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Abstract
Data mining methods are important for the diagnosis and prediction of diseases. Early and accurate diagnosis of patients is

vital for their treatment. Various methods have been used in the literature to classify anemia. However, due to the different

characteristics of patient datasets, changes in dataset sizes, different parameter numbers and features, and different numbers

of patient records, algorithm performances vary according to datasets. In this study, the Harris hawks algorithm (HHA) and

the multivariate adaptive regression spline (MARS) were used to classify anemia based on blood data of 1732 patients from

the Kaggle database of patients with and without anemia. Six different algorithms were proposed to determine the

parameters of the linear anemia approximation, namely multilinear form HHA, multilinear quadratic form HHA, multi-

linear exponential form HHA, first-order MARS model, second-order MARS model, and the best performing MARS

model. The performance of the six proposed algorithms has been analyzed and found to be better than the previous studies

in the literature.
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1 Introduction

Anemia is a global health problem affecting human health

[1]. It particularly affects young children and pregnant

women. The World Health Organization estimates that

42% of children under 5 years of age and 40% of pregnant

women worldwide are anemic [2].

Anemia, which is expressed by a decrease in the number

of red blood cells in the blood, occurs with a decrease in

the level of hemoglobin in the blood with parameters such

as sex, age, pregnancy, and nutrition. So anemia is defined

as the hemoglobin value below the appropriate reference

range. The measurement of the values related to the cells in

the blood circulation is called the complete blood count

(hemogram). The complete blood counting marks the blood

values low or high according to the reference range.

Both diagnosis and treatment of the anemia is decided

by doctors. In order to diagnose anemia more accurately,

blood tests, radiological images, etc., must be observed by

the doctor. The diseases produce a lot of medical data from

which alternative solutions are produced such as to detect

diseases at an early stage, to prescribe appropriate drugs to

the patient, and not to extend the initial phase before

reaching the critical phase. Consequently, disease deter-

minations can be made for new patients according to the

medical data obtained from the patients. This is very

important for doctors to minimize the margin of error in the

diagnosis they will make for the patient, and it is important

for helping doctors to diagnose. Therefore, the evaluation

of data records in health institutions is of great importance

for patients and hospitals. However, these processes can be

difficult and costly, especially in underdeveloped countries.

There are many studies on designing decision support

systems for doctors for new patients by evaluating data

records in hospitals with biomedical image processing,
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biomedical signal processing, biomedical digital data pro-

cessing, etc. [3–6]. In image processing studies, medical

images (magnetic resonance imaging (MRI), computerized

tomography (CT) scans, etc.) have been analyzed and

systems have been developed to help doctors make better

treatment decisions [7–9]. Signal processing studies aim to

develop systems that help doctors by analyzing and inter-

preting medical signals (electrocardiography (ECG), elec-

troencephalography (EEG), etc.) [10, 11]. In studies on

digital data processing, digital data (blood count, C-reac-

tive protein (CRP) level, etc.) from patients are usually

processed and systems have been developed to help doctors

respond faster and more accurately for new patients. In

addition to classical methods such as support vector

machines, Naı̈ve Bayes, regression, and k-nearest neigh-

borhood, artificial intelligence-based methods such as

artificial neural networks, deep learning, and random forest

trees have started to be used in studies [12, 13].

Optimization methods have an important place in the

solution of engineering problems. Modeling a problem has

become an area where optimization methods are frequently

used. Finding the model parameters that best represent the

problem is a very important step for modeling the problem.

For this reason, mathematical modeling is needed in areas

such as data analysis, control system design, machine

learning, etc. [14–16].

Engineering problems are faced with increasing levels

of complexity day by day. Classical methods cannot be

successful in the optimization of complex systems due to

problems such as difficulty in solving high dimensional

problems, local minima problems, the fact that many

classical methods are designed for differentiable problems,

etc. Therefore, the need for new optimization methods

inspired by nature is increasing. These methods, which

tend to perform better on complex problems, can deal with

non-continuous problems and are less sensitive to local

minima [17, 18]. Examples of nature-inspired algorithms

frequently used in optimization are crow search optimiza-

tion (CSO), chicken swarm algorithm (CSA), JAYA, ant

colony, HHA, artificial bee colony (ABC), etc. [19, 20].

MARS method, which is another mathematical model-

ing method preferred for analyzing complex datasets, has

been frequently used in prediction, analysis, classification,

etc., studies [21]. When the studies in which the Mars

method is applied are examined, it shows that this machine

learning approach can help to create good prediction

models for engineering datasets [22–24].

These methods may not perform well for every dataset

due to different features in different datasets used in

studies. Limits such as different parameter properties,

number of parameters, and changes in the number of

patient records in the dataset significantly affect the success

of anemia disease classification methods. So, it is essential

to develop new techniques because the properties of the

studied datasets and the number of parameters or sizes may

differ [13]. In machine learning, image, biomedical,

robotics, natural language processing, and other fields, both

classical and metaheuristic methods have been successfully

used to classify data with different parameters and feature

structures [25–27]. The methods have been developed from

different perspectives such as linear, quadratic, and expo-

nential in the literature, and the methods have been ana-

lyzed under various scenarios such as linear, quadratic, and

exponential in order to model the relationships between the

parameters in the datasets [28, 29]. The model weight

values in the constructed scenarios were calculated by

optimizing the proposed methods according to the objec-

tive function. Disease classification was made by generat-

ing the weight values with the lowest error.

For these reasons, new approaches and algorithms need

to be developed to predict anemia. There are many data

mining methods used in anemia diagnosis in the literature.

These are: learning vector quantization neural network

(LVQ), k-nearest neighbors (k-NN), multiple linear

regression (MLR), logistic regression (LR), fuzzy logic

(FL), artificial neural networks (ANN), etc. [30, 31].

In this study, 1732 blood data from the Kaggle database

were analyzed using the Harris hawks algorithm, a nature-

inspired evolutionary algorithm, and the MARS algorithm,

a classical mathematical modelling method. The proposed

methods are analyzed under 6 different scenarios: multi-

linear form HHA, multilinear quadratic form HHA, multi-

exponential form HHA, first-order MARS model, second-

order MARS model, and MARS model to obtain the best

degree and pruning coefficient. Thus, the pruning param-

eter and degree values, which have a significant effect on

the performance of the MARS method in 3 models, enable

the model to learn different relationships and reveal com-

plex models, while in the other 3 models, the effects of the

parameters on the classification success of the problem

modelled in linear, quadratic, and exponential form were

optimized by HHA method and the most appropriate

weight values were obtained. To the best of our knowledge,

no anemia classification study has been performed using

the MARS method and parameter estimation method based

on mathematical modelling with HHA.

2 Literature review

With the help of artificial neural networks and decision

trees developed by genetic programming, an average of

90% performance was obtained as a result of the tests

performed for the classification problem of thalassemia

(Mediterranean anemia) disease [32]. In a 2008 study, a

decision support system was designed to help physicians in
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iron deficiency anemia [33]. Finally, Anemia (?) and

Anemia (-) results were evaluated at the end of the pro-

cedure. The results of the decision support system com-

pletely coincided with the decisions of the doctors. Serum

iron, serum iron-binding capacity, and ferritin were used as

parameters in the study, and six different blood parameters,

namely HGB, RBC, MCH, MCHC, WBC, and HCT, were

used in our study. In a study conducted in 2011, anemia

prediction and classification were analyzed using data

mining techniques, J48 and sequential minimum opti-

mization (SMO) classification methods were applied in

Weka, and the C4.5 decision tree algorithm (CDTA) and

support vector machine (SVM) were studied [34]. Another

study designed a neuro-fuzzy network to determine the

level of anemia in a child [35]. With this system, which

was developed after statistical measurements, the root

mean square of the errors was found to be 0.2743. In 2012,

artificial neural networks and an adaptive neuro-fuzzy

inference system (ANFIS) were developed to predict iron

deficiency anemia based on four laboratory data of mean

erythrocyte volume (MCV), mean cellular hemoglobin

(MCH), mean cellular hemoglobin concentration (MCHC),

and red blood cell count (RBC) [36]. In a study on iron

deficiency anemia in women, feedforward networks (FFN),

cascade forward networks (CFN), distributed delay net-

works (DDN), probabilistic neural network (PNN), and

LVQ were used [37]. Another article presents the classifi-

cation of blood characteristics with a CDTA, Bayesian

classifier, and a multilayer perceptron (MP) [38]. With the

study classified eighteen thalassemia anemia with high

prevalence in Thailand, the best classification performance

is obtained with the Naı̈ve Bayes (NB) classifier and then

with the multilayer perceptron. A study was carried out

using machine learning algorithms in the detection of

anemia [39]. In this study, ANN, SVM, and statistical

model methods were applied in the diagnosis of iron

deficiency. Some classification algorithms such as NB, MP,

J48, and SMO were used by using WEKA data mining tool

[40]. As a result, it was observed that the J48 decision tree

algorithm (JDTA) had the best performance. The deep

learning methodologies were used to increase the perfor-

mance of white blood cell (WBC) identification systems. A

new WBC recognition system has been proposed based on

deep learning theory [41]. In a 2018 study, an easy-to-use

and inexpensive device was developed to determine the

anemia status in patients, preventing the patient from going

to the laboratory frequently, allowing a large number of

people to be screened for anemia [42]. It has been observed

that there is a strong correlation between the information

estimated by the device and the actual Hb values obtained

by taking blood samples. The k-NN classification algo-

rithm was used to assess the anemia status and gave good

results. Thus, doctors avoid a significant number of blood

tests [42]. In the study conducted in 2019, the effect of

biochemistry values on iron deficiency anemia was inves-

tigated by k-NN, CDTA, and ANN methods, based on the

blood values stated in the literature to be effective for iron

deficiency anemia [43]. As a result, it has been seen that the

highest-performance artificial neural network method is. In

another study, machine learning algorithms, linear dis-

criminant analysis (LDA), classification and regression

trees (CART), SVM, randomized forest (RF), k-NN, and

LR were used [44]. They found that the RF algorithm

achieved the best classification accuracy. In another study

conducted in 2019, a new machine learning method

(HEAC—Hemoglobin Estimation and Anemia Classifica-

tion) was proposed for anemia classification based on blood

parameters and compared with other machine learning

methods in the literature [45]. Since the symptoms of iron

deficiency anemia and b thalassemia are similar in the

study conducted in 2020, a decision support system was

developed to ensure discrimination [31]. In the proposed

system, LR, k-NN, SVM, extreme learning machine, and

regularized extreme learning machine classification algo-

rithms are used. As a result, in the study in which male and

female patients were evaluated together, an accuracy of

96.30% for women and 94.37% for men was obtained. In a

study conducted in 2021, a structure was proposed that will

enable the recognition of anemia in clinical practice con-

ditions [46]. ANN, SVM, NB, and ensemble decision tree

methods were used as classification algorithms. In another

study, two hybrid models using genetic algorithm (GA) and

deep learning algorithms (DLA) of stacked autoencoder

(SAE) and convolutional neural network (CNN) were

proposed for the prediction of some types of anemia [13].

When the performances of the proposed algorithms were

evaluated, the performance of the GA-CNN algorithm was

found to be better. One study in 2022 used synthetic

minority over-sampling technique SMOTE to improve the

imbalance of the anemia dataset from India [47]. Then,

with the help of the decision tree rule-based learning

method, the rules for the detection of anemia were derived

using the original and SMOTE dataset.

When the studies on anemia are examined, it is seen that

the use of swarm-based optimization methods is quite low.

This study aims to see the success of the HHA algorithm,

one of these algorithms, also called metaheuristics, which

uses the advantages of swarm intelligence to solve complex

optimization problems that cannot be solved by analytical

methods, to obtain weight coefficients that will emphasize

the importance of the parameters in the dataset, and the

success of the MARS method, a classical mathematical

modeling method preferred for the analysis of complex

datasets, in the classification problem with different degree

and pruning parameters. Both methods are tested under

three different scenarios to highlight their success by
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modeling the relationships between dataset parameters.

Both methods are tested under three different scenarios,

and their success is highlighted by modelling the rela-

tionships between dataset parameters.

3 Material and method

3.1 Dataset and preprocessing

Blood data of 1732 patients from the Kaggle database were

used in the study. The dataset consists of 351 patients with

anemia and 1381 patients without anemia. As shown in

Table 1, the study used 6 attributes and 2 classes, anemia

(1)/healthy (0). The RBC value indicates the amount of red

blood cells in the blood of each patient data, hemoglobin,

HGB value indicates the amount of iron-rich protein stored

in red blood cells, HCT value indicates the volumetric

amount of blood in red blood cells, MCV value indicates

the average cell volume, MCH value indicates the ratio of

hemoglobin to red blood cells in a given volume, MCHC

value indicates the average amount of hemoglobin in a

single red blood cell, and 6 different blood components and

their corresponding anemia outcome information.

3.2 Harris hawks optimization method

The Harris algorithm is an algorithm that works by imi-

tating the hunting strategy of hawks in 2019 and is pre-

sented by Heidari as mathematically modeled [48]. When

the literature is searched, it is seen that the Harris hawks

method is used in many different areas [49–52]. However,

the use of HHA in studies on disease prediction in the

health sector has been limited [53–55]. Harris hawks move

in packs with a leader at their head when hunting rabbits.

First of all, they determine the location of the prey by

making reconnaissance flights. They then move on to the

hunting stage. This algorithm is population-based and

consists of many stages.

3.2.1 Exploration phase

During the exploration phase, the Harris hawks wait and

observe. This event continues in a loop. In each cycle, the

hawk in the best position gives the best solution according

to the position of the prey. While hawks wander, they make

2 different discoveries. These discoveries are given in

Eq. 1. The value of q in the equation is a probabilistic

value and indicates which discovery will be applied [48].

x t þ 1ð Þ ¼ xrandðtÞ � r1jxrandðtÞ ¼ 2r2xðtÞj; q� :5
ðxrabbitðtÞ � xmðtÞÞ � r3ðLBþ r4(UB� LB)Þ; q\:5

�

ð1Þ

In the equation, xðt þ 1Þ is the vector indicating the

position of the Harris hawk in each iteration, xrabbit is the

vector indicating the position of the prey, r1; r2; r3; r4; and

q are the random numbers, and xðtÞ is the vector giving the

current position of the hawk. LB and UB are the lower

value and upper value of the positions. A hawk chosen

randomly from the population is xrandðtÞ, and the average

position of the current hawk population is xmðtÞ. Using
Eq. 2, the average position is found [3].

xm tð Þ ¼ 1

N

XN

i¼1
xiðtÞ ð2Þ

The N value given in Eq. 2 indicates the number of

hawks, while t is the number of iterations.

3.2.2 Transition from exploration to exploitation

After the hawks complete the exploration phase, they

perform different attacks according to the energies of their

prey. The decrease in the energy of the prey during escape

is stated in Eq. 3 [48].

E ¼ 2E0 1� t

T

� �
ð3Þ

The E value in Eq. 3 indicates the energy of the escaped

prey, the E0 value the initial energy of the prey, and the T

value the maximum number of repetitions.

3.2.3 Exploitation phase

This is the stage where the hawks make the surprise leap to

their prey. Reacting to the surprise jump by attacking the

hawk’s prey, the rabbits try to escape. In response to these

escapes of the rabbits, the Harris hawks employ different

strategies. In the algorithm, these strategies are designed in

4 different ways.

The first strategy is called the ‘‘Soft besiege,’’ where the

Harris hawk tries to de-energize its prey by making

deceptive leaps. (r� 0:5;E� 0:5). The soft besiege strat-

egy is as in Eqs. 4 and 5 [48].

Table 1 List of attributes in the dataset

Attribute name Type Min Max Avg

HGB Numeric 2 13.100 4.484

RBC Numeric 3.600 16.700 12.453

MCH Numeric 15.700 52.110 38.003

WBC Numeric 2.900 116 84.907

MCHC Numeric 13.6 39.54 27.884

HCT Numeric 22.9 43.7 32.713
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x t þ 1ð Þ ¼ Dx tð Þ � E JXrabbitðtÞ � xðtÞj j ð4Þ
Dx tð Þ ¼ xrabbitðtÞ � xðtÞ ð5Þ

Considering Eqs. 4 and 5, the escaped prey’s chance of

being caught is r, and the rabbit’s energy E. The difference

between the position in t iteration and the position of the

rabbit is DxðtÞ. The value indicated by J is a value that

changes in each iteration to simulate the natural rabbit

movement [48].

The second strategy has been called ‘‘Hard Besiege,’’

where the hawk hardly flanks to throw its surprise claw

against the prey’s energy (r� 0:5, |E |� 0.5) that is greatly

diminished. This situation is shown in Eq. 6 [48].

x t þ 1ð Þ ¼ xrabbit tð Þ � EjDxðtÞj ð6Þ

The third strategy is ‘‘Soft besiege with progressive

rapid dives,’’ where the Prey has enough energy to escape.

In other words, it makes a soft siege before the surprise

jump compared to the previous siege. It is smarter than the

hard siege step. In other words, it is shown in Eq. 7 that the

hawks decide on their next step before making the soft

siege [48].

Y ¼ xrabbit tð Þ � EjJxrabbitðtÞ � xðtÞj ð7Þ

In order to decide whether this move made in the next

step will be a good dive move, a comparison with the

previous dive is made. If it is not suitable, a sudden dive is

made. During this decision, a Levy Flight-based movement

structure is used. It is given in Eq. 8.

Z ¼ Y þ S� LFðDÞ ð8Þ

According to what is given in Eq. 8, the problem

dimension is D. S is a random vector of size 1� D. Y

indicates the position of the prey relative to its decreasing

energy. Z is the variable that decides whether the hawk will

move to its prey. LF is the levy function and is found using

Eq. 9 [48].

LFðxÞ ¼ 0:01x
lxr

jlj
1
b

 !
; r ¼

Cð1þ bÞxsinðpb
2
Þ

C 1þb
2

� �
xbx2

b�1
2ð Þ

2
4

3
5 ð9Þ

According to what is given in Eq. 9, u, v is a random

number between (0.1), and b is 1,5. Equation 10 is used to

update the positions of the hawks [48].

xðt þ 1Þ ¼ Yf if FðYÞ\f ðxðtÞÞ ð10Þ
xðt þ 1Þ ¼ Zf if FðZÞ\FðxðtÞÞ ð11Þ

The Y and Z equality given in Eqs. 10 and 11 is found

using Eqs. 7 and 8 [48].

The last strategy has been called ‘‘Hard besiege with

progressive rapid dives,’’ at which stage the prey does not

have enough energy to escape. The falcon makes a fierce

siege before surprise leaps to capture prey. In Eqs. 12 and

13, the case of hard siege is given [48].

x0ðt þ 1Þ ¼ Y 0f if FðY 0Þ\f ðxðtÞÞ ð12Þ

x0ðt þ 1Þ ¼ Z 0f if FðZ 0Þ\FðxðtÞÞ ð13Þ

Values Y and Z can be determined from equations

Y 0 ¼ xrabbitðtÞ � EjJxrabbitðtÞ � xmðtÞj ð14Þ

Z 0 ¼ Y 0 þ S� LFðDÞ ð15Þ

3.3 Multivariate adaptive regression spline
(MARS)

The linear regression model is very important in solving

many problems. However, real-life problems often show a

nonlinear structure. Linear models cannot represent this

structure well. Nonparametric regression is used to char-

acterize these structures [56, 57]. If the number of inde-

pendent variables to be used in the model to be created is

large, nonparametric regression forms are not both useful

and cannot be easily interpreted. However, MARS, devel-

oped by Friedman in 1991, is a form of nonparametric

regression. While this method is useful for fitting nonlinear

multivariate functions, it does not have the disadvantages

of problems with a large number of independent variables.

MARS, which is nonparametric and does not assume a

functional relationship between dependent and independent

variables, has been used in many engineering problems

[58, 59]. Instead of a mathematical relationship, it creates a

dynamic relationship between cause and effect variables

[60]. It builds a flexible regression model using basis

functions corresponding to different ranges of independent

variable [57, 61]. The model consists of data-driven basis

functions and the coefficients associated with these bases.

It divides the independent variable values into regions and

associates each region with a regression equation.

General MARS model is defined as [61]

Y ¼ b0 þ
XK
k¼1

akbkðXtÞ þ ei ð16Þ

where k is the node number, K is number of the basic

function, X is independent variable, ak is the coefficients of

the Kth basic function, b0 is an constant term and bkðXtÞ
denotes kth independent variable for the kth basic function.

As k ¼ 1; 2; ::K defined, the basic function has the fol-

lowing form [61]

BmðxÞ ¼
YLm
t¼1

Sl;m
�

ðxvð1;mÞ � kl;mÞ
�

ð17Þ
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According to Eq. 17, Lm is the degree of interaction, Sl;m
2 �1½ �, kl;m is the node value, and xvð1;mÞ is the argument

value.

In the first stage of the MARS method, which consists of

two steps, forward and backward, since a more complex

model than desired is obtained with the forward step

algorithm, the basic functions in the model are added

sequentially with the backward step algorithm, which is the

second stage, to reach the optimum model. The process

ends when the number of BF (basic functions) is maxi-

mized. However, the model produced at this stage includes

the BFs that contribute most or least to the overall per-

formance and is therefore more complex and contains

inaccurate terms. The backward step is applied to avoid

overfitting by reducing the complexity of the model with-

out disturbing the fit of the model obtained in the forward

step to the data. At each step, it removes the BF s that lead

to the smallest increase in the residual sum of squares, and

finally, a best-predicted model is created [62]. This process

is called pruning and is determined by the hyperparameter

‘‘nprune.’’ By allowing different shapes of BF s and their

interactions, MARS has the capacity to reliably track very

complex data structures that are often hidden in high

dimensions [63, 64]. Pruning is most commonly done with

the generalized cross-validation technique. These opera-

tions protect against overfitting by reducing the complexity

of the model. The degree of pruning and which functions or

interactions to remove affect the performance of the model.

Another hyperparameter that controls the degree of the

polynomial basis functions in the method using the

expansion of piecewise linear basis functions is the ‘‘de-

gree’’ parameter. The degree parameter allows the model to

learn different relationships. Increasing the degree allows

the model to learn more complex models, and decreasing

the degree allows it to learn simpler relations. For these

reasons, the pruning parameter and the degree have a sig-

nificant impact on the performance of the MARS model.

4 Application of HHA and MARS methods
to the anemia prediction problem

In this section, it is stated how the HHA and MARS

methods are adapted to the anemia disease prediction

problem.

4.1 Adaptation of HHA algorithm to anemia
disease problem

Since 6 different blood parameters are used with the Harris

hawks method, the feature vector is given as follows.

B ¼ B1;B2;B3;B4;B5;B6½ � ð18Þ

In order to detect anemia with HHA, the results were

tested by modeling in 3 different forms. As shown in

Table 2, Model-1HHA refers to linear form, Model-2HHA

refers to quadratic form and Model-3HHA refers to expo-

nential form.

According to Eq. 18, column 1 of the feature vector B1ð Þ
is the coefficient of RBC in blood, column 2 ðB2Þ is the

coefficient of HGB in blood, column 3 B3ð Þ is HCT, col-
umn 4 ðB4Þ is MCV, column 5 ðB5Þ is MCH, and column 6

ðB6Þ is MCHC. These coefficients represent the effect sizes

of the parameters (RBC, HGB, HCT, MCV, MCH, and

MCHC) on classification. The effects of the parameters on

the classification success are optimized with HHA to obtain

the most appropriate weight values.

Multiple linear regression model adapted to blood data

is expressed in terms of combination of the anemia

variables;

y ¼ B0 þ B1HBG þ B2RBCþ B3MCHþ B4WBC

þ B5MCVþ B6HCT

¼ B0 þ
Xk
i¼1

Bixi ð19Þ

Multiple quadratic regression model can be established

as the following:

y ¼ B0 þ B1HBG þ B2RBCþ :::þ B6HCT

þB7HBG
2 þ B8:HBG:RBC þ B9:HBG:MCHþ :::

þB12:HBG:HCTþ B13RBC
2 þ B14RBC:MCHþ ::: ð20Þ

þB17RBC:HCTþ B18MCH2 þ :::

þ:::þ B27HCT
2

Multiple exponential regression model can be estab-

lished as the following:

y ¼ B0 þ B1e
B7HBG þ B2e

B8RBC

þB3e
B9MCHþB4e

B10WBCþB5e
B11MCHC þ B6e

B12HCT ð21Þ

The y values in Eqs. 19, 20, and 21 are the anemia

value. Bi, 0� i� 6, 0\ i\ 27, and 0� i� 12 are the

parameters to be determined for Eqs. 19–21, respectively,

using Harris hawks algorithm.

The cost function in multiple linear form is expressed as

Table 2 Types of models to be applied HHA

Model name to apply HHA Model type

Model-1HHA Multiple linear form

Model-2HHA Multiple quadratic form

Model-3HHA Multiple exponential form
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JðQÞ ¼ 1

N

XN
i¼1

ðY � XiB
TÞ2 ð22Þ

where ðXÞ is the input set, Xi patient records in the i:

patient registration Y are the label values, and the number

of patients in the dataset is N.

By considering the problem as data mining parameter

optimization, the model parameters (B) are tried to be

estimated with the help of the HHA using the dataset. The

classification of the data is managed whether the anemia

exists or not within the scope of the study.

Application stages of the HHA algorithm for Model-

1HHA:

Step 1:

The population size ðNÞ and the maximum number of

iterations ðTÞ are defined. (In the study, N ¼ 50 and T ¼
250 were taken.)

Step 2: A matrix B is produced as much as the popula-

tion size.

ð�5\B0\5 and � 3\B1;B2:::BN\3Þ

Step 3 The objective function is calculated by consid-

ering Eq. 23.

J ¼ 1

2
B0 þ

Xk
i¼1

yi � Bixi

 !2

ð23Þ

Step 4 Each row of matrix B is set as the xrabbit rabbit

position. xrabbit is calculated according to the objective

function. According to the number of iterations, the xrabbit

position that minimizes the objective function is calculated.

Step 5 Equation 24 formulates the energy of the hunt.

E ¼ 2E0 1� t

T

� �
ð24Þ

The first energy of the hunt is compared with the

objective function value, and then, this value is reduced

according to the number of iterations, thus minimizing the

objective function. Then, in the following steps, the

parameter values (prey position) change according to the

energy of the prey.

Step 6: The position vector is updated when the energy

of the prey is greater than or equal to 1.

Step 7: If the energy of the prey is less than 1, there are

four different strategy chances (exploitation phase).

Step 7.1: if (|E|C 0.5 and rC 0:5), xrabbit is updated

using the soft besiege.

Step 7.2 if (|E|C 0.5 and r \ 0:5), xrabbit is updated

using step 6 (hard siege).

Step 7.3 if (|E|\ 0.5 and r C 0:5), xrabbit is updated

using the Soft besiege with progressive rapid dives.

Step 7.4 if (|E|\ 0.5 and r\0:5), using the Hard besiege

with progressive rapid dives, xrabbit is updated.

Step 8 Repeat step 5 until the number of iterations.

Step 9 The hunt is located.

The accuracy and average accuracy value obtained at

each floor by applying tenfold cross-validation for Model-

1HHA are given in Table 3. The high accuracy achieved on

each fold shows that the model is not affected by the

unbalanced dataset.

The accuracy and average accuracy value obtained at

each floor by applying tenfold cross-validation for Model-

2HHA are given in Table 4. The high accuracy achieved on

each fold shows that the model is not affected by the

unbalanced dataset.

The accuracy and average accuracy value obtained at

each floor by applying tenfold cross-validation for Model-

3HHA are given in Table 5. The high accuracy achieved on

each fold shows that the model is not affected by the

unbalanced dataset.

The coefficients produced at each layer by the HHA

method applied to linear, quadratic, and exponential form

models are shown in Table 6, Tables 7, and 8.

As shown in Tables 6, 7, and 8, the overall model

coefficients were created by averaging the weight values

produced by Model-1HHA, Model-2HHA, and Model-

3HHA at each fold and the average coefficients are pre-

sented in Tables 9, 10, and 11, respectively.

In Tables 9, 10 and 11, the HHA algorithm is run for the

mathematical model specified in Eqs. 19, 20 and 21 and the

weight values that minimize the fitness function given in

Eq. 22 are calculated.

4.2 Adaptation of the MARS method
to the problem of anemia

The 16–17 parameters of the anemia models were deter-

mined as defined in Table 12, with Model-1MARS being

Table 3 Accuracy values at each fold by Model-1HHA

Accuracy Resample

1 0.9865 Fold01

2 0.9904 Fold02

3 0.9904 Fold03

4 0.9878 Fold04

5 0.9884 Fold05

6 0.9872 Fold06

7 0.9910 Fold07

8 0.9846 Fold08

9 0.9885 Fold09

10 0.9942 Fold10

Average accuracy 0.9889
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the first-order model, Model-2MARS second-order model,

and Model-3MARS being the model with the best pruning

and degree values, respectively.

To examine the performance of the MARS model with

different combinations of hyperparameters, tests were

performed on three different models. For the cross-

validation process, tenfold cross-validation was tried.

During the experiment, the hyperparameters degree and

nprune were tested with different values. In Model-

1MARS, degree ¼ 1 and nprune ¼ 25, in Model-2MARS,

degree ¼ 2 and nprune ¼ 25, and finally in Model-

3MARS, nprune was set from 5 to 50 (5 : 5 : 50) and

degree was set between 1 and 4 ð1 : 4Þ in order to find the

most successful parameter combinations. With these

hyperparameter combinations, it is aimed to capture the

behavior of the model in a wide range.

The accuracy and average accuracy value obtained at

each step fold by applying tenfold cross-validation for

Model-1MARS are given in Table 13. The high accuracy

achieved on each fold shows that the model is not affected

by the unbalanced dataset.

Before the pruning process, 10 basis functions were

generated and the functions with low success rate were

removed from the model. Finally, in order to test the effect

of RBC, HGB, HCT, MCV, MCH, and MCHC on anemia,

9 basis functions generated by the MARS method for

Model-1MARS and their weights are presented in

Table 14.

The basic functions defined for the model with BFj,

where j is the number of basic functions, are presented in

Table 14. In line with this information, the Model-1MARS

model is as follows:

Model-1MARS ¼ 23:60� 225:31xBF1þ 237:19xBF2
� 46:91xBF3� 27:17xBF4� 8:86xBF5
þ 12:05xBF6þ 46:61xBF7þ 6:99xBF8

ð25Þ

When Eq. 25 is analyzed, it is observed that there is no

interaction of the basis functions by taking degree = 1, and

simple linear functions are formed. According to Table 14

and Eq. 25, the RBC and WBC parameters were pruned

and removed from the model by the MARS method

because of their low contribution to the model

performance.

The accuracy and average accuracy value obtained at

each fold by applying tenfold cross-validation for Model-2

Table 4 Accuracy values at each fold by Model-2HHA

Accuracy Resample

1 0.9872 Fold01

2 0.9897 Fold02

3 0.9891 Fold03

4 0.9891 Fold04

5 0.9936 Fold05

6 0.9885 Fold06

7 0.9936 Fold07

8 0.9891 Fold08

9 0.9885 Fold09

10 0.9942 Fold10

Average accuracy 0.9903

Table 5 Accuracy values at each fold by Model-3HHA

Accuracy Resample

1 0.9872 Fold01

2 0.9897 Fold02

3 0.9878 Fold03

4 0.9910 Fold04

5 0.9852 Fold05

6 0.9872 Fold06

7 0.9936 Fold07

8 0.9859 Fold08

9 0.9904 Fold09

10 0.9705 Fold10

Average accuracy 0.9868

Table 6 Attribute weights at each fold by Model-1HHA

Attribute Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold08 Fold09 Fold10

B0 1.722 3.750 2.949 1.538 2.307 1.578 1.041 0.655 2.868 3.650

B1 - 1.999 - 1.752 - 1.923 - 1.083 - 0.329 - 0.890 - 0.135 - 0.595 - 1.897 0.255

B2 - 1.104 - 2.000 - 1.648 - 1.055 - 1.422 - 1.991 - 1.152 0.628 - 2.000 - 2.000

B3 0.382 - 1.324 - 1.686 - 0.479 - 1.999 - 1.008 - 0.013 - 1.642 - 1.983 - 1.399

B4 - 0.081 - 0.856 0.981 0.470 1.450 2.000 0.335 1.998 1.863 - 1.839

B5 - 0.664 - 0.738 - 1.535 - 0.857 - 1.167 - 2.000 - 0.334 - 1.502 - 1.942 1.454

B6 - 0.050 - 1.058 - 0.484 0.266 - 0.849 0.734 0.152 - 0.484 - 0.482 - 1.794
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MARS are given in Table 15. The high accuracy achieved

on each fold shows that the model is not affected by the

unbalanced dataset.

With Model-2MARS, 17 basis functions were generated

before the pruning process and the functions with low

success rates were removed from the model. Finally, in

order to test the effect of RBC, HGB, HCT, MCV, MCH,

and MCHC on anemia, 8 basis functions generated by the

MARS method for Model-2MARS and their weights are

presented in Table 16.

In line with the information in Table 16, the Model-

2MARS model is as follows:

Model-2MARS ¼ 11:7� 4:5xBF1� 585:3xBF2
þ 626:3xBF3� 45:5xBF4þ 7:2xBF5
þ 294:1xBF6� 268:2xBF7

ð26Þ

When Eq. 26 is analyzed, the maximum interaction

level of the basis functions is set to 2 by taking degree = 1.

This shows that the model’s basis functions are linear and

quadratic functions as shown in Table 16.

BF1, BF2, BF3; and BF4 form linear functions; BF5,

BF6; and BF7 are quadratic functions formed as the pro-

duct of two basis functions. According to Table 16 and

Eq. 26, MCH, WBC, and MCHC parameters were

removed from the model by the MARS method because of

their low contribution to the model’s performance success.

The accuracy and average accuracy value obtained at

each fold by applying tenfold cross-validation for Model-

3MARS are given in Table 17. The high accuracy achieved

on each fold shows that the model is not affected by the

unbalanced dataset.

For Model-3MARS, degree = 1:4 and nprune =

seq(5:5:50). As shown in Table 18, a grid containing the

Table 7 Attribute weights at each fold by Model-2HHA

Attribute Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold08 Fold09 Fold10

B0 2.592 4.999 2.558 4.998 2.599 4.453 3.097 4.983 4.997 4.199

B1 0.772 - 2.000 - 1.283 1.458 0.098 - 0286 2.000 0.571 - 2.000 - 1.939

B2 - 1.280 1.999 0.475 - 1.991 0.475 1.617 - 1.259 1.788 1.994 - 0.466

B3 - 2.000 - 1.739 - 1.925 - 1.999 0.666 - 0.646 0.502 - 0.757 - 2.000 0.903

B4 1.695 - 1.470 1.661 0.409 1.582 0.169 - 0.305 - 1.381 - 1.607 1.872

B5 0.742 - 0.608 1.174 1.432 - 0.444 - 2.000 1.502 - 0.864 0.213 2.000

B6 - 0.147 0.748 - 1.279 0.236 - 0.682 - 2.000 1.303 1.675 1.265 - 2.000

B7 1.218 4.337 2.149 - 3.651 - 0.517 - 2.514 - 2.434 - 4.812 4.688 - 3.779

B8 2.063 - 3.428 - 3.542 - 3.883 0.419 4.536 - 0.914 - 4.995 0.348 2.959

B9 - 0.794 - 3.842 4.949 4.028 0.399 - 0.643 - 0.849 0.209 - 5.000 3.011

B10 - 1.835 - 1.254 4.999 - 4.995 - 1.645 - 1.394 - 1.284 4.413 - 4.053 - 4.698

B11 - 0.882 4.999 - 4.989 4.745 0.758 1.757 0.213 3.230 1.047 0.836

B12 - 4.956 1.676 - 5.000 - 1.886 1.110 2.981 - 1.284 - 3.839 4.725 1.309

B13 - 2.407 - 1.927 - 5.000 - 0.055 - 0.824 - 2.967 - 0.595 - 2.590 - 4.606 - 2.024

B14 0.655 - 5.000 - 3.300 0.666 - 0.946 - 0.222 - 2.441 - 0.628 3.044 - 3.401

B15 - 1.561 - 1.830 0.302 - 0.349 0.042 - 5.000 - 1.065 - 0.666 - 5.000 - 2.321

B16 2.653 0.142 1.303 - 3.253 1.757 3.828 - 3.763 - 0.653 - 5.000 - 1.902

B17 0.363 0.152 - 4.449 3.248 - 4.359 - 1.604 - 2.899 - 2.734 4.216 - 1.608

B18 - 4.589 2.821 0.644 - 4.205 - 4.104 - 4.172 - 2.455 - 2.396 - 0.729 - 2.258

B19 - 0.778 1.663 4.671 0.448 - 0.141 - 2.282 1.014 - 2.842 - 1.294 - 3.673

B20 - 3.498 - 1.765 - 2.326 1.271 - 0.253 - 1.777 - 3.009 4.271 - 0.052 - 1.215

B21 2.022 - 3.605 - 0.100 - 4.993 - 4.849 1.752 0.542 0.284 - 5.000 2.399

B22 4.948 - 0.255 - 4.543 0.404 0.759 2.715 1.509 - 3.341 4.997 2.817

B23 - 0.904 - 1.492 3.269 0.986 - 2.551 3.587 1.274 2.025 2.795 - 5.000

B24 3.928 - 0.295 3.869 - 2.918 - 0.161 - 5.000 1.798 - 1.156 - 5.000 1.608

B25 - 5.000 3.874 - 4.446 - 3.688 0.656 0.273 - 1.551 1.181 - 0.170 1.165

B26 - 3.861 - 0.743 1.148 1.331 - 0.627 - 2.029 - 0.241 0.853 - 1.232 2.159

B27 - 2.366 - 3.293 2.216 - 1.917 2.949 1.309 - 1.947 - 4.890 - 1.885 - 3.740
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performances of the hyperparameters according to the

values in these ranges was created.

As a result of the tests, 17 basis functions were gener-

ated by Model-3MARS before the pruning process and the

functions with low success rate with pruning process were

removed from the model. Finally, in order to test the effect

of RBC, HGB, HCT, MCV, MCH, and MCHC on anemia,

5 basis functions generated by the MARS method for

Model-3MARS and their weights are presented in

Table 19.

In line with the information in Table 19, the Model-

3MARS model is as follows:

Model� 3MARS ¼ 43:5� 1107:3xBF1þ 671:4xBF2
þ 419:9xBF3� 123:8xBF4

ð27Þ

When Eq. 27 is analyzed, the maximum interaction

level of the basis functions is set to 2 by taking degree = 2

and nprune = 5. This shows that the model’s basis func-

tions are linear and quadratic functions as shown in

Table 19. BF1, BF2, and BF3 are linear functions, while

Table 8 Attribute weights at each fold by model-3HHA

Attribute Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold08 Fold09 Fold10

B0 - 1.414 - 2.861 - 0.602 - 3.846 - 1.844 - 0.237 - 5.000 - 2.468 - 2.936 0.422

B1 1.188 2.369 - 0.199 3.000 0.239 0.845 3.000 2.992 2.038 1.032

B2 1.052 - 2.210 3.000 2.568 2.489 2.123 2.849 2.976 2.638 2.199

B3 2.551 3.000 1.697 2.299 3.000 - 0.289 2.458 - 2.694 3.000 1.374

B4 0.011 - 0.454 - 0.915 - 1.916 3.000 0.416 0.096 1.215 - 0.821 - 0.718

B5 2.828 2.681 1.954 2.077 - 0.570 0.930 2.234 0.526 3.000 1.740

B6 2.686 2.651 2.592 - 0.304 1.515 - 0.039 1.707 0.105 3.000 - 1.708

B7 - 1.031 - 6.698 - 0.209 - 1.137 - 5.180 - 2.471 - 2.249 - 0.686 - 4.165 - 2.984

B8 - 6.219 - 7.853 - 3.123 - 3.479 - 1.978 - 5.013 - 2.044 - 6.420 - 4.991 - 9.964

B9 - 2.412 - 2.309 - 0.997 0.000 - 1.184 - 5.659 - 3.276 - 8.317 - 2.613 - 9.430

B10 - 8.639 - 3.295 - 1.610 - 0.590 - 4.364 - 4.829 2.812 - 2.770 0.000 - 0.130

B11 - 9.964 - 0.932 - 9.982 - 2.354 - 0.438 - 4.623 - 1.623 - 3.421 - 0.637 - 4.692

B12 - 6.784 - 6.477 - 9.982 - 2.246 - 5.772 - 2.996 - 0.869 - 2.493 - 6.246 - 9.945

Table 9 Average attribute

weights by Model-1HHA
Attribute Weight

B0 2.206

B1 - 1.036

B2 - 1.374

B3 - 1.115

B4 0.632

B5 - 0.862

B6 - 0.405

Table 10 Average attribute

weights by Model-2HHA
Attribute Weight

B0 3.947

B1 - 0.261

B2 - 0.335

B3 - 0.90

B4 0.263

B5 0.315

B6 - 0.088

B7 - 0.531

B8 - 0.644

B9 0.147

B10 - 1.174

B11 1.172

B12 - 0.587

B13 - 2.3

B14 - 1.157

B15 - 1.745

B16 - 0.489

B17 - 0.969

B18 - 2.144

B19 - 0.321

B20 - 0.836

B21 - 1.155

B22 1.001

B23 0.399

B24 - 0.333

B25 - 0.771

B26 - 0.324

B27 - 1.356
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BF4 is a quadratic function which is the product of two

basis functions. According to Table 19 and Eq. 27, MCH,

WBC, HCT, and MCHC parameters were pruned and

removed from the model by the MARS method in the

pruning phase since their contribution to the model per-

formance was low.

When a new patient data is to be analyzed using

Eqs. 25–27, classification can be made by entering the

necessary information in the BFj basic functions.

5 Evaluation

In the study, two classes were expressed as anemia (1) and

non-anemia/healthy (0) individuals. A tenfold cross-vali-

dation method was used for all proposed models. With this

method, the dataset is divided into 10 different subsets, and

each time one group is used as a test set, while the other

group is used for training. This approach enables an eval-

uation process where each subset serves as a test set once

and all combinations are tested and the results averaged.

This way, the class imbalance in the dataset does not cause

Table 11 Average attribute

weights by Model-2HHA
Attribute Weight

B0 - 2.077

B1 1.651

B2 1.528

B3 1.640

B4 - 0.009

B5 1.740

B6 1.221

B7 - 2.681

B8 - 5.108

B9 - 3.620

B10 - 2.904

B11 - 3.867

B12 - 5.381

Table 12 Model types to which the MARS method is applied

Model Name applied to

MARS

Model type

Model-1MARS Degree = 1(linear) AND nprune = 25

Model-2MARS Degree = 2 (quadratic)

nprune = 25

Model-3MARS Degree = 1:4 AND

nprune(5.5:50)(quadratic)

Table 13 Accuracy values at each fold by Model-1MARS

Accuracy Resample

1 1.000 Fold01

2 0.9885 Fold02

3 0.9942 Fold03

4 0.9827 Fold04

5 0.9827 Fold05

6 0.9828 Fold06

7 0.9942 Fold07

8 0.9942 Fold08

9 0.9884 Fold09

10 0.9942 Fold10

Average accuracy 0.9873

Table 14 Degree = 1 Estimated results of the MARS model

Basic function Weight

Constant 23.60

BF1 max(0, HBG—0.480916) - 225.31

BF2 max(0, HBG—0.618321) 237.19

BF3 max(0, 0.679389-HBG) - 46.91

BF4 max(0, HBG-0.679389) - 27.17

BF5 max(0, HCT-0.491623) - 8.86

BF6 max(0, HCT-0.552046) 12.05

BF7 max(0, 0.284615—MCHC) 46.61

BF8 max(0, MCHC-0.284615) 6.99

Table 15 Accuracy values at each fold by Model-2MARS

Accuracy Resample

1 0.9885 Fold01

2 0.9653 Fold02

3 1.0000 Fold03

4 0.9942 Fold04

5 0.9885 Fold05

6 0.9884 Fold06

7 0.9942 Fold07

8 0.9942 Fold08

9 0.9942 Fold09

10 0.9942 Fold10

Average accuracy 0.9902
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any problems during model learning and performance

evaluation. In other words, since there are more non-ane-

mia records in the dataset, the model may learn this class

better, while it may tend to misclassify the anemia class

with fewer records in the anemia class. However, with this

method, where the representation of each class in the

training and test sets is compatible with the proportion in

the overall dataset, the effect of such situations is

minimized.

The performances of the classification methods were

calculated according to ROC analysis metrics. These

metrics are methods that reveal how well the model per-

forms in predictions in order to learn the performance of

the results obtained by various methods. It is frequently

used in data mining applications [65].

Confusion matrix for ROC analysis is shown in

Table 20.

The basic equations for ROC analysis are shown in

Eqs. 28–33.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð28Þ

Table 16 Degree = 2 Estimated results of the MARS model

Basic function Weight

Constant 11.7

BF1 max(0, HGB—0.51145) - 4.5

BF2 max(0, HGB—0.541985) - 585.3

BF3 max(0, HGB—572,519) 626.3

BF4 max(0, HGB—59,542) - 45.5

BF5 max(0, RBC-0.212613) * max(0, 0.679389—HGB) 7.2

BF6 max(0, HGB-0.51145) * max(0, 0.612469—HCT) 294.1

BF7 max(0, 0.679389-HGB) * max(0, HCT-0.502609) - 268.2

Table 17 Accuracy values at each fold by Model-3MARS

Accuracy Resample

1 0.9884 Fold01

2 0.9885 Fold02

3 0.9885 Fold03

4 0.9884 Fold04

5 1.0000 Fold05

6 0.9942 Fold06

7 0.9942 Fold07

8 0.9942 Fold08

9 0.9942 Fold09

10 1.0000 Fold10

Average accuracy 0.9906

Table 18 Accuracy values at each fold by the grid containing

hyperparameters Degree = 1:4 and nprune = seq(5:5:50)

Degree nprune Accuracy

1 1 5 0.9862

2 2 5 0.9931

3 3 5 0.9913

4 4 5 0.9913

5 1 10 0.9873

6 2 10 0.9896

7 3 10 0.9925

8 4 10 0.9925

9 1 15 0.9873

10 2 15 0.9902

11 3 15 0.9925

12 4 15 0.9925

13 1 20 0.9873

14 2 20 0.9902

15 3 20 0.9925

16 4 20 0.9925

17 1 25 0.9873

18 2 25 0.9902

19 3 25 0.9925

20 4 25 0.9925

21 1 30 0.9873

22 2 30 0.9902

23 3 30 0.9925

24 4 30 0.9925

25 1 35 0.9873

26 2 35 0.9902

27 3 35 0.9925

28 4 35 0.9925

29 1 40 0.9873

30 2 40 0.9902

31 3 40 0.9925

32 4 40 0.9925

33 1 45 0.9873

34 2 45 0.9902

35 3 45 0.9925

36 4 45 0.9925

37 1 50 0.9873

38 2 50 0.9902

39 3 50 0.9925

40 4 50 0.9925
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Recall� Sensitivity ¼ TP

TPþ FN
ð29Þ

Specificity ¼ TN

TNþ FP
ð30Þ

Precision ¼ TP

TPþ FP
ð31Þ

F1� Score ¼ 2Precision:Recall

Precisionþ Recall
ð32Þ

AUC ¼ TPR� TNR

2
ð33Þ

The purpose of ROC analysis is to compare the per-

formance of the results obtained by various methods and to

evaluate the results in terms of sensitivity, specificity,

precision, F1-score, AUC, and accuracy [66]. The ROC

parameters used in the analysis are TP, TN, FP, and FN. TP

(true positive) and TN (true negative) indicate the correct

prediction of anemia as a result of the classification used.

FP (false positive) and FN (false negative) represent the

number of false predictions.

Selecting the appropriate metric for the model is very

important for obtaining the desired results. Accuracy,

AUC, and F1-score are parameters often used to evaluate

model performance. All three are used to evaluate how

well a model performs. Accuracy is the most popular

metric that determines the percentage of correct predic-

tions. AUC compares the relationship between the true-

positive rate (TPR) and false-positive rate (FPR) at dif-

ferent thresholds. Data scientists try to achieve the highest

TPR while maintaining the lowest FPR, indicating their

success in making correct predictions. In unevenly dis-

tributed datasets, it is not enough to measure model success

with the accuracy metric alone. F1-score is one of the most

widely used metrics for unbalanced datasets [67, 68].

F-score is a measure based on precision and recall values.

That is, if recall is high, precision is usually low, and vice

versa. At the same time, a high recall value means that a

large proportion of instances in the minority class are

correctly predicted, while a high precision value indicates

that there is a high probability that the predicted minority

instances actually belong to the minority class. Higher

values for both precision and recall lead to a higher F1-

score, indicating that there is not a large difference between

the precision and recall values [68, 69].

Although AUC is a very common measure for imbal-

anced data problems, the F-measure is more suitable for

such cases. This is because the minority class is more

critical than the majority class, and the F-measure is an

indication that the desired method classifies samples in the

minority class with a higher accuracy and a lower mis-

classification rate. In other words, the AUC measure

evaluates the overall accuracy of the classifier in both the

majority and minority classes, while the F-measure focuses

only on the accuracy of the classifier in the minority class

[68–70].

Since the dataset used in the study is an imbalanced

dataset, AUC and F1-score performance comparison is

made in the next section, but since other studies in the

literature produce results based on the accuracy metric,

other ROC metrics are also presented.

6 Experimental results of HHA and MARS

In this study, anemia disease classification was performed

with 2 different optimization algorithms for patient data

with blood values and results. The data used in the study

were classified using the two methods given in Tables 2

and 12, and the performance of each method was tested

with three different models. Classification was performed

on linear, quadratic, and exponential models for the HHA

method, and on models with different pruning coefficients

such as first-order pruning coefficient 25, second-order

pruning coefficient 25, and degree values between 1 and 4

for the MARS method.

The high accuracy values in Tables 3, 4 and 5 for the

HHA method and Tables 13, 15 and 17 for the MARS

method show that the accuracy of the proposed methods is

high in each cluster in the dataset divided into 10 different

Table 19 Degree = 1:4 and

nprune = seq(5:5:50) estimated

results of the MARS model

Basic function Weight

Constant 43.5

BF1 max(0, HGB—0.51145) - 1107.3

BF2 max(0, HGB—0.541985) 671.4

BF3 max(0, HGB—572,519) 419.9

BF4 max(0, RBC-0.212613) * max(0, 0.679389—HGB) - 123.8

Table 20 Confusion matrix for

ROC
Predicted

0 1

Actual 0 TN FP

1 FN TP
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subsets. This shows that the proposed methods are not

affected by dataset imbalance.

This section presents the confusion matrices and ROC

performance analysis of the methods obtained for the six

models. The confusion matrices of both Model-1 and

Model-3HHA algorithms and Model-1 and Model-3MARS

methods are documented in Figs. 1, 2, 3, 4, 5 and 6,

respectively, and ROC performance values are calculated

from them.

When the confusion matrices in Figs. 1, 2, 3, 4, 5 and 6

are evaluated, it is seen that a total of 13 patients with

Model-1HHA, 12 patients with Model-2HHA, 316 patients

with Model-3HHA, 14 patients with Model-1MARS, 12

patients with Model-2MARS and 11 patients with Model-

3MARS could not be classified correctly.

Table 21 shows the ROC performance analyses made as

a result of testing six different models.

In the study, in order to better model the relationship

between anemia disease parameters, 6 different tests were

performed at different degrees and emphasizing the inter-

action of parameters with each other. In the research con-

ducted on different models, it was analyzed that the

classical method MARS and the metaheuristic method

HHA showed extremely significant success in anemia

disease classification when the accuracy metric was con-

sidered. However, since it is necessary to evaluate model

performance metrics such as precision, recall, F1-score,

and AUC in addition to the accuracy metric to determine

model success in non-uniformly distributed datasets, these

metrics were also analyzed.

For Model-1 and Model-3 HHA, the precision metric,

which is the ability of the classifier not to label a healthy

record as anemia, is high for all 3 models. Recall, F1-score,

and AUC metrics are high in Model-1 and Model-2, but

low in Model-3. In the dataset where the number of anemia

patient records is low, class-based achievements are

important instead of overall accuracy achievement. In other

words, while the accuracy value is 81.76%, the recall

metric, which is the ratio of all correctly predicted anemia

patient records to anemia patient records, is low in Model-3

because of the low number of anemia patient records. The

F1-score, which is also the weighted average of precision

and recall, takes into account the misclassified anemia

records from the precision score and the misclassified

healthy data records from the recall score. The AUC

metric, which evaluates the accuracy of the classifier in

both the minority and majority classes, and the F1-score

metric, which evaluates the accuracy of the classifier only

in the minority class, also produced high results for Model-
Fig. 1 Confusion matrix of the Model-1HHA

Fig. 2 Confusion matrix of the Model-2HHA

Fig. 3 Confusion matrix of the Model-3HHA
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1 and Model-2, but poor results for Model-3, which shows

exponential behavior.

When the results of Model-1 and Model-3MARS where

the MARS method is applied are evaluated, it is seen that

first-order Model-1 and second-order Model-2 show suc-

cessful results when nprune = 25 is selected. In the tests

performed for Model-3, which finds the best degree and

prune hyperparameters to classify the anemia dataset with

the MARS method, degree = 2 nprune = 5 was found.

Again, it is seen that the success of Model-3 is high.

The cost function changes of linear, exponential, and

quadratic HHA models using the mean squared error

(MSE) function are shown in Figs. 7, 8, and 9. The reason

why there is no continuous decrease in the graph drawn for

Model-1 in Fig. 7 is that the cost curves are calculated by

averaging the coefficients. Figure 7 shows that the linear

HHA model converges to the optimum result at the end of

the 250th iteration.

The reason why there is no continuous decrease in Fig. 8

according to the cost values plotted by averaging the

coefficients of the parameters at each iteration is that the

cost values are calculated again by averaging the coeffi-

cients as in Model-1HHA. Looking at Fig. 8, the HHA

model, which shows linear behavior according to the

coefficients to be optimized, converges to the optimum

result.

In Fig. 9, for the exponential form, the cost values are

plotted by averaging the coefficients of the parameters at

each iteration, resulting in a fluctuating graph. The reason

for the lack of a continuous decrease on the graph is that

the coefficients are obtained by averaging in each iteration

as in Model-1 and Model-2. It is concluded that the

reduction from 130 to 13 parameters for the exponential

form is not suitable for a model with exponential behavior.

In other words, averaging the parameters and obtaining a

general parameter do not give healthy results in some

cases.

These results show that the relationship between the

parameters and the contribution of the model to the anemia

disease classification problem is significant.

7 Conclusion

Harris hawks algorithm and MARS algorithm were used to

classify the data in the database where each patient data

contain 6 different blood components including RBC,

HGB, HCT, MCV, MCH and MCHC blood values and the

corresponding anemia outcome information. During clas-

sification, the dataset was divided into 10 different subsets

Fig. 4 Confusion matrix of the Model-1MARS

Fig. 5 Confusion matrix of the Model-2MARS

Fig. 6 Confusion matrix of the Model-3MARS
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Table 21 ROC performance

analyses
Model name Accuracy Precision Recall F1-score AUC

Model-1 HHA %99.25 %99.71 %96.58 %98.12 98.25

Model-2 HHA %99.31 %100 %96.58 %98.26 98.29

Model-3HHA %81.76 %100 %9.972 %18.13 54.99

Model-1 MARS %99.19 %98.84 %97.15 %97.99 98.43

Model-2 MARS %99.31 %98.84 %97.15 %97.99 98.40

Model-3 MARS %99.36 %100 %96.87 %98.41 98.43

Fig. 7 The cost function of

Model-1HHA

Fig. 8 The cost function of

Model-2HHA
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using the tenfold cross-validation method. In this process,

each of the 10 subsets was tested once as a test set. The

algorithms were analyzed on 6 different models: multilin-

ear form HHA, multilinear quadratic form HHA, multi-

exponential form HHA, MARS model with first-order

pruning coefficient 25, MARS model with second-order

pruning coefficient 25, and MARS model using the best

degree and pruning coefficient.

As a result of the tests performed on the models

applying the MARS method based on classical mathe-

matical modeling, it was concluded that they performed

well in anemia classification with an accuracy of 99.19%,

99.31%, and 99.36%, respectively, as shown in Table 22.

In addition to the accuracy metric, it was also observed to

perform well against the F1-score and AUC metrics, which

Fig. 9 The cost function of

Model-3HHA

Table 22 Related studies using different datasets similar to our study

Data Methods References Accuracy

RBC, HGB HCT, MCV MCH, MCHC,

RDW

LR, k-NN, SVM, Extreme Learning Machine and Regularized Extreme

Learning Machine

[31] %95.59

MCV MCH, MCHC, HGB, RBC ANN and an adaptive neuro-fuzzy inference system (ANFIS) [36] %96.29

MCV, RBC, HGB, HCT, MCH, MCHT Clonal selection algorithm, Gini algorithm, FFN, PNN [71] %98.73

RBC, MCV, HCT, HGB k-NN, CDTA, ANN [43] %78.31

Age, Gender, MCV, HCT, HGB,

MCHC, RDW

Naı̈ve Bayes, neural network J48 decision tree algorithms, and SVM [40] %93.75

HGB, HCT, MCH, MCV RF, NB and CDTA [72] %96.09

Results for our proposed method

Data Methods Accuracy

HGB, RBC, MCH, WBC, MCHC, HCT HHA Algorithm in Multiple Linear Form %99.25

HGB, RBC, MCH, WBC, MCHC, HCT HHA Algorithm in Multiple Quadratic Form %99.31

HGB, RBC, MCH, WBC, MCHC, HCT HHA Algorithm in Multiple Exponential Form %81.76

HGB, RBC, MCH, WBC, MCHC, HCT First-order and nprune = 25 MARS Algorithm %99.19

HGB, RBC, MCH, WBC, MCHC, HCT 2nd Degree and nprune = 25MARS Algorithm %99.31

HGB, RBC, MCH, WBC, MCHC, HCT 2nd Degree and nprune = 5 MARS Algorithm %99.36
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are commonly used to analyze imbalanced datasets

(Table 21).

The results of the success of the parameter estimation

method based on mathematical modeling using the HHA

method on the anemia classification problem were 99.25%,

99.31%, and 81.76%, respectively. Thus, according to the

coefficients to be optimized according to the average

parameter approach, which obtains a general parameter

that best summarizes the problem by averaging the

parameter values produced at each floor in the cross-vali-

dation results, it is seen that the linear and quadratic model

with linear behavior shows successful results, while the

model in exponential form, which does not show linear

behavior, shows lower success compared to other models.

When the results are evaluated, in the prediction process

using both HHA and MARS, the targeted outputs were

successfully achieved using 6 different blood components

in a total of 1732 cases, 351 with anemia, and 1381 without

anemia.

According to the performance results, the proposed

algorithms classify anemia better than previous methods

(Table 22). This shows that our proposed methods for the

anemia classification problem have high performance in

terms of accuracy, F1-score, and AUC performance. The

high performance obtained and the high accuracy at each

level of the dataset analyzed by tenfold cross-validation

show that the proposed methods are not affected by the

imbalance of the dataset.

The results of the study are expected to help medical

students and doctors in the anemia classification problem.

We believe that the classifier performances of our proposed

models will contribute positively to the literature.
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processing and communications applications conference (SIU),

IEEE, pp 1–4
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31. Çil B, Ayyıldız H, Tuncer T (2020) Discrimination of b-tha-
lassemia and iron deficiency anemia through extreme learning

machine and regularized extreme learning machine based deci-

sion support system. Med Hypotheses 138:109611

32. Wongseree W, Chaiyaratana N, Vichittumaros K, Winichagoon

P, Fucharoen S (2007) Thalassaemia classification by neural

networks and genetic programming. Inf Sci (NY) 177(3):771–786

33. Dogan S, Turkoglu I (2008) Iron-deficiency anemia detection

from hematology parameters by using decision trees. Int J Sci

Technol 3(1):85–92

34. Sanap SA, Nagori M, Kshirsagar V (2011) Classification of

anemia using data mining techniques. İn: International confer-
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Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve

Mühendislik Derg 22(65):481–490

51. Wang S, Jia H, Abualigah L, Liu Q, Zheng R (2021) An

improved hybrid aquila optimizer and harris hawks algorithm for

solving industrial engineering optimization problems. Processes

9(9):1551

52. Abbasi A, Firouzi B, Sendur P (2021) On the application of

Harris hawks optimization (HHO) algorithm to the design of

microchannel heat sinks. Eng Comput 37:1409–1428

53. Hu J et al (2022) Detection of COVID-19 severity using blood

gas analysis parameters and Harris hawks optimized extreme

learning machine. Comput Biol Med 142:105166

54. Ye H et al (2021) Diagnosing coronavirus disease 2019 (COVID-

19): Efficient Harris hawks-inspired fuzzy K-nearest neighbor

prediction methods. IEEE Access 9:17787–17802

55. Jiang F, Zhu Q, Tian T (2022) Breast cancer detection based on

modified Harris hawks optimization and extreme learning

Neural Computing and Applications (2024) 36:5653–5672 5671

123

https://doi.org/10.1155/2022/8512469
https://doi.org/10.1155/2022/8512469
https://doi.org/10.1029/2005WR004528
https://doi.org/10.1029/2005WR004528


machine embedded with feature weighting. Neural Process Lett

55:1–24. https://doi.org/10.1007/s11063-021-10700-w
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