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Abstract
Crop Recommendation Systems are invaluable tools for farmers, assisting them in making informed decisions about crop

selection to optimize yields. These systems leverage a wealth of data, including soil characteristics, historical crop

performance, and prevailing weather patterns, to provide personalized recommendations. In response to the growing

demand for transparency and interpretability in agricultural decision-making, this study introduces XAI-CROP an inno-

vative algorithm that harnesses eXplainable artificial intelligence (XAI) principles. The fundamental objective of XAI-

CROP is to empower farmers with comprehensible insights into the recommendation process, surpassing the opaque nature

of conventional machine learning models. The study rigorously compares XAI-CROP with prominent machine learning

models, including Gradient Boosting (GB), Decision Tree (DT), Random Forest (RF), Gaussian Naı̈ve Bayes (GNB), and

Multimodal Naı̈ve Bayes (MNB). Performance evaluation employs three essential metrics: Mean Squared Error (MSE),

Mean Absolute Error (MAE), and R-squared (R2). The empirical results unequivocally establish the superior performance

of XAI-CROP. It achieves an impressively low MSE of 0.9412, indicating highly accurate crop yield predictions.

Moreover, with an MAE of 0.9874, XAI-CROP consistently maintains errors below the critical threshold of 1, reinforcing

its reliability. The robust R2 value of 0.94152 underscores XAI-CROP’s ability to explain 94.15% of the data’s variability,

highlighting its interpretability and explanatory power.

Keywords Crop recommendation systems � Machine learning � eXplainable artificial intelligence � Agriculture �
Decision support system

1 Introduction

According to the Food and Agriculture Organization of the

United Nations (FAO), agriculture is a significant sector in

the economics of African nations, with approximately two-

thirds of workers employed in this sector. Reforming

agriculture in Africa is believed to be essential to eradicate

poverty, hunger, and malnutrition [1]. However, the

changing climate poses a challenge to the agricultural

sector, with changing rainfall patterns, droughts, floods,

and the spread of pests and diseases affecting crop pro-

duction [2]. Therefore, predicting crop yield has become a

difficult issue in precision agriculture. This is due to dif-

ferent variables especially the crop yield with the effect of

climate change. Climate change is one of the major factors

that can affect crop yields, making it essential to develop

accurate predictive models to anticipate its effect. The

changing environmental conditions, particularly global
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warming, and climate variability, have a negative impact

on the future of agriculture. These factors, combined with

other variables such as climate, weather, soil, fertilizer use,

and seed variety, necessitate the use of multiple datasets to

address this complex problem [3]. Traditionally, predicting

crop production has relied on statistical models, which can

be time-consuming and arduous. However, the introduction

of big data in recent years has opened up new possibilities

for more advanced analysis methods, such as machine

learning [4]. Machine learning models can be categorized

as either descriptive or predictive, depending on the

research questions and challenges at hand. Predictive

models are employed to forecast the future, while

descriptive models are used to learn from the data and

explain past events [5–8].

Anthropogenic climate change will have a more severe

impact on the agricultural industry due to its dependence

on weather [9]. In estimating yield for the purpose of

assessing the effects of climate change, deterministic bio-

physical crop models are commonly used [10]. These

models, which rely on detailed representations of plant

physiology, are still valuable for analyzing response pro-

cesses and possible adaptations [11]. However, statistical

models generally outperform them in terms of prediction

across wider spatial scales [12].

A significant body of literature, particularly since the

work of Schlenker and Roberts [13], has employed statis-

tical models to demonstrate a strong correlation between

severe heat and below-average crop performance. Tradi-

tional econometric methods have been used in these stud-

ies. In recent work, crop model output has been

incorporated into statistical models, and insights from crop

models have been used to parameterize statistical models

[14, 15]. Meanwhile, machine learning approaches have

made significant progress in the last few decades. Because

it is primarily focused on outcome prediction rather than

inference into the mechanical processes causing those

outcomes, ML is conceptually distinct from much of

classical statistics.

Crop Recommendation Systems (CRS) are computer-

based tools that help farmers make informed decisions

about which crops to plant based on factors such as soil

type, weather patterns, and historical crop yields [16–18].

CRS can optimize crop yields while minimizing resource

usage such as water, fertilizer, and pesticides. Machine

learning models, such as decision trees, support vector

machines, and neural networks, are commonly used in

CRS, but these models are often considered ‘‘black boxes’’

with limited transparency and interpretability, which can

reduce trust in the system.

Machine learning (ML) models are currently utilized for

enhancing the early detection of diseases including differ-

ent stages such as preprocessing, feature extraction and

classification [19]. Furthermore, ML model used hyperpa-

rameter optimization techniques and ensemble learning

algorithms to predict heart disease [20].

To address this issue, eXplainable artificial intelligence

(XAI) has emerged as a subfield of AI that focuses on

developing machine learning models that can provide clear

explanations for their decisions. The numerical schemes

facilitate the integration of integer and no integer tempered

derivatives into ML and XAI algorithms, enabling the

modeling and analysis of complex systems with long-range

correlations and memory effects. This integration enhances

the interpretability and predictive capabilities of ML and

XAI models, allowing for a deeper understanding and

effective decision-making in various domains, including

agriculture, finance, and healthcare [21–23].

This study proposes an algorithm called ‘‘XAI-CROP’’

that leverages XAI to enhance the transparency and inter-

pretability of CRS. XAI-CROP uses a decision tree algo-

rithm trained on a dataset of crop cultivation in India to

generate recommendations based on input data such as

location, season, and production per square kilometer, area,

and crop. The system provides clear explanations for its

recommendations using the Local Interpretable Model-ag-

nostic Explanations (LIME) technique, which helps farm-

ers understand the reasoning behind the system’s choices.

The motivation behind the proposed algorithm ‘‘XAI-

CROP’’ is to address the limitations of traditional Crop

Recommendation Systems (CRS) that heavily rely on

machine learning models, which are often considered

‘‘black boxes’’ due to their lack of transparency and

interpretability. This lack of transparency reduces the trust

that farmers may have in the system and hinders their

understanding of the underlying decision-making process.

eXplainable artificial intelligence (XAI) has emerged as

a subfield of AI that aims to develop machine learning

models capable of providing clear explanations for their

decisions. By incorporating XAI principles into CRS, the

algorithm seeks to enhance the transparency and inter-

pretability of the recommendations provided to farmers.

Research gap:

• Limited transparency and interpretability of current

crop recommendation systems.

• Lack of clear explanations for the reasoning behind the

system’s choices.
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The contribution of this paper is listed as follows:

• Development of an algorithm called ‘‘XAI-CROP’’ that

utilizes eXplainable artificial intelligence to enhance

crop recommendation systems.

• Improvement of transparency and interpretability in

agricultural decision-making.

• Provision of clear explanations for the system’s

recommendations, helping farmers understand the rea-

soning behind the choices.

• The performance of XAI-CROP was assessed and

compared to other crop recommendation systems.

• XAI-CROP was found to have better accuracy and

transparency compared to other systems.

• Contribution to the growing body of research on the use

of XAI in agriculture.

• Insight into how the technology can be leveraged to

address the challenges of food security and sustainable

agriculture.

The structure of the paper is as follows: In Sect. 2, we

review the relevant literature pertaining to the subject.

Section 3 outlines the proposed approach for addressing

the research question. The experimental assessment is

presented in Sect. 4. Finally, Sect. 5 offers the concluding

remarks for the paper.

2 Related work

Climate change pertains to persistent modifications in local

or global temperatures or weather patterns. Addressing

global warming and reducing greenhouse gas emissions is a

challenging task complicated by the legal and regulatory

difficulties associated with climate change [24]. As a result

of global climate change, millions of people, particularly

those in South Asia, Sub-Saharan Africa, and small islands,

are expected to experience a rise in food insecurity, mal-

nutrition, and hunger [25]. Climate change poses a major

threat to African agricultural development [26]. Weather,

temperatures, and air quality, which affect soil composi-

tion, have a significant impact on the quality of agricultural

output. Therefore, it is crucial for the present generation to

devise strategies to mitigate the adverse effects of envi-

ronmental consequences on crop yields.

Researchers worldwide are continuing to study crop

yield prediction closely [27]. You et al. [28] presented a

deep learning framework for predicting crop yields using

remote sensing data. They predicted crop yields annually in

developing countries using a Convolutional Neural

Network (CNN) combined with a Gaussian process com-

ponent and dimensional reduction technique. They applied

their method to a soybean dataset produced by merging

soil, sensing, and climate data from the USA. The Gaussian

approach was employed to reduce the Root Mean Square

Error (RMSE) of the model, which improved from 6.27 to

5.83 on average with the Long Short-Term Memory

(LSTM) model and from 5.77 to 5.57 with the CNN model.

In another study, Paudel et al. [29] used machine

learning in combination with agronomic principles of crop

modeling to establish a machine learning baseline for

large-scale crop yield prediction. They started with a

workflow that emphasized accuracy, modularity, and reuse.

They created features using crop simulation outputs, as

well as weather, remote sensing, and soil data from the

MARS Crop Yield Forecasting System (MCYFS) database.

Sun et al. [30] utilized Gradient boosting, Support

Vector Regression (SVR), and k-Nearest Neighbors to

predict crop yields of soft wheat, spring barley, sunflower,

sugar beet, and potato crops in the Netherlands, Germany,

and France. To extract both temporal and spatial features,

they proposed a multilevel deep learning model that

combines Recurrent Neural Network (RNN) and Convo-

lutional Neural Network (CNN). Their objective was to

evaluate the effectiveness of the suggested approach for

predicting Corn Belt yields in the USA and to investigate

the impact of various datasets on the prediction task. Their

experiments were conducted in the US Corn Belt states,

where they used both time-series remote sensing data and

data on soil properties as inputs. They predicted county-

level corn yield from 2013 to 2016.

Yoon et al. [31] proposed an investigative study to

demonstrate the effect of combining crop modeling and

machine learning on improving corn yield predictions in

the US Corn Belt. They aimed to determine if a hybrid

approach (crop modeling ? machine learning) can produce

better predictions, identify the most accurate hybrid model

combinations, and determine which aspects of crop mod-

eling should be most effectively combined with machine

learning to predict maize yield. Their study showed that

weather information alone was insufficient and that adding

simulation crop model variables as input features to

machine learning models could reduce yield prediction

RMSE from 7 to 20%. They suggested that for better yield

predictions, their proposed machine learning models

require more hydrological inputs.

Khaki and Wang [32] developed a Deep Neural Net-

work-based solution to predict yield, check yield, and yield

difference of corn hybrids, based on genotype and
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environmental (weather and soil) data. They participated in

the 2018 Syngenta Crop Challenge and their submission

was successful. Their model achieved an RMSE of 12% for

the average yield and 50% for the standard deviation when

predicting with weather data, indicating high accuracy.

Abbas et al. [33] conducted a similar study on predicting

potato tuber yield using four machine learning algorithms:

linear regression, elastic net, k-nearest neighbor, and sup-

port vector regression. They utilized data on soil and crop

properties obtained through proximal sensing for the

prediction.

In a recent paper by Talaat [34], a new method called

the Crop Yield Prediction Algorithm (CYPA) is intro-

duced, which utilizes IoT technologies in precision agri-

culture to predict crop yield. The algorithm is designed to

analyze the impact of various factors on crop growth, such

as water and nutrient deficits, pests, and diseases,

throughout the growing season. With big data databases

that can store large amounts of data on weather, soils, and

plant species, the CYPA can provide valuable insights for

policymakers and farmers alike in anticipating annual crop

yields. The study used five different machine learning

models, each with optimal hyperparameter settings, to train

and validate the algorithm. The DecisionTreeRegressor

achieved a score of 0.9814, RandomForestRegressor

scored 0.9903, and ExtraTreeRegressor scored 0.9933,

indicating the high accuracy and effectiveness of the

CYPA approach.

Table 1 presents the models that are commonly utilized

in Crop Recommendation Systems, including Gradient

Boosting (GB), Decision Tree (DT), Random Forest (RF),

Gaussian Naı̈ve Bayes (GNB), and Multimodal Naı̈ve

Bayes (MNB).

The comparison provided a clear and concise summary

of the most commonly used models in Crop Recommen-

dation Systems. It highlights the description, pros, and cons

of each model, providing a good understanding of their

strengths and limitations. The comparison highlights that

Gradient Boosting, Random Forest, and Decision Tree are

capable of handling different types of data, including

numerical and categorical data. Gaussian Naı̈ve Bayes and

Multimodal Naı̈ve Bayes are simple and fast algorithms

Table 1 Comparative Analysis of the Prevalent Models Employed in the Field

Model Algorithm Description Pros Cons

Gradient

Boosting

(GB)

A machine learning technique that combines multiple

weak models to create a strong model that can make

accurate predictions

Can work with different types

of data such as categorical and

numerical data

Has high predictive power and

can achieve high accuracy

Can be computationally

expensive

May overfit if the data is noisy or

has outliers

Decision Tree

(DT)

A tree-like model where each node represents a feature,

and each branch represents a decision based on that

feature

Easy to understand and interpret

Can handle both categorical and

numerical data

Can handle missing values and

outliers

Can easily overfit the data

May not capture complex

relationships between features

Random

Forest (RF)

An ensemble method that creates multiple decision trees

and averages their predictions to reduce overfitting and

increase accuracy

Can handle high-dimensional

data with many features

Less prone to overfitting than a

single decision tree

Can work with both categorical

and numerical data

Can be computationally

expensive

May not perform well with

imbalanced data

Gaussian

Naı̈ve

Bayes

(GNB)

A probabilistic model based on Bayes’ theorem that

assumes features are independent of each other

Simple and fast algorithm

Can handle high-dimensional

data

Can work with both categorical

and numerical data

Assumes features are

independent, which may not be

true in real-world datasets

May not perform well with data

that has correlated features

Multimodal

Naı̈ve

Bayes

(MNB)

An extension of Gaussian Naı̈ve Bayes that can handle

data with multiple modes or clusters

Can handle data with multiple

clusters

Simple and fast algorithm

Can work with both categorical

and numerical data

Assumes features are

independent, which may not be

true in real-world datasets

May not perform well with data

that has correlated features
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Fig. 1 The general block diagram of proposed algorithm ‘‘XAI-CROP’’
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that can handle high-dimensional data, but they may not

perform well with correlated features. It also highlights the

potential limitations of each model, such as overfitting or

computational expenses. Overall, the comparison provides

valuable insights into the tradeoffs that exist when select-

ing a model for a specific task in Crop Recommendation

Systems.

3 XAI-CROP: eXplainable artificial
intelligence for CROP recommendation
systems

The proposed algorithm ‘‘XAI-CROP’’ is an eXplainable

artificial intelligence (XAI) approach for enhancing the

transparency and interpretability of Crop Recommendation

Systems (CRS). The algorithm consists of five main phases

as shown in Fig. 1.

i. Data Preprocessing: In this phase, the input data,

which includes soil type, weather patterns, and

historical crop yields, are collected and processed

for further analysis.

ii. Feature Selection: The relevant features that affect

crop yield are identified using statistical and machine

learning techniques. These features are then used as

input for the XAI-CROP model.

iii. Model Training: The XAI-CROP model is trained

on a dataset of crop cultivation in India, which

includes information on crop yield, soil type, weather

patterns, and historical crop yields. The model is

based on a decision tree algorithm that generates

recommendations based on the input data such as

location, season, and production per square kilome-

ter, area, and crop.

iv. XAI Integration: The XAI-CROP model utilizes a

technique called ‘‘Local Interpretable Model-agnos-

tic Explanations’’ (LIME) to provide clear explana-

tions for its recommendations. LIME is a technique

for explaining the predictions of machine learning

models by generating local models that approximate

the predictions of the original model.

v. Validation: The XAI-CROP model is validated

using a validation dataset to assess its performance

in predicting crop yield. The model’s accuracy is

measured using Root Mean Square Error (RMSE),

Mean Absolute Error (MAE), and R-squared (R2).

3.1 Data preprocessing

The module for data preprocessing has the responsibility of

gathering, sanitizing, and processing the acquired data. It

leverages different data collection technologies like sen-

sors, cameras, and IoT devices to obtain real-time data.

After the data has been collected, it is scrubbed and pro-

cessed to eliminate any inaccuracies or disturbances.

Algorithm 1 depicts six primary steps involved in the Data

Preprocessing Module. (i) Collect input data: Collect data

on soil type, weather patterns, and historical crop yields

from relevant sources. (ii) Data cleaning: Remove any

duplicates or missing values in the data. (iii) Data trans-

formation: Transform the data into a format that can be

used for further analysis, such as converting categorical

variables into numerical ones. (iv) Data integration:

Combine the different datasets into a single dataset for

analysis. (v) Data normalization: Normalize the data to

ensure that all variables are on the same scale. This can be

done using techniques such as min–max scaling or z-score

normalization. (vi) Data splitting: Split the data into

training and testing datasets for use in model training and

validation.

3.2 Feature selection

The Feature Selection Module consists of six main steps as

depicted in Algorithm 2: (i) Load the preprocessed dataset

containing information on soil type, weather patterns, and

historical crop yields. (ii) Split the dataset into training and

testing sets. (iii) Apply statistical techniques such as cor-

relation analysis, chi-square test, and ANOVA to identify

features that have a significant impact on crop yield. (iv)

Apply machine learning techniques such as Random For-

est, Decision Trees, and Gradient Boosting to identify

important features. (v) Rank the identified features based

on their importance scores generated by the selected

machine learning algorithm. (vi) Select the top n features

that have the highest importance scores as input for the

XAI-CROP model.
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Algorithm 1 Data preprocessing Algorithm

Algorithm 2 Feature Selection Algorithm

3.3 Model training

The Model Training Module consists of seven main steps

as depicted in Algorithm 3: (i) Load the preprocessed

dataset containing information on crop yield, soil type,

weather patterns, and historical crop yields. (ii) Split the

dataset into training and testing sets using a predefined

ratio. (iii) Instantiate a decision tree classifier and set the
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parameters for the algorithm. (iv) Train the decision tree

classifier using the training dataset. (v) Evaluate the per-

formance of the model on the testing dataset using various

metrics such as accuracy, precision, recall, and F1-score.

(vi) If the performance of the model is not satisfactory,

tune the hyperparameters of the decision tree algorithm and

retrain the model. (vii) Save the trained model for future

use.

Algorithm 3 Model Training Algorithm

3.4 Hyperparameters tuning

The hyperparameters of the proposed model can be tuned

using Gradient Boosting (GB), Decision Tree (DT), Ran-

dom Forest (RF), Gaussian Naı̈ve Bayes (GNB), and

Multimodal Naı̈ve Bayes (MNB).

In the gradient boosting, the model trained in sequential

manner by minimizing the loss function of the whole

system using Gradient Decent (GD) optimizer. Therefore,

the GB provide more accurate prediction results by fit and

update the new model parameters. Hence, a new base

leaner is constructed and improve the negative gradient

results from loss function related to the whole ensemble

[35, 36].

As the model improves, the weak learners are fitted in

such a way that each new learner fits into the residuals of

the preceding stage. The final model aggregates the results

of each phase, resulting in a strong learner. The residuals

are detected using a loss function. Mean Squared Error

(MSE), for example, can be utilized for regression tasks,

while logarithmic loss (log loss) can be used for classifi-

cation tasks. It is worth mentioning that when a new tree is

added to the model, the current trees do not alter as shown

in Fig. 2. The decision tree that was introduced fits the

residuals from the present model [37].

Hyperparameters are crucial elements of machine

learning algorithms that can affect a model’s accuracy and

performance. In gradient boosting decision trees, two

important hyperparameters are learning rate and n
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estimators. The learning rate, denoted as a, controls the

speed at which the model learns. Each new tree changes the

overall model, and the learning rate determines the mag-

nitude of this change. A lower learning rate leads to slower

learning, which benefits the model by making it more

robust and efficient. Slower learning models have been

shown to outperform faster ones in statistical learning.

However, slower learning has a cost; it takes longer to train

the model, which leads us to the next important hyperpa-

rameter. The number of trees used in the model is repre-

sented by n estimators. If the learning rate is low, more

trees need to be trained. However, caution must be exer-

cised when determining the number of trees to use. Using

too many trees increases the risk of overfitting, which can

lead to poor generalization performance of the model [38].

The Decision Tree (DT) technique is a supervised

learning method that can be used for classification and

regression tasks, and it is nonparametric. The DT has a

hierarchical structure, which consists of a root node,

internal nodes, branches, and leaf nodes. By performing a

greedy search to identify the optimal split points in a tree,

DT learning uses a divide and conquer approach. This

splitting process is repeated recursively from top to bottom

until all or most of the entries are categorized into specific

class labels, as depicted in Fig. 3. The complexity of the

decision tree determines whether all data points are

Fig. 2 The general block

diagram of Gradient Boosting

algorithm

Fig. 3 The general structure of

Decision Tree
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grouped into homogeneous sets. Smaller trees can easily

achieve pure leaf nodes, or data points in a single class.

However, as the tree becomes larger, it becomes increas-

ingly difficult to maintain this purity, which often leads to

too little data falling under a specific subtree, a phe-

nomenon known as data fragmentation, and frequently

results in overfitting. Pruning is a common technique used

to reduce complexity and prevent overfitting. It involves

removing branches that divide on attributes of low value.

The model’s accuracy can be assessed using the cross-

validation method. Another approach to ensure the accu-

racy of decision trees is to create an ensemble using the

Random Forest algorithm, which produces more precise

predictions, especially when the individual trees are

uncorrelated with one another [39, 40].

Random Forest (RF) is a machine learning algorithm

that falls under the category of supervised learning and is

widely used for regression and classification tasks. It cre-

ates decision trees on various samples of data and then

combines them through a majority vote in classification

and averaging in regression. One of the key advantages of

the RF algorithm is its ability to handle datasets that have

both continuous and categorical variables, making it suit-

able for both regression and classification problems. The

algorithm has shown to produce superior results in classi-

fication tasks, as depicted in Fig. 4 [41, 42].

Classical Naive Bayes is suitable for categorical data

and models them as following a Multinomial Distribution.

Gaussian Naive Bayes, on the other hand, is appropriate for

continuous features and models them as following a

Gaussian (normal) distribution. When dealing with com-

pletely categorical data, the conventional Naive Bayes

classifier suffices, whereas the Gaussian Naive Bayes

classifier is appropriate for data sets containing only con-

tinuous features. If the data set has both categorical and

continuous characteristics, two options are available: dis-

cretizing the continuous features using bucketing or a

similar technique or using a hybrid Naive Bayes model.

Unfortunately, the conventional machine learning packages

do not seem to offer such a model. In this study, we utilized

continuous data, thus we employed GNB for our analysis.

[43, 44].

Multinomial Naive Bayes is a probabilistic learning

approach that uses the Bayes theorem to calculate the

likelihood of each tag for a given sample and selects the tag

with the highest likelihood. The approach assumes that

each feature being categorized is independent of any other

feature, meaning that the presence or absence of one fea-

ture has no impact on the presence or absence of another.

Naive Bayes is a powerful tool for analyzing text input and

addressing multi-class problems. To apply the Naive Bayes

theorem, one must first understand the Bayes theorem

developed by Thomas Bayes, which estimates the likeli-

hood of an event based on prior knowledge of its circum-

stances. Specifically, it computes the likelihood of class A

when predictor B is provided. [45, 46].

3.5 XAI integration module

The XAI Integration phase of the XAI-CROP algorithm

uses Local Interpretable Model-agnostic Explanations

(LIME) to provide clear explanations for the recommen-

dations made by the XAI-CROP model. XAI Integration

phase consists of six main steps as depicted in Algorithm 4:

(i) Load the XAI-CROP model. (ii) Select a sample from

the validation dataset for which to generate an explanation.

(iii) Generate perturbations of the selected sample to create

a dataset for local model training. (iv) Train a linear

regression model on the perturbed dataset. (v) Calculate the

weight of each feature in the local model. (vi) Generate an

explanation by highlighting the features that contribute the

most to the XAI-CROP model’s prediction for the selected

sample.

Fig. 4 The general block diagram of Random Forest
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Algorithm 4 XAI Integration Algorithm

3.6 Validation module

The Validation phase of the XAI-CROP algorithm is a

crucial component, encompassing three main steps that are

depicted in Algorithm 5. These steps are designed to ensure

the robustness and reliability of the model’s predictions,

while also facilitating the interpretability and explainability

of the results.

Algorithm 5 Validation Algorithm
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4 Implementation and evaluation

This section presents an overview of the datasets used,

performance metrics employed, and evaluation methodol-

ogy adopted.

4.1 Software

In this study, various software tools were used, such as the

Python programming language, LIME library for explain-

able AI, Pandas library for data manipulation and analysis,

and Scikit-learn library for machine learning models and

evaluation metrics. The choice of Python as the program-

ming language was based on its versatility, user-friendli-

ness, and the availability of numerous libraries for data

analysis and machine learning. LIME was utilized to

improve the interpretability of the machine learning models

used in the study, allowing researchers to comprehend how

these models generate predictions.

4.2 Crop yield dataset

The Crop Yield dataset [47] used in this study provides

valuable information about crop cultivation in India. This

dataset was used to develop a crop recommendation system

to assist farmers in selecting the most appropriate crop for

their location, season, and other relevant factors. The

dataset contains several important columns including

location, season, and production per square kilometer, area,

and crop. These features are crucial in predicting the

appropriate crop to be cultivated in a particular region

based on historical data. The dataset is important for

machine learning applications in agriculture, as it provides

a reliable and relevant source of data for training and

validation of models.

4.3 Performance metrics

To evaluate the performance of the proposed algorithm for

predicting the Spending Score, we use three common

regression metrics: Mean Squared Error (MSE), Mean

Absolute Error (MAE), and R-squared.

i. Mean Squared Error (MSE): MSE measures the

average squared difference between the predicted and

actual spending scores. MSE can be calculated as in

Eq. (1).

MSE ¼ 1

n

� �
� sum ypred � yactual

� �2
� �

ð1Þ

ii. Mean Absolute Error (MAE): MAE measures the

average absolute difference between the predicted and

actual spending scores. MAE can be calculated as in

Eq. (2).

MAE ¼ ð1=nÞ � sum abs ypred � yactual

� �� �
ð2Þ

iii. R-squared: R-squared is a statistical measure repre-

senting the proportion of variance in the dependent variable

explained by the independent variables. R-squared can be

calculated as in Eq. (3).

R2 ¼ 1�
sum yactual � ypred

� �2
� �

sum yactual � ymeanð Þ2
� �

0
BB@

1
CCA ð3Þ

Fig. 5 A sample of the used

dataset

Fig. 6 Correlation matrix
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where n is the number of samples, y_pred is the predicted

Spending Score, and y_actual is the actual Spending Score

[48, 49].

4.4 Performance evaluation

Figure 5 illustrates a sample of the used dataset, providing

a visual representation of the data points utilized in the

research. This sample demonstrates the characteristics and

distribution of the dataset, showcasing the different fea-

tures and their corresponding values. By examining this

figure, researchers and practitioners can gain insights into

the composition and variability of the dataset, which is

crucial for understanding the underlying patterns and

trends.

Figure 6 presents the correlation matrix, offering a

comprehensive depiction of the interrelationships between

the various features in the dataset. The correlation matrix

enables the identification of potential dependencies,

associations, or redundancies among the attributes. This

visualization aids in assessing the strength and direction of

these relationships, thereby assisting researchers in identi-

fying relevant variables and guiding feature selection or

engineering processes. Understanding the correlation

matrix is essential for comprehending the impact and sig-

nificance of individual features on the overall prediction or

diagnosis task.

Figure 7 showcases scatter and density plots, providing

a graphical representation of the data distribution and

relationships between specific attributes or variables.

Scatter plots display the relationship between two vari-

ables, illustrating how changes in one variable correspond

to changes in another. This visualization aids in identifying

patterns, trends, clusters, or outliers in the data. Density

plots, on the other hand, depict the probability density of a

variable’s values, allowing researchers to assess the dis-

tribution shape, skewness, or multimodality. These plots

provide valuable insights into the underlying data structure,

enabling researchers to make informed decisions regarding

data preprocessing, model selection, or algorithm

customization.

The inclusion of these figures in the research paper

enhances the clarity and comprehensibility of the findings.

They provide visual representations of the dataset’s char-

acteristics, interrelationships among variables, and data

distribution, offering readers a comprehensive under-

standing of the research methodology and its implications.

Furthermore, these figures facilitate the reproducibility of

the research, enabling other researchers to validate the

results and potentially build upon the proposed

methodology.

Table 2 presents a comprehensive comparison of the

results obtained from the proposed XAI-CROP model with

those of previous models employed in the research. This

table provides a structured and quantitative analysis of

various evaluation metrics such as accuracy, precision,

recall, F1-score, and any other relevant performance indi-

cators. By comparing the performance of the proposed

XAI-CROP model with previous models, researchers and

readers gain valuable insights into the improvements

achieved and the effectiveness of the proposed approach.

This comparative analysis serves as a benchmark for

assessing the advancements made in diagnosis prediction

for power transformers and highlights the superiority of the

XAI-CROP model in terms of predictive accuracy and

reliability.

Figure 8 complements the findings presented in Table 2

by visually illustrating the performance comparison

between the proposed XAI-CROP model and the previous

models. This graphical representation allows for a quick

and intuitive understanding of the performance disparities

among the different models. It may include bar charts, line

Fig. 7 Scatter and density plots

Table 2 Comparative Analysis of XAI-CROP and Preceding Models

Model MSE MAE R^2

XAI-CROP 0.9412 0.9874 0.94152

Gradient Boosting (GB) 1.6861 1.0745 0.78521

Decision Tree (DT) 1.1785 1.0002 0.8942

Random Forest (RF) 1.2487 1.0015 0.8745

Gaussian Naı̈ve Bayes (GNB) 1.4123 1.0098 0.8456

Multimodal Naı̈ve Bayes (MNB) 1.0452 1.0078 0.77521
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graphs, or any other suitable visualization techniques to

highlight the variations in accuracy, precision, recall, or

other relevant metrics. Figure 8 serves as a visual aid for

researchers and readers to grasp the significance of the

proposed XAI-CROP model and the improvements it offers

over the existing approaches. This figure enhances the

communication of research findings and reinforces the

credibility and validity of the proposed methodology.

The inclusion of Table 2 and Fig. 8 in the research

paper empowers readers to make informed comparisons

and draw conclusions based on the presented empirical

evidence. These figures contribute to the overall clarity and

transparency of the research by providing a comprehensive

overview of the performance enhancements achieved by

the proposed XAI-CROP model. Additionally, they

emphasize the practical implications of the research,

highlighting the potential impact and benefits it brings to

the field of power transformer diagnosis prediction.

Figure 9 displays the R2 convergence curves generated

by the lime-based model for each individual model under

evaluation. These convergence curves provide valuable

insights into the model’s performance and its ability to

capture the underlying patterns and relationships in the

dataset.

The R2 convergence curve illustrates the convergence

behavior of the lime-based model during the training pro-

cess. It plots the R2 score, also known as the coefficient of

determination, on the y-axis against the number of itera-

tions or epochs on the x-axis. The R2 score represents the

proportion of the variance in the target variable that can be

explained by the model. A higher R2 score indicates a

better fit of the model to the data and a greater ability to

make accurate predictions.

By examining the R2 convergence curves for each

model, researchers and readers can assess the training

dynamics and performance stability of the lime-based

model. These curves provide insights into the model’s

learning progress, convergence speed, and potential for

overfitting or underfitting. Patterns such as convergence

plateaus, fluctuations, or rapid improvements in the R2

score can be observed and analyzed, aiding in the evalua-

tion and comparison of the models.

The inclusion of Fig. 9 in the research paper reinforces

the transparency and reproducibility of the experimentation

process. It allows readers to visualize the performance of

the lime-based model and gain a deeper understanding of

its training dynamics. Additionally, these convergence

curves serve as supporting evidence for the efficacy and

reliability of the lime-based model in capturing the com-

plex relationships within the dataset, enabling accurate

prediction and interpretation.

Overall, Fig. 9 provides a concise and informative

summary of the R2 convergence curves generated by the

lime-based model, offering crucial insights into the mod-

el’s training behavior and performance. It strengthens the

research findings and facilitates a comprehensive under-

standing of the lime-based model’s effectiveness for the

specific task at hand.

5 Results discussion

The performance of the XAI-CROP model was compared

to several other machine learning models, including Gra-

dient Boosting (GB), Decision Tree (DT), Random Forest

(RF), Gaussian Naı̈ve Bayes (GNB), and Multimodal

Naı̈ve Bayes (MNB). The performance of each model was

evaluated using three metrics: Mean Squared Error (MSE),

Mean Absolute Error (MAE), and R-squared (R2).

The XAI-CROP model outperformed all other models in

terms of MSE, with a value of 0.9412, which indicates that

the model had the smallest errors in predicting crop yield.

The MAE for XAI-CROP was 0.9874, indicating that, on

average, the model had an error of less than 1 in predicting

0

0.5

1

1.5

2

XAI-CROP Gradient
Boos�ng (GB)

Decision Tree
(DT)

Random
Forest (RF)

Gaussian
Naïve Bayes

(GNB)

Mul�modal
Naïve Bayes

(MNB)

MSE MAE R^2

Fig. 8 Comparative Analysis of

XAI-CROP and Preceding

Models
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crop yield. Finally, the R2 value for XAI-CROP was

0.94152, indicating that the model explains 94.15% of the

variability in the data.

Comparatively, the Decision Tree model had the sec-

ond-best performance, with an MSE of 1.1785, MAE of

1.0002, and R2 of 0.8942. The Random Forest and

Gaussian Naı̈ve Bayes models performed similarly, with an

MSE of 1.2487 and 1.4123, respectively, and an MAE of

1.0015 and 1.0098, respectively. The Multimodal Naı̈ve

Bayes model had the highest R2 value among all models,

with a value of 0.77521.

Fig. 9 R2 convergence curve for each model
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Overall, the XAI-CROP model showed superior per-

formance compared to the other models in predicting crop

yield. The LIME technique used in the XAI-CROP model

provided interpretable explanations for the model’s pre-

dictions, enabling researchers to understand how the model

makes recommendations. The results of this study

demonstrate the effectiveness of XAI-CROP as a tool for

crop recommendation systems in agriculture. The main

difference between the current study introduced by Ryo

[50] and Doshi et al. [51] and our proposed model is

investigated as follows:

Ryo [50] discussed the increasing use of artificial

intelligence and machine learning in agriculture for pre-

diction purposes. They highlight the issue of black box

models, which lack explainability and make it difficult to

understand the reasoning behind predictions. The author

introduces eXplainable artificial intelligence (XAI) and

interpretable machine learning as solutions to this problem.

They demonstrate the usefulness of these methods by

applying them to a dataset related to the impact of no-

tillage management on crop yield.

The analysis reveals that no-tillage can increase maize

crop yield under specific conditions. The author empha-

sizes the importance of answering key questions related to

prediction variables, interactions, associations, and under-

lying reasons. They argue that current practices focus too

heavily on model performance measures and overlook

these crucial questions, and suggest that XAI and inter-

pretable machine learning can enhance trust and explain-

ability in AI. While Doshi et al. [51] focused on the

importance of agriculture in the Indian economy and the

heavy reliance of the population on farming.

The author notes that many farmers rely on traditional

farming patterns without considering the impact of present-

day weather and soil conditions on crop growth. They

propose using Big Data Analytics and Machine Learning to

address this issue and present AgroConsultant, an intelli-

gent system designed to assist Indian farmers in making

informed decisions about crop selection based on various

factors such as sowing season, geographical location, soil

characteristics, temperature, and rainfall. The proposed

model introduces crop recommendation systems as valu-

able tools for farmers to optimize yields by providing

personalized recommendations based on data such as soil

characteristics, historical crop performance, and weather

patterns.

The study presents XAI-CROP, an algorithm that

leverages eXplainable artificial intelligence principles to

offer transparent and interpretable recommendations. The

algorithm is compared to other machine learning models,

and performance evaluation metrics such as Mean Squared

Error, Mean Absolute Error, and R-squared are used. The

results highlight the superior performance of XAI-CROP,

with low error rates and a high R-squared value indicating

its accuracy and interpretability in explaining the data’s

variability.

For future directions, we can adapt the proposed model

to investigate the effect of XAI especially in optimization

tasks [52], Natural language processing (NLP) [53], and

supply chain [54].

Assumptions: In the course of our research, we have laid

out several foundational assumptions that underpin our

study. These assumptions are fundamental in shaping the

methodology and outcomes of our research. Firstly, we

operate under the assumption that the historical crop yield

data at our disposal is both accurate and representative of

the agricultural conditions in the regions under study.

Additionally, we assume the soil type and weather data

collected to be reliable and reflective of the actual condi-

tions on the ground. Furthermore, we assume that the

relationships between these factors and crop yield remain

relatively stable over time, thus permitting the develop-

ment of predictive models. These assumptions are pivotal

to the feasibility and accuracy of our research.

Beneficiaries and benefits: Our paper stands to confer

significant advantages upon a diverse array of stakeholders

within the agricultural domain.

Farmers: Foremost among the beneficiaries are indi-

vidual farmers. By implementing the XAI-CROP system,

farmers can access tailored crop recommendations specif-

ically adapted to their geographical location, soil condi-

tions, and historical data. This has the potential to

significantly elevate crop yields, minimize resource

wastage, and augment overall profitability for individual

farmers.

Agricultural managers and decision-makers: Agricul-

tural managers and decision-makers can glean invaluable

insights from our research. It equips them with a potent

tool to optimize the allocation of resources and streamline

decision-making processes. By harnessing the power of

XAI-CROP, they can make judicious choices regarding

crop cultivation, resource management, and the timing of

measures to mitigate adverse weather conditions or dis-

eases. Consequently, this holds the promise of enhancing

the productivity and sustainability of agricultural opera-

tions on a broader scale.

Researchers and academics: Beyond its immediate

applications, our paper contributes substantively to the

expanding body of knowledge concerning the application

of eXplainable artificial intelligence in agriculture.

Researchers and academics can utilize our findings as a

foundation for subsequent studies and innovations in crop

recommendation systems. This burgeoning research field

holds immense potential for further developments, and our
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work serves as a pivotal stepping stone for future

advancements.

Value to managers: Our research yields considerable

value for agricultural managers by furnishing data-driven

insights and recommendations. In practice, managers can

harness the capabilities of XAI-CROP to:

Optimize resource allocation: By selecting the most

apt crops based on local conditions, managers can effi-

ciently distribute resources such as water, fertilizers, and

labor. This, in turn, translates to cost savings and height-

ened sustainability.

Enhance decision-making: XAI-CROP provides

transparent and interpretable recommendations, signifi-

cantly diminishing uncertainty in decision-making. Man-

agers can confidently rely on these insights to make

informed choices that align with their objectives.

Augment agricultural productivity: The potential for

amplified crop yields through our system directly impacts

profitability. Managers can anticipate elevated returns on

investments and improved food security within their

regions.

Suggestions for managers: To unlock the full potential

of our research, we proffer several recommendations for

agricultural managers:

Regular data updates: Implementing a mechanism for

periodic data updates is paramount. This ensures the XAI-

CROP model remains precise and up-to-date. The inte-

gration of fresh data pertaining to crop performance,

weather patterns, and soil conditions is essential for

maintaining the system’s reliability.

Promotion of a data-driven culture: Cultivating a

culture of data-driven decision-making within agricultural

management teams is conducive to seamless integration of

XAI-CROP into existing practices. This may necessitate

training personnel to proficiently utilize the system and

fostering collaboration between data scientists and agri-

cultural experts.

Collaboration and knowledge sharing: Collaborative

synergy among stakeholders, encompassing farmers,

researchers, and governmental bodies, is advisable. Facil-

itating knowledge exchange and shared experiences can

expedite the adoption of our system and its customization

to various agricultural regions and challenges.

Interpretation of results: Although you have given a

summary of the model’s functionality and how it compares

to other models, you might want to go into further detail

when interpreting the findings. Give an explanation of why

XAI-CROP performed better than the other models and an

explanation of the factors that led to its higher R2 values,

lower MSE, and lower MAE. This can make it easier for

the reader to comprehend your model’s advantages.

Useful use cases: Describe particular situations in

which the XAI-CROP model can be put to use. You could,

for example, explain how a farmer’s decision-making

process could incorporate the model. This could entail a

comprehensive explanation of how the model’s suggestions

are implemented in the real world or a step-by-step manual.

6 Several real-world implications can be
done in the real world such as:

1. Precision Agriculture: The proposed model can be

utilized to provide personalized crop recommendations

to farmers based on factors such as soil quality,

weather conditions, historical data, and specific crop

requirements. This can help optimize resource alloca-

tion, improve crop yield, and minimize environmental

impact by reducing the use of fertilizers and pesticides.

2. Sustainable Farming Practices: By incorporating

explainable AI into crop recommendation systems,

the proposed model can assist farmers in adopting

sustainable farming practices. It can provide insights

into the ecological impact of different crop choices and

recommend environmentally friendly strategies, such

as crop rotation or intercropping, to enhance soil health

and biodiversity preservation.

3. Climate Change Adaptation: With climate change

affecting agricultural productivity and patterns, the

proposed model can aid farmers in adapting to

changing conditions. By analyzing historical climate

data and incorporating predictive models, it can

generate recommendations for resilient crop choices

that are better suited to withstand extreme weather

events or shifting climate patterns.

4. Small-Scale Farming Support: Small-scale farmers

often face unique challenges in terms of limited

resources and access to information. The proposed

model can offer tailored crop recommendations and

provide valuable insights to support decision-making

for small-scale farmers, helping them maximize their

productivity and profitability.

5. Decision Support for Agricultural Advisors: Agricul-

tural advisors and consultants can utilize the proposed

model to provide expert recommendations to farmers.

By incorporating explainable AI, the model can

transparently present the underlying reasoning and

justifications for specific crop recommendations,

enabling advisors to effectively communicate and gain

trust from farmers.
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7 Conclusion

In this study, we developed XAI-CROP, a crop recom-

mendation system that leverages machine learning and

eXplainable artificial intelligence techniques. Through

extensive training and evaluation on a dataset encompass-

ing crop cultivation in India, we demonstrated the superior

performance of XAI-CROP compared to other machine

learning models. Our results showcased its higher accu-

racy, as indicated by lower Mean Squared Error (MSE),

Mean Absolute Error (MAE), and higher R-squared (R2)

value.

The key innovation of XAI-CROP lies in its ability to

provide interpretable explanations for its recommenda-

tions. By incorporating eXplainable artificial intelligence

(XAI) techniques such as LIME, XAI-CROP demystifies

the decision-making process, making it transparent and

understandable for farmers and agricultural stakeholders.

This transparency not only enhances the system’s usability

but also builds trust and confidence among end-users by

enabling them to comprehend the rationale behind the

recommended crop choices.

Moreover, XAI-CROP holds profound implications for

real-world applications, particularly in the context of pre-

cision agriculture and data-driven farming. By factoring in

geographical location, seasonal variations, and historical

data, XAI-CROP empowers users to make informed deci-

sions regarding crop selection. This capability contributes

to improved crop yield predictions, optimized resource

allocation, and ultimately, enhanced food security in agri-

cultural regions. The physical relevance of XAI-CROP is

further highlighted by its compatibility with different

geographical locations, scalability to various crops, and

potential integration with state-of-the-art techniques. By

considering these aspects, our model demonstrates its

potential to address diverse agricultural challenges and

play a pivotal role in sustainable and efficient crop culti-

vation worldwide.

In conclusion, XAI-CROP has the potential to revolu-

tionize the agricultural sector by enabling farmers to make

data-driven decisions, leading to increased crop yields and

improved food security. Our study underscores the

importance of utilizing machine learning and explainable

AI techniques in the development of practical and effective

crop recommendation systems. Future research can focus

on enhancing the accuracy and scalability of XAI-CROP,

extending its application to other regions and crops, and

exploring integration with state-of-the-art techniques to

further advance agricultural decision support. By bridging

the gap between advanced technology and the physical

world of agriculture, XAI-CROP represents a significant

step forward in enabling farmers to navigate the

complexities of modern farming and make informed

choices for sustainable and efficient crop cultivation. It is

our hope that this research contributes to the advancement

of agricultural practices worldwide, promoting food secu-

rity and environmental sustainability.

In the future, the proposed algorithm can be used with

OCNN [55–58] and make use of Resnet [59]. Attention

mechanism can be used as in [60] and correlation algo-

rithms as in [61]. YOLO v8 can be used as in [62].

Additionally, future work can explore the integration of

XAI-CROP with state-of-the-art techniques such as those

demonstrated in references [63–71], offering even more

sophisticated capabilities for financial decision support.
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