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Abstract
Humans are distinguished by their walking patterns; many approaches, including using various types of sensors, have been

used to establish walking patterns as biometrics. By studying the distinguishing features of a person’s footsteps, footstep

recognition may be utilized in numerous security applications, such as managing access in protected locations or giving an

additional layer of biometric verification for secure admittance into restricted regions. We proposed biometric systems for

verifying and identifying a person by acquiring spatial foot pressure images from the values obtained from the piezoelectric

sensors using the Swansea Foot Biometric Database, which contains 19,980 footstep signals from 127 users and is the most

prominent open-source gait database available for footstep recognition. The images acquired are fed into the ConvNeXt

model, which was trained using the transfer learning technique, using 16 stride footstep signals in each batch with an Adam

optimizer and a learning rate of 0.0001, and using sparse categorical cross-entropy as the loss function. The proposed

ConvNeXt model has been adjusted to acquire 512 feature vectors per image, and these feature vectors are used to train the

logistic regression models. We propose two biometric systems. The first biometric system is based on training one logistic

regression model as a classifier to identify 40 different users using 1600 signals for training, 6697 signals for validation,

and 200 signals for evaluation. The second biometric system is based on training 40 logistic regression models, one for

each user, to validate the user’s authenticity, with a total number of 2363 training signals, 7077 validation signals, and 500

evaluation signals. Each of the 40 models has a 40-training signal per client and a different number of signals per imposter,

a different number of signals for the validation that ranges between 8 and 650 signals, a 5-signal for an authenticated client,

and a different number of signals per imposter for evaluation. Independent validation and evaluation sets are used to

evaluate our systems. In the biometric identification system, we obtained an equal error rate of 15.30% and 21.72% for the

validation and evaluation sets, while in the biometric verification system, we obtained an equal error rate of 6.97% and

10.25% for the validation and evaluation sets.
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SVM Support vector machine

AP Accumulated pressure

RBF Radial basis function

CNN Convolutional neural network

ANN Artificial neural network

Res Net Deep residual neural network

CFPI Cumulative foot pressure images

DataL Data left

DataR Data right

RELU Rectified linear units

FAR False acceptance rate

FRR False rejection rate

EER Equal error rate

DET Detection error tradeoff

1 Introduction

Biometrics is the measuring and study of a person’s unique

physical or behavioral characteristics [1, 2]. It is commonly

used for identification and authentication purposes, as

biometric traits are difficult to forge or replicate. Biometric

systems collect and compare these traits to authenticate the

identity of individuals. Some of the commonly used bio-

metric traits are Fingerprint Recognition, Iris Recognition,

Face Recognition, Voice Recognition, Gait Recognition,

Footsteps Recognition, Retina Recognition, and DNA

Matching [1, 2]. Biometric systems are used in various

applications, including access control to secure facilities,

authentication for electronic devices, border control, and

immigration processes, time and attendance tracking, and

law enforcement investigations [1, 2]. However, while

adopting biometric systems to protect sensitive biometric

data, it is critical to address privacy considerations as well

as effective security measures.

In comparison with other known biometric characteris-

tics, the identification of footsteps is a relatively recent

technology and less widespread biometric system. While

footstep recognition is a fascinating notion, there are some

key distinctions between it and other biometric systems, for

example:

• In terms of uniqueness: Footstep recognition is based

on analyzing the distinct aspects of a person’s gait or

walking pattern [3]. Each person walks in a unique

manner, which includes elements such as stride length,

cadence, pressure distribution, and foot angles. Other

biometric systems, such as iris, face, or fingerprint

recognition, rely on distinct physical characteristics as

well, but they capture different types of characteristics.

• In terms of contact versus non-contact: Footstep

recognition is a non-contact biometric system, which

means that no physical contact with the person being

identified is required. Systems such as fingerprint or

palmprint identification, on the other hand, require

direct contact with the sensor to capture the biometric

characteristic [1]. Non-contact biometrics might pro-

vide convenience and hygienic benefits.

• In terms of environmental factors: Footstep recogni-

tion can be affected by environmental factors such as

the kind of surface, footwear, or changes in walking

patterns induced by injury or fatigue. Other biometric

systems like fingerprint or iris recognition are less

affected by such factors and tend to be more stable and

reliable.

• In terms of user acceptance: Walking-based biomet-

rics may be less common for people who are used to

using their hands or faces for identification.

Footstep and gait recognition are two similar but sepa-

rate biometric systems that analyze a person’s walking

patterns. Footstep recognition is concerned with analyzing

the features of footsteps, such as pressure distribution, foot

angles, and foot strike timing [3]. The advantages of

footstep recognition over gait recognition are as follows:

• Footstep recognition can provide more exact and

thorough information about an individual’s foot contact

with the ground by focusing on this localized element.

This level of specificity might be useful in situations

where foot placement or footprint analysis is critical,

such as forensic investigations or security systems.

• Footstep recognition often necessitates the use of

specialized sensors or flooring systems developed

expressly to capture the characteristics of footsteps,

these sensors can be integrated into flooring materials or

placed on the ground. As opposed to gait recognition

which may require video cameras or motion capture

systems to capture the full body’s movement, footstep

recognition can have a simpler and more targeted

sensor configuration, in some cases, this can result in

lower costs and easier deployment [3, 4].

• Footstep recognition can achieve higher accuracy in

foot-based identification than gait recognition due to its

focused study of footsteps. The distinctive features of a

person’s footsteps, such as pressure distribution and

foot angles, can serve as a valid biometric attribute.

This can be useful in applications requiring foot-based

identification, such as secure access control or footprint

forensic investigation.

• Gait recognition considers the full body’s movements

while walking, including arm swing, torso movement,

and posture, because they are more influenced by

clothing, environmental conditions, walking pace
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fluctuations, changes in lighting or camera perspective,

or ambient circumstances, these upper-body differences

can offer additional complications and obstacles in gait

detection [4]. Footstep recognition, on the other hand,

concentrates entirely on the features of footsteps and is

less affected by upper-body differences. In certain

cases, this can lead to increased accuracy and

reliability.

Footstep identification has numerous potentials uses in a

variety of industries [3, 5]. Some of the most notable ap-

plications of footstep recognition are as follows:

• Footstep recognition can be used to safeguard access

control systems in places where traditional identifying

techniques such as keycards or passwords may be

compromised. Footstep identification can provide an

additional layer of biometric authentication for secure

entrance into restricted places by analyzing the unique

properties of an individual’s footsteps.

• By analyzing footprints left at crime scenes, footstep

recognition can help forensic investigators. Investiga-

tors can gather evidence and identify probable suspects

by matching the characteristics of the footprints with

known footstep profiles. Footstep recognition can assist

in associating people with specific locations or

activities.

• Footstep recognition can be used as part of an intrusion

detection system in secure locations to identify and

inform security personnel about unauthorized footsteps.

When an unfamiliar or unauthorized person enters the

premises, the system can detect and raise an alarm by

analyzing the distinctive footstep patterns of authorized

individuals.

• Footstep identification can help behavioral biometric

systems track and analyze human motions. It can also

be used to measure and analyze individuals’ gait

patterns, providing insights into mobility, health, and

well-being. This data could be useful in healthcare

monitoring, assisted living, and elderly care.

• Footstep recognition can be utilized as an input

modality for human–computer interaction, especially

in situations where hands or other body parts are busy

or unavailable. Footstep recognition, for example, can

enable gesture-based control of smart devices or virtual

reality systems by recognizing certain foot movements.

• Footstep recognition can help athletes monitor and

analyze their motions during training or competitions.

Coaches and trainers can get insights into running

tactics, stride patterns, and foot striking patterns by

capturing and analyzing footstep characteristics, allow-

ing them to optimize performance and prevent injuries.

It’s worth mentioning that footstep identification is still

a developing technology, with continuing study and

development. While it has the potential for applications

such as security or gait analysis, it is not as commonly used

or standardized as other biometric systems. The biometric

system selected is determined by the unique needs, envi-

ronment, and level of accuracy required for the intended

application. We proposed two biometric systems that used

a fused algorithm of the ConvNeXt neural network archi-

tecture and a logistic regression classifier. These biometric

systems should be able to recognize and validate the

identities of forty different users, as well as distinguish

between authenticated and impostor users.

The remainder of the paper is structured as follows:

Sect. 2 discusses the related work of various approaches

and algorithms applied to the Swansea Foot Biometric

Database. Our proposed methodology for the biometric

identification and biometric verification systems is descri-

bed in Sect. 3. Section 4 presents the experimental results,

analysis, and observations. Section 5 offers the conclusions

and recommendations for future work.

2 Related work

Vera-Rodriguez et al. [6–9] proposed the biggest footstep

database (SFootBD) to date to analyze footstep signals as a

biometric, which contains around 9900 single strides from

127 people. They measured footstep pressure with a pair of

floor mats, each with 88 piezoelectric sensors to record

most of the gait cycle. The sensors were installed on a

large-printed circuit board and positioned beneath a stan-

dard mat. The sensor layout geometry enables a compact

arrangement with consistent intersensor separation. The

database was partitioned into different sets. Most of the

studies were conducted utilizing 40 user models, each with

40 signals to train, as well as validation and evaluation of

test sets, other benchmarks were also considered during

different experiments.

Their first experiment focused on signal time informa-

tion analysis [6], employing three distinct time domain

feature approaches: the ground reaction force (GRF), the

spatial average of the sensors, and the upper and lower

contour profiles of the time domain signal. These three

features are merged at the feature level, and principal

component analysis (PCA) is used to minimize the data

dimensionality. Finally, support vector machines (SVM)

are employed to perform the matching. The experimental

methodology is intended to investigate the impact of the

amount of data used in the reference models by imitating

environments for potential extreme applications such as

smart homes or border control scenarios. Previous footstep

databases used in related studies had drawbacks in that they
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randomized data time sequence in the trials, making the

reference and test datasets are more comparable, and hence

allowing for artificially favorable findings. The footstep

database employed in this study, on the other hand, is the

largest to date, with more than 120 people and nearly

20,000 signals for left and right footsteps separated, and it

monitors the temporal difference between reference and

test data. This increases the realism of the experimental

environment and enables a more accurate evaluation of

footstep identification systems. The findings obtained in the

various settings for the case of the stride footstep for the

fusion of the three feature techniques are in the range of

5–15% EER, which is better than prior research and

obtained with a lot more realistic experimental setup.

Their second strategy was to extract biometric infor-

mation from footstep signal pressure distribution as well as

spatial domain and generate a 3D image of the pressure

distribution along the spatial domain [7]. Because the time

domain features are ignored in this research, a single value

of pressure is derived through the integration of signals

across the time axis for each sensor of the mat. It is

important to note that, due to the differential nature of the

piezoelectric sensors’ footstep signals, a simple integration

of the signal over time would provide a value close to zero.

To address this, the integration is performed across each

sensor’s associated ground reaction force signal (GRFi).

This yields the accumulated pressure (APi), which is a

measure used for studying the pressure distribution across

the spatial domain of the signals. The signals were aligned

to a single temporal position during the preprocessing stage

by applying an energy detector across the 88 sensors of the

signals to obtain the starting point of each footstep to align

the signals to a common time position. The images were

then smoothed using a Gaussian filter and the toe and heel

regions were aligned and rotated based on the pressure

points. The rows of the generated image, which has a

resolution of 280 9 420 pixels, are concatenated to gen-

erate a feature vector with a range of 117,600. Principle

component analysis (PCA) is also used to minimize data

dimensionality, maintaining more than 96% of the original

data by using the first 140 principal components. The

feature vector for the stride (right and left) footstep is

composed of the concatenation of the 140 component

feature vectors for the right and left foot, as well as the

stride’s relative angle and length, for a total of 282 char-

acteristics. In terms of the classifier, a support vector

machine (SVM) with a radial basis function (RBF) as the

kernel was used. The results reveal that the suggested

methodology achieves high accuracy in identifying indi-

viduals based on their footstep signals, with EERs ranging

from 6 to 10% in diverse scenarios. The results also suggest

that including signals with high heels in the training data

considerably improves the system’s performance.

Another experiment was conducted to recognize the

footsteps through the use of time, space, and a combination

of the two [8]. They fused the features obtained in the

above two experiments [6, 7]. The two domains perform

very similarly, with equal error rates ranging from 5 to

15% for each domain and 2.5 to 10% for their fusion using

the support vector machine algorithm, depending on the

number of used signals ranging from 40 to 500 and whether

the footstep is single or stride footstep.

Costilla Reyes et al. [10, 11] conducted other two

experiments on the SFootBD database, which contains 127

people and over 20,000 valid footstep signals (i.e., 10,000

stride signals). For the first experiment there were forty

clients in the training set, each with forty stride footstep

signals, and eighty-seven impostor subjects [10]. There

were 7077 samples in the validation dataset and 550

samples in the evaluation dataset. They proposed using a

Convolutional Neural Network (CNN), which is utilized to

extract features for the full spatial database. After the CNN

has been trained, the training, validation, and testing

datasets are input into the network, and the features created

by the CNN are extracted at the last layer before softmax

activation. This returns a 127-feature vector for each

sample in the dataset. The 127-length feature vector gen-

erated by the CNN model per dataset sample is then used in

a biometric verification scenario with a one-vs.-one linear

SVM model. The models were trained in the training set

for each user and then tested in the validation and evalu-

ation datasets. The paper’s reported equal error rate (EER)

range is as follows: The EER for the left and right footstep

models in the validation dataset was 14.76% and 14.23%,

respectively. When compared to single footsteps, the stride

footstep model demonstrated a significant EER improve-

ment of 9.392%. By assessing the trained model on the

evaluation dataset, an EER of 21.30% was obtained for the

left footstep, an EER of 20.23% for the right footstep, and

an EER of 13.86% for the stride footstep.

For the second experiment, they suggested a deep

residual ANN based on the ResNet architecture [11]. Based

on the fine-grained diversity of footsteps, their solution

contains artificial intelligence that can distinguish between

authenticated users and biometric system imposters using

SFootBD. The data’s raw spatial and temporal properties

are represented in a variety of ways. For the spatial com-

ponent, each footstep frame is molded into a two-dimen-

sional matrix, with sensors formed by the merging of the

two mats and pixels derived from the accumulated pres-

sure. To maximize data variability versus training time, the

temporal component representation selects frames that

correspond to intervals of heel striking, flat foot, and heel-

off. The authors carried out three separate studies based on

three different circumstances. The three experimental set-

tings altered the number of users and impostors by altering

3820 Neural Computing and Applications (2024) 36:3817–3836

123



the quantity of footstep data used to train the machine-

learning model. Two ResNet models were trained, one for

spatial component features and one for temporal compo-

nent features. The trained ResNet models were then used as

feature extractors to feed linear SVM classifiers. A single

class was assigned to the imposter dataset. They applied

their work to three benchmarks that were constructed to

simulate three different scenarios (airport, workplace, and

smart home). For the first benchmark which has the

smallest footstep dataset and simulates a scenario involving

an airport security checkpoint, included 40 footstep sam-

ples from 40 users and 763 imposter footstep samples, and

the optimum model yields 7.10% and 10.50% EER for the

validation and evaluation sets, respectively. The second

benchmark was for the medium-sized training dataset,

which consisted of 200 stride footsteps of 15 users and

2697 imposter footstep signals simulating a working

environment scenario. EERs of 2.80% and 4.90% were

obtained from the validation and evaluation sets, respec-

tively. As for the third benchmark, which is based on a

home-based scenario, it contains 500 footstep samples

from 5 individuals as well as 5603 imposter footstep sig-

nals. It obtained the best results in comparison with the

other two scenarios; the validation and evaluation sets had

0.70% EER and 1.70% EER, respectively.

Table 1 summarizes the related work in terms of the

used deep learning and/or machine-learning algorithms, the

used approach of each experiment, the features used in

each experiment, and the hypotheses assumed in each

experiment.

3 Proposed methodology

Two biometric systems were proposed, one for an identi-

fication scenario and the other for a verification scenario.

The biometric identification system is to recognize the

submitted biometric footstep signals between forty differ-

ent users using a single logistic regression model. On the

other hand, the biometric verification system is to validate

the claimed identity of the user using forty different logistic

regression models, one for each authenticated user. Fig-

ure 1 presents a high-level architecture of our proposed

systems’ components, which consist of five phases (en-

rollment, feature extraction, template creation, comparison

and matching, and decision and authentication).

We used the ConvNeXt neural network as our template

creation model to create a mathematical template that

represents the biometric data of the footstep signals, and

then we fed the output of the ConvNeXt network to the

logistic regression models in both of our proposed systems.

Figure 2 presents our flow for designing our biometric

identification and verification systems.

3.1 Enrollment phase

The initial step in a biometric identification and verification

system is to capture the biometric data of individuals who

will be enrolled in the system. This involves collecting

samples of their biometric features, such as fingerprints,

face images, iris patterns, voice recordings, or behavioral

traits like signature, keystroke dynamics or footstep pres-

sure signals. The collected data are then stored in a data-

base along with the associated identity information. In our

case, we used the footstep pressure signals from the

Swansea Foot Biometric Database (SFootBD).

The Swansea Foot Biometric Database (SFootBD) is

one of the largest open-source gait databases available for

footstep recognition [6–11]. The data are collected using

two sensor mats of 45 CM 9 35 CM; each mat contains

eighty-eight piezoelectric sensors to capture two successive

footstep signals over 2200 time samples for each footstep

signal. To create a realistic signal, the participants were

advised to walk at a steady pace for a few meters before

walking on the sensor mats. The sensors provide a differ-

ential voltage output based on the pressure applied to them.

The data were gathered in several sessions to provide more

realistic samples of each person. Also, different conditions

were applied, including wearing different shoes, barefoot,

carrying extra weight by carrying a bag, wearing high

heels, and walking at different speeds. The database also

contains three other biometric modes: speech, face, and

gait. These different biometric modes aided in the labeling

of footstep signals, as the collection was an unsupervised

process.

The data contain the footstep signals of 127 people, with

a total of 19,980 footstep signals for single right and left

footstep signals and 9900 for stride footstep signals. Three

benchmark datasets can be constructed from the SFootBD

database: the first contains 40 users and 87 imposters; the

second contains 15 users and 112 imposters; and the third

contains 5 users and 122 imposters. The three benchmarks

represent airport security checkpoints, workplace scenar-

ios, and home scenarios, respectively. Where each bench-

mark mimics a real-world scenario, the airport security

checkpoint has the smallest amount of data considered per

person with the largest number of people, the workplace

scenario has a medium amount of data per person with a

medium number of people, and the home scenario has the

largest amount of data per person with a small number of

people. Our work is conducted under the first benchmark

(Airport Security Checkpoint) because it is the baseline

benchmark and the most challenging one because of the

small amount of training data and the large number of

available users when compared to the other two

benchmarks.
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3.2 Feature extraction phase

The SFootBD includes four index files: a list of imposters,

a list of authenticated clients, a list of validation tests, and a

list of evaluation tests. Each index file has the id of the

person and the corresponding MATLAB file title, our study

is conducted under the baseline benchmark (Airport

Security Checkpoint) which has forty authenticated clients

and eighty-seven imposter users with a relatively small

training set. The used dataset is distributed as shown in

Table 2.

As shown in Table 2, authenticated users have the lar-

gest number of signals, while the remaining signals are

considered imposter users. Validation and evaluation are

two different test sets, the main difference between the two

sets is that the validation set is an unbalanced test set used

to tune the model weights, while the evaluation set is

unseen balanced data with every client having five signals

to measure the generalizability of the proposed model. The

SFootBD dataset also provides a very realistic approach

where the dataset was collected over eighteen months;

therefore, the training data are the first collected data, and

the evaluation data are the last collected data, which

reflects an actual life scenario rather than the traditional

related work that divides the data into training and test sets.

We loaded the index files so we would be able to read

the user’s ID and its relevant MATLAB files. Each

MATLAB file contains two matrices: the left footstep

signals (DataL) and the right footstep signals (DataR).

Each matrix has a dimension of 2200 9 88, where 2200

represents the time frames and 88 represents the sensors, so

it shows the reading of each specific sensor at each of the

2200 time frames. Figures 3 and 4 show an example of the

differential pressure taken straight from the 88 sensors

from the left and right footstep signals plotted against the

time frames.

After reading the 2 MATLAB matrices of all the files,

we calculated the ground reaction force of all the files as

shown in Eq. (1):

GRFi t½ � ¼
XT

t¼0

Si t½ �ð Þ ð1Þ

where T represents the time frame that we are standing at, t

equals the start time frame, i represents the sensor, and the

Si t½ � represents the output signal of the ith piezoelectric

sensor at time t. So, we calculated the ground reaction force

which is a cumulative pressure for each time frame with all

Table 1 Comparison of the related work

References Algorithm Approaches Hypothesis test

Vera-

Rodriguez

et al. 2010

[6]

PCA and

SVM

Three distinct time domain features were extracted: the

Ground Reaction Force (GRF), the spatial average of

the sensors, and the upper and lower contour profiles of

the time domain signal. PCA is used for dimensionality

reduction, and SVM is used as a classifier

The authors represented two security scenarios (smart

homes and access control). For the smart home, they

provided a large quantity of data for a small number of

people; in contrast, for the access control scenario, a

limited number of data was offered for many people to

mimic border control, for example

Vera-

Rodriguez

et al. 2011

[7]

PCA and

SVM

Calculating the accumulated pressure to obtain pressure

images. PCA is used for dimensionality reduction, and

SVM is used as a classifier

The authors assumed the same hypothesis as the previous

experiment, with two security scenarios for smart

homes and access control

Vera-

Rodriguez

et al. 2013

[8]

PCA and

SVM

Combining the features of the previous two experiments Testing the quantity of data is a key aspect of training

and testing the biometric system. As the number of

clients increases, the number of signals decreases

Building models for too many persons that range from

75 to 5 persons, representing a variety of security

scenarios

Costilla

Reyes

et al. 2016

[10]

CNN and

SVM

Using CNN as a feature extractor and training 40 one-vs.

one SVM models, a model per client

The authors represented the baseline benchmark for

airport checkpoints, which has 40 persons and 87

imposters, using all the dataset in the experiment with

2363 training samples, 7077 validation samples, and

550 evaluation samples

Costilla

Reyes

et al. 2019

[11]

ResNet

and

SVM

Using two ResNet models as feature extractors, one for

the spatial raw component and the other for the

temporal raw component, and training two one-Vs.-one

SVM models, one for each component, then fusing the

score to obtain the results

Three different benchmarks were proposed to simulate

three different security scenarios (airport checkpoints,

workplaces, and smart homes). The three proposed

benchmarks were 40 persons, 15 persons, and 5

persons, respectively, where the number of footstep

signals is larger for the smaller benchmark
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the previous times frames for the same footstep signal data

file [7, 10, 11].

After calculating the ground reaction force of all the

data signals, we calculated the accumulated pressure which

is defined in Eq. (2):

APi ¼
XTmax

t¼0

GRFi t½ �ð Þ ð2Þ

The accumulated pressure is a cumulative summation

for each sensor value of the calculated ground reaction

force; the Tmax was set to 1600 time frame because no

signal has a larger time frame, which represents that the

person has already walked out of the walking mat, so set-

ting the maximum time frame to 1600 instead of 2200 to

reduce the computational burden [7, 10, 11]. The output of

this stage is a list that contains eighty-eight values; each

Fig. 1 The high-level architecture of our proposed systems’ components
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value represents the accumulated pressure of one of the

eighty-eight sensors.

After that, we added three zeros to each acquired data

list, increasing the number of values in each list to ninety-

one, which allowed us to reshape each list into a two-

dimensional array with a size of 13 9 7 as explained in

Fig. 5, and then the reshaped array can be presented as a

cumulative footstep pressure image (CFPI) to represent

each left and right footstep sample.

Figures 6 and 7 show a sample of the obtained images

after reshaping the left and right footstep signals into a two-

dimensional array of size 13 9 7.

We applied a median filter with a kernel of (1,3) to the

left and right footstep images to eliminate the noise while

preserving edges and fine details in the images [12]. The

obtained left and right footstep images are then

Fig. 2 The proposed systems’ workflow

Table 2 SFootBD distribution

Dataset Training Validation Evaluation

Signals of clients 1600 6697 200

Signals of imposter users 763 380 350

Total signals per set 2363 7077 550
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concatenated to create a single stride footstep image with

dimensions of 13 9 14, and then we used a minimax scaler

to scale all the pixel values to range between 0 and 255 to

ensure that all the images have the same scale and are

within the color range.

To obtain a better resolution and smoother image, we

used the Gaussian pyramid technique on the concatenated

image [13]. The Gaussian pyramid was applied twice to

create an image with dimensions of 52 9 56.

We examined many methods of interpolation before and

after applying the Gaussian pyramid, such as nearest,

bilinear, linear, spline, bicubic, quadric, Mitchell, and

Lanczos [14]. We used Lanczos interpolation, which is a

computationally intensive method that uses a sinc function

as a windowed kernel to estimate pixel values, providing

high-quality results with less aliasing [14]. Resized images

are obtained with dimensions of 148 9 160 for each

image. Figures 8 and 9 show the stride footstep image after

concatenation, applying the minimax scaler, and applying

the median filter.

As shown in Fig. 9, the median filter helped reduce the

noise by removing the outlier high pixel values. Figures 10

and 11 show the stride footstep image after applying the

Gaussian pyramid technique and the Lanczos interpolation

that is used in resizing the image. The Lanczos interpola-

tion made the image smoother with less aliasing.

Figures 12 and 13 represent different interpolation trials

on the concatenated footstep stride image before and after

Fig. 3 Left footstep signal

Fig. 4 Right footstep signal

Fig. 5 Reshaping the accumulated pressure list into a 2-D array

Fig. 6 Left footstep image
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the Gaussian pyramid technique is applied. In our experi-

ment, we used Lanczos interpolation since it shows the

primary features of the image without smoothing out the

high-frequency details.

Figure 14 depicts an example of a stride footstep image

computed straight from the accumulated pressure without

firstly applying the ground reaction force equation.

Because of the differential nature of the piezoelectric

sensor footstep signals, simple integration of the signal

across time would most likely provide a result close to

zero. To remedy this, the integration is done across each

sensor’s associated ground reaction force signal (GRFi),

demonstrating the significance of first computing the

ground reaction force before calculating the accumulative

pressure.

Data augmentation techniques were applied to the con-

structed images, which represent some natural variations of

the person’s footsteps while he is walking on the floor

sensor, like rotation or shifting on the stride footstep

images. Figure 15 shows some samples of the images after

data augmentation techniques were applied, where class

(-1) represents the imposter class, and the rest represents

authenticated users.

Fig. 7 Right footstep image

Fig. 8 Footstep image after concatenation, applying minimax scaler

without applying median filter

Fig. 9 Footstep image after concatenation, applying minimax scaler

after applying median filter

Fig. 10 Footstep image after applying Gaussian pyramid
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3.3 Template creation phase

The extracted features are used to create a reference tem-

plate, which is a mathematical representation of the indi-

vidual’s biometric data [1]. The template contains the

essential information required for subsequent comparison

and matching. We used transfer learning [15] to train our

customized pre-trained ConvNeXt Network [16]. Then, we

used the ConvNeXt network as a feature extractor to

generate a vector of 512 values as our mathematical rep-

resentation of the individual’s biometric data.

The ConvNeXt model is trained for the biometric

identification scenarios [16]. ConvNeXt [16] is a novel

CNN architecture that is a modified ResNet-50 [17], which

is changed by inspiration from Swin Transformer [18].

ConvNeXt has been widely deployed for a range of diverse

applications, including object detection and semantic seg-

mentation, and has been proved to perform well in a variety

of computer vision tasks. Its modular form and good use of

computational resources make it a promising architecture

for real-world applications needing both precision and

efficiency.

The model is trained on forty authenticated users, while

a single class is assigned to the imposter footstep signals

with a label of (-1). For our baseline benchmark, we load a

pre-trained ConvNeXt model with ImageNet initialized

weights. ImageNet is a very popular dataset that is used for

object classification and detection problems [19]. It pro-

vides hundreds of objects and millions of images of dif-

ferent objects that anyone can come into contact with in

real life. The ImageNet dataset has a variety of images of

objects that vary between animals, birds, foods, laptops,

fruits, and even more objects than the ones mentioned but it

doesn’t have images like the ones that we used here for our

biometric systems because the ImageNet represents a real-

life object while we are using generated heat map images

Fig. 11 Footstep image after applying Lanczos interpolation

Fig. 12 Different interpolation techniques before applying the Gaussian pyramid
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for our biometric systems that have been created using the

accumulated pressure and processed as we discussed in the

previous section. The fully connected layer is then removed

from our proposed ConvNeXt model, a flattened layer is

added to the architecture to flatten the output of the Con-

vNeXt architecture into a one-dimensional vector, and then

a batch normalization layer is added to our model to nor-

malize the output of the model into a standard Gaussian

distribution with zero mean and unit variance to avoid

internal covariate shift. Then the batch normalization layer

output is passed to a fully connected layer with 512 neu-

rons and RELU activation function; a dropout layer with a

percentage of 20% is added to avoid overfitting by ran-

domly eliminating some of the neurons; and finally, a fully

connected layer with 41 neurons and SoftMax activation

function is added to predict the output label of each sample.

Figure 16 shows our proposed ConvNeXt network.

The model was trained using 16 stride footstep signals in

each batch and with an Adam optimizer and a learning rate

of 0.0001. Sparse categorical cross-entropy is used as our

loss function because our data are mutually exclusive, with

each sample belonging exactly to one class, which per-

forms better than normal categorical cross-entropy, which

consumes more time and memory and is typically used

when the labels are in the form of one-hot encoded vectors

[20]. If the validation loss did not improve for five epochs,

an early stopping method was used to terminate the training

process.

To build our biometric identification and verification

system, we used our trained ConvNeXt model as a feature

extractor and compressor for the dataset used. We extracted

the feature vector learned by the model before the final

layer (the SoftMax layer). The intermediate layer generates

a vector of size 512; therefore, the shape of our training

sample will be (2363, 512), the validation sample (7077,

512), and the evaluation sample (550, 512), for each

Fig. 13 Different interpolation techniques after applying the Gaussian pyramid

Fig. 14 Stride footstep image without calculating GRF
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sample having a vector of size 512. These extracted fea-

tures from each set are then used to feed our machine-

learning biometric identification and verification system.

The significance of this approach is that the ConvNeXt

worked as a feature extractor and compressor, so we have a

smaller data size to be able to train our machine-learning

model with so many distinct features that it is able to

identify the person from this set of features which help in

saving time and computational resources while training and

testing the machine-learning model, and the trained Con-

vNeXt model is saved with its obtained weights to be used

it in a real-time biometric identification and verification

scenario where the live footstep data can be fed to our

saved model architecture and extract the feature vector that

can be directly passed to the machine-learning model and

be able to identify the individuals using only their footstep.

3.4 Comparison and matching

The extracted features from the presented sample are

compared with the reference template stored in the data-

base [1]. Various matching algorithms, such as correlation-

based matching or machine-learning-based approaches, are

employed to identify the similarity or dissimilarity between

the provided sample and the stored template. We used

logistic regression as our method for the comparison and

matching phase [21, 22].

We conducted two separate experiments for biometric

identification and verification scenarios. We picked logistic

regression because it can handle huge datasets with large

input features while requiring relatively little memory

compared to more complex models, allowing us to train on

limited computational resources [21, 22]. Furthermore, as

compared to other models, logistic regression is less

affected by irrelevant features and produces a probabilistic

output in the form of estimated probabilities, which is

important in decision-making scenarios.

The first experiment for the biometric identification

scenario is conducted to train a single logistic regression

model capable of differentiating between an imposter user

and an authenticated user with identifying the identity of

the authenticated user. The model was trained using the

features obtained from the ConvNeXt model on only the

forty authenticated users because the identity of the

imposter is not important to recognize, and we cannot

know all the imposter users in real-life scenarios, and it’s

only important to us to verify if the user is an authenticated

user or an imposter, knowing his identity in the case of an

authenticated user. The illustration of the biometric iden-

tification system is shown in Fig. 17.

The second experiment for the biometric verification

scenario involves training forty logistic regression models,

one for each user; each model was trained in the training

set for each user using the features that were obtained from

the ConvNeXt model to train the models. Samples that do

not belong to the ith class of the ith model are handled as

imposter samples throughout model training, validation,

and evaluation. The illustration of the biometric verifica-

tion system is shown in Fig. 18.

Other trials were also carried out using various machine-

learning methods and approaches. We conducted these two

experiments using different algorithms, for example: using

multiple SVM kernel models, random forest tree, decision

tree, K nearest neighbors, Gaussian processes, bagging

Fig. 15 Stride footstep images

after applying data

augmentation
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classifier, and ensemble learning technique [22–24]. The

equal error rate of the suggested models was higher than

the logistic regression model, where the results of the first

biometric system were nearly between 18.85% and 16.32%

for the validation set and 25.52% and 22.68% for the

evaluation set, and for the second biometric system, the

results were nearly between 10.17 and 8.56% for the val-

idation set and 15.23% and 11.35% for the evaluation set.

We chose logistic regression due to its probabilistic

diversity between the outputs, which helped us distinguish

between the users based on the probabilistic outcome of

each class.

4 4. Decision and authentication

4.1 Evaluation metrics

The false rejection rate (FRR) assesses the system’s ability

to recognize legitimate users [1, 25, 26]. It is the percent-

age of times the system incorrectly rejects a user. The false

acceptance rate (FAR) assesses the system’s ability to

detect imposters [1, 25, 26]. It is the percentage of times

the system incorrectly accepts an imposter. FAR and FRR

are two essential metrics that can be used to evaluate the

performance of a biometric system. These rates are typi-

cally configured in software by adjusting the system’s

threshold value. The FAR and FRR have an influence on a

biometric system’s security level, this means that as you

increase or decrease these rates, the number of usable

authentication attempts will decrease or increase, respec-

tively. A high FAR means that the system is more likely to

incorrectly accept an unauthorized user, which can com-

promise the security of the system. A high FRR indicates

Fig. 16 Our customized ConvNeXt network

Fig. 17 Biometric identification system workflow
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that the system is more likely to mistakenly reject a

legitimate user, which can cause frustration and lead to a

drop in productivity. A low FAR with a low FRR indicates

a high-security level. When setting threshold values for a

given system, it is important to find a balance between the

FAR and the FRR. The choice of threshold should reflect

the balance between security and usability. The number of

FAR and FRR is inversely proportional. One will rise while

the other will fall. The intersection of these two lines is

known as the equal error rate (EER). This is the point at

which the percentage of false acceptance errors and false

rejection errors is equal.

We used the equal error rate (EER) as our evaluation

metric [1, 27]. EER is a metric used in biometric security

systems to measure the effectiveness of the system in

identifying individuals correctly. EER is the point at which

the FAR and FRR are equal. In other words, it is the

threshold at which the system is equally likely to wrongly

accept a non-matching individual as it is to wrongly reject

a matching individual. EER is an important metric in

biometric security systems as it provides a balance between

security and convenience. The EER is defined as the

crossover point on a graph that has both the FAR and the

FRR curves plotted. The EER can also be calculated from a

detection error tradeoff (DET) curve, which plots FAR

versus FRR to measure the sensitivity and accuracy of a

certain device [28, 29]. To compute the EER using the

FRR/FAR crossover, the following is done: The FAR and

FRR are computed and shown on the same graph for every

specified threshold value ranging from 0 to 100, the EER is

the point where the two curves cross. To calculate the DET

of a biometric system, each corresponding FAR and FRR

point is plotted, the EER is then found by extending a

45-degree line from the point of origin (0, 0), and where

this line crosses the DET curve that is the EER, which

occurs when the value of the FRR equals the value of the

FAR on the curve are equals. The EER’s strength is that it

allows for a comparison of various biometric systems. This

is due to the fact that not all biometric systems have the

same threshold values. Thus, we can attempt to compare

two biometric systems by comparing a normalized statistic

such as the EER.

4.2 Learning environment

Open-source software was used to develop and assess the

research experiments. The scientific computing libraries in

Python were used. TensorFlow computing framework was

used to create and train the ConvNeXt model. The Scikit-

learn package was used to create the Logistic Regression

models. For quick parallel optimization of the learning

model, the ConvNeXt model was trained on an NVIDIA

A100 SXM4 40 GB GPU. The logistic regression models

used less memory and did not need a GPU. The training

environment’s hardware specs are shown in Table 3.

4.3 4.3 Results and discussion

The biometric verification system decides the authenticity

of the claimed identity. If the presented sample matches the

reference template above a certain threshold, the individual

is considered verified and authenticated. If the match falls

below the threshold, the individual may be rejected. In our

proposed systems the probability returned from the logistic

regression is compared to a threshold value to verify the

authenticity of an individual.

We used the validation and evaluation sets to test both

of our biometric systems. The fundamental distinction is

that the validation set is used to fine-tune the ConvNeXt

model’s weights, whereas both sets are unknown to the

logistic regression model. The validation set is a large set

that contains unbalanced samples, whereas the evaluation

set is a small set that contains balanced samples (5 samples

per user).

To test our first biometric system, we divided the test

sets into authenticated and imposter users. We tested the

model on the imposter dataset, which we know does not

contain any authenticated users, so all predictions will be

incorrect because our model was only trained on the

authenticated user training set, but we care about the pre-

diction score of how many imposters will pass at each

threshold and calculating the FAR by saving the number of

Fig. 18 Biometric verification system workflow
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the passed imposters at each threshold, where we define the

threshold value from 0 to 100.

We used the authenticated users’ test sets to calculate

the FRR and ensured that the model predicted accurately.

Then, for each threshold, we computed how many

authenticated users would be rejected and saved the num-

ber of rejected authenticated users at each threshold, where

we defined the threshold value from 0 to 100. We find the

threshold at which the FAR equals the FRR to calculate the

EER for each test set.

The FRR/FAR crossover curves for the validation and

evaluation sets are shown in Figs. 19 and 20, respectively.

The EER for the validation set is 15.30% at the threshold of

1.50%, while the EER for the evaluation set is 21.72% at

the threshold of 1.05%, indicating that the ideal threshold

for our biometric identification system will be between 1

and 1.5%. Because the validation set has 6697 authorized

user samples and the evaluation set has only 200 authorized

user samples, the validation set curves is smoother than the

evaluation set curves, resulting in a smoother FRR curve on

the validation compared to the FRR curve on the evalua-

tion. Figure 21 illustrates the DET curve derived from the

FAR and FRR of the validation and evaluation test sets to

demonstrate our result on the crossover curves and sum-

marize the results of the experiment in a single graph.

Table 3 Training environment specifications

Model CPU GPU RAM

ConvNeXt Intel� Xeon� Processor 2.20 GHz NVIDIA A100 SXM4 40 GB GPU 83.5 GB

Logistic Regression Intel� Xeon� Processor 2.20 GHz Not Applicable 25.5 GB

Fig. 19 Validation set EER for the biometric identification system

Fig. 20 Evaluation set EER for the biometric identification system

Fig. 21 DET curve for the biometric identification system
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We cannot compare our identification system to earlier

work because no one has created a single model to identify

the forty clients in the baseline benchmark in the SFootBD;

hence, we are the first to implement the idea of creating a

single model to identify and verify the user based on his

footsteps. Although our equal error rate is higher than some

of the previous works, which we believe can be reduced in

future work. Using only one model capable of identifying a

person from his footsteps saves a significant amount of

computational resources because training only one model

that can be saved and deployed is more efficient and easier

than training u models for u users.

To test the second biometric system, the returned

probabilities scores returned by the logistic regression

models are separated into authenticated and imposter

scores to obtain the DET curve and obtain the equal error

rate for the biometric verification system, as shown in

Fig. 22. For this experiment, forty logistic regression

models were trained for the forty users using the features

obtained from the ConvNeXt model, and then the models

were evaluated using the features obtained from the Con-

vNeXt model from the validation and evaluation sets. The

stride footstep obtained an EER of 6.97% and 10.25% for

the validation and evaluation test sets, respectively.

Table 4 compares the outcomes of two biometric iden-

tification and verification systems: one with a single clas-

sifier for identification, and one with multiple classifiers,

one classifier per user for verification scenario.

Table 5 represents some of the best experimental results

in the previous works on the main benchmark that we are

working on, which considers forty users with forty samples

of stride footstep signal per user. This is the most chal-

lenging benchmark because it has very few training sam-

ples compared to the number of users, which makes this

scenario the closest to imitating a real-life security

application.

When compared to previous work, our proposed

methodology is a major advance. In [6], using the same

benchmark and a stride footstep, they obtained an EER of

10.51% for the validation set and 18.00% for the evaluation

set by using the fusion of the time domain components

(GRF, spatial average, and upper and lower contour). In

[7], when using the spatial domain components on the same

benchmark, they achieved an EER of 10.56% and 16.00%

for the validation and evaluation sets, respectively, and for

the fusion of the time and spatial domain components at the

feature level [8], they obtained an EER of 7.20% for the

validation set and 10.70% for the evaluation set using a

stride footstep and the same proposed benchmark. Our

results show an improvement with an EER of 6.97% and

10.25% for the validation and evaluation sets, respectively,

using only the spatial domain components of the footsteps.

In comparison with [10], which obtained an equal error

rate of 9.39% for the validation set and 13.86% for the

evaluation set, our results show a significant improvement

with an EER of 6.97% and 10.25% for the validation and

evaluation test sets, and even better than [11], which

obtained an EER of 7.10% and 10.50% for the validation

and evaluation sets. It is worth noting that in [11], they

used raw and processed features, as well as a feature fusion

for the temporal and spatial components, whereas in the

same experiment using only the processed spatial compo-

nent by ResNet, they obtained an EER of 13.60% and

15.50% for the validation and evaluation sets, respectively,

and using only the processed SVM features, they obtained

an EER of 11.70% and 17.50% for the validation and

evaluation sets, respectively. So, the novelty of our

approach is represented by achieving nearly better results

than [8, 11] using only the spatial footstep components

without adding the temporal features of the footsteps.

5 Conclusion and future work

In this research, we presented two biometric systems for

identification and verification scenarios that used a fused

algorithm of the ConvNeXt neural network architecture

and a logistic regression classifier. We used the Swansea

Foot Biometric Database, the most prominent open-source

gait database available for footstep recognition. We used

transfer learning on ConvNeXt to optimize computational

power and time. ConvNeXt was trained on forty distinct

users, each with forty samples of stride footsteps, and a

single class was assigned to the imposter samples. We usedFig. 22 DET curve for the biometric verification system
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the ConvNeXt as a features extractor to extract a

512-feature vector per sample, and we used the extracted

features vector to train and test our logistic regression

models. The purpose of the first biometric experiment was

to obtain an identification biometric system with one single

model that can identify and verify the person based on his

walking pattern, and the purpose of the second biometric

experiment was to obtain a verification biometric system

that consists of forty logistic regression models, one for

each user, to obtain a biometric system that can verify the

claimed identity of a person from his walking patterns. We

proved that using only spatial foot pressure characteristics,

our proposed models successfully differentiated between

the users. In our first biometric system, we achieved an

equal error rate of 15.30% and 21.72% for the validation

and evaluation sets, and an equal error rate of 6.97% and

10.25% for the validation and evaluation sets in our second

biometric system. In the future, we will extend our two

proposed systems by fusing temporal and spatial informa-

tion when training the ConvNeXt and logistic regression

models, then we will propose an identification prototype

system that makes use of a new walking mat equipped with

piezoelectric sensors to collect a small dataset that can fit a

workplace and retrain our suggested system. We will then

test our model on the proposed walking mat to be able to

continuously monitor our biometric identification system

and check if the model is performing well or not yet in the

production phase, so we can retrain our model if necessary.
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Costilla Reyes et al. [10] Spatial features CNN and SVM 9.39% 13.86%
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Costilla Reyes et al. [11] Processed spatial features ResNet 13.60% 15.50%
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