrid CNN-LSTM models. (2)

design of the CNN–LSTM model with forgetting input, and

output gates to capture the long-term memory and reduce

the dimensionality of weather temperature data; (3) com-

parison of the performances of different deep learning

models by using RMSE, MAE, MAPE, and goodness of fit.

Its novelty is that the integration of CNN and LSTM with

forgetting, input, and output gates to predict Delhi tem-

perature time series data.

The rest of the paper are organized as follows: Sect. 2

presents related work and explains how we extended prior

research. Section 3 explains our proposed framework along

with descriptions of the various components involved in its

implementation and explains the proposed techniques for

time series modeling and forecasting. In Sect. 4, the

experiments and results are presented and discussed. In

Sect. 5, the conclusions and directions for future works are

provided.
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2 Literature review

This study presents the utilization of predictive analytics

models, particularly ARIMA, SARIMA, LSTM, and

hybrid CNN-LSTM, for the purpose of forecasting the

temperature of Delhi’s weather. The models are imple-

mented using a big data framework to use the advantages

of batch and real-time processing for the time series input

data. The present study aims to enhance the proficiency and

distinctiveness by discussing the following relevant

studies.

In [19], the proposed work analyzed rainfall data over a

time period of 11 years (2010–2020) and focused on the

ARIMA method for predicting monthly rainfall in the

Bengaluru area. Regarding future recommendations, this

research suggests acquiring additional data to improve the

performance of the ARIMA model.

The paper [20] analyzes the monthly mean temperature

in Nanjing, China, from 1951 to 2017 using Seasonal

Autoregressive Integrated Moving Average (SARIMA)

techniques. The paper explains the steps involved in time

series forecasting and model selection. It presents the

results of the analysis. The study shows that the proposed

research approach obtains good forecasting accu-

racy. However, it would have been helpful if the paper had

discussed the limitations of the study and the potential

sources of error in the forecasting models.

The author in [21] used LSTM for weather forecasting.

The paper discusses the limitations of traditional weather

prediction methods and how LSTM can overcome these

limitations by retaining relevant information for the long

term and forgetting irrelevant information. The paper also

explains the use of gates in LSTM to regulate the addition,

keeping, and removal of information. The paper concludes

that LSTM has shown substantial performance in a variety

of real-world applications, including weather forecasting.

The research [22] focuses on weather forecasting,

specifically visibility, in the context of flight navigation.

The authors have made significant contributions to the

project, including coordinating development, conducting

experiments, analyzing data, and writing the manuscript.

The research methodology involves using ARIMA and

LSTM models to forecast visibility at Hang Nadim Airport

in Batam, Indonesia, using weather data as predictors and

moderating variables. The experimental findings indicate

that the LSTM model exhibits superior performance in

comparison to the ARIMA model, both with and without

intermediate variables. However, further evaluation and

validation of the models may be necessary to determine

their accuracy and effectiveness in real-world scenarios.

CNN and LSTM networks were used to create a pow-

erful solar energy forecasting algorithm [23]. The CNN

extracted spatial elements from historical time records.

Then, the LSTM extracted temporal information and pre-

dicted solar energy production. The CNN-LSTM hybrid

was created for forward and backward time series. The

suggested forecasting method was trained and evaluated

using Moroccan photovoltaic plant data. Production,

weather, and produced power consumption data are

included. Experimental findings showed that the CNN-

LSTM algorithm can forecast properly.

The article [24] discusses the development of a hybrid

CNN-LSTM based time series data prediction model for

analyzing and predicting air pollution information. The

article discusses the limitations of traditional prediction

models through statistical approaches and the potential of

deep learning in improving predictive power in various

fields dealing with time series data. However, the article

does not provide a thorough analysis of the model’s per-

formance or compare it to other existing prediction models.

The paper [25] introduces big data framework that

focuses on predicting weather conditions using machine

learning models. The study evaluates the performance of

different classifiers, including Classification and Regres-

sion Trees (CART), K-nearest neighbor, Random Forest,

and Support Vector Machine. The Random Forest classifier

achieved the highest classification accuracy of around 89%.

In [26], the authors utilized data science techniques such

as data mining, machine learning, and data visualization.

They created a platform for big data that enabled the

integration and combination of unstructured data from

multiple sources in order to address problems in the pro-

duction of distribution networks. The results indicated that

data mining techniques can considerably reduce the oper-

ational costs of distribution networks and increase the

reliability of the power supply.

The Lambda architecture is introduced in [27]; it is a

scalable and fault-tolerant framework for handling both

real-time and historical data concurrently. Lambda archi-

tecture was developed to quickly, accurately, and reliably

process massive amounts of incoming data. Its primary

goal was to accelerate the processing of Online Analytical

Processing (OLAP), such as page view and click stream

analysis. It was not aimed to make decisions or react to

occurrences on an event-by-event basis. It is complex and

challenging to deploy and manage, as it consists of batch,

speed, and serving layers that need to coordinate closely

with one another.

3 The proposed framework

The proposed predictive analytics framework depicted in

Fig. 1 is used for weather temperature forecasting. It can

process and analyze the dataset by applying traditional time
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series forecasting methods, including ARIMA and SAR-

IMA. Although predictions of temperature trends using

these models have been made frequently, However, they

might not work well with data that has nonlinear rela-

tionships. To address this limitation, the LSTM model and

a novel hybrid prediction model that combines CNN and

LSTM are presented. The framework can handle and

analyze batch and stream data from IoT devices; the

accuracy has been computed; and the findings have been

evaluated and visualized. The framework meets the

requirements of scalable historical data analytics as well as

efficient real-time processing for IoT sensor datasets.

Compared to more conventional data mining tools, the

use of Spark in this system significantly accelerates the

processing of data. The primary distinction between the

proposed framework and conventional techniques for data

analytics is that conventional methods evaluate one

instance at a time and depend on the volume of imported

data. This proposed framework, however, can handle

thousands of instances in real time using Spark Discretized

Stream (Dstream), a collection of Resilient Distributed

Datasets (RDDs), where each RDD represents one or more

instances [28].

Kafka is chosen because it can handle massive backlogs

of messages to accommodate periodic ingestion from

numerous systems, and it also allows consumers to re-read

messages if necessary. Consumers need to connect to

Zookeeper to find out the location of the Kafka brokers that

they need to connect to in order to consume the demanded

data [29, 30]. Furthermore, Kafka supports both online and

offline batch consumers who require low latency, and the

input weather temperature dataset is employed as a data

producer by Apache Kafka.

The Real-Time Messaging System component is

responsible for publishing the input data to Apache Kafka

Message Brokers for data ingestion because they allow

publishing messages to specific topics and then subscribe to

those topics. Each sensor node (or group of nodes) sends

training and testing events per second in a predefined for-

mat to the specified topic. To execute either real-time or

batch processing, these topics are either transmitted to the

Spark streaming application or stored in the Hadoop Dis-

tributed File System (HDFS) [31]. At this stage, the

amount and complexity of the data can be determined,

affecting the architecture and all future decisions. The data

will be retrieved, manipulated, and stored as quickly as is

feasible.

In fact, IoT stream processing can be used indepen-

dently in situations where the IoT stream data can be

analyzed without the need for historical data. Historical

data can usually provide additional insight to make intel-

ligent recommendations based on real-time data. More-

over, the batch flows can operate separately from the real-

time flows, either to provide long-term insight or to train

predictive models using historical datasets.

Batch data processing begins with importing the data,

ends with scaling the data, and transforms it into a data

frame. Afterward, data processing using Apache Spark

begins, while the historic data is stored in HDFS. The batch

processing may operate on very huge datasets, for which

the computation is time-consuming. It works well either

when real-time analytics results are not required or when it

is more critical to process a huge volume of data

simultaneously.

In-stream data processing Kafka streaming and Spark

streaming are integrated to analyze and store data for in-

process analytics in real time. Apache Kafka picks up the

message and saves it by writing it to its broker. In addition,

it sends those messages to Apache Spark, then to Apache

Spark Structured Streaming to be processed. Algorithm 1

indicates the steps.

Fig.1 Proposed framework architecture
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Algorithm 1 Kafka and spark stream processing

For further details, once the SparkContext is created,

Spark treats the input training dataset as an RDD via the

textFile() function. Specifically, the cache() method is

employed to store a previously calculated RDD for later

usage. Spark uses the SparkSQL and SparkMLib libraries

to manage the Kafka topics that are stored in the datasets.

Apache Spark analytics is the main component in the

proposed framework, where the time series data is ana-

lyzed, visualized, and evaluated using ARIMA, SARIMA,

LSTM, and CNN-LSTM predictive models.

In addition, being a general system, it can support batch,

interactive, iterative, and streaming computations in the

same runtime, which is advantageous for complicated

applications with several computing techniques. In this

stage, a comparison between time series and deep learning

techniques is conducted. The accuracy of these models is

verified using the Mean Squared Error (RMSE), Mean

Absolute Error (MAE), and Average Absolute Percentage

Error (MAPE); the smaller the values, the better the model

performance [32, 33].

3.1 ARIMA prediction model

The ARIMA model is one of the most used and well-

known statistical forecasting models for time series. It is a

statistical method that is used for predicting based on his-

torical values that are lag values and lagged forecast value

errors. The ARIMA model, often known as the Box-

Jenkins model, has gained widespread popularity due to its

impressive forecasting accuracy and efficiency in utilizing

historical data to predict future data values [34].

This model can predict time series data that does not

have seasonality or a trend [35]. The ARIMA model has

three parts: autoregressive (AR), integrated (or differenc-

ing), and moving average (MA) terms. It is characterized

by three parameters: p, q, and d, where ‘‘p’’ is the order of

the AR term known as auto-correlation, ‘‘q’’ is the order of

the MA term known as the partial autocorrelation, and ‘‘d’’

is the number of differencing required to make the time

series stationary [36]. The ARIMA model can be expressed

as the following Eq. (1):

y0t ¼ cþ d1y
0
t�1 þ . . .þ dpy

0
t�p þ /1et�1 þ . . .þ /qet�q

þ et

ð1Þ

where y’t is the differencing series, c is a constant,

d1y’t-1 ? … ? dpy’t-p is the AR term with d1to dp as

coefficients at p order, /1et-1 ? … ? /qet-q is the MA term

with /1 to /q as coefficients at q order, and et is an error

term for random background noise at time t. Point and

interval forecasts can be created once the orders and

coefficients for a certain time series have been estimated by

fitting the model to historical data.

The ARIMA model is completed by adjusting the

parameters p, d, and q based on the dataset at hand. In this

study, the parameters are calculated using an ‘‘auto-

ARIMA’’ function of the ‘‘pmdarima’’ library [37] that

uses the Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC) to determine which

parameters to use in the final model [38]. The BIC indi-

cator is preferred over the AIC indicator because the for-

mer is more consistent and penalizes free parameters.

3.2 SARIMA prediction model

SARIMA is an extension of ARIMA that explicitly sup-

ports seasonal components in univariate time series data.

Unfortunately, the basic ARIMA model does not support-

ing seasonality. For this reason, the SARIMA model is

suggested by Box and Jenkins as a highly successful ver-

sion of the ARIMA model, called the Seasonal ARIMA

(SARIMA), to account for the fact that the periodicity of

periodic time series is typically due to seasonal variations

or other natural reasons [39]. SARIMA is formed by add-

ing seasonal parameters in the ARIMA model and written

as shown in Eq. (2).
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SARIMAðp; d; qÞðP;D;QÞm ð2Þ

In this equation, (p, d, q) and (P, D, Q)m are the non-

seasonal and seasonal part of the model, respectively. The

parameter ‘‘m’’ is the number of periods per season. The

parameters P, D and Q are seasonal autoregressive

parameter, seasonal integrated parameter and seasonal

moving average parameter, respectively. Practically, the

order of the SARIMA model is generally not too high [40].

In general, the model is non-stationary, Thus, it is nec-

essary to check the original dataset for stationarity before

using the method and this can be performed using the

Augmented Dickey-Fuller (ADfuller) test [41]. This test is

founded on a hypothesis, where, if the p-value is less than

0.05, then we can consider the time series stationary, and if

the p-value is greater than 0.05, then the time series is non-

stationary. The library ‘‘statmodels’’ is used to perform the

ADfuller stationarity test and implement the SARIMA

method [42]. The parameters (p, d, q)(P, D, Q) selection

can be performed automatically using the ‘‘auto_ARIMA’’

function of the ‘‘pmdarima’’ library.

3.3 LSTM prediction model

LSTM is a type of network that facilitates data persistence

[43]. It is particularly well suited for handling large

amounts of data due to its ability to use nonlinear activa-

tion functions in each layer and manage large parameter

sizes [44]. Unlike the original RNN, LSTM solves the issue

of vanishing gradient problem by processing single data

points and entire data sequences, while also capturing

nonlinear trends in the data and retaining past information

for an extended period [45].

LSTMs update its cell state and various gates and has

the ability of learning from long-term dependencies

[46, 47]. The LSTM architecture comprised multiple hid-

den LSTM layers. When LSTM hidden layers are stacked,

the model becomes more complex and properly classified

as a deep learning method.

The four components of an LSTM memory cell are

depicted in Fig. 2; these are the input gate, the output gate,

the forget gate, and the self-circulation neuron. Memory

cells can communicate with one another and their

neighbours via an input gate. The input gate determines if

the state of the memory cell can be changed by the

incoming signal. On the other hand, the output gate could

regulate the memory cell’s state based on whether or not

the other memory cell’s state is mutable. The forgetting

gate can also choose to remember or discard the previous

state [48].

In this study, we used a three layers stacked LSTM

architecture. The first and second hidden layers contained

32 cells with the activation function (relu), which over-

comes the problem of vanishing gradients, where the

accuracy and efficiency of output prediction are at their

maximum. The third layer contains 32 cells with the acti-

vation function (sigmoid) to predict the probability of the

output. The output layer consists of a single fully con-

nected neuron. The model description is shown in Fig. 3.

We used the ‘‘keras’’ library and a set of functions

Sequential, Dense, and LSTM, which were used to con-

figure the neural network [50, 51]. The model was con-

structed using the following hyperparameters:

Units = 32—the output space dimensionality; batch

size = 30—number of samples per gradient update;

epochs = 500—number of epochs for the model training.

The optimization algorithm, Adaptive Moment Estimation

(Adam) [52] was used with a learning rate of 0.001, which

has been demonstrated to be effective in practice. Early

stopping was used as a type of regularization to prevent

over fitting.

3.4 CNN-LSTM prediction model

Convolution Neural Networks (CNNs) are a class of deep

learning models specifically developed to effectively pro-

cess data that exhibits grid-like structures, such as photo-

graphic data. CNNs typically consist of three main

components: convolution, pooling, and a fully connected

layer, as depicted in Fig. 4.

Fig. 2 LSTM unit structure [49] Fig. 3 Proposed LSTM predictive model
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In the convolution and pooling layers, feature extraction

is carried out. Subsequently, the extracted features are

mapped by the fully connected layer into the final output,

which may involve classification. Pixel values in digital

images can be represented as two-dimensional grids that

are regarded as matrices. Kernels, an additional small grid

parameter, are employed to extract image features. The

images features that are extracted by the ‘‘kernel’’ are what

make the whole picture learning process efficient [53].

This research presents a novel approach for temperature

time series data forecasting by proposing a hybrid CNN-

LSTM deep learning model. The forecasting process

functions as a sequence-to-sequence learning paradigm,

where a series of historical data points is utilized to forecast

a subsequent series of future data points. The preceding

12-month data is utilized to forecast the values for the

subsequent 6-month period. The model acquires knowl-

edge of the patterns that are anticipated on the test dataset

that has not been previously observed. The model effec-

tively captures both seasonality and trends.

The initial stage involves executing matrix operations

using a three-dimensional array structure for CNN opera-

tions on one-dimensional time series data. Additionally, the

time series data, which has been processed as a three-di-

mensional array, undergoes a convolution operation at the

CNN layer.

The feature map is obtained by performing computa-

tions on the CNN layer using Conv1D. Subsequently, the

LSTM cells of the recurrent layer are connected to learn

the time series data. The architectural design possesses the

capability to autonomously acquire knowledge of the

series’ seasonality and trend, eliminating the need for

thorough fine-tuning. The schematic representation of the

suggested model is depicted in Fig. 5.

The data is first reshaped and rescaled to fit the three-

dimensional input requirements of Keras sequential model.

The input shape would be with one feature for a simple

univariate model. And we chose the kernel size to be 5. The

dense layer produces six output numbers. Below, in Fig. 6,

is a detailed model summary.

Batch input size is 16. In the end, the model is fitted for

200 epochs and output the loss. Mean squared error loss

function and Adam optimization were used.

The performance methodology for forecasting temper-

ature in this model is accomplished by obtaining a high-

quality foundational training dataset through the proce-

dures of data selection, collection, and preparation. The

next step involves performing a transfer test and resolving

any missing values within the dataset that has been adop-

ted. The model is acquired through the process of tracking

and determining the ideal hyperparameters for the pro-

posed model.

4 Experiment and results

The efficacy of the suggested framework was thoroughly

examined through extensive testing. The evaluation of the

forecasting models was conducted using a dataset that is

publicly accessible. Various evaluation indicators were

employed to assess the performance of the

predictive models.

Fig. 4 CNN structure and learning process [54]
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4.1 Experiment details

The framework is flexible enough to be used for many

different IoT applications. Here, we show how it has been

used in the real world and how it can be used to optimize,

automate, and provide context-aware solutions for large-

scale IoT deployments. In the subsequent sections, we will

provide an overview of the dataset utilized for both training

and evaluating the suggested forecasting models. Further-

more, we will present the assessment measures employed

for the purpose of evaluation. Moreover, the obtained

outcomes are provided and analyzed to demonstrate the

effectiveness of the predictive models and their influence

on temperature prediction.

4.2 Dataset

The DelhiDaily climate open dataset [55] was used to

obtain the training data where the average daily tempera-

tures are computed from 24 hourly temperature sensors

readings since the air temperature is the most common and

accurate way to tell what the weather will be like. The

collected data was regularly updated on a daily basis. The

data was gathered across a period of four years, specifically

from 2013 to 2017, hence offering a historical time series

and information on weather conditions.

Data are divided into train and test sets for model

implementation and accuracy. The training set is the period

from 01 to 01-2013 to 31-12-2015, and the test set is from

01 to 01-2016 to the beginning of 2017. This information is

confirmed in the Exploratory Data Analysis (EDA) time

series plot of the Delhi mean temperature in Fig. 7.

The time series data has seasonality pattern, for instance,

temperatures are always low at the beginning of the year

and high at the middle of the year.

4.3 Experimental details

In numerical weather prediction, two approaches exist.

First is using weather data approach where machine

learning techniques are used. Second is using time series

data prediction approach where Artificial Neural network

(ANN) and ARIMA model-based techniques are all part of

this approach [56]. The following predictive models aim to

forecast using ARIMA, SARIMA, LSTM, and CNN-

LSTM deep learning and comparatively analyze prediction

results of each of these models based on performance.

4.3.1 ARIMA

The ARIMA model is employed for the purpose of fore-

casting time series temperature data. The determination of

the precise values for p, d, and q is subsequently conducted

through the utilization of the least information criterion

(AIC) and the Bayesian criteria (BIC). Models with smaller

values of AIC and BIC tend to exhibit higher performance.

Based on the computation, it has been determined that the

ideal parameters for the ARIMA model are (1, 1, 1), with

p = 1, d = 1, and q = 1. The AIC and BIC values for this

model are 4161.59 and 4176.59, respectively, representing

the minimal values achieved.

The residuals of the ARIMA (1,1,1) model were

examined for white noise using the Python programming

language. The obtained P-value from the statistical test was

0.8975, indicating a lack of statistical significance since it

exceeds the commonly accepted threshold of 0.05. This

finding suggests that the residuals did not meet the criteria

for significance testing, indicating a lack of independence

in the residuals. Based on the results depicted in Fig. 8, it

can be deduced from the graphical representation that the

model exhibited a lack of precision in forecasting the daily

mean temperature, as it deviated from the anticipated trend.

Fig. 5 Proposed CNN-LSTM

structure

Fig. 6 Proposed CNN-LSTM predictive model
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4.3.2 SARIMA

The SARIMA model is utilized to make linear predictions

on the trend and seasonal components of a given time

series, specifically in the context of temperature data. The

utilization of a Seasonal Trend Decomposition Procedure

based on Loess (STL) decomposition is employed for the

preprocessing of sequences. The process of conducting

local weighted regression involves use STL decomposition

[57] to break down a sequence into three distinct compo-

nents: the trend term, the seasonal term, and the residual

term. These components can be mathematically repre-

sented as shown in Eq. (3).

Xt ¼ Tt þ St þ Rt ð3Þ

The variable Tt represents the trend component of the

data at time t, whereas St represents the seasonal compo-

nent and Rt represents the residual component. The STL is

comprised of two distinct loops, namely the inner loop and

the outer loop. The primary function of the inner loop is to

conduct trend fitting and compute periodic components.

The inner loop can be subdivided into six distinct steps,

which are as follows:

The first step is detrending, which entails subtracting the

trend component from the previous round’s outcome. The

second step involves the application of cycle-subseries

smoothing. The third step involves the implementation of a

low-pass filtering technique. The fourth step involves the

detrending of the smoothed cycle subseries. the fifth step is

deseasonalization. The final step in the analysis process

involves the application of trend smoothing techniques.

The primary purpose of the outer loop is to modify the

robustness weight, as depicted in Fig. 9.

There are a total of four distinct subgraphs, arranged in a

vertical sequence from the highest to the lowest. The initial

subgraph represents the original sequence graph, while the

subsequent subgraphs, namely the second, third, and fourth

subgraphs, depict the trend, seasonal, and residual

sequences, respectively, which were obtained by STL

decomposition.

The data exhibits both seasonal and nonseasonal com-

ponents, with the temperature series displaying an annual

trend. Hence, the SARIMA (p, d, q) 9 (P, D, Q)m model is

employed for forecasting the linear component. The opti-

mal parameters of the model are determined using the

Akaike information criteria, and the residual term is

Fig. 7 Delhi temperature

exploratory temperature data

Fig. 8 ARIMA model

visualization for temperature

prediction
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excluded from the temperature sequence as an input vari-

able. The model parameter results produced are (0, 0, 1)

and (0, 1, 1). The value of ‘‘m’’ is set as 12 due to the

monthly data being used, which has a duration of

12 months. Hence, the SARIMA (0, 0, 1) x (0, 1, 1) [12]

model combination is determined to be the most effective

parameter configuration.

The utilization of this model enables the generation of

forecast outcomes according to both trend and seasonal

components. The results of the forecast for the trend and

seasonal variables in this section are depicted in Fig. 10.

SARIMA predictions based on the past up to the point in

time of the planning to make forecasts have been the most

accurate so far. This is particularly true for weather fore-

casting because the temperature today isn’t much different

from yesterday, and barring any additional factors, the

temperature should indicate the start of a new season.

4.3.3 LSTM

The presented LSTM model consists one input layer, three

LSTM layers, and a fully linked layer. The model’s

hyperparameters were evaluated using a series of

experiments. Specifically, the model performed 500 itera-

tions on the training set, with a training step value of 30.

The model is applied to the divided dataset to train and test

data, then neural network inputs are normalized, and then

the network is trained for 500 epochs with a validation loss

of MSE 0.0043 on the final epoch. The optimization

algorithm is Adam with a learning rate of 0.001 and Early

stopping was used for regularization.

The training loss exhibited a quick decline as the

number of iterations increased, eventually reaching a state

of smoothness after 150 iterations. This observation sug-

gests that the model achieved a good match, as visually

depicted in Fig. 11.

The results demonstrate that the comparison between

predicted and actual values for the test dataset’s arbitrary

forecast points, one year in advance, can be considered

satisfactory. The temperature forecast results for the test

data that extend from January 2016 to January 2017 are

depicted by the blue line. Conversely, the red line repre-

sents the actual temperature values for the corresponding

data points. In this case, the model seems to accurately

predict the temperature, with some small differences

Fig. 9 Seasonal decomposition

Fig. 10 SARIMA Model

visualization for weather
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between the actual temperature and the predicted

temperature.

4.3.4 CNN-LSTM

CNNs provide the capability to effectively extract features,

namely in the temporal dimension, hence enabling the

identification of short-term patterns. Furthermore, it is

possible for them to represent the interrelationships among

variables at a local level. In contrast, LSTM models have

the capability to capture temporal dependencies within

time series data. CNNs combined with LSTM models has

yielded good outcomes in the domain of time series data

forecasting. The model has a high level of accuracy in its

temperature predictions, as illustrated in Fig. 12.

The analysis of the pre-processed data is conducted by

the CNN, while the prediction task is handled by the hybrid

CNN-LSTM model. The utilization of LSTM in this con-

text is motivated by its inherent ability to learn and make

predictions within a sequential framework. In this context,

the utilization of the first-order algorithm is employed for

optimization as an alternative to the gradient descent

method.

After the completion of pre-processing, the data analysis

is conducted utilizing the CNN algorithm. Subsequently,

the forecast is conducted with the hybrid CNN-LSTM

model, which incorporates both CNN and LSTM compo-

nents, as outlined in the steps that follow.

In the first step, the CNN model is provided with the

cleaned data as its input. The CNN algorithm is employed

to ascertain several properties of the provided information.

The next one is pooling, wherein the significant features

are extracted from the input data. Pooling operations are

employed to decrease the dimensions of the input while

retaining its fundamental characteristics. In the next step of

the flattening process, the one-dimensional dimension of

the data is further transformed into a one-dimensional

format, with the purpose of facilitating analysis.

In the second step, the output of the CNN layer is

subsequently inputted into the LSTM networks. Within the

LSTM, the cell state plays a crucial role in providing

memory to the network, enabling it to retain information

from previous time steps. The gates inside the LSTM ar-

chitecture are responsible for implementing the sigmoid

function, which restricts the output values to a range

between 0 and 1.

In the third step, the output of the hybrid model is passed

on to the optimization model, which performs optimization

using the first-order optimization process, namely gradient

descent. In order to improve the model, it is necessary to

optimize the weight values that are associated with it. In

Step 4, the outcomes and visual representations are graphed

in relation to the weight optimization technique, and the

temperature data is determined for the purpose of analysis.

Compared to the predictive performance exhibited by

the LSTM-based deep learning model, the CNN-LSTM-

Fig. 11 LSTM Model

prediction vs. actual values

Fig. 12 CNN-LSTM model

prediction vs. actual values
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based deep learning model demonstrates a higher degree of

proximity to the real value.

4.4 Evaluation metrics

The suggested prediction models were evaluated using

three statistical metrics: Root Mean Square Error (RMSE),

Average Absolute Percentage Error (MAPE), and Mean

Absolute Error (MAE). Equations (4), (5), and (6) are used

computation.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N�1

i¼0

ðyi � ŷiÞ2
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where yi is the actual value, yî is the predicted value, and

N is the number of observations or dataset rows. The

evaluation statistical tests were employed to evaluate the

effectiveness of the forecasting method. The diversity of

assessment metrics offers valuable insights into the

robustness of the proposed model. When the RMSE is

substantially higher than the MAE, the forecasting system

exhibits significant deviation from the desired prediction,

while the forecasting system exhibits a moderate level of

departure from the desired prediction value when

the RMSE is about equal to the MAE.

4.5 Results and discussion

The efficacy of the ARIMA, SARIMA, LSTM, and CNN-

LSTM models in predicting weather temperature is quan-

tified in the numerical values presented in Table 1. Based

on the results, it is clear that the CNN-LSTM model is most

accurate predictive model because it was able to get the

lowest RMSE, MAE, and MAPE values. Therefore, the

best prediction results were given by the CNN-LSTM

model.

CNN-LSTM, which requires a large amount of histori-

cal data, has been found to be the most effective model for

future temperature forecasting. Moreover, the results show

that the LSTM model has been able to make predictions

that are almost in line with those given by the CNN-LSTM

model for that time period.

This demonstrates the effectiveness of the deep learning

model when compared to other approaches when making

predictions. So, to accurately predict temperature, a lot of

temperature measurements need to be made over a long

period of time. Moreover, the results illustrate that the

predictions of the LSTM model for the same time period

are more accurate than ARIMA and SARIMA models. It

highlights how the deep learning model’s predictions are

more precise than those obtained by utilizing alternative

methods.

5 Conclusion and future work

This study introduces a comprehensive big data framework

for predicting weather temperature time series data through

the utilization of statistical and deep learning models. The

framework incorporates sophisticated open-source tools,

such as Apache Spark and Kafka, for the purpose of data

processing and analysis. Additionally, it utilizes the

Hadoop Distributed File System (HDFS) for storage. The

analysis and prediction tasks were conducted using

ARIMA, SARIMA, LSTM, and a novel model based on

CNN-LSTM.

In this study, a real-time series temperature dataset was

employed for the purposes of models identification and

validation. The performance of these models was subse-

quently evaluated and compared based on their accuracy,

as measured by MAE, RMSE, and MAPE metrics.

The results of the study indicated that the deep learning

models had a higher level of performance compared to the

ARIMA and SARIMA models. More specifically, The

CNN-LSTM-based deep learning model exhibits a higher

degree of proximity to the real value when compared to the

LSTM-based model. The research outlined in this paper

emphasizes the advantages of utilizing deep learning

algorithms and methodologies for the prediction of time

series data.

In the future, deep learning can be applied to several

prediction issues beyond the scope of this discussion. Thus,

the authors plan to investigate the advancements attained

through deep learning by applying these techniques to

some other problems and datasets with various numbers of

features. Furthermore, the authors are planning to apply the

Table 1 Temperature prediction models achieved results

Models RMSE MAE MAPE[%]

ARIMA 14.189 12.575 42.413

SARIMA 2.607 2.383 11.167

LSTM 1.611 1.244 4.738

CNN-LSTM 1.429 1.076 3.886
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framework to additional IoT datasets with complex struc-

tures and different formats.
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