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Abstract
In industrial applications, three-phase induction motors (IMs) are widely used, and they are subjected to many types of

faults. One such fault is the loss of a motor phase caused by a blown fuse, a broken wire, mechanical damage, etc. When

this fault occurs during motor operation, it continues to rotate but experiences rapid heating, which can ultimately lead to

motor failure. Therefore, various protection devices are available to protect the motor against this fault, but most traditional

protection devices do not offer a comprehensive classification of such a fault. So, in this paper, an efficient neural network

model is presented for detecting and classifying 12 types of phase loss faults for a three-phase induction motor (IM) based

on factors such as the unhealthy phase, fault location, and motor action modes (standstill, transient, and steady-state

modes). Thus, the main goal of this work is to determine the motor mode during the fault, the defective phase, and its

location to help the maintenance team repair the fault quickly. The system is simulated and tested using the ‘‘MATLAB/

Simulink’’ software, employing a feed-forward neural network. The simulation results demonstrate that the proposed

network achieves correct detection and classification of phase loss faults within a short time frame from the occurrence of

the fault. Therefore, the proposed network model proves to be a simple and reliable solution for integration into the

protection system of a three-phase IM, enabling the detection and classification of various phase loss faults.
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1 Introduction

Monitoring the condition and identifying faults of electric

machines is extremely important in companies and indus-

tries due to several advantages, such as reducing downtime,

improving the performance of equipment, reducing the

costs of maintenance, increasing the accuracy of failure

prediction, increasing machine dependability, and

decreasing energy waste [1]. Among these electrical

machines, the three-phase induction motor (IM) is most

widely used in many different industrial processes because

it has many advantages, such as reliability, low mainte-

nance, durability in hostile environments, and quick

adaptation to different loading conditions [2–4]. Despite

the advantages of the three-phase IM, it is subjected to

many different electrical and mechanical failures, as

mentioned and briefly described in Table 1 [1, 5–10].

Electrical faults such as low voltage, over-voltage, unbal-

anced voltages, and phase loss cause changes in the current

drawn, and short-circuit faults can cause the current to

increase to levels that can damage the motor windings.

Mechanical faults like locked rotor, bearing failure, and

momentary or prolonged overloads also cause the motor to

draw more current, which causes overheating [11].

Approximately 45% of three-phase motor faults are due

to overload/overcurrent and single phasing [11, 12]. Single

phasing, also known as open phase, phase failure, or phase

loss, is one of the most common faults of industrial and

commercial electrical drives [13]. There are many possible

causes for this type of fault, including fuse blowing,

damaged or broken wires, open switches, eroded or
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Table 1 A brief description of most of the faults of the three-phase induction motor

Fault Fault

Type

The reasons for the fault occurrence Effects on the 3-ph induction motor

Under
voltage

External Low voltage of the power source due to the utility grid
issues

Motor speed drops and current increases

Rising in the motor windings temperature

Using long cables to feed the motor Harmful effects on the motor insulation

Starting large loads Thermal stress on the motor

Over-voltage External Rising the voltage of the power source due to the utility
grid issues

Significance variation in the flux amplitude

Higher temperature and core losses

Sudden load reduction Thermal stress on the motor

Lightning strikes on network Harmful effects on machine insulation

Unbalanced
voltages

External Open delta transformer Significant increase in the stator currents

Unbalanced loading and phase loss Rising in the copper losses

Unequal tap setting of transformer Thermal stress on the motor

Shunted single-phase load Reduced motor efficiency

Overload External Excessive mechanical load Rising in the motor currents

Mechanical issues as misalignment, bearing failure, or
excessive friction

Rising in the motor windings temperature

Reduced insulation life

Short circuit Internal Insulation failure and overheating High currents and an excessive heat

Mechanical damage such as a collision, impact, or
vibration

Mechanical stress within the motor

Harmful effects on machine insulation

Manufacturing defects Loss of motor function

Voltage spikes or surges Thermal stress on the motor

Current
unbalance

External
or
internal

Imbalanced supply voltage Increased copper losses in the windings

Mechanical problems in the motor Increased heating in the motor

Faulty motor windings Reduced torque output

Variations in the length or size of the motor’s supply
cables

Mechanical stress on the rotor and stator assemblies lead to
bearing damage

Over
temperature

Internal Overloading and voltage imbalance Reduced insulation life

Poor ventilation and maintenance Decreased motor efficiency

Insufficient or degraded insulation Bearing damage

High ambient temperature Reduced motor life

Excessive starts and stops Increased maintenance and repair costs

Phase
reversal

External Exchanging of any two phases from the power source of
the 3-ph motor

Motor rotates in the wrong direction, causing major collateral
damage

Locked rotor External Mechanical obstruction High currents and heat are produced in the motor windings over a
small period of time during a locked rotor condition, which
leads to the windings damage

Bearing failure and high overload

Starting without rotation because of one of the phases
loses the power

Frequent start
and stop

External The motor is subjected to a small span of time start and
stop environment

Copper losses are substantial in the regular start and the stop
induction motor

Thermal stress on the motor

Broken rotor
bar

Internal Mechanical stress or excessive mechanical loads and
vibration

Asymmetry and produces a backward rotating field

Electrical faults within the motor An enhanced field is generated around the broken bar due to a
lack of demagnetizing in the defective barFrequent thermal cycling or rapid temperature changes

within motor

Manufacturing defects The flux density is progressively higher near the faulty region

Continuous overload conditions can cause excessive
current flow in the rotor bars, resulting in overheating
and potential breakage

Degradation in the order of torque is 2–4% with one broken bar,
while it is between 10 and 15%, for three to five broken bars

Bearing
failure

Internal Insufficient lubrication and erosion Rotor striking with the stator which causes mechanical stress on
the motorContamination and vibration
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oxidized contacts, mechanical damage, melted conductors,

etc. [14–17].

When a three-phase motor starts with only two phases,

missing the third one, it cannot rotate because of the

absence of starting torque, but it produces a humming

sound [17]. If the motor loses one phase while rotating, it

will continue rotation by drawing enough current from the

other two healthy phases to drive the load if it is not tripped

by the protection device against single phasing [14, 17, 18].

If phase loss occurs for a running 3-phase IM, it does not

instantly cause any damage or failure, but if it is not rec-

ognized, it may force equipment to run under stress and

cause overheating, which can burn the motor windings

[16, 19].

When an IM loses one phase, it is subjected to the worst

possible voltage imbalance, causing the motor to draw

more current and suffer asymmetrical losses [11]. Some

researchers studied the effect of voltage imbalances on

motor drives and found that as small as 3% of voltage

imbalances could increase motor temperature by up to 25%

[20, 21]. For a fully loaded motor, phase current unbalance

is 6–10 times the percentage of voltage unbalance at the

motor’s terminals [15, 22]. However, single phasing causes

a significant distortion of the voltage unbalance [14].

Also, the phase loss fault supplies motors with negative-

sequence currents, which create parasitic magnetic fields,

leading to a torque reduction [20]. The stator windings are

also subjected to thermal overload, which leads to insula-

tion damage [11, 17]. According to leading standard

organizations, insulation failure accounts for 30% of IM

failures, while overheating accounts for 60% [23]. Conse-

quently, phase loss in a three-phase induction motor can

have severe consequences and must be addressed promptly

to ensure the motor’s proper operation [11, 24].

Most of the protection devices for motors that are

commonly used, such as thermal overload relays or circuit

breakers, are not designed to detect single-phasing faults

[18]. Under single-phase conditions, the phase current of

lightly loaded three-phase IM (70% of the full-load cur-

rent) rises by the square root of three (H3). Because of this,

the amount of current drawn will be roughly 20% higher

than the value indicated on its nameplate for full-load

current. If the overload protection is sized at 125% of the

motor’s nameplate, the motor can still be damaged by

circulating currents [16, 18]. Therefore, different protection

devices are designed to protect the 3-ph motor from open-

phase failure. The most widely used hardware to protect

against single phasing in the low and intermediate power

levels of electrical drives is the three-phase monitor relay,

also known as a phase failure relay [13, 20]. This relay

shuts down the protected equipment in the event of an error

and could alert the monitoring system. Other devices to

protect the motor against this type of fault have been dis-

cussed and studied in detail in [11, 13].

In [25], the authors suggest using an additional neutral

wire as a simple solution for operating the open-phase

induction motor. They discovered that neutral conductors

enhance motor torque and reduce motor temperature when

there is a loss of phase. In addition, if a motor drive uses a

neutral wire topology, it is preferable to use fault-tolerant

control, as described in [26], which gives greater reliability

and flexibility. However, while protecting this way is

simple, it complicates the system, expands the space used,

and increases the total cost of the drive. So, many engineers

have developed software algorithms for the IM fault

detection of phase loss that enable appropriate actions to be

taken to prevent more serious failures [13].

The phase loss detection algorithms are crucial for all

drives, not just conventional drives [27–34]. These drives

are becoming increasingly common in applications, par-

ticularly where a drive failure could result in significant

damage or have dramatic consequences [35]. These

applications include drives used in military applications,

electric vehicles, aircraft, and ship electrical equipment,

especially propulsion systems, and the chemical and

nuclear industries, to name a few [13]. All of these fault-

tolerant drives use various approaches to improve relia-

bility. Still, they all use the same fault processing algo-

rithms, which include three steps: fault identification,

separation of the faulty part, and implementation of the

Table 1 (continued)

Fault Fault
Type

The reasons for the fault occurrence Effects on the 3-ph induction motor

Single
phasing
(Phase
Loss)

External
or
internal

Fuse blowing Unbalanced torque

Damaged or broken wires Increased current and heating

Eroded or oxidized contacts Reduced motor performance

Mechanical damage Overloading of remaining phases

Melted conductors Mechanical and thermal stress

Circuit breaker/contactor failure Harmful effects on machine insulation

Cut in the motor winding Motor is subjected to unbalanced voltages
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new control method [36, 37]. As can be seen, all drives

must have the loss of phase detection method because it is

one of the most important algorithms used to identify drive

faults.

Modern trends in motor protection are indeed moving

toward the use of microprocessor-based relays. These

relays, commonly known as digital or numerical relays,

offer several advantages over traditional electromechanical

or static relays [38–41]. The best techniques used in motor

protection schemes are artificial intelligence (AI)-based

techniques due to their higher reliability and cost-effec-

tiveness [42, 43]. Machine learning, neural networks, fuzzy

logic, genetic algorithms, and hybrid algorithms are

examples of AI-based fault classification techniques that

can address issues that cannot be solved by the traditional

methods of fault diagnosis [44, 45]. Several studies have

been done on the topic of protection against single phasing

[46–56].

All algorithms used in motor protection schemes against

phase loss faults can be categorized into slow and fast

methods according to the duration of fault detection from

the time of its occurrence. It is well known that fast phase

loss detection is the best method, but it is not easy in many

systems due to several factors, such as high signal noise

and distorted input voltage [13]. Artificial neural networks

(ANNs) are one of the important techniques widely used in

the protection algorithms of 3-ph IM due to their ability to

learn complex patterns and adapt to diverse operating

conditions [4, 45]. Therefore, the proposed system is

designed based on a neural network to detect the types of

phase loss faults for 3-ph IM.

The researchers were interested in presenting several

techniques for detecting motor faults, but most do not give

a detailed classification of single-phase faults. Therefore,

the main objective of this work was to design an efficient

neural network model to detect and provide a detailed

classification of that type of fault. Thus, this detailed

classification determines the motor mode during the fault

occurrence and knows the unhealthy phase and its location

to help the maintenance team repair the fault quickly after

its occurrence. Consequently, the proposed method in this

paper is designed to detect and classify 12 types of phase

loss faults in a three-phase IM. These faults are classified

according to the defective phase, fault location from the

power source or after the relay point, and motor action

modes (standstill mode, transient mode, and steady-state

mode). When the motor is in standstill mode, detection of

the loss of one of the phases from the power source is

important to avoid starting the motor with only two phases,

which causes high currents to pass through the other two

healthy phases. Thus, the proposed scheme can be imple-

mented using ANN as a simple and reliable solution for

integration into the protection system of three-phase IM to

detect and classify various phase loss faults in standstill,

transient, and steady-state modes.

From an economic standpoint, the proposed system is

considered more effective and acceptable compared to

traditional protection systems in detecting and diagnosing

Fig. 1 Schematic diagram of the system under study
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this fault. It can be applied to most motors, whether large or

small. However, the economic return on reducing down-

time, predicting motor failures, and reducing maintenance

costs will be more beneficial for larger motors.

2 System description

The studied system model is shown in Fig. 1. This system

consists of seven main parts, which are the power source,

motor, breaker, measurement unit, speed sensor, cables,

and protective relay using ANN. The unit of measurement

is used to step down the voltages and line currents of the

3-phase motor in order to be compatible with the protective

relay based on ANN.

The phase loss fault and its types included in this

research can be illustrated in Fig. 1. Phase loss fault means

the loss of one of the phases of A, B, or C from the source

(location 1 in Fig. 1) or after relay location (location 2 in

Fig. 1). In all cases, phase loss problems can occur when

the motor is running in steady-state mode or standstill

mode. A loss of phase in the case of the motor running in a

steady state should be detected and the motor disconnected

by a breaker; otherwise, it will overheat. When the motor is

in standstill mode, detection of the loss of one of the phases

from the power source is important to avoid starting the

motor with only two phases, which causes high currents to

pass through the other two healthy phases. Also, when the

motor is in standstill mode, the loss of one of the phases

after the relay location must be detected in the transient

mode as soon as the motor is running from standstill mode

without rotation. So, the proposed method accurately

identifies and categorizes 12 types of phase loss faults

based on factors such as the unhealthy phase, fault location,

and motor action modes (standstill, transient, and steady

state) as follows:

• Loss of phase ‘‘A’’ from the source side when the motor

is running in steady-state mode.

• Loss of phase ‘‘B’’ from the source side when the motor

is running in steady-state mode.

• Loss of phase ‘‘C’’ from the source side when the motor

is running in steady-state mode.

• Loss of phase ‘‘A’’ after the relay point when the motor

is running in steady-state mode. (A phase loss fault

occurs in the motor winding or in the cable between the

relay and the motor).

Fig. 2 Flow of the work stages

Table 2 Motor data used in MATLAB/Simulink

Motor parameter Value Unit

Nominal power 20 HP

RMS line to line voltage 400 Volt

Motor speed 1460 RPM

Frequency 50 Hz

Pole pairs 2 –-

Stator resistance (Rs) 0.2147 X

Stator inductance (Ls) 0.000991 H

Rotor resistance referred to stator (Rr’) 0.2205 X

Rotor inductance referred to stator (Lr’) 0.000991 H

Mutual inductance (Lm) 0.06419 H
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• Loss of phase ‘‘B’’ after the relay point when the motor

is running in steady-state mode.

• Loss of phase ‘‘C’’ after the relay point when the motor

is running in steady-state mode.

• Loss of phase ‘‘A’’ after the relay point when the motor

starts in transient mode without rotation.

• Loss of phase ‘‘B’’ after the relay point when the motor

starts in transient mode without rotation.

• Loss of phase ‘‘C’’ after the relay point when the motor

starts in transient mode without rotation.

• Loss of phase ‘‘A’’ from the source side when the motor

is in standstill mode.

• Loss of phase ‘‘B’’ from the source side when the motor

is in standstill mode.

• Loss of phase ‘‘C’’ from the source side when the motor

is in standstill mode.

The inputs to the ANN in the proposed scheme are the

RMS values of voltages, line currents, and motor speed.

The ANN outputs are called A, B, C, and T. In the normal

case, without any fault, all outputs of the NN are equal to

zero. The first three outputs express the missing phase,

each equal to the value one according to the faulty phase.

The last output represents the fault type according to the

motor mode.

3 Methodology

The design stages of the proposed method for the detection

and classification of phase loss faults for a three-phase IM

using a feed-forward neural network consist of five main

processes as follows:

• Motor model development

• Fault pattern generation and preprocessing

• Selecting the structure of ANN

• Training of ANN-based detector and classifier

• The ANN performance assessment

Figure 2 shows the stages or processes of this research

work for detecting and classifying the phase loss faults for

a three-phase induction motor using a feed-forward neural

network. These stages or processes are explained in detail

in Subsect. 3.1, 3.2, 3.3, 3.4, and Sect. 4.

3.1 Model development

In this research, the studied system model, which includes

a three-phase induction motor, has been built using

MATLAB/Simulink software. The model is employed as a

simulation platform to simulate the motor’s performance

under various types of phase loss faults. The study is car-

ried out on a model of the three-phase motor models found

in the MATLAB Simulink environment. The research is

based on a three-phase squirrel cage IM, 400 V, 15 kW

(20 HP), 1460 rpm, 50 Hz, with star-connected windings.

The data of a three-phase motor used in the simulation of

MATLAB /Simulink, such as the values of stator and rotor

resistances and stator and rotor inductances, are given in

Table 2.

Figure 3 shows the diagram of the system under study in

MATLAB/Simulink, which consists of many different

types of blocks described as follows:

• Block No. 1 is called a ‘‘three-phase programmable

voltage source,’’ which is used to simulate the power

Fig. 3 The system under study represented in MATLAB/Simulink
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supply of a three-phase motor and feed it at 400 volts

and a frequency of 50 Hz.

• Block No. 2 is called an ‘‘asynchronous machine,’’

which is used to simulate the 3-ph motor.

• Block No. 3 is called a ‘‘three-phase breaker,’’ which is

used to turn and stop the 3-ph motor.

• Block No. 4 is called a ‘‘three-phase V–Imeasurement,’’

which is used to measure the voltages of the motor

before the three-phase breaker of the motor.

• Block No. 5 is called a ‘‘three-phase V–Imeasurement,’’

which is used to measure the motor line currents after

the three-phase breaker of the motor.

• Block No. 6 is called a ‘‘breaker,’’ which is used to

simulate the phase loss fault from the power source in

each phase by using one for each phase.

• Block No. 7 is also called a ‘‘breaker,’’ and it is used to

simulate the phase loss fault after the relay point for

each phase by using one for each phase (i.e., the

simulation of a phase loss fault occurs in the motor

winding, or in the cable between the relay point and the

motor, or if there is a problem with the connection box

of motor, due to a misconnection one of the 3 phases).

• Block No. 8 is called ‘‘subsystem 1,’’ which is designed

for two reasons: the first is to run the motor with

different loads as a percentage of the full load, and the

other is to block the rotor of the motor when it starts

under a phase loss failure.

• Block No. 9 is called ‘‘subsystem 2,’’ which is designed

to simulate a phase loss failure from the power source

when the ‘‘three-phase breaker’’ is disconnected and the

motor is not running. When one of the phases is lost

from the source while the ‘‘three-phase breaker’’ is

disconnected, there is a voltage in the simulation system

on the end of the breaker even for the separated phase,

unlike what happens in reality. The reason for this is

that the loss of one of the phases in the simulation is

considered a large resistance, and therefore, there will

be a voltage on the end of the breaker. Therefore, block

number 9 was designed to eliminate this problem when

simulating this case.

• Block No. 10 is called ‘‘subsystem 3,’’ which includes

the blocks of the proposed method using the NN for

Table 3 Target values of the outputs of the NN according to the type of phase loss

Fault index Fault type code Fault type description Target of ANN

A B C T

F1 PL1-A Phase A is cut off from supply when IM is running in steady-state mode 1 0 0 0.5

F2 PL1-B Phase B is cut off from supply when IM is running in steady-state mode 0 1 0 0.5

F3 PL1-C Phase C is cut off from supply when IM is running in steady-state mode 0 0 1 0.5

F4 PL2-A Phase A is cut off after the relay point when IM is running in steady-state mode 1 0 0 0.75

F5 PL2-B Phase B is cut off after the relay point when IM is running in steady-state mode 0 1 0 0.75

F6 PL2-C Phase C is cut off after the relay point when IM is running in steady-state mode 0 0 1 0.75

F7 PL3-A Phase A is cut off after the relay point when IM is starting without rotation 1 0 0 1

F8 PL3-B Phase B is cut off after the relay point when IM is starting without rotation 0 1 0 1

F9 PL3-C Phase C is cut off after the relay point when IM is starting without rotation 0 0 1 1

F10 PL4-A Phase A is cut off from supply when IM is in standstill mode 1 0 0 0

F11 PL4-B Phase B is cut off from supply when IM is in standstill mode 0 1 0 0

F12 PL4-C Phase C is cut off from supply when IM is in standstill mode 0 0 1 0

–– NF Normal Case ( No phase loss fault) 0 0 0 0

Fig. 4 The MSE of training of ANN model
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detection and classification of phase loss faults for the

three-phase motor.

• Block No. 11 is known as ‘‘subsystem 4,’’ and it

includes scopes for displaying all the results.

3.2 Fault patterns generation and preprocessing

This section includes the second process shown in Fig. 2.

Preprocessing is a valuable technique that considerably

reduces the size of the NN and increases the performance

and speed of training process. After designing the proposed

system in MATLAB/Simulink as previously described in

Sect. 2, a simulation will be made to collect the data

required to train the proposed NN. The input signals for

NN were sampled at a sampling frequency of 1 kHz. The

data collected during the simulation process are the RMS

values of line-line voltages, line currents, and the motor

speed in RPM. These measured values will be used as

inputs to the NN. The simulation process will be done to

collect data when the motor is operating normally and

when it experiences a loss of one of the three phases while

the motor is running in transient mode or steady-state

mode. In addition, data are collected when one of the

phases of the source is lost while the motor is stopped in

order to prevent the motor from operating in this situation.

For each simulated fault case, 20 samples were collected

after one cycle from the fault’s inception in order to gen-

erate a training data set for the NN.

Normal operation data sets (patterns) for an induction

motor are collected at the rated load torque and some other

normal variant loading conditions. Also, the fault patterns

for phase loss failure while the motor is running are

obtained at different load conditions from (0–100)% of full

load. The phase loss fault simulation in MATLAB/Simu-

link is done for the following fault cases:

• Loss of phase ‘‘A’’ from the source using breaker 1

when the motor is running in steady-state mode.

• Loss of phase ‘‘B’’ from the source using breaker 2

when the motor is running in steady-state mode.

• Loss of phase ‘‘C’’ from the source using breaker 3

when the motor is running in steady-state mode.

• Loss of phase ‘‘A’’ after relay point using breaker 4

when the motor is running in steady-state mode.

(A phase loss fault occurs in the motor winding or in

the cable between the relay and the motor).

• Loss of phase ‘‘B’’ after relay point using breaker 5

when the motor is running in steady-state mode.

• Loss of phase ‘‘C’’ after relay point using breaker 6

when the motor is running in steady-state mode.

• Loss of phase ‘‘A’’ after the relay point using breaker 4

when the motor is starting without rotation.

• Loss of phase ‘‘B’’ after the relay point using breaker 5

when the motor is starting without rotation.

• Loss of phase ‘‘C’’ after the relay point using breaker 6

when the motor is starting without rotation.

• Loss of phase ‘‘A’’ from the source using breaker 1

when the motor is in standstill mode.

• Loss of phase ‘‘B’’ from the source using breaker 2

when the motor is in standstill mode.

• Loss of phase ‘‘C’’ from the source using breaker 3

when the motor is in standstill mode.

3.3 The structure of the ANN for fault detection
and classification task

Following the process of selecting the inputs to the NN, the

next stage is to form the structure of the NN-based fault

detector and classifier for the phase loss fault of the three-

Fig. 5 Training regression of NN

Fig. 6 Error histogram of the NN training
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phase motor. A multilayer feed-forward NN is chosen for

this research. It is necessary, in the design stage of the NN,

to take into account the determination of the size and the

ideal structure of the NN. The structure selection of the NN

depends on the classification problem involving fault pat-

terns, which ultimately relate to the number of input and

output neurons. In this study, the RMS values of voltages,

line currents, and motor speed were chosen as inputs to the

NN, so the total number of neurons in the input layer for

ANN is 7. The number of neurons in the output layer is 4.

The target values of the outputs of NN are selected

according to the fault type given in Table 3.

The NN outputs are called A, B, C, and T. In the normal

case, without any fault, all outputs of the NN are equal to

zero. The first three outputs express the missing phase, and

each of them is equal to the value of 1 according to the

faulty phase. The last output represents the fault type in one

of the following four cases:

Fig. 7 Test result of the ANN-based fault detector and classifier while the motor is running normally under full load at a time of 10.4 s

Fig. 8 Test result of the ANN-based fault detector and classifier while the motor is running normally under 70% of full load at a time of 20.7 s
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• In the first case, the phase loss fault occurs from the

power source while the motor is running in steady-state

mode, and in this case, the output will be equal to 0.5.

• In the second case, the phase loss fault occurs after the

relay point while the motor is running in steady-state

mode, and in this case, the output will be equal to 0.75.

• In the third case, the phase loss fault occurs after the

relay point while the motor is starting without rotation,

and in this case, the output will be equal to 1.

• In the fourth case, the phase loss fault occurs from the

power source when the motor is in standstill mode, and

in this case, the output will be equal to 0.

3.4 Training of ANN-based fault detector
and classifier

After determining the number of neurons in the input and

output layers of the proposed NN, the next step is to train

the NN with the previously prepared fault patterns. Then,

the number of hidden layers and the number of neurons in

each hidden layer are determined. A set of trials is used to

determine how many neurons are present in the hidden

layer. After a series of experiments with different networks

by changing the number of hidden neurons in the hidden

layer, it was shown that the highest performance could be

achieved by employing a single hidden layer that had 10

neurons. Thus, the final structure of the NN is a feed-

forward neural network with 7 input neurons, 10 hidden

neurons, and 4 output neurons. Both the hidden layer and

the output layer have utilized the ‘‘tangent sigmoid’’

transfer function. The ANN was trained using the Leven-

berg–Marquardt training algorithm. As demonstrated in

Fig. 4, the learning strategy converges rapidly, and the

mean squared error (MSE) drops to 4.0779 e-6 in 109

epochs. The neural network training regression (plotre-

gression) is shown in Fig. 5. The error histogram diagram

of the NN training is shown in Fig. 6. It is clear from the

error histogram that most of the network outputs after

training have an error value of 7.99 e-5. Therefore, for a

completely accurate classification, the NN outputs are

made the same as the targets in a range ± 0.03. The NN

outputs are delayed by 10 ms to avoid spurious errors

during normal motor starting.

Following the training of the ANN, it is required to test

the NN to check its performance. Therefore, the following

section shows the results and the performance evaluation of

the selected NN under normal conditions and in case of

phase loss of the three-phase IM.

Fig. 9 Test result of the ANN-based fault detector and classifier for loss of phase ‘‘A’’ from the source at a time of 20.6 s when the motor is

running in steady-state mode under full load

5836 Neural Computing and Applications (2024) 36:5827–5845

123



4 Results and discussion

After the NN has been trained, it is necessary to test it

through a series of tests that simulate errors in conditions

that were not presented during training. Testing of the

selected NN is required to validate its performance in

detecting the phase failure of an IM under different oper-

ating conditions. So, the network is tested when the motor

is running normally and when any of the faults given in

Table 2 happen under different loads and at different fail-

ure times, as explained below. In all simulations, the out-

puts of the presented method using a NN are represented

through time with voltage signals, current signals, RMS

line voltages, RMS currents, and motor speed. Also, in all

cases of the simulation results, a distinction is made

between the different faults according to the different

indexes and codes, as mentioned previously in Table 3.

4.1 Test results for normal conditions

The presented method using ANN is tested by running the

motor normally under various loads without losing one of

the phases. It was found that the proposed method works

efficiently, and all its outputs are zero during the period of

starting the motor and during its normal rotation without

any failure of the loss of one of the phases. Figures 7 and 8

show two such cases, the first being the motor running

normally under full load (100%) at 10.4 s and the second

being the motor operating at 70% of full load at 20.7 s. It is

clear from the two figures that all outputs of the proposed

method using the NN are equal to zero. As a result, it is

unaffected by the motor’s starting currents and operates

without error during its normal rotation.

Table 4 Results of the proposed ANN-based fault detector and classifier for one phase loss (A/B/C) from the source while the motor is running in

steady-state mode under various loads and conditions

Case

No

Fault

index

Fault type

code

Fault inception time

(Sec.)

Motor loading

(%)

Output of ANN-

based fault

detector/classifier

Fault detection time

(Sec.)

The operation time

(ms)

A B C T

1 F1 PL1-A 10.300 10 1 0 0 0.5 10.323 23

2 F1 PL1-A 10.315 40 1 0 0 0.5 10.339 24

3 F1 PL1-A 40.600 60 1 0 0 0.5 40.618 18

4 F1 PL1-A 20.405 70 1 0 0 0.5 20.429 24

5 F1 PL1-A 30.510 80 1 0 0 0.5 30.528 18

6 F1 PL1-A 40.615 90 1 0 0 0.5 40.638 23

7 F1 PL1-A 20.420 100 1 0 0 0.5 20.438 18

8 F2 PL1-B 30.315 30 0 1 0 0.5 30.334 19

9 F2 PL1-B 10.320 50 0 1 0 0.5 10.344 24

10 F2 PL1-B 40.620 60 0 1 0 0.5 40.644 24

11 F2 PL1-B 30.500 70 0 1 0 0.5 30.524 24

12 F2 PL1-B 40.605 80 0 1 0 0.5 40.624 19

13 F2 PL1-B 10.425 90 0 1 0 0.5 10.449 24

14 F2 PL1-B 30.515 100 0 1 0 0.5 30.539 24

15 F3 PL1-C 20.415 30 0 0 1 0.5 20.431 16

16 F3 PL1-C 40.610 50 0 0 1 0.5 40.631 21

17 F3 PL1-C 30.505 60 0 0 1 0.5 30.522 17

18 F3 PL1-C 50.720 70 0 0 1 0.5 50.741 21

19 F3 PL1-C 30.425 80 0 0 1 0.5 30.448 23

20 F3 PL1-C 50.310 90 0 0 1 0.5 50.339 29

21 F3 PL1-C 30.400 100 0 0 1 0.5 30.429 29

22 F1 PL1-A 20.600 100 1 0 0 0.5 20.618 18
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4.2 Test results for phase loss from the source
while the motor is running in steady-state
mode

The ANN-based fault detector is tested for many cases at

one phase loss from the source, while the motor is running

in steady-state mode. It was found that the proposed

method worked efficiently under various load conditions.

Figure 9 shows one of these cases (case no. 22 in Table 4),

which is the loss of phase ‘‘A’’ from the source at a time of

20.6 s when the motor is running in steady-state mode

under full load. It is clear from the figure that this fault was

detected and classified at 20.618 s. Thus, the operation

time for detecting and classifying the fault is 18 ms from

the fault’s inception. Table 4 gives 22 cases of this type of

fault, which is known as codes PL1-A, PL1-B, and PL1-C,

as previously mentioned in Table 3.

4.3 Test results for phase loss after relay
location while the motor is running
in steady-state mode

The ANN-based fault detector is tested for many cases at

one phase loss after the relay point, while the motor is

running in steady-state mode. It was found that the pro-

posed method worked efficiently under various load con-

ditions. Figure 10 shows one of these cases (case no. 22 in

Table 5), which is the loss of phase ‘‘B’’ after the relay at a

time of 10.5 s when the motor is running in steady-state

mode under full load. It is clear from this figure that this

fault was detected and classified correctly at 10.526 s.

Thus, the operation time for detecting and classifying the

fault is 26 ms from the fault inception time. Table 5 gives

22 cases of this type of fault, which is known as codes PL2-

A, PL2-B, and PL2-C, as mentioned in Table 3.

4.4 Test results for phase loss after relay
location while the motor is starting
without rotation

The ANN-based fault detector is tested for many cases at

different times of the phase loss after the relay point, while

the motor is starting without rotation. It was found that the

proposed method worked efficiently in those cases. Fig-

ure 11 shows one of these cases (fault index: F7, code:

FL3-A as in Table 3), which is the motor starting at 10.5 s

without rotation due to the loss of phase ‘‘A’’ after the relay

point. It is clear from the figure that the fault was detected

and classified correctly at 10.514 s. Thus, the operation

time for detecting and classifying this fault is 14 ms from

the fault inception time.

Figure 12 shows another case (fault index: F8, code:

FL3-B as in Table 3), which is the motor starting at 20.8 s

without rotation due to the loss of phase ‘‘B’’ after the relay

point. It is clear from this figure that the fault was detected

Fig. 10 Test result of the ANN-based fault detector and classifier for loss of phase ‘‘B’’ after the relay point at a time of 10.5 s when the motor is

running in steady-state mode under full load
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and classified correctly at 20.828 s. Thus, the operation

time in this case is 28 ms from the fault inception time.

Figure 13 shows the third case (fault index: F9, code:

FL3-C as in Table 3), which is the motor starting at 5.3 s

without rotation due to the loss of phase ‘‘C’’ after the relay

point. It is clear from this figure that the fault was detected

and classified correctly at 5.314 s. Thus, the operation time

for detecting and classifying the fault is 14 ms from the

fault inception.

4.5 Test results for phase loss from the source
when the motor is standstill

The ANN-based fault detector is tested for many cases at

different times of phase loss from the source when the

motor is in standstill mode. It was found that the proposed

method worked efficiently in those cases. Figure 14 shows

one of these cases (fault index: F10, code: FL4-A as in

Table 3), which is the loss of phase ‘‘A’’ of the power

supply at a time of 12.7 s when the motor is in standstill

mode. It is clear from the figure that this fault was detected

and classified correctly at 12.727 s. Thus, the operation

time of the proposed scheme is 27 ms from fault inception.

Figure 15 shows another case (fault index: F11, code:

FL4-B as in Table 3), which is the phase loss ‘‘B’’ of the

power supply at a time of 10.405 s when the motor is in

standstill mode. It is clear from the figure that this fault was

detected and classified correctly at 10.434 s. Thus, the

operation time for detecting and classifying the fault is

29 ms from the fault inception.

Figure 16 shows the third case (fault index: F12, code:

FL4-C as in Table 3), which is the phase loss ‘‘C’’ of the

power supply at a time of 15.25 s when the motor is in

standstill mode. It is clear from this figure that the fault was

detected and classified correctly at 15.276 s. Thus, the

operation time of the proposed scheme is 26 ms from the

fault inception time.

Table 5 Results of the proposed ANN-based fault detector and classifier for one phase loss (A /B /C) after the relay point while the motor is

running in steady-state mode under various load conditions

Case

No

Fault

index

Fault type

code

Fault inception time

(sec.)

Motor loading

(%)

Output of ANN-

based fault

detector/classifier

Fault detection time

(sec.)

The operation time

(ms)

A B C T

1 F4 PL2-A 5.30 10 1 0 0 0.75 5.329 29

2 F4 PL2-A 5.35 40 1 0 0 0.75 5.376 26

3 F4 PL2-A 5.40 60 1 0 0 0.75 5.424 24

4 F4 PL2-A 5.45 75 1 0 0 0.75 5.473 23

5 F4 PL2-A 5.50 85 1 0 0 0.75 5.522 22

6 F4 PL2-A 5.57 90 1 0 0 0.75 5.592 22

7 F4 PL2-A 5.68 100 1 0 0 0.75 5.702 22

8 F5 PL2-B 6.30 10 0 1 0 0.75 6.319 19

9 F5 PL2-B 6.35 40 0 1 0 0.75 6.377 27

10 F5 PL2-B 6.40 60 0 1 0 0.75 6.425 25

11 F5 PL2-B 6.45 75 0 1 0 0.75 6.476 26

12 F5 PL2-B 6.50 85 0 1 0 0.75 6.526 26

13 F5 PL2-B 6.57 90 0 1 0 0.75 6.596 26

14 F5 PL2-B 6.68 100 0 1 0 0.75 6.706 26

15 F6 PL2-C 7.30 10 0 0 1 0.75 7.325 25

16 F6 PL2-C 7.35 40 0 0 1 0.75 7.374 24

17 F6 PL2-C 7.40 60 0 0 1 0.75 7.425 25

18 F6 PL2-C 7.45 75 0 0 1 0.75 7.475 25

19 F6 PL2-C 7.50 85 0 0 1 0.75 7.526 26

20 F6 PL2-C 7.57 90 0 0 1 0.75 7.595 25

21 F6 PL2-C 7.68 100 0 0 1 0.75 7.706 26

22 F5 PL2-B 10.50 100 0 1 0 0.75 10.526 26
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5 Advantages of the proposed system

According to the simulation results that were discussed in

the previous section for more than 50 different cases, it

shows that the proposed system is characterized by several

features, which are as follows:

• It can detect and classify 12 types of phase loss faults of

3-phase IM based on factors such as the unhealthy

phase, fault location, and motor action modes (stand-

still, transient, and steady state) as follows:

• Loss of phase ‘‘A’’ from the source side when the motor

is running in steady-state mode.

Fig. 11 Test result of the ANN-based fault detector and classifier for loss of phase ‘‘A’’ after relay location when the motor is starting without

rotation at a time of 10.5 s

Fig. 12 Test result of the ANN-based fault detector and classifier for loss of phase ‘‘B’’ after the relay location when the motor is starting without

rotation at a time of 20.8 s
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Fig. 13 Test result of the ANN-based fault detector and classifier for loss of phase ‘‘C’’ after the relay location when the motor is starting without

rotation at a time of 5.3 s

Fig. 14 Test result of the ANN-based fault detector and classifier for loss of phase ‘‘A’’ from the power supply source at a time of 12.7 s when

the motor is in standstill mode
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Fig. 15 Test result of the ANN-based fault detector and classifier for loss of phase ‘‘B’’ from the power supply source at a time of 10.405 s when

the motor is in standstill mode

Fig. 16 Test result of the ANN-based fault detector and classifier for loss of phase ‘‘C’’ from the power supply source at a time of 15.25 s when

the motor is in standstill mode
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• Loss of phase ‘‘B’’ from the source side when the motor

is running in steady-state mode.

• Loss of phase ‘‘C’’ from the source side when the motor

is running in steady-state mode.

• Loss of phase ‘‘A’’ after the relay point when the motor

is running in steady-state mode.

• Loss of phase ‘‘B’’ after the relay point when the motor

is running in steady-state mode.

• Loss of phase ‘‘C’’ after the relay point when the motor

is running in steady-state mode.

• Loss of phase ‘‘A’’ after the relay point when IM is

starting from standstill mode (in transient mode).

• Loss of phase ‘‘B’’ after the relay point when IM is

starting from standstill mode (in transient mode).

• Loss of phase ‘‘C’’ after the relay point when IM is

starting from standstill mode (in transient mode).

• Loss of phase ‘‘A’’ from the source side when the motor

is in standstill mode.

• Loss of phase ‘‘B’’ from the source side when the motor

is in standstill mode.

• Loss of phase ‘‘C’’ from the source side when the motor

is in standstill mode.

• It can detect and classify phase loss faults correctly

within 30 ms of the fault inception time.

• It can determine the motor mode during the occurrence

of a phase loss.

• It can detect the unhealthy phase and its location, either

from the power source or after the relay point, to help

the maintenance team repair the fault within a short

period of time from its occurrence.

• It proves to be a simple and reliable solution for

integration into the protection system of a three-phase

IM, enabling the detection and classification of various

phase loss faults.

Economically speaking, the proposed method is con-

sidered more efficient and acceptable for identifying and

treating this kind of fault than existing protective systems.

This system can be applied to most motors, regardless of

their size, big or small. However, in the case of larger

motors, the economic return on minimizing downtime,

forecasting motor failure, and reducing maintenance costs

will be more advantageous.

The actual cost savings from the adoption of the system

for phase loss detection in motors will vary depending on

factors such as the size of the motors, the industry, the

specific application, and the operational parameters. Here

are a few ways in which cost savings can be achieved:

Preventing Motor Damage: Rapid detection and response

to phase loss can prevent motor damage and reduce the

need for costly repairs or motor replacements. By

minimizing downtime and avoiding extensive repairs,

organizations can save significant costs associated with

equipment maintenance and replacement.

Avoiding Production Losses: Unplanned downtime

resulting from motor failure can have a substantial

financial impact on industries that rely on continuous

operation. By detecting phase loss early and implement-

ing preventive measures, organizations can avoid pro-

duction stoppages, maintain productivity, and prevent

potential losses in revenue.

Energy Efficiency: Phase loss in motors can result in

inefficient operation and increased energy consumption.

By promptly identifying and addressing phase loss,

energy waste can be minimized, leading to cost savings

in electricity bills. Energy management systems that

monitor phase loss events can provide insights into

energy usage patterns and help optimize motor opera-

tions for improved efficiency.

Predictive Maintenance: Implementing a system for

phase loss detection as part of a broader condition

monitoring and predictive maintenance strategy can lead

to cost savings. By analyzing historical data and

identifying patterns related to phase loss, maintenance

activities can be planned proactively and scheduled

during planned downtime, reducing the need for emer-

gency repairs and minimizing associated costs.

Extended Motor Lifespan: Early detection and mitigation

of phase loss can help extend the lifespan of motors. By

minimizing stress on motor components and preventing

overheating, organizations can avoid premature motor

failures and the associated costs of replacement or

rewinding.

Thus, the actual cost savings will depend on the specific

circumstances and operational characteristics of the

industry. Conducting a detailed cost–benefit analysis based

on industry-specific data, such as motor sizes, energy costs,

production schedules, and maintenance expenses, will

provide a more accurate assessment of the potential cost

savings resulting from the adoption of a phase loss detec-

tion system in a particular industry.

6 Conclusion

An efficient NN model is introduced in this paper to detect

and classify 12 types of phase loss faults for a three-phase

IM. These faults are classified according to the defective

phase, fault location, either from the power source or after

the relay point, and motor action modes (standstill, tran-

sient, and steady-state modes). The RMS values of line-line

voltages, line currents, and motor speed (RPM) are used as

inputs to the NN. Several tests have been performed in

MATLAB/Simulink under different conditions to evaluate
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the proposed ANN’s performance. The proposed NN

model is tested for more than 50 different cases under

normal conditions and various phase loss faults at different

times and under different motor loads. Among these cases,

22 different cases of phase loss faults from the source and

another 22 cases after the relay point are tested, while the

motor is running in steady-state mode. The remaining cases

are tested for both normal conditions and phase loss faults

from the source or beyond the relay point when the motor

is in standstill mode. The simulation results of all test cases

show that the proposed network can correctly detect and

classify phase loss faults within 30 ms from the fault

inception time. Therefore, the proposed network model

proves to be a simple and reliable solution for integration

into the protection system of three-phase IM to detect and

classify various phase loss faults in standstill, transient, and

steady-state modes. Thus, the proposed system is consid-

ered more effective and acceptable compared to traditional

protection systems.
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