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Abstract
People with color vision deficiency (CVD) have difficulty in distinguishing differences between colors. To compensate for

the loss of color contrast experienced by CVD individuals, a lot of image recoloring approaches have been proposed.

However, the state-of-the-art methods suffer from the failures of simultaneously enhancing color contrast and preserving

naturalness of colors [without reducing the Quality of Vision (QOV)], high computational cost, etc. In this paper, we

propose an image recoloring method using deep neural network, whose loss function takes into consideration the natu-

ralness and contrast, and the network is trained in an unsupervised manner. Moreover, Swin transformer layer, which has

long-range dependency mechanism, is adopted in the proposed method. At the same time, a dataset, which contains

confusing color pairs to CVD individuals, is newly collected in this study. To evaluate the performance of the proposed

method, quantitative and subjective experiments have been conducted. The experimental results showed that the proposed

method is competitive to the state-of-the-art methods in contrast enhancement and naturalness preservation and has a real-

time advantage. The code and model will be made available at https://github.com/Ligeng-c/CVD_swin.

Keywords Color vision deficiency � Unsupervised � Swin transformer � Recoloring � Deep neural network �
Contrast � Naturalness

1 Introduction

There are three kinds of cone cells in human retinas, the L,

M, and S cones, and they are sensitive to long-, medium-,

and short-wavelength visible light, respectively, enabling

people to perceive distinct colors. Anomalies in cone cells

lead to color vision deficiency (CVD) in individuals.

Specifically, when an anomaly occurs in the L, M, or S

cones, CVD is classified as protanopia, deuteranopia, or

tritanopia, respectively. It is estimated that approximately

8% of men and 0.5% of women in the world are affected by

various degrees of CVD [1, 2]. People with CVD may

experience inconvenience in their lives, such as the

inability to read red characters written on a black back-

ground, due to the reduced capability to discriminate col-

ors. CVD is an inherited deficiency for which there is

currently no cure.

Over the years, numerous image processing approaches

[3–7] have been proposed to support people with CVD. In

[8], Ribeiro et al. summarized CVD compensation studies

conducted in the 2 decades before 2019. Further, Zhu et al.
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[9] surveyed the latest image recoloring studies, as well as

quantitative and subjective evaluation metrics for CVD

compensation methods. In recent years, image recoloring

approaches have become the mainstream for CVD com-

pensation, aimed at enhancing the color contrast perceived

by CVD individuals by changing a part of the colors in the

images. Considering CVD individuals may feel uncom-

fortable if significant changes are applied to the original

color appearance, which can reduce quality of life (QOL),

state-of-the-art studies [10–16] further considered natural-

ness preservation, which put constraints on deviations from

the original image colors. The state-of-the-art studies

[12–14] proposed recoloring images using optimization

models, which take contradictory constraints, i.e., contrast

enhancement and naturalness preservation, into a unified

energy function and achieve balanced recoloring results;

however, the GPU-based implementation, which delivers

the best performance, still requires approximately 7 s to

process an image sized 256� 256 pixels [14]. In other

words, the poor time efficiency limits their usage in real

applications.

Recently, deep neural network (DNN)-based machine

learning techniques have achieved remarkable success in

the image processing and image synthesis fields. Specifi-

cally, Isola et al. proposed a Pix2Pix network [17] to

transfer images from a source domain to a target domain in

real time, and it showed the potential of using a DNN to

recolor images in real time. In [18], Li et al. demonstrated

the feasibility of utilizing Pix2Pix to generate compensa-

tion images for CVD by training the network using images

generated with their own recoloring algorithms. Because

their recoloring algorithm does not consider naturalness

preservation for CVD and because the Pix2pix model used

was based on a convolutional neural network (CNN),

which has a limited receptive field, leading to a poor ability

to learn explicit global and long-range information, the

effectiveness of the resulting images is limited. Hu et al.

[19] proposed a method to decompose an original image

into 27 basis images and then to use a CNN to predict the

coefficients for blending the basis images into image pairs

for use with stereo displays, enabling content sharing

between audiences with CVD and with normal vision.

However, Hu et al. [19] were also subject to CNN limita-

tions and did not consider naturalness preservation for

CVD either.

In this paper, we propose a new DNN-based image

recoloring method for CVD compensation. The proposed

method aims to enhance contrast and preserve naturalness

simultaneously in recolored images. The architecture of the

proposed network is similar to that of U-Net [20], which is

comprised of an encoder and a decoder. To improve the

performance of U-Net, we replace its CNN layers with

Swin transformer blocks [21]. Transformers, also known as

self-attention (SA) mechanisms, have gained significant

attention in the fields of natural language processing and

computer vision [22, 23]. The Swin transformer [21] has

the same performance as a standard transformer, but it

requires a much lower computational cost. To overcome

the limitation caused by using ground-truth images gener-

ated by existing methods, we design an unsupervised

training manner to guide the training of the proposed net-

work; concretely, the training phase only requires input

images and is guided by a newly designed loss function

that considers both contrast enhancement and naturalness

preservation. To enhance the generalization capability of

the trained model, we built an image dataset containing

color pairs that are confusing to CVD individuals, and we

use these images as the input to the proposed model during

the training stage. The dataset consists of 131,000 color

images, including 31,000 photographs of natural scenes

and 100,000 artificially created images. To evaluate the

performance of the proposed method, we conducted

quantitative and subjective experiments. The experimental

results show that our method can generate recoloring

results competitive to those of state-of-the-art methods but

executed in real time. Our contributions can be summa-

rized as follows:

• A novel DNN-based image recoloring method for CVD

compensation. By using the U-net structure of Swin

transformer blocks, the method succeeded in capturing

both local and long-range color dependency.

• A novel unsupervised training approach guided by a

newly designed loss function considering both global

and local contrast enhancement, as well as naturalness

preservation.

• A new dataset that can be used to train a DNN model in

an unsupervised manner to generate CVD compensa-

tion images. The database consists of photographs and

artificial images with color pairs that are confusing to

CVD individuals.

2 Related work

2.1 Conventional recoloring method for CVD

With the popularization of digital devices, recoloring

algorithms are dominating the approaches to CVD com-

pensation. As mentioned above, Ribeiro et al. [8] published

a survey paper regarding image processing approaches for

CVD compensation, covering studies conducted in the

most recent 2 decades, including 59 papers on image

recoloring approaches. Further, Zhu et al. [9] conducted

survey research focusing on image recoloring approaches,

adding 17 studies on the topic. Early studies focused on
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enhancing color contrast, while preserving naturalness and

enhancing contrast simultaneously became the trend in the

most recent decade.

Iaccarino et al. [4] enhanced the color contrast between

text and backgrounds on web pages by simulating recol-

ored colors falling in two different half-planes. Jefferson

et al. [24] developed an interface to allow CVD users to

adjust a single parameter of a recoloring algorithm. To

maximize the contrast between colors on the gamut of

dichromacy, Machado et al. [6] proposed first projecting all

colors in the input image onto a two-dimensional plane,

where the distribution of projected colors can be maximally

dispersed, and then rotating the plane to match the CVD

gamut. Lin et al. [7] proposed a color-warping method that

utilizes the orientation of the eigenvectors of the CVD

simulation results for recoloring images in the opponent

color space [25]. These studies did not consider naturalness

preservation, thus changing the color appearance of the

original image significantly, which may make CVD users

feel uncomfortable. Therefore, later researchers focused on

color appearance preservation, that is, naturalness preser-

vation. Kuhn et al. [26] enhanced color contrast and pre-

served naturalness based on mass-spring optimization, but

the quality of the recoloring result depends on the quality

of the quantization. In [27], Huang et al. proposed to

extract key colors from an input image and to recolor them

to enhance their distances, but not too far from the original

image. Hassan et al. [10] compensated for the contrast loss

by increasing the blue component of confusing colors,

because CVD individuals with red–green deficiency, which

is most individuals, have difficulty discriminating red and

green, but they can perceive blue well. To achieve suffi-

cient contrast enhancement, in [11], they extended their

work so users could exaggerate the blue channel. However,

contrast loss occurs in the recolored images due to the

saturation of the blue channels. Zhu et al. [14] proposed an

optimization model by using an object function considering

both contrast enhancement and naturalness preservation,

and they demonstrated that their method achieves the best

compensation effect among all existing methods through a

subjective experiment involving volunteers with CVD.

However, their method is time-consuming. To reduce the

computation time, they proposed to extract dominant colors

from the original image and to recolor the extracted

dominant colors using an optimization model. Finally, the

recolored dominant colors are propagated to the whole

image. Despite the acceleration, their method still requires

more than 7 s to recolor an image sized 256� 256 pixels

on a desktop with an Intel(R) Core (TM) i7-9800X

CPU@3.80GHz, 64-GB memory, and GeForce RTX 2080

Ti.

To accelerate processing, Wang et al. [15] proposed a

fast recoloring method by computing a single optimal map

from the 3D color space to the CVD color gamut. Huang

et al. [16] fitted a curved surface to represent the gamut of

dichromacy in Lab space and considered a luminance

channel in their compensation model. However, their

methods still require a few seconds to generate an image.

Ebelin et al. [28] introduced a real-time algorithm to

enhance the visual experience for color vision-deficient

observers by recoloring images. The proposed algorithm

prioritizes temporal stability and luminance preservation.

However, their method falls short in addressing the issue of

naturalness for individuals with CVD.

2.2 Recoloring method for CVD individuals
based on DNNs

Because image recoloring can be regarded as transferring

an image from a source domain to a target domain, it is

possible to apply a DNN to image recoloring for CVD

compensation. For instance, Isola et al. [17] proposed a

network, Pix2Pix, based on conditional GANs (generative

adversarial networks) to carry out the image-to-image

translation task. A standard GAN is comprised of a gen-

erator and a discriminator. Taking white noise as the input,

the generator aims to generate fake images whose

appearance is similar to real images, while the discrimi-

nator tries to distinguish real and fake images. Setting the

input image as a condition, Pix2Pix maps the image from

the source domain to the target domain. In [18], Li et al.

trained the Pix2Pix network with thousands of ground-truth

image pairs generated using their recoloring algorithm.

However, their recoloring algorithm did not consider nat-

uralness preservation; thus, the network has no ability to

preserve naturalness. In [19], Hu et al. proposed a model

for sharing the same contents to normal vision and CVD

audiences. For CVD audiences who wear stereo glasses,

the model generates a pair of contrast-enhanced images

from the input image for left and right eyes, respectively.

For normal color vision audiences who do not wear stereo

glasses, they perceive the blending of the paired images.

For generating the image pair, the original image is first

decomposed into 27 basis images; then, their CNN-based

model predicts a set of coefficients; finally, the output

image pair is computed as the linear combination of the

basis images with the predicted coefficients. Though the

blending of the image pair, which synthesizes the image for

people with normal vision, has been constrained to be

similar to the input image, Hu et al. [19] did not consider

naturalness preservation for CVD. Besides, both methods

used a CNN as the backbone for feature extraction in their

network model, which has a limited receptive field leading

to a poor ability to learn explicit global and long-range

information; hence, the effectiveness of the resulting ima-

ges is limited. Jiang et al. [29] proposed a method based on
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StyleGAN-ada[30] for generating compensation images

across various degrees through latent traversal. However,

the limitation lies in the fact that their method relies on

latent codes as input, making it challenging to apply in

real-time to real images.

2.3 Vision transformer

Driven by transformers’ success in the natural language

processing domain [22], which process all tokens at once

and calculate relationships between them, more researchers

are paying attention to the use of transformer-based models

in the computer vision domain. The pioneering vision

transformer (ViT) in [23] flattens 2D image patches in a

vector and then feeds it to the transformer. It achieved an

impressive performance in an image recognition task, but it

requires a large-scale training dataset, such as JFT-300 M.

The Swin transformer [21], an efficient and effective

hierarchical vision transformer, has linear computational

complexity from adopting a shifted windows scheme. With

the hierarchical architecture, it has been adopted as a vision

backbone, and it achieved a state-of-the-art performance in

various vision tasks, including image classification, object

detection, and semantic segmentation. In this work, we

adopt a Swin transformer block as a basic unit to build an

encoder-decoder model for generating compensation ima-

ges for CVD people.

3 Proposed method

3.1 Overview

As illustrated in Fig. 1, given an input image I that contains

color pairs confusing to CVD individuals, the proposed

model can output a compensated image with enhanced

contrast but still natural to CVD individuals. The proposed

model uses an auto-encoder framework whose structure is

similar to that of U-Net [20]. It is comprised of two parts:

(1) an encoder and (2) a decoder; the encoder extracts

features from the input image, while the decoder generates

a recolored result from the extracted features. Particularly,

the Swin transformer is adopted as a feature extractor.

The input image is first fed to the encoder for hierar-

chical feature extraction, and then the compensated image

is generated by the decoder by referring to the different

feature layers of the encoder using skip connection. In [20],

the encoder adopted CNN layers for feature extraction. In

this study, we construct our encoder with patch partitioning

and patch embedding and with a series of Swin transformer

blocks and patch merging. The decoder consists of Swin

transformer blocks, up-sample layer patch expanding, and

convolution block layers.

More details of the proposed model will be introduced in

Sect. 3.2. In Sect. 3.3, we will introduce the unsupervised

training approach, as well as the loss function, which aims

used to guide mode training in an unsupervised manner.

3.2 Network design

3.2.1 Swin transformer block

Taking the original image as the input, the patch partition

of the encoder divides the input image into small patches.

As shown in Fig. 2, the area partitioned by the gray square

denotes a patch, and each patch can be regarded as a token.

The big squares in brown represent local windows, and

tokens exchange information with all other tokens in the
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Fig. 1 Architecture of the proposed model: encoder, decoder, and

skip connections

Layer l Layer l+1

A patch

A local window to 

perform self-attention

Fig. 2 An illustration of the W-MSA and SW-MSA modules. In layer

l (left), self-attention is computed within each regular window. In the

next layer l ? 1 (right), the window partitioning is shifted, resulting in

new windows. Within each new window, the self-attention compu-

tation leads to connections with the previous windows
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same window. The standard transformer contains only one

big window, which includes all tokens, and each token

must be compared with all other tokens using the multi-

head self-attention (MSA) module; thus, the standard

transformer is time-consuming. In [21], Liu et al. proposed

dividing the whole image into several windows; thus, the

MSA operation can be conducted within each window

(Fig. 2[layer l]). Such a module is called window-based

MSA (W-MSA). To enable a token to exchange informa-

tion with tokens in other windows, when it proceeds to the

next layer, the windows are shifted, as illustrated in

Fig. 2[layer lþ 1]; that is, the Swin transformer block of

the next layer uses the shifted W-MSA (SW-MSA) module

from the second layer. Because the number of token pairs

in each layer is reduced significantly, the computational

cost of the Swin transformer is much smaller than that of a

standard transformer. Besides the W-MSA and SW-MSA

modules, a token must also proceed through the Layer-

Norm (LN) module, residual connections, and multi-layer

perceptron (MLP) modules. As illustrated in Fig. 3, the l

layer takes the output of the previous layer, zl�1, as the

input, and the input proceeds through the LN, W-MSA,

LN, and MLP modules in sequence, while the output of the

l layer, zl, proceeds through the SW-MSA instead of the W-

MSA module. Such a procedure can be represented using a

formula as follows:

ẑl ¼ W-MSAðLNðzl�1ÞÞ þ zl�1

zl ¼ MLPðLNðẑlÞÞ þ ẑl

ẑlþ1 ¼ SW-MSAðLNðzlÞÞ þ zl

zlþ1 ¼ MLPðLNðẑlþ1ÞÞ þ ẑlþ1

ð1Þ

where ẑl and zl denote the output features of the (S)W-MSA

module and the MLP module for Swin transformer block l,

respectively.

3.2.2 Encoder

As mentioned in Sect. 3.2.1, the input image is divided into

patches, and each patch is regarded as a token. In this

study, the input image I is supposed to consist of H �W

pixels, and it is equally divided into non-overlapping pixel

patches. Then, the patch embedding layer converts the

pixel patches into tokens, which is followed by a series of

Swin transformer blocks. By going through the first layer

of Swin transformer blocks, feature representations can be

obtained from the patch tokens. Then, the patch merging

layer reduces the feature resolution while increasing fea-

ture dimensions, which produces a hierarchical represen-

tation. Then, the downsized feature representations are

further processed by the other two layers of the Swin

transformer blocks and patch merging layers; as a result,

hierarchical feature representations of the input image can

be obtained.

In this study, each pixel patch can be defined as P 2
R4�4�3, and each token converted by patch embedding can

be denoted as v 2 R1�1�C(C is set to 96). In the patch

merging layer, the feature resolution is down-sampled to a

quarter of the input size, and the output feature dimension

is enlarged to two times the values of the input features. In

summary, the encoder has three layers of Swin transformer

blocks, which have 8, 4, and 4 blocks, respectively. In

addition, the input resolutions of three Swin transformer

layers are H=4�W=4, H=8�W=8, and H=16�W=16,

and their dimensions are C, 2C, and 4C, respectively.

3.2.3 Decoder

Given the hierarchical feature representations extracted by

the encoder, our decoder outputs a recolored image of the

same resolution as the input image for CVD individuals.

The structure of the decoder is shown in Fig. 1. In our

decoder, two layers of Swin transformer blocks are adopted

to reconstruct the hierarchical features. The first layer of

Swin transformer blocks (at the lower part of the decoder

shown in Fig. 1) takes the final feature from the encoder as

the input; the output is then fed into an up-sampling layer,

which enlarges the feature resolution and reduces the fea-

ture dimension. Before the enlarged feature is fed into the

upper layer of Swin transformer blocks, it is combined with

the middle layer feature of the Swin transformer blocks in

the encoder through skip connections. The output feature of

the upper layer of Swin transformer blocks is further

enlarged by the second up-sampling layer. Combined with

the token produced by the patch embedding layer in the

encoder, the enlarged feature is fed into the patch

expanding layer, and the resulting image can be obtained

through a final CNN block, which reduces the number of

channels to three.

In summary, our decoder has two layers of Swin trans-

former blocks, both of which consist of four blocks,

respectively. In addition, the resolutions of the output

feature maps of the up-sampling layers are H=8�W=8 and

Fig. 3 The architecture of two Swin transformer blocks (notation

presented with Eq. 1)
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H=4�W=4, and their dimensions are 2C and C,

respectively.

3.3 Loss function

In this study, the training of the proposed model is guided

by a loss function only; in other words, no ground-truth

results are used to train the model. Considering the two

goals of the proposed model, that is, contrast enhancement

and naturalness preservation, we expect the contrast in the

CVD simulation for the resulting image, O, can be

enhanced to the same level as that in the input image, I,

while changes to the color appearance are minimized. To

do so, we introduce contrast and naturalness terms into our

loss function. At the same time, we further divide the

contrast terms into global and local, given that both can be

reduced due to CVD.

To calculate the contrast loss, the distance between

CVD-simulated colors on two pixels in O is compared with

that between the colors of the corresponding pixels in I.

The contrast loss is calculated in the lab color space,

considering that lab color space is more consistent with the

human color perception system, and it can be represented

as follows:

CLðx; yÞ ¼ jj bc0x � bc0y j � jcx � cyjj
bc0x ¼ CVDðc0xÞ; bc0y ¼ CVDðc0yÞ

ð2Þ

where cx; cy; c
0
x; c

0
y denote the colors of the homologous

pixels x, y in I, O, respectively; CVDð�Þ stands for the CVD
simulation for a color and j � j represents the L1 norm of a

vector. We adopt the model proposed by [31] for CVD

simulation. Because the model in [31] can simulate varying

degrees of CVD, we adopt the most severe degree in this

study for the dichromacy simulation.

For the loss of local contrast, each pixel x in the

recolored image O is required to be compared with a set of

neighboring pixels of x. The local contrast loss term is

defined as follows:

Ll ¼
X
N

x¼1

X

y2xx

CLðx; yÞ
jjxxjj

ð3Þ

where xx stands for a set of pixels in a small window,

which is centered on pixel x, and xx represents the number

of pixels in xx; N is the number of pixels in an image. In

this study, the window size for local contrast loss is set to

11� 11.

For global contrast, the contrast loss of any pixel pair

\x; y[ randomly selected from the image for evaluation

is calculated as follows:

Lg ¼
1

jjxjj
X

\x;y[2x
CLðx; yÞ ð4Þ

where x stands for a set of randomly selected pixel pairs,

and x is the number of selected pixel pairs. x is set to 3000

according to a validation experiment conducted in this

study, which will be discussed in Sect. 5.3. As a result, the

integrated contrast loss term is defined as follows:

Lc ¼ bLg þ ð2� bÞLl ð5Þ

where b is the weight of the global contrast, we set the

b ¼ 1 in the proposed method, which will be discussed in

Sect. 6.4. To preserve the naturalness of the original image,

the recolored image is required to be as similar to the

original image as possible. To measure the similarity

between the recolored and original images, we adopt the

structural similarity (SSIM) metric [32], which differs from

the color difference metric used in [14], as SSIM is known

to be able to measure the perceptual similarity of images.

Given the pixels x, y in the test and reference images, the

SSIM metric is calculated among local windows X, Y

centered on x, y, respectively. The formula of SSIM is

written as follows:

SSIMðX; YÞ ¼ ð2uxuy þ c1Þð2rxy þ c2Þ
ðu2x þ u2y þ c1Þðr2x þ r2y þ c2Þ

ð6Þ

where ux and rx are the mean value and standard deviation

of the pixels in X, and uy and ry are the mean value and

standard deviation of the pixels in Y; rxy is the covariance

of x and y, c1 and c2 are small values for avoiding zero

division set to be 0.0001 and 0.0009, respectively. In this

study, the naturalness loss term is defined as follows:

Ln ¼ 1� SSIMðO; IÞ ð7Þ

Finally, the loss function for guiding training is defined as

follows:

L ¼ aLn þ ð1� aÞLc ð8Þ

where a denotes the parameter to control the weight of

naturalness preservation over the contrast enhancement in

the recolored image. The higher the value of a, the more

natural the generated image will be. In this study, to clarify

the effect of a, we trained various models with different a
values, which will be elaborated in Sect. 4.

4 Dataset collection

To improve the capability of the proposed model to

enhance the contrast between CVD-indistinguishable color

pairs, in this study, we created a new dataset consisting of
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pictures of natural scenes and artificial images containing

CVD-confusing colors.

4.1 Natural image

We first collected images from the Places365-Standard

dataset [33]. However, not all images in the dataset [33]

contain colors confusing to CVD individuals. To improve

the training efficiency, we filter out images in which CVD

individuals have no difficulty discriminating colors. To do

so, we assess the degree of contrast loss in the CVD sim-

ulation of the original image using the color contrast-pre-

serving ratio (CCPR) metric introduced in [34], which is

calculated as follows:

jj\x̂; ŷ[ j\x; y[ 2 U and Dðx̂; ŷÞ[ sjj
jjUjj ð9Þ

where U represents a set of pixel pairs in the original

image; for an arbitrary pixel pair \x; y[ in U, the con-

trast D(x, y) is greater than a threshold s. \x; y[
and\x̂; ŷ[ indicate a homologous pixel pair in I and the

CVD-simulated result of I; jjUjj stands for the number of

pixel pairs in this U set. In this paper, the contrast D

between a pixel pair refers to the distance in the Lab color

space, and the threshold s is empirically set to 6.

The lower the CCPR value, the severer the degree of

contrast loss. In our implementation, we adopted images

whose CCPR value is smaller than 0.8 in our dataset. As a

result, we collected 31,000 natural images from the Pla-

ces365-Standard dataset.

4.2 Artificial image

To make the proposed network more general and to learn

how to recolor the most confusing colors, we synthesized

artificial images to enrich the dataset. If the distance of a

color pair in the Lab color space is greater than the

threshold Cv, while the distance of its CVD simulation

result is smaller than the threshold Cv, then this color pair is

called a CVD-confusing color pair. And the threshold Cv is

empirically set to 2.3, same as [35]. To obtain confusing

color pairs, we traversed all colors in the RGB color space

at a step length of 8 for each channel and then transferred

the colors to the Lab color space for evaluation. Finally, we

collected about 770,000 CVD-confusing color pairs. Then,

we randomly selected 4 to 10 pairs of confusing colors and

put them on a white canvas; finally, we filled the whole

image using the nearest-neighbor interpolation method.

Examples of artificial images are shown in Fig. 4a, c, and

their CVD simulation results are shown in Fig. 4b, d,

respectively. In total, we generated 100,000 artificial ima-

ges to enrich our training dataset.

5 Implementation and validation

5.1 Implementation details

In this study, our model was implemented and trained on a

PC with an Intel(R) Core(TM) i7-9800X CPU@3.80GHz,

64-GB memory, and GeForce RTX 2080 Ti. Before the

input image are fed into the neural network, it will be

resized to 256� 256, and the patch size is set to 4. For the

training phase, the Adam optimizer was adopted, whose

hyperparameters were set as the learning rate lr = 0.0002,

b1 = 0.5, and b2 = 0.999. To explore the effect of the

weight a for the naturalness term, we trained our model

with three different naturalness weights a = 0.25, 0.5, and

0.75, and the obtained models were denoted as

Our025;Our050;Our075;respectively. To shorten the time for

training, we pretrained a model without a naturalness

constraint by setting a = 0, and the model is denoted as

Our000. Then, we fine-tuned the model Our000 using three

kinds of naturalness weights to obtain the models

Our025;Our050;Our075; respectively.

To determine the best number of pixel pairs for global

contrast enhancement and to verify the effectiveness of the

Swin transformer block layers, we conducted two experi-

ments on a subset of our dataset that consisted of 10,000

artificial images and 1000 natural images, and we tested the

trained models on 20,000 natural images.

5.2 Effect of Swin transformer block layer
compared with CNN

To validate the effect of the Swin transformer layer, we

compared the proposed model constructed using Swin

transformer layers with the model based on CNN layers,

which was used in the existing DNN-based recoloring

method [18, 19].

First, for a fair comparison of the effect of the network

structure, we excluded the global contrast term while

training the models. Table 1 shows the average contrast

loss of 20,000 recolored images by the two models. It can

be observed that the average contrast loss of images

recolored by the Swin transformer network is smaller than

that by the CNN network. An example of the recoloring

Fig. 4 Examples of artificially generated images for our dataset. a and
c are artificial images; b and d are the CVD simulations of a and c,
respectively
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results by the two networks is shown in Fig. 5. The red

square in the original image (Fig. 5a) is hard to distinguish

from the brown background in the CVD simulation. The

recoloring results of the Swin transformer-based network

and CNN-based network are shown in Fig. 5b, c, respec-

tively. Squares in both recoloring results can be easily

distinguished. In Fig. 5a, the triangle has the same red

color as the square; in Fig. 5b, the triangle and the square

are both recolored to blue. It is important to avoid recol-

oring the same colors differently, as colors are usually

linked to some particular semantic meanings. However, in

Fig. 5c, the triangle and the square are recolored differ-

ently, demonstrating that the Swin transformer-based net-

work could model long-range dependency successfully,

while the CNN-based network failed to do so.

5.3 Number of pixel pairs for capturing global
contrast

In Zhu et al.’s study [14], to enhance the global contrast,

the contrast loss of all color pairs was considered, which

led to a high computation cost. Given the color coherence

within a particular area, we assume that a relatively small

number of randomly selected pixel pairs can also work well

to capture the global color contrast. To determine empiri-

cally an appropriate value for the number of pixels in x, we

conducted an experiment in which we trained our Our000
model with x being set to 0, 1000, 3000, 5000, and 7000,

respectively. To evaluate the performance of the model

trained with different values of x, we calculated the con-

trast loss of the output images using Eq. 5, and the result is

shown in Fig. 6. The smaller the value, the better the

recoloring result. As shown in Fig. 6, the contrast loss

decreases when the global points increase from 0 to 3000.

However, when the global points are greater than 3000, the

contrast loss increases with an increase in global points.

The model trained with the parameter x = 3000 obtained

the best score; thus, all remaining models in this paper are

trained with the parameter x = 3000

6 Evaluation experiments

We conducted experiments to compare the results of the

proposed method with two state-of-the-art recoloring

methods [11, 14]. According to a recent survey [9], these

two methods have the best performance among all existing

methods considering both contrast enhancement and natu-

ralness preservation. For the two existing CNN-based

methods [18, 19], we already demonstrated in Sect. 5.2 that

our Swin transformer-based structure could achieve better

results in contrast enhancement. These two methods do not

consider naturalness preservation; therefore, we excluded

them from further evaluation experiments.

Figures 7 and 8 show the recoloring results of the pro-

posed and existing methods for protan and deutan CVD,

respectively. In each figure there two examples; for each

example, the first row shows the input images (Figs. 7a and

8a), the recolored images of Hassan et al. [11] (Figs. 7b

and 8b), the recoloring results of Zhu et al. [14] (Figs. 7c

and 8c), and the proposed methods Our025,Our050,Our075
with different naturalness weights, i.e., a = 0.25 (Figs. 7d

and 8d), a = 0.5 (Figs. 7e and 8e), and a = 0.75 (Figs. 7f

and 8f), respectively. The corresponding CVD simulation

images are aligned in the second row to help readers with

normal vision understand intuitively how the original and

recolored images are perceived by CVD individuals. The

Fig. 5 An example showing that the proposed Swin transformer

network-based model outperforms the existing CNN network-based

one in modeling long-range dependency. a original image; b result of

the Swin transformer network; c result of the CNN network Fig. 6 Contrast loss with different numbers of global points

Table 1 Contrast loss between of CNN network and transformer

network

Network NetCNN NetTransformer

Contrast loss 4.66e-1 3.08e-1

6058 Neural Computing and Applications (2024) 36:6051–6066

123



CVD simulation images are obtained using the CVD sim-

ulation model proposed in [31].

For Example 1 in Fig. 7, the flowers in the input image

(Fig. 7a) are almost indistinguishable from the ground by

individuals with protanopia. For contrast enhancement, the

result by Hassan et al. [11] (Fig. 7b) added too much blue

component, leading to an unnatural appearance. The

recolored image by Our075 (Fig. 7f) is similar to that by

Zhu et al. [14] (Fig. 7c), which preserved naturalness well

while failing to enhance the contrast between the flowers

and the background. The proposed models Our025 (Fig. 7d)

and Our050 (Fig. 7e) succeeded in enhancing the contrast in

recolored images, where the flowers are easily distin-

guishable and their color appearance is natural. For

Example 2 in Fig. 7, the sun in the original image (Fig. 7a)

is almost unnoticeable from the perception of CVD indi-

viduals. The result by Hassan et al. [11] (Fig. 7b) changes

the color of the sun to blue, which is still difficult to dis-

tinguish from the blue sky. It seems Our075 (Fig. 7f) put so

much weight on naturalness that it failed to enhance the

contrast between the sun and the sky. The recoloring results

by Zhu et al. [14] (Fig. 7c), Our025 (Fig. 7d), and Our050
(Fig. 7e) succeeded in preserving naturalness and enhanc-

ing contrast, that is, making the sun distinguishable. For

Example 1 in Fig. 8, the contrast between the lotus leaves

and the flowers in the input image (Fig. 8a) is weakened for

those with deuteranopia. The result by Hassan et al. [11]

added too much value to the blue channel, resulting in the

loss of naturalness, while their method also failed to

enhance the color contrast. For the recolored image by Zhu

et al. [14], there is almost no contrast enhancement effect.

Meanwhile, in the recolored images by Our025, Our050, and

Our075, the flowers and leaves are easily distinguished. For

Example 2 in Fig. 8, the contrast between the flower and

the background is almost unnoticeable in the simulation of

the original image (Fig. 8a). The result by Hassan et al.

[11] (Fig. 8b) significantly changed the colors of the

flower, but it added too much blue component, leading to

an unnatural appearance. Further, the recolored images by

Zhu et al. [14] (Fig. 8c) and Our075 (Fig. 8f) failed to

enhance the contrast. Meanwhile, the recoloring result of

Our025 (Fig. 8d) and Our050 (Fig. 8e) succeeded in

enhancing the contrast. But Our025 (Fig. 8d) changed the

color too much, while Our050 (Fig. 8e) succeeded in pre-

serving naturalness, keeping the flowers as same as the

original one.

Fig. 7 Results for the existing methods and proposed method (Protan). a Input image. b Result of Hassen. c Result of Zhu. d Result of Our025. e
Result of Our050. f Result of Our075
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6.1 Quantitative evaluation

To assess the proposed methods objectively in terms of

both naturalness and contrast, we conducted a quantitative

experiment using total color contrast (TCC) and SSIM

metrics to compare state-of-the-art studies on contrast

enhancement and naturalness preservation, respectively.

The TCC metric calculates the absolute contrast in an

image, and it is defined as follows:

TCC ¼ 1

n1

X

ði;jÞ2X1

ðjxi � xjjÞ

þ 1

N � n2
X
N

i¼1

X

j2X2

ðjxi � xjjÞ
ð10Þ

where X1 denotes a set of randomly selected global pixel

pairs, and n1 stands for the number of pixel pairs in X1; X2

represents a set of pixels located at the window centered at

an arbitrary pixel xi, and n2 indicates the number of pixels

in X2; finally, N represents the number of pixels in the

whole image. In our experiment, n1 was set to 20,000, and

the window size for Xi was set to 11� 11.

To validate the effectiveness of compensating for pro-

tanopia and deuteranopia, 10 natural scene, plant, artificial

object, and painting images were selected for each type of

color vision deficiency in this study. Table 2 shows the

TCC results. The larger the value, the better the contrast-

enhancing effect. The top three scores are indicated in

ascending order by ***, **, and *, respectively. This shows

that for protan CVD, Hassan et al. [11] achieved the best

score, while the proposed models Our025 and Our050
achieved higher scores than the model proposed by Zhu

et al.[14]; for deutan CVD, the proposed model Our025
achieved the best score, and all proposed models outper-

form that in [14].

We used chromatic difference(CD) metric as the metric

for evaluating naturalness preservation. CD is computed in

the CIE Lab color space, and it can be computed as:

CDðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðl0i � liÞ2 þ ða0
i � aiÞ2 þ ðb0

i � biÞ2
q

ð11Þ

Fig. 8 Results for the existing methods and proposed method (Deutan). a Input image. b Result of Hassen. c Result of Zhu. d Result of Our025. e
Result of Our050. f Result of Our075

Table 2 Result for the total color contrast metric (contrast)

CVD Type Hassan Zhu Our025 Our050 Our075

Protan 0.725*** 0.668 0.711** 0.670* 0.636

Deutan 0.879** 0.776 0.898*** 0.851* 0.792
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where i ranges over the pixels in the image; l
0
i; li; a

0
i; ai; b

0
i; bi

are the L,a,b value of homologous pixel i in the test image

and reference image. By setting k ¼ 0, same metric is

adopted in the [14]. The same images used in the quanti-

tative evaluation for contrast are used to evaluate the nat-

uralness metric. The average scores are shown in Table 3.

The bigger the value, the better the result. The first-, sec-

ond-, and third-place scores are indicated by ***, **, and *,

respectively. This shows that for protan, images recolored

by Our050 and Our075 achieved better scores than those by

[11, 14]; for deutan, images recolored by Our075 achieved a

better score than those by [11, 14].

The result of the quantitative experiment will be further

discussed in the Discussion section.

6.2 Subjective evaluation

To evaluate subjectively the performance of the proposed

method in comparison with state-of-the-art methods, we

invited 18 CVD volunteers aged from 18 to 50 years. First,

we used the Ishihara test and Farnsworth Panel D-15 test to

diagnose their CVD types, where 5 volunteers were diag-

nosed with protan CVD and 13 with deutan CVD. CVD

volunteers were asked to evaluate recolored images

according to three aspects: contrast, naturalness, and pref-

erence. The same images used in the quantitative experi-

ment were used in the subjective evaluation experiment. In

this study, all images were presented on an Iiyama ProLite

23-inch display calibrated using the X-Rite i1Display 2

under ambient illuminance below 10 lux, and all partici-

pants were siting half a meter from the display. Given one

input image, the recoloring results produced by five dif-

ferent methods are presented. In other words, six images in

total, including one input image and five recolored images,

were shown to the participants at a time. And the partici-

pants were notified which one is input image. We use the

boxplot to display the score by all subjects on all images

for contrast, naturalness, and preference, respectively, and

use the solid square to present the median. We also con-

ducted the Mann Whitney Test to analyze the results. The

results are shown in Figs. 9 and 10. In the following

descriptions, if we say A is significantly different from B, it

means that A has a significantly better score than B at a

significance level of 5%.

Contrast Participants were required to compare the

recolored images with the original image and to rate the

degree of contrast in the recolored image on a scale of 1 to

5, where ‘‘1: contrast decreased significantly,’’ ‘‘2: contrast

decreased slightly,’’ ‘‘3: almost the same with the original

image,’’ ‘‘4: contrast enhanced slightly,’’ and ‘‘5: contrast

enhanced significantly.’’ As shown in Fig. 9, for protan

CVD, Our025, Zhu et al. [14], and Our050 are in the top

three, and Our025 is significantly different from Zhu et al.

[14], while Zhu et al. [14] is significantly different from

Our075. For deutan CVD,as shown in Fig. 10, Our025,

Our050, and Hassan et al. [11] are in the top three. Mean-

while, Our025 and Our050 are significantly different from

Zhu et al. [14], and Hassan et al. [11] is significantly dif-

ferent from Our075.

Naturalness Similar to the contrast evaluation, all par-

ticipants were asked to compare the recolored images with

the original image and to rate the statement, ‘‘The color

appearance of the recolored image is similar to the original

image,’’ on a scale of 1 to 5, where ‘‘1: totally disagree,’’

Fig. 9 The result of the subjective experiment. (Protan)

Fig. 10 The result of the subjective experiment. (Deutan)

Table 3 Result for the CD metric (naturalness)

CVD type Hassan Zhu Our025 Our050 Our075

Protan 0.923 0.992* 0.972 0.995** 0.999***

Deutan 0.899 0.995** 0.963 0.983* 0.998***
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‘‘2: disagree,’’ ‘‘3: neutral,’’ ‘‘4: agree,’’ and ‘‘5: totally

agree.’’ As shown in Fig. 9, for protan CVD, Our075,

Our050, and Zhu et al. [14] are in the top three.

Our075,Our050 and Our025 are all significantly different

from Hassan et al. [11]. Our075 and Our050 are significantly

different from Zhu et al. [14], while Zhu et al. [14] is only

significantly from Our025. For deutan CVD, as shown in

Fig. 10, Our075, Zhu et al. [14], and Our050 are in the top

three. Our075,Our050 and Our025 are all significantly dif-

ferent from Hassan et al. [11]. And Our075 is significantly

different from Zhu et al. [14]. Zhu et al. [14] is significantly

from Our025 and Our050. For the proposed models, which

were trained with different a values, that is, weights of

naturalness, the scores become higher with an increasing a.
Preference As a comprehensive evaluation of both

contrast and naturalness, CVD participants were asked to

evaluate recolored images according to their preference

and to rate the statement, ‘‘The recolored image is prefer-

able from the aspects of both contrast and naturalness,’’ on

a scale of 1 to 5, where ‘‘1: totally disagree,’’ ‘‘2: dis-

agree,’’ ‘‘3: neutral,’’ ‘‘4: agree,’’ and ‘‘5: totally agree.’’ As

can be observed from Figs. 9 and 10, for protan CVD,

Our075, Our050, and Zhu et al. [14] are in the top three.

Our075,Our050 and Our025 are all significantly different

from Hassan et al. [11]. Our075 and Our050 are significantly

different from Zhu et al. [14], while Zhu et al. [14] is only

significantly from Our025; for deutan CVD, Our075, Zhu

et al. [14], and Our050 are in the top three. Our075,Our050
and Our025 are all significantly different from Hassan et al.

[11]. And Our075 is significantly different from Zhu et al.

[14]. Zhu et al. [14] is significantly from Our025 and Our050.

From the contrast and naturalness evaluation results, we

can see a tradeoff between the two, as shown in Fig. 11.

Nevertheless, all scores of the Our050 model are higher than

3.0, meaning it can improve the contrast but also maintain

naturalness for both protan and deutan users. Moreover, its

preference score is also larger than 3.0 for both protan and

deutan cases, meaning the recolored images are preferred

by all users. The result of the subjective experiment will be

further considered in the Discussion section.

6.3 Visualization experiment

Besides the experiment with natural images, we also con-

ducted an evaluation experiment using images without the

issue of naturalness preservation. In such a case, a recol-

oring method is usually required to enhance the perceiv-

ability of the information contained in the image, which is

visible to individuals with normal vision and almost

invisible to people with CVD. In this study, we took fig-

ures from the Ishihara test as input images and compared

the recoloring results of the proposed model Our000 with

those of the methods in [11] and [14]. In [14], they set a

smaller weight, 0.01, for naturalness in the objective

function when applying the model to the Ishihara images.

We used the same weight in our experiment. The results of

the two examples are shown in Figs. 12 and 13. The first

row of each figure shows the input image (Figs. 12a, and

13a) and the recoloring results of Hassan et al. [11]

(Figs. 12b and 13b), Zhu et al. [14] (Figs. 12c and 13c),

and Our000 (Figs. 12d and 13d), while the second row

shows the CVD simulation results for the images in the first

row.

Individuals with protanopia have difficulty recognizing

the figure ‘‘5’’ in Fig. 12a; given the recoloring result of

Fig. 11 The subjective experiment result of the proposed method.

a the result for Protan; b the result for Deutan

Fig. 12 Recoloring results of Ishihara images using existing methods

and the proposed method (Protan). a original image. b result of

Hassan et al. [11] c result of Zhu et al. [14]. d Result of Our000
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[11] (Fig. 12b), it is still very difficult for people with

protanopia to recognize the correct figure, as depicted by

the simulation images. With the recoloring result of [14]

(Fig. 12c) or Our000 (Fig. 12d), CVD individuals can read

the figure ‘‘5’’ correctly. Individuals with deuteranopia

have difficulty recognizing the figure ‘‘97’’ in Fig. 13a;

given the recoloring result of [11] (Fig. 13b) or [14]

(Fig. 13c), it is still difficult for people with deuteranopia

to recognize the figure, as depicted by the simulation

images. With the recoloring result of Our000, though the

color appearance is changed significantly, CVD individuals

do not have any problem reading the figure. In this

experiment, 16 Ishihara images in total were selected and

presented to the participants, together with the recoloring

results, and the evaluation results are shown in Table 4.

Each value in Table 4 indicates the number of recolored

images that could be correctly identified by the participant,

and the best score of each participant is in bold. In contrast

to the recoloring results of [11] and [14], which only par-

tially assisted CVD individuals in passing the Ishihara test,

Our000 enabled CVD individuals to recognize all the ima-

ges. Hassan et al.’s [11] method may result in images with

a saturated blue channel, and it may fail to enhance the

contrast in the areas containing colors consisting of blue

components. Zhu et al. [14] recolored key colors and then

propagated the results to all colors. If the color of the

figure does not take up a substantial proportion, their

method will fail to enhance the contrast between the fig-

ure and the background.

6.4 Time efficiency evaluation

To evaluate the time efficiency, we run all the methods on

the same machine on which we implemented our model in

the experiment. On average, our method takes less than

0.02s to process a 256� 256 image, which is faster than

the 0.08s of Hassan et al.’s method [11] and the 7.16s of

Zhu et al.’s method [14].

6.5 Different global contrast weight

In this study, we initially set the weights for global contrast

and local contrast in a 1:1 ratio. We conducted an evalu-

ation of the model’s performance across varying ratios of

global contrast to local contrast to determine the appro-

priateness of this configuration. To maintain the contrast

and naturalness ratio as defined in Eq. 5, we ensured that

the sum of the contrast weights equaled 2. Assuming the

global weight is denoted as b, the weight of the local

contrast was calculated as 2 - b. And we adopt the Our050
model, and the results are presented in Table 5. As

observed, increasing the weight of global contrast leads to

an increase in the contrast evaluation value but a decrease

in the naturalness evaluation value. Therefore, for a bal-

anced trade-off between contrast and naturalness, a setting

of b ¼ 1 is deemed reasonable.

6.6 Ablation study

In our study, there are global contrast(GC), local con-

trast(LC) and naturalness(N) components in the loss

function Eq. 8. To test the impact of each component, we

conducted an ablation study where we removed GC, LC, N

component from Eq. 8 respectively. And we use the a ¼
0:5 in Eq. 8. The evaluation result is shown in Table 6.

When focusing solely on the contrast component, we

observe that the contrast value is the best, but the natu-

ralness value is the lowest. When considering the contrast

component separately - global contrast alone yields a

considerably high contrast value, whereas local contrast

yields a significantly lower contrast value. Remarkably, the

combination of both global and local contrast results in a

satisfactory contrast value, while preserving a high level of

naturalness.

Fig. 13 Recoloring results of Ishihara images using existing methods

and the proposed method (Deutan). a original image. b result of

Hassan et al. [11] c result of Zhu et al. [14]. d Result of Our000

Table 4 The number of correctly recognized Ishihara test images

CVD type Original Hassan Zhu Our000

Protan 1.4 7.4 11 16

Deutan 1.8 7.6 11.2 16

Table 5 Contrast evaluation value and naturalness evaluation value

with different global weight

Global weight (b) 0 0.5 1 1.5 2

Contrast 0.732 0.759 0.76 0.765 0.772

Naturalness 0.999 0.996 0.996 0.992 0.988
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7 Discussion

In this study, the resolution of image is 256� 256, so if we

want to deal with larger images, we can reduce the image

to 256� 256 first, and then use the state-of-the-art super-

resolution method (e.g., Wang et al. [36]) to enlarge the

recolored image. We proposed a DNN-based image

recoloring model, which was trained with different natu-

ralness weights, namely, Our025, Our050, and Our075. We

also conducted qualitative, quantitative, and subjective

experiments to evaluate these models and compare them

with state-of-the-art studies. The results of quantitative and

subjective evaluation experiments show that with the

increase in the naturalness weight, the scores of naturalness

and preference increased, while the contrast score

decreased. To further investigate how contrast and natu-

ralness impact the preference, we computed two correlation

coefficients, one between contrast and preference and the

other between naturalness and preference. Figures 14 and

15 show the plots of all subjects, with the x-axis repre-

senting the coefficient between contrast and preference and

the y-axis representing the coefficient between naturalness

and preference We can clearly see that for naturalness,

there is a high correlation with preference for almost all

subjects. However, for contrast, correlations vary largely

by subject. First, this means that preserving naturalness is

crucial when considering user preferences. Nevertheless,

the requirements of CVD compensation may vary by

situation, and contrast enhancement may become the most

important characteristic if recognizing the detailed infor-

mation in an image is critical, such as in the visualization

experiment shown in Sect. 6.3. One fact is that the sub-

jective contrast experiment did not use such a task, and the

images presented are pictures or paintings of natural scenes

and still life, where the color appearance is likely a more

dominant factor in affecting subjects’ preferences. There-

fore, pre-training a set of recoloring models with different

contrast and naturalness weights and then selecting an

appropriate model according to the particular situation and

user preferences is a promising way to use our method in

real applications.

Figure 16 shows an example where all methods failed to

enhance the color contrast between the purple ball and blue

balls. Our current models consider the relationships

between sample pixels, and it may be possible to solve

such a problem by considering the relationships between

objects. In the current study, contrasts in all areas of an

input image are treated with the same importance; how-

ever, contrast enhancement to the RoI (region of interest)

in the image should be much more important to CVD users.

Thus, incorporating some RoI prediction approach, such as

the salient detection (e.g., Zhao et al. [37]) technique, to the

recoloring model can be another important future work. By

relaxing the constraints on contrast enhancement in less-

salient areas, it becomes easier to restrict the contrast

enhancement to salient areas while better preserving nat-

uralness in less-salient areas.

8 Conclusion

In this paper, we proposed a DNN-based image recoloring

method for generating compensation images for CVD

individuals that considers contrast enhancement and natu-

ralness preservation. Considering long-range color depen-

dency, we adopted Swin transformer blocks in theFig. 14 The correlation coefficient of contrast and naturalness with

the preference of each CVD individual with protanopia

Fig. 15 The correlation coefficient of contrast and naturalness with

the preference of each CVD individual with deuteranopia

Table 6 Ablation study with different loss combination

GC LC N Contrast value Naturalness value

U U U 0.760 0.996

U U 0.819 0.935

U U 0.772 0.988

U U 0.732 0.999
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proposed network. The evaluation experiment showed that

the proposed model achieved image qualities that are

competitive with state-of-the-art studies while improving

time efficiency drastically. The proposed unsupervised

training approach, as well as the dataset containing images

with confusing colors for CVD individuals, can be used to

develop and evaluate other image synthesis technologies

for assisting CVD users. Currently, we set people with

dichromacy as our compensation target; however, CVD

individuals’ perceptions differ from person to person, and

the recoloring results may be unsuitable for individuals

with lower degrees of CVD. Therefore, adapting the

recoloring model to the degree of CVD can be important

future work. Additionally, we could expand our research

from images to videos in the future. In videos, we can use a

visual tracking method described in [38] to follow objects

and ensure their colors remain consistent from one frame to

the next.
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