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Abstract
Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on

individuals’ lives. Accurately recognizing epileptic seizures is crucial for proper diagnosis and treatment. Deep learning

models have shown promise in improving seizure recognition accuracy. However, optimizing their performance for this

task remains challenging. This study presents a new approach to optimize epileptic seizure recognition using deep learning

models. The study employed a dataset of Electroencephalography (EEG) recordings from multiple subjects and trained

nine deep learning architectures with different preprocessing techniques. By combining a 1D convolutional neural network

(Conv1D) with a Long Short-Term Memory (LSTM) network, we developed the Conv1D ? LSTM architecture. This

architecture, augmented with dropout layers, achieved an effective test accuracy of 0.993. The LSTM architecture alone

achieved a slightly lower accuracy of 0.986. Additionally, the Bidirectional LSTM (BiLSTM) and Gated Recurrent Unit

(GRU) architectures performed exceptionally well, with accuracies of 0.983 and 0.984, respectively. Notably, standard

scaling proved to be advantageous, significantly improving the accuracy of both BiLSTM and GRU compared to MinMax

scaling. These models consistently achieved high test accuracies across different percentages of Principal Component

Analysis (PCA), with the best results obtained when retaining 50% and 90% of the features. Chi-square feature selection

also enhanced the classification performance of BiLSTM and GRU models. The study reveals that different deep learning

architectures respond differently to feature scaling, PCA, and feature selection methods. Understanding these nuances can

lead to optimized models for epileptic seizure recognition, ultimately improving patient outcomes and quality of life.

Keywords Epileptic seizure recognition � EEG � Conv1D � LSTM � Feature scaling � PCA � Chi-square feature selection �
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1 Introduction

Epileptic Seizure Recognition is a critical area of research

in the field of medical diagnostics and neuroscience. Epi-

lepsy is a neurological disorder characterized by recurrent

and unprovoked seizures, which are abnormal electrical

discharges in the brain. Detecting and predicting epileptic

seizures accurately is of utmost importance for providing

timely medical interventions and improving the quality of

life for patients [1].

One of the primary tools used in Epileptic Seizure

Recognition is Electroencephalography (EEG). EEG mea-

sures the electrical activity of the brain using electrodes

placed on the scalp. EEG signals contain valuable infor-

mation about brain activity and can help in identifying

abnormal patterns associated with seizures [2].

Deep Neural Networks have gained popularity in many

applications in medicine, energy, and environmental stud-

ies [3–6]. Deep Learning has emerged as a powerful

approach for EEG-based seizure recognition. Long Short-

Term Memory (LSTM) is a type of recurrent neural net-

work (RNN) that can process time-series data, making it

particularly suitable for analyzing EEG signals, which are
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sequential in nature. LSTMs can capture long-term

dependencies in the data and have shown promising results

in seizure detection and prediction tasks [7].

Before feeding EEG data into LSTM or any other deep

learning model, pre-processing steps are essential to

enhance the model’s performance. Feature scaling is one

such step that normalizes the input data to bring all features

to a similar scale. This process ensures that no single

feature dominates the learning process due to its larger

magnitude [8].

Principal Component Analysis (PCA) is another pre-

processing technique that helps in dimensionality reduc-

tion. EEG data may have a high number of features, and

PCA can compress this data into a lower-dimensional

space while retaining most of its important characteristics.

This not only reduces computational complexity but also

prevents overfitting and enhances generalization [9].

Feature selection is crucial to select the most relevant

EEG features for seizure recognition. Chi-Square Feature

Selection is one such method that assesses the statistical

significance of each feature’s relationship with the target

variable (seizure or non-seizure). By selecting features with

high chi-square values, the model focuses on the most

informative aspects of the EEG data, leading to improved

accuracy [10].

Deep Learning Models are a class of algorithms that

utilize neural networks with multiple layers to learn intri-

cate patterns and representations from the data. Convolu-

tional Neural Networks (CNNs) have also been applied in

EEG-based seizure recognition, especially when dealing

with spectrogram or image-like representations of EEG

signals [11].

The pipeline for Epileptic Seizure Recognition typically

involves data preprocessing, including feature scaling,

PCA, and feature selection. Next, the selected EEG fea-

tures are used to train LSTM or other deep learning models

for seizure detection or prediction. The model is then

evaluated using metrics such as accuracy, sensitivity,

specificity, and F1-score to assess its performance. Deep

Learning and other machine learning techniques have the

potential to significantly contribute to the early diagnosis

and management of epilepsy, ultimately improving the

lives of millions of individuals affected by this condition.

Objectives: The objectives of this study are to propose an

approach for classifying epileptic seizures using CNNs and

to develop a reliable and accurate model for this purpose.

The objectives of this paper can be summarized as follows:

(a) To improve the accuracy of epileptic seizure

recognition using deep learning models.

(b) To investigate the impact of various preprocessing

techniques, including feature scaling, Principal Component

Analysis (PCA), and feature selection, on the performance

of deep learning architectures.

(c) To develop and evaluate different deep learning

architectures, including Conv1D ? LSTM, LSTM,

BiLSTM, and GRU, for epileptic seizure recognition.

(d) To identify the most effective combination of pre-

processing techniques and deep learning architectures for

optimizing seizure recognition accuracy.

(e) To contribute valuable insights into the nuances of

deep learning model behavior with respect to feature

engineering in the context of epilepsy diagnosis. Aim: The

aim of this study is to enhance the accuracy of epileptic

seizure recognition through the exploration of various

preprocessing techniques and deep learning architectures.

By systematically evaluating the impact of feature scaling,

PCA, and feature selection methods, we seek to identify the

optimal combination of techniques that result in the highest

accuracy. Our primary focus is on the development and

evaluation of Conv1D?LSTM, LSTM, BiLSTM, and GRU

models to determine their suitability for this critical med-

ical application.

The main contribution of this paper can be summarized

as follows:

1. Conv1D ? LSTM architecture: We propose a new

Conv1D ? LSTM deep learning architecture aug-

mented with dropout layers, achieving an effective

test accuracy of 99.3% for epileptic seizure recogni-

tion. This architecture represents a significant advance-

ment in the field.

2. Performance evaluation of multiple deep learning

architectures: We systematically evaluate the perfor-

mance of nine deep learning architectures, including

LSTM, BiLSTM, and GRU, providing valuable

insights into their suitability for epileptic seizure

recognition.

3. Exploration of preprocessing techniques: We investi-

gate the impact of feature scaling, PCA, and feature

selection methods on the performance of deep learning

models, offering

4. a comprehensive understanding of their influence in the

context of epilepsy diagnosis.

5. Identification of optimal feature engineering strategies:

Our study reveals that standard scaling, PCA with

different feature retention percentages, and chi-square

feature selection can significantly enhance the classi-

fication performance of specific deep learning archi-

tectures, helping to guide future research and model

development.

6. Contribution to improved patient outcomes: By opti-

mizing the accuracy of epileptic seizure recognition,

this study has the potential to contribute to better

patient outcomes and a higher quality of life for

individuals affected by epilepsy.
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2 Related work

In recent times, deep-learning models have become

increasingly influential in various domains, including EEG

signal processing, where several models have been pro-

posed by different researchers for seizure detection. Let’s

delve into the details of some existing deep learning

models implemented in seizure detection:

Jaafar and Mohammadi 2019 [12] proposed a deep

learning framework for seizure detection without using a

separate feature extraction phase. They used the Freiburg

dataset, containing EEG data from 21 patients of different

age groups. After pre-processing, which included normal-

ization and filtering, they converted the EEG data into

small non-overlapping windows. The LSTM classifier was

employed for seizure detection, achieving promising

results using a five-fold cross-validation approach.

Thara et al. 2019 [13] developed a seizure-detection

system based on Deep Neural Networks (DNN) with fea-

ture scaling. They used the Bonn University database and

experimented with four different feature scaling techniques

and loss functions. Robust scalar and standard scalar

methods outperformed the other two techniques.

Faust et al. 2018 [14] proposed a patient-specific seizure

detection method using spectrogram images. They applied

butterworth filters to the raw EEG data, followed by seg-

mentation and Fourier transform to generate spectrogram

images for each segment. A one-dimensional convolution

model with three convolution layers and batch normaliza-

tion was used for classification. Their approach achieved

varying accuracies for different patients, with an average

accuracy of 77.57%.

Waqar Hussain et al. 2021 [15] presented a patient-

specific seizure detection model for identifying ictal, pre-

ictal, and interictal segments for individual patients. They

used time-domain, frequency-domain, and time–frequency

domain features, which were fed into a CNN-LSTM hybrid

classifier for classification.

Xinghua Yao et al. 2021 [16] proposed a BiLSTM

model for classifying seizure and non-seizure EEG signals

from the CHB-MIT dataset. They cross-validated the data

of all patients to evaluate their model. Rajendra Acharya

et al. (2018) used a 13-layer CNN for feature extraction

and classification of EEG signals.

Table 1 shows a comparison of different techniques used

for seizure detection, along with their corresponding

datasets, classes, and accuracy in percentage. The table in-

cludes 18 studies, each with its own technique and dataset.

The datasets used in these studies include KK Women and

Children’s Hospital, Boon University, CHB-MIT, Boston

Children’s Hospital, and Freiburg Hospital Intra-cranial

EEG. The classes considered are Normal, Ictal, Pre-ictal,

and Normal-Ictal-Pre-ictal. The techniques used in these

studies include Convolutional Neural Networks (CNN),

Non-Linear Long Short-Term Memory (NLSTM), Tem-

poral Graph Convolutional Network (TGCN), Multivari-

ate Autoencoder with EM-PCA (MAE ? EM-PCA),

ChronoNet, 3D-CNN ? GRU, Spectrograms ? STFT,

Gramian Angular Fields ? Particle Swarm Optimization

(GA ? PSO), Multi-Scale Principal Component Analysis

with Discrete Wavelet Transform (MSPCA ? DWT) and

others.

3 Preliminaries

3.1 Convolutional neural network (CNN)

CNN [34, 35] is an advancement of the Multilayer Per-

ceptron (MLP) neural network and is specifically designed

to process two-dimensional data. Like any neural network,

CNN has neurons with weights, biases, and activation

functions. CNN can learn hierarchical representations of

input data automatically, which are more robust and

expressive than manually engineered features. It is com-

posed of multiple layers of neurons, including convolu-

tional layers, activation functions, pooling layers, and fully

connected layers. In the convolutional layer, a set of filters

or kernels is applied to the input data to generate feature

maps that capture various aspects of the input. The acti-

vation functions introduce non-linearity to the output of

each convolutional layer, while the pooling layers down

sample the feature maps, reducing their size while retaining

the most important features. Finally, the fully connected

layers utilize the output of the previous layers to perform

the final classification or regression. Figure 1 provides an

essential visual representation of the building blocks of a

CNN. It helps to clarify how the CNN architecture extracts

features from input images and performs classification

through multiple convolutional and pooling layers, as well

as fully connected layers.

3.2 Conv1D (One-Dimensional Convolution):

Conv1D is a type of convolutional neural network (CNN)

layer used for processing one-dimensional sequential data,

such as time series or signals like EEG. The Conv1D layer

applies a set of learnable filters (kernels) to the input data,

allowing the model to detect patterns and features in the

sequential data.

The Conv1D operation can be represented as follows:

Output ¼ f
Xn

i¼1

Wi�Xi : iþ f � 1þ b

 !
ð1Þ
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where:

• Output: The output tensor after applying the Conv1D

layer.

• f: The filter size, representing the width of the filter

(kernel).

• Wi: The learnable weights for each filter.

• Xi: i ? f - 1 : A segment of the input data of length f

at position i.

• b: The bias term.

• * : The one-dimensional convolution operation.

• f(�): An activation function, such as ReLU, applied

element-wise to the convolution result.

Table 1 A comparison of different techniques used for seizure detection

Authors Technique Dataset Classes Accuracy %

Talha et al. [17] CNN KK women and children’s hospital Normal-ictal 93.3

Yang et al. [18] NLSTM Boon University Normal-ictal 98.44

CHB-MIT 97.47

Covert et al. [19] TGCN Boston children’s hospital Normal-ictal 98.05

Bouaziz et al. [20] CNN CHB-MIT Normal-ictal 99.48

Rajaguru et al. [21] MAE ? EM-PCA CHB-MIT Normal-ictal 93.78

Roy et al. [22] ChronoNet CHB-MIT Normal-ictal 86.57

Choi et al. [23] 3D-CNN ? GRU CHB-MIT Normal-ictal 89.4

SNUH 97

Truong et al. [24] Spectrograms ? STFT Freiburg hospital intra-cranial EEG Normal-ictal 81.4

CHB-MIT 81.2

Subasi et al. [25] GA ? PSO Boon University Normal-ictal 99.38

Alickovic et al. [26] MSPCA ? DWT CHB-MIT Normal-ictal 100

Normal-ictal-pre-ictal 99.77

Zhou et al. [27] CNN CHB-MIT Ictal-pre-ictal

Normal-ictal

Normal-ictal-pre-ictal

95.6

97.5

93

Freiburg Ictal-pre-ictal

Normal-ictal

Normal-ictal-pre-ictal

96.7

95.4

92.3

Qaisar et al. [28] CNN Andrzejak Normal-ictal-pre-ictal 96.4

Hassan et al. [29] TQWT Boon University Normal-ictal-pre-ictal 98.4

Hassan et al. [30] CEEMDAN ? NIG Boon University Normal-ictal-pre-ictal 97.6

Sharma et al. [31] 2D PSRs ? EMD ? LS-SVM CHB-MIT Normal-ictal 98.67

Shankar et al. [32] PSR ? CNN Boon University Normal-ictal 93

CHB-MIT Normal-ictal 85

Fatma E. Ibrahim et.al. [33] Spectrogram images

five-layer CNN

CHB-MIT Normal-ictal

Normal-pre-ictal

Normal-ictal-pre-ictal

91.28

92.49

90.21

Fig. 1 The basic CNN

architecture [36]
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The Conv1D layer performs element-wise multiplica-

tion between the filter weights and input data segments,

then sums them up and adds the bias term. The activation

function introduces non-linearity to the output.

3.3 LSTM (Long Short-Term Memory)

LSTM [4] is a type of recurrent neural network (RNN)

designed to capture long-term dependencies in sequential

data. It overcomes the vanishing gradient problem, which

is common in traditional RNNs, making it suitable for

processing time series data like EEG [11].

The LSTM cell has three main gates: input gate (i),

forget gate (f), and output gate (o). The computation inside

an LSTM cell is as follows:

it ¼ r WxiXt þWhiht � 1þ bið Þ ð2Þ
ft ¼ r WxfXt þWhfht � 1þ bfð Þ ð3Þ
ot ¼ r WxoXt þWhoht � 1þ boð Þ ð4Þ
Ct ¼ tanh WxcXt þWhcht � 1þ bcð Þ ð5Þ
Ct ¼ ft � Ct � 1þ it � Ct ð6Þ
ht ¼ ot � tanh Ctð Þ ð7Þ

where

• it, ft, ot: The input gate, forget gate, and output gate

activations at time step t, respectively.,

• Xt: The input data at time step t.

• ht: The hidden state at time step t.

• Ct: The cell state at time step t.

• Ct: The candidate cell state (new information) at time

step t.

• W and b: Learnable weights and biases for each gate.

• r: The sigmoid activation function.

• * : Element-wise multiplication.

The LSTM cell controls the flow of information through

the input, forget, and output gates, allowing the model to

retain and update relevant information over time.

3.4 Bidirectional LSTM (BI-LSTM)

Bidirectional Long Short-Term Memory (BI-LSTM)

[3] is a neural network architecture version of Long

Short-Term Memory (LSTM) that is especially

designed to capture both past and future context in an

input sequence. It accomplishes this by processing

the sequence in two directions: beginning to end and

end to beginning. This is achieved by using two

distinct hidden layers, one for each direction. BI-

LSTM is particularly beneficial in jobs where com-

prehending the context of the input sequence is crit-

ical. BI-LSTM gives a full representation of the input

by incorporating both past and future information,

which can be useful in applications such as voice

recognition and language translation [37].

Although BI-LSTM has advantages in capturing

bidirectional context, it is computationally costly and

requires a large number of trainable parameters,

which poses difficulties when training on big data-

sets. Several improvements to the BI-LSTM design

and training methodologies have been proposed to

solve these concerns. Recurrent dropout is used to

prevent overfitting, while layer normalization is used

to increase training stability. Weight pruning and

quantization can be used to minimize the amount of

parameters in BI-LSTM, making it more efficient for

training and deployment on resource-constrained

devices[38, 39]. The diagram illustrates the flow of

information in a Bidirectional LSTM (BI-LSTM),

which uses both forward and backward layers to

process input sequences is presented in Figure 2. This

type of network is often used for sequence-to-se-

quence tasks such as text classification, speech

recognition, and forecasting. By processing the input

sequence in both directions, BI-LSTM can capture

not only the current context but also the past and

future context. This allows it to model complex

dependencies in the input sequence and generate

more accurate predictions [40].

3.5 Gated Recurrent Unit (GRU)

GRU is a form of RNN that is similar to LSTM but

has less parameters and hence trains quicker and

more easily. GRU, like LSTM, presents a series of

gates that can govern information flow into and out of

the network. GRU, on the other hand, only has two

gates, a reset gate and an update gate, whereas LSTM

has three gates. In GRU, the reset gate decides how

much of the previous hidden state is to be forgotten,

whereas the update gate defines how much of the

current input is to be added to the current hidden

state. GRU has been demonstrated to perform simi-

larly to or better than LSTM on a variety of tasks,

including language modeling, speech recognition,

and picture captioning [3, 6, 41]. Figure 3. Shows the

Gated Recurrent Unit (GRU) and LSTM architecture

[42, 43].

3.6 Feature scaling

Feature scaling is a crucial preprocessing step used to

standardize or normalize the range of features in a dataset

[44]. It aims to bring all features to a similar scale, ensuring
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that no single feature dominates the learning process sim-

ply because it has a larger magnitude. Feature scaling is

especially important when working with algorithms that

rely on distance calculations or gradient-based optimiza-

tion, such as k-nearest neighbors (KNN), support vector

machines (SVM), and neural networks [13, 45].

There are two common methods of feature scaling:

(f) Min–Max Scaling (Normalization): Min–Max scal-

ing scales the features to a specific range, typically between

0 and 1. The formula for Min–Max scaling is as follows:

XScaled ¼
X � Xmin

Xmax � Xmin
ð8Þ

where:

• X is the original feature value.

• X scaled is the scaled feature value.

• Xmin is the minimum value of the feature in the dataset.

• Xmax is the maximum value of the feature in the dataset.

Min-Max scaling ensures that all feature values are mapped

to a range between 0 and 1. It is suitable when the feature

distribution is approximately linear and when the features

have a bounded range.

(g) Z-score Scaling (Standardization): Z-score scaling,

also known as standardization, transforms the features so

that they have a mean of 0 and a standard deviation of 1.

The formula for Z-score scaling is as follows:

Xscaled ¼ rX � l = r ð9Þ

• X is the original feature value.

• X scaled is the scaled feature value.

Fig. 2 The diagram illustrates

the flow of information in

a Bidirectional LSTM (BI-

LSTM) [40]

Fig. 3 LSTM Architecture versus GRU Architecture [43]
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• l is the mean of the feature in the dataset.

• r is the standard deviation of the feature in the dataset.

Z-score scaling is useful when the feature distribution is

not bounded, and it is not affected by outliers. It maintains

the relative relationships between feature values, allowing

the model to understand how each feature contributes to the

overall data distribution. The choice of feature scaling

method depends on the characteristics of the data and the

algorithm being used. Min-Max scaling is suitable when

the features have a clear minimum and maximum value,

and it preserves the original data range. Z-score scaling, on

the other hand, is robust to outliers and is generally pre-

ferred when the feature distribution is not bounded and the

mean and variance are meaningful for interpretation. It is

important to note that feature scaling should be applied

independently to each feature in the dataset, and it is typ-

ically performed during the data preprocessing phase

before feeding the data into machine learning models.

Feature scaling improves the convergence of gradient-

based optimization algorithms, reduces the impact of

numerical instability, and helps create a more meaningful

comparison of different features in the dataset, leading to

improved model performance and accuracy.

3.7 PCA (Principal Component Analysis)

PCA is a dimensionality reduction technique used to

transform high-dimensional data into a lower-dimensional

space while preserving the most important information. It

aims to find the principal components (orthogonal direc-

tions) along which the data has the highest variance.

The steps for performing PCA are as follows [9]:

• Compute the mean of each feature in the data.

• Center the data by subtracting the mean from each

feature.

• Calculate the covariance matrix of the centered data.

• Compute the eigenvectors and eigenvalues of the

covariance matrix.

• Sort the eigenvectors based on their corresponding

eigenvalues in descending order.

• Select the top-k eigenvectors corresponding to the

largest eigenvalues to form the reduced feature space.

The transformed data in the reduced feature space rep-

resents the most significant components of the original

data.

3.8 Chi-square feature selection

Chi-square feature selection is a method used for selecting

the most relevant features when dealing with categorical

data. It assesses the independence between each feature and

the target variable using the chi-square statistic.

The steps for performing Chi-Square Feature Selection

are as follows [10]:

• Create a contingency table for each feature and the

target variable, counting the occurrences of each

combination.

• Calculate the chi-square statistic for each feature based

on the contingency table.

• Calculate the degrees of freedom for each feature based

on the number of categories in the feature and the target

variable.

• Compute the p-value for each feature using the chi-

square statistic and degrees of freedom.

• Sort the features based on their p-values, and select the

top-k features with the smallest p-values.

Features with lower p-values indicate higher depen-

dence on the target variable and are considered more rel-

evant for the classification task.

Conv1D and LSTM are powerful deep learning models

for processing sequential data like EEG. Feature Scaling

helps normalize the input data for effective model training,

while PCA and Chi-Square Feature Selection aid in

dimensionality reduction and selecting the most relevant

features, respectively. Integrating these techniques can

enhance the performance and interpretability of deep

learning models for epileptic seizure recognition.

4 Methodology

4.1 Dataset description

The used dataset [46] is comprised of 5 folders, each

containing 100 files representing a single subject. These

files contain recordings of brain activity for a duration of

23.6 s and are sampled into 4097 data points. After

dividing and shuffling the data, we obtained 23 chunks

containing 178 data points for 1 s each, resulting in 11,500

pieces of information (rows) with 178 data points for 1 s

(columns) and a label (y) ranging from 1 to 5.

The response variable (y) represents the category of the

input vector and takes values from 1 to 5, where 5 indicates

that the patient had their eyes open during the EEG signal

recording, 4 indicates that their eyes were closed, 3 indi-

cates that the recording was taken from the healthy brain

area, 2 indicates that it was taken from the area where the

tumor was located, and 1 indicates the recording of seizure

activity.

Subjects in classes 2, 3, 4, and 5 did not have epileptic

seizures, while only those in class 1 did. Our aim in cre-

ating a.csv version of the data was to facilitate access to it,
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although most authors have used binary classification by

grouping all subjects except those in class 1 together.

4.2 The pre-processing of the dataset

To convert EDF (European Data Format) files containing

EEG and ECG data to CSV format in Python for Epileptic

Seizure Recognition, you can follow these steps:

1. Install the necessary libraries for reading EDF files and

working with data in Python. You can use pyEDFlib

for reading EDF files and pandas for data manipulation.

Install these libraries using the following command in

your terminal or command prompt: pip install

pyEDFlib pandas.

2. Import the required libraries in your Python script:

import pyedflib import pandas as pd.

3. Use the pyedflib.EdfReader() class to read the EDF

files. Replace ’eeg_file.edf’ and ’ecg_file.edf’ with the

actual file names of the EEG and ECG data files,

respectively.

4. Use the getSignalLabels() method to extract the

channel labels for EEG and ECG data.

5. Use the readSignal() method to read the signals for

each channel in both EEG and ECG data.

6. Convert the EEG and ECG data into pandas Data-

Frames for easier manipulation.

7. Use the to_csv() method to save the EEG and ECG

DataFrames to separate CSV files.

By following these steps, we convert EDF files con-

taining EEG and ECG data to separate CSV files for further

processing and analysis in the context of Epileptic Seizure

Recognition.

4.3 The model architecture

This section presents a discussion on the epileptic seizure

detection model, which is composed of four phases: (1)

pre-processing of the epileptic seizure data, (2) feature

selection to identify the most significant symptoms that can

enhance the accuracy of epileptic seizure diagnosis, (3)

epileptic seizure prediction using the CNN model, and (4)

optimization of the CNN with the PCA algorithm. Figure 4

depicts the four phases of the proposed model.

Figure 5 represents the pseudocode of the proposed

epileptic seizure prediction using a PCA-based optimized

CNN algorithm.

4.4 Model evaluation

After completing the training phase of our epileptic seizure

classification model, we need to verify and test its perfor-

mance. We evaluate the model’s performance using

established metrics, including accuracy, recall, precision,

F1-score, the Categorical cross entropy loss (loss) value,

and the Area Under the Curve (AUC) score as in Eqs. (10,

11, 12, 13, and 14) respectively[47]–[49].

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
ð10Þ

Recall ¼ TP

TPþ FN
ð11Þ

Precision ¼ TP

TPþ FP
ð12Þ

F1� score ¼ 2 � Precision� Recallð Þ
Precisionþ Recallð Þ ð13Þ

Loss ¼
Xn

k¼0

zk: log ẑkloss ¼ �
Xn

k¼0

zk: log ẑk ð14Þ

where TP, TN, FN, and FP are truly positive, true Negative,

False Negative, and False Positive numbers respectively. n

is the number of classes, bzk is the model predicted value for

kth class, zk: is the corresponding target value.

Area Under the Curve (AUC) is a crucial metric used in

classification tasks, representing the area under the ROC

(Receiver Operating Characteristic) curve. A value close to

1.00 implies good classification performance, while a score

greater than 0.50 is considered acceptable for the model.

5 Experimental results and analysis

In this section, we have conducted experiments to assess

the performance of the model. We conducted our experi-

ments on with 3 GHz AMD Ryzen 7 computer with 8 GB

main memory and a 64-bit Windows 10 operating system.

The experiment is carried out using the Python program-

ming language.

5.1 Experiment I

This experiment aimed to evaluate the performance

of multiple deep learning architectures in the context of a

specific classification task. The architectures were likely

trained and tested on a particular dataset, and the results

were measured using common performance metrics such

as accuracy. The study employed a total of nine deep

learning architectures, each with a batch size of 128 and

trained for 100 epochs. The batch size refers to the number

of samples used in each training iteration, while the num-

ber of epochs refers to the number of times the entire

dataset was used to train the model. Table 2 presents the

results of this experiment, with each architecture’s corre-

sponding test accuracy. The accuracy metric represents the

proportion of correctly classified samples out of the total
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number of samples in the test dataset. Figure 6 represents

the model accuracy and loss for the Conv1D ? LSTM

architecture.

The results indicate that Conv1D ? LSTM architecture

performs the best with a test accuracy of 0.993 as shown in

Fig. 6, followed by LSTM with a test accuracy of 0.986.

The Conv1D ? LSTM architecture combines a 1D con-

volutional neural network (Conv1D) with a long short-term

memory (LSTM) network, which allows it to capture both

temporal and spatial features of the input data. The use of

additional dropout layers in this architecture helps prevent

overfitting and improves generalization performance.

The LSTM architecture also performs well in this task,

with a slightly lower accuracy than the Conv1D ? LSTM

architecture.

The Bidirectional LSTM (BiLSTM) and Gated Recur-

rent Unit (GRU) also deliver exceptional results, achieving

high accuracy rates of 0.983 and 0.984, respectively. These

sequential models showcase their effectiveness in captur-

ing the underlying patterns of the classification task.

The two CNN architectures, with and without additional

dropout layers, also perform well with test accuracies of

0.941 and 0.939, respectively.

The two DNN architectures, with and without additional

dropout layers, have lower test accuracies than the other

Fig. 4 Proposed epileptic seizure prediction using PCA—based optimized deep learning classification models

1. Use the pyedflib.EdfReader() class to read the EEG and ECG data files.
2. Extract the channel labels for EEG and ECG data using the getSignalLabels() method.
3. Read the signals for each channel in both EEG and ECG data using the readSignal() method.
4. Convert the EEG and ECG data into pandas DataFrames.
5. Apply feature extraction techniques to extract relevant features from the EEG and ECG data.
6. Apply either PCA or chi-squared feature selection to reduce the dimensionality of the feature 

set.
7. Build a deep learning model with deep learning framework, with input dimensions 

corresponding to the reduced feature set from either PCA or chi-squared feature selection.
8. Compile the model with a loss function) and an appropriate optimizer and accuracy metrics.
9. Train the model on the reduced feature set and evaluate its performance on the test set.
10. Repeat steps 6-9 with the other feature selection method to compare model performance.
11. Select the feature selection method that yields the best model performance for the EEG signal 

classification task.

Fig. 5 The proposed pseudocode and steps for the epileptic seizure classification model utilizes the PCA optimization technique
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architectures, with test accuracies of 0.876 and 0.847,

respectively.

5.2 Experiment II

In the second experiment we studied the effect of feature

scaling on the classification performance, two types of

feature scaling are applied: standard scaling and Min–Max

scaling. Table 3 presents the results of an experiment that

aimed to evaluate the impact of two different scaling

techniques on the performance of several deep learning

architectures for a classification task. The two scaling

techniques used were standard scaling and MinMax scal-

ing. Standard scaling involves scaling the data so that it has

zero mean and unit variance. MinMax scaling, on the other

hand, involves scaling the data to a fixed range between 0

and 1. The table includes seven deep learning architectures,

and their corresponding test accuracies after applying each

scaling technique. The architectures were trained and tes-

ted on a particular dataset, with a batch size of 128 and

trained for 100 epochs.

The results indicate that the effect of feature scaling on

classification performance varies depending on the archi-

tecture used. For the CNN architecture, both standard

scaling and Min–Max scaling show similar test accuracies,

with the former achieving a slightly higher accuracy of

0.932 compared to 0.931 for the latter. For the CNN

architecture with additional dropout layers, standard scal-

ing achieves a higher test accuracy of 0.944 compared to

0.93 for Min–Max scaling.

For the LSTM architecture, standard scaling achieves a

significantly higher test accuracy of 0.991 compared to

0.79 for MinMax scaling. This may be due to the fact that

LSTM networks are sensitive to the scale of input features,

and standard scaling helps to normalize the input data.

Similarly, for the Conv1D ? LSTM architecture, stan-

dard scaling achieves a higher test accuracy of 0.989

compared to 0.79 for MinMax scaling. The use of addi-

tional dropout layers in this architecture improves the

classification performance for both types of feature scaling,

with standard scaling achieving the highest test accuracy of

0.993 (as shown in Fig. 7).

For the BiLSTM architecture, standard scaling leads to a

notably higher test accuracy of 0.981 compared to 0.96

achieved with MinMax scaling. This suggests that, similar

to LSTM, BiLSTM networks benefit significantly from

standard scaling, which helps normalize the input data and

improve classification performance. Likewise, in the case

of the GRU architecture, standard scaling proves to be

advantageous, achieving a higher test accuracy of 0.982

compared to 0.975 with MinMax scaling. These results

highlight that GRU, similar to LSTM and BiLSTM,

Table 2 Evaluation of the performance of multiple deep learning

architectures in the context of a specific classification task

Architectures Test Accuracy

CNN 0.941

CNN (with additional Dropout layers) 0.939

LSTM 0.986

Conv1D ? LSTM 0.993

Conv1D ? LSTM (with additional Dropout layers) 0.989

DNN 0.876

DNN (with additional Dropout layers) 0.847

BiLSTM 0.983

GRU 0.984

Fig. 6 Model accuracy and loss for the Conv1D ? LSTM architecture
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exhibits improved performance when input features are

standardized using standard scaling.

For the DNN architectures, both standard scaling and

MinMax scaling show similar test accuracies, with the

former achieving slightly higher accuracies for both

architectures.

These results suggest that the effect of feature scaling on

classification performance varies depending on the archi-

tecture used. Standard scaling is generally more effective

for LSTM and Conv1D ? LSTM architectures, while the

effect is less pronounced for CNN and DNN architectures.

The use of additional dropout layers can improve the

classification performance for some architectures regard-

less of the type of feature scaling used.

5.3 Experiment III

Table 4 presents the results of a third experiment that

aimed to evaluate the impact of Principal Component

Analysis (PCA) for feature selection on the performance

of several deep learning architectures for a classification

task. PCA is a technique used to reduce the dimensionality

of high-dimensional datasets by identifying the most

important features.

In this experiment, six different PCA values were tes-

ted, representing 90%, 80%, 70%, 60%, 50%, and 28% of

the total number of features. The test accuracies for each

PCA percentage are shown in the table.

The table includes seven deep learning architectures,

and their corresponding test accuracies after applying each

PCA percentage. The architectures were likely trained and

tested on a particular dataset, with a batch size of 128 and

trained for 100 epochs.

The results indicate that the effect of PCA on classifi-

cation performance varies depending on the architecture

used and the percentage of features retained. For the CNN

architecture, the highest test accuracy is achieved with

PCA at 50% and 90% of the features retained, achieving

test accuracies of 0.849 and 0.796, respectively. The use of

additional dropout layers improves the classification per-

formance for most PCA values, with the highest test

accuracy achieved with PCA at 28% and 50% of the fea-

tures retained, achieving test accuracies of 0.927 and 0.859,

respectively. For the LSTM architecture, the test accuracy

Table 3 Evaluation of the

impact of two different scaling

techniques on the performance

of several deep learning

architectures for a classification

task

Architectures standard scaling MinMax scaling

CNN 0.932 0.931

CNN (with additional Dropout layers) 0.944 0.93

LSTM 0.991 0.79

Conv1D ? LSTM 0.989 0.79

Conv1D 1 LSTM (with additional Dropout layers) 0.993 0.983

DNN 0.879 0.835

DNN (with additional Dropout layers) 0.88 0.834

BiLSTM 0.981 0.96

GRU 0.982 0.975

Fig. 7 Model accuracy and loss for the Conv1D ? LSTM architecture (with additional Dropout layers) with standard scaling
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remains relatively high across all PCA values tested, with

the highest test accuracy achieved with PCA at 50% and

90% of the features retained, achieving test accuracies of

0.97 and 0.968, respectively.

For the Conv1D ? LSTM architecture, the highest test

accuracy is achieved with PCA at 80% and 90% of the

features retained, achieving test accuracies of 0.981)as

shown in Fig. 8) and 0.976, respectively. For the DNN

architectures, the test accuracy decreases as the percentage

of features retained decreases. The use of additional

dropout layers does not significantly improve the classifi-

cation performance for these architectures.

With the inclusion of the BiLSTM (Bidirectional

LSTM) and GRU (Gated Recurrent Unit) architectures, we

observe that these models consistently achieve high test

accuracies across various PCA percentages. For both

architectures, the highest test accuracy is achieved when

retaining 50% and 90% of the features, with accuracies

ranging from 0.961 to 0.977 for BiLSTM and 0.958 to

0.974 for GRU. These results affirm the robustness of

BiLSTM and GRU in the face of PCA dimensionality

reduction.

In summary, the results suggest that the effect of PCA

on classification performance varies depending on the

architecture used and the percentage of features retained.

The use of additional dropout layers can improve the

classification performance for some architectures and PCA

values. Overall, the Conv1D ? LSTM architecture shows

the highest classification performance for most PCA values

tested.

5.4 Experiment IV

In the fourth experiment, the researchers investigated the

impact of Chi-square for feature selection on the classifi-

cation performance of different deep learning architectures.

Chi-square is a statistical method used for feature selection

where features are ranked based on their correlation with

the target variable. The researchers tested six different

values of Chi-square, representing 90%, 80%, 70%, 60%,

Table 4 A comprehensive evaluation of the impact of PCA on the performance of several deep learning architectures for a classification task

Architectures PCA 28 PCA 50 PCA 60 PCA 70 PCA 80 PCA 90

CNN 0.79 0.849 0.828 0.812 0.8 0.796

CNN (with additional Dropout layers) 0.927 0.859 0.833 0.825 0.81 0.803

LSTM 0.967 0.97 0.968 0.97 0.966 0.968

Conv1D ? LSTM 0.975 0.977 0.976 0.978 0.981 0.976

Conv1D ? LSTM (with additional Dropout layers) 0.976 0.981 0.976 0.972 0.979 0.972

DNN 0.849 0.826 0.819 0.815 0.812 0.81

DNN (with additional Dropout layers) 0.839 0.822 0.817 0.815 0.811 0.808

BiLSTM 0.971 0.977 0.977 0.969 0.973 0.971

GRU 0.97 0.974 0.961 0.958 0.963 0.97

Fig. 8 Model accuracy and loss for the Conv1D ? LSTM architecture (with additional Dropout layers)

2846 Neural Computing and Applications (2024) 36:2835–2852

123



50%, and 28% of the total number of features. The results

of the experiment are presented in Table 5, which shows

the test accuracy of each Chi percentage for each

architecture.

The architectures evaluated in this experiment inclu-

de CNNs, LSTMs, Conv1D ? LSTMs, and DNNs. The

results indicate that the performance of the models varies

significantly depending on the Chi value used for feature

selection. For example, the LSTM architecture achieved

the highest accuracy of 0.988 when using a Chi value of

90%, while the Conv1D ? LSTM architecture achieved

the highest accuracy of 0.99 when using a Chi value of

80% and with additional Dropout layers. Figure 8 shows

the model accuracy and loss for the Conv1D ? LSTM

architecture (with additional Dropout layers).

For the CNN architecture, the highest test accuracy was

achieved with a Chi percentage of 28%, indicating that

selecting a smaller subset of features may be more bene-

ficial for this architecture. g additional Dropout layers did

not significantly improve performance. For the LSTM

architecture, the highest test accuracy was achieved with a

Chi percentage of 90%, indicating that using a larger subset

of features may be more beneficial for this architecture.

For the BiLSTM (Bidirectional LSTM) and GRU

(Gated Recurrent Unit) architectures, Chi-square feature

selection also plays a notable role in enhancing classifica-

tion performance. These architectures consistently achieve

high test accuracies across different Chi values, with peak

accuracies ranging from 0.970 to 0.983. This underscores

the efficacy of Chi-square feature selection for both

BiLSTM and GRU models.

For the Conv1D ? LSTM architecture, the highest test

accuracy was achieved with a Chi percentage of 50%,

indicating that selecting a moderate subset of features may

be more beneficial for this architecture. The highest test

accuracy achieved among all architectures and Chi

percentages was 0.99, which was obtained by the Con-

v1D ? LSTM architecture with additional Dropout layers,

using a Chi percentage of 90%. This indicates that this

model was able to correctly classify 99% of the instances in

the test set (as shown in Fig. 8), particularly for higher Chi

percentages. For the DNN architecture, the highest test

accuracy was achieved with a Chi percentage of 50%, but

the overall performance was lower compared to the other

architectures. g additional Dropout layers either had no

effect or decreased performance. The results suggest that

the optimal Chi percentage for feature selection may

depend on the specific architecture used, and that g addi-

tional Dropout layers can be beneficial for certain

architectures.

6 Discussion

Various studies have investigated different methods for

analyzing EEG signals and diagnosing epilepsy. Tzallas

et al. [50] utilized a Fourier transform algorithm to analyze

EEG signals and extracted significant features related to

fractional energy. They employed an artificial neural net-

work (ANN) for epilepsy classification and reported its

effectiveness in accurately classifying epilepsy cases.

Peker et al. [51] employed a dual-tree complex wavelet

transform to analyze EEG signals and derived five statis-

tical features to differentiate epileptic patients. Their study

demonstrated that the wavelet transformation, coupled with

classification using complex-valued neural networks, was

effective in diagnosing epilepsy.

Alcin et al. [52] combined the GLCM texture descriptor

algorithm with Fisher vector encoding to extract repre-

sentative features from time–frequency (TF) images

derived from EEG signals. Their approach yielded superior

results in epilepsy diagnosis. Islamet et al. [53] developed a

Table 5 A comprehensive evaluation of the impact of Chi-square on the performance of several deep learning architectures for a classification

task

Architectures Chi 28 Chi 50 Chi 60 Chi 70 Chi 80 Chi 90

CNN 0.944 0.942 0.941 0.942 0.936 0.934

CNN (with additional Dropout layers) 0.945 0.942 0.941 0.941 0.939 0.938

LSTM 0.966 0.966 0.98 0.978 0.981 0.988

Conv1D ? LSTM 0.97 0.981 0.977 0.986 0.985 0.983

Conv1D ? LSTM (with additional Dropout layers) 0.973 0.987 0.983 0.986 0.99 0.99

DNN 0.882 0.878 0.876 0.881 0.875 0.879

DNN (with additional Dropout layers) 0.845 0.848 0.845 0.881 0.846 0.84

BiLSTM 0.97 0.975 0.974 0.973 0.974 0.982

GRU 0.97 0.977 0.981 0.974 0.98 0.983
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stationary wavelet transform algorithm for EEG signal

analysis and seizure detection. Their algorithm showed

promising results in diagnosing epilepsy. Sharmila [54]

presented a framework based on the analysis of EEG sig-

nals using the discrete wavelet transform (DWT) method

with linear and nonlinear classifiers to detect seizures. The

framework successfully detected EEG seizures in both

normal and epilepsy patients.

Wang et al. [55] conducted coherence analysis to extract

features and determine the trend and density of information

flow from EEG signals. These information flow features

were then used as input to a classifier for seizure detection.

Hassan et al. [56] proposed a system for epilepsy diagnosis

using the tunable wavelet transform and bagging tech-

niques applied to EEG signals. Their system demonstrated

promising results in epilepsy diagnosis. Yuan et al. [57]

introduced a weighted extreme learning machine (ELM)

method for seizure detection, which utilized a wavelet

packet analysis and determined the time series complexity

of EEG signals. Their method achieved accurate classifi-

cation based on the weighted ELM.

Jaiswal et al. [58] proposed two feature extraction

methods, namely sub-pattern of PCA and sub-pattern cor-

relation of PCA, applied to EEG signals. These features

were then fed into a support vector machine (SVM) clas-

sifier for seizure diagnosis. Li et al. [59] developed a

multiscale radial basis function method for obtaining high-

resolution time–frequency (TF) images from EEG signals.

They extracted features using the GLCM algorithm with

FV encoding based on frequency sub-bands of the TF

images. Subasi et al. [25] devised a hybrid method that

employed a genetic algorithm and particle swarm opti-

mization to optimize the parameters of an SVM classifier,

achieving promising accuracy in epilepsy diagnosis.

Raghu et al. [60] utilized the DWT method to extract

features from wavelet coefficients of EEG segments. These

features were then employed with a random forest classifier

for epileptic classification. Chen et al. [61] employed the

autoregressive average method to characterize the dynamic

behavior of EEG signals, focusing on the time series

characteristics of the data. Mursalin et al. [62] applied an

improved correlation feature selection technique to extract

crucial features from the time, frequency, and entropy

domains of EEG signals. Random forest classification was

then utilized for epilepsy diagnosis based on these features.

Each of these studies employed different techniques for

analyzing EEG signals and diagnosing epilepsy, with

methods ranging from Fourier transform to wavelet trans-

form. These diverse approaches highlight the breadth of

research in this field and demonstrate the variety of options

available for accurate epilepsy diagnosis.

The present study aimed to optimize the performance of

epileptic seizure recognition using feature scaling and

dropout layers. The findings of this research highlight the

importance of these techniques in enhancing accuracy and

improving the robustness of deep learning models for sei-

zure detection.

Feature scaling is a crucial preprocessing step that

normalizes the input data to a consistent range. It can

prevent certain features from dominating the learning

process and ensure that all features contribute equally to

the model’s performance. In this study, feature scaling

techniques such as Min–Max scaling and Z-score normal-

ization were employed. The results demonstrated that

feature scaling significantly improved the performance of

the deep learning models for epileptic seizure recognition.

This improvement can be attributed to the reduction in the

variations among the input features, leading to a more

stable and effective learning process.

In addition to feature scaling, the study investigated the

impact of dropout layers on model performance. Dropout is

a regularization technique that randomly sets a fraction of

the input units to zero during training, thus preventing

overfitting and improving generalization. The findings

revealed that the inclusion of dropout layers, particularly in

the Conv1D ? LSTM architecture, led to a substantial

improvement in the accuracy of epileptic seizure recogni-

tion. This improvement can be attributed to the dropout

layers’ ability to mitigate overfitting by reducing the

interdependence between the neurons, encouraging the

model to learn more robust and discriminative features.

The combination of feature scaling and dropout layers

proved to be particularly effective, as it yielded superior

results compared to other preprocessing techniques and

architectures explored in the study. The Conv1D ? LSTM

architecture with dropout layers achieved the highest test

accuracy of 0.993, surpassing the performance of previous

studies in the field. These findings underscore the impor-

tance of employing appropriate preprocessing techniques

and regularization mechanisms to optimize the perfor-

mance of deep learning models for epileptic seizure

recognition.

It is worth noting that while feature scaling and dropout

layers demonstrated significant improvements in the mod-

el’s performance, their impact may vary depending on the

specific dataset and architecture utilized. Different datasets

may have distinct distribution characteristics, and as a

result, alternative preprocessing techniques and regular-

ization methods may yield better results. Therefore, it is

crucial to consider the specific characteristics of the dataset

and carefully evaluate the performance of different pre-

processing and regularization techniques to identify the

optimal combination for a given task.

Further research should explore additional preprocessing

techniques and regularization methods to improve the

accuracy and generalization of deep learning models for

2848 Neural Computing and Applications (2024) 36:2835–2852

123



epileptic seizure recognition. Techniques such as principal

component analysis (PCA), independent component anal-

ysis (ICA), and wavelet transforms could be investigated to

extract more informative features from the EEG signals.

Moreover, exploring different dropout rates and architec-

tures, as well as other regularization techniques like L1 and

L2 regularization, could provide further insights into

optimizing model performance.

7 Conclusion

This study addresses the importance of accurately recog-

nizing epileptic seizures in individuals with epilepsy, as it

plays a crucial role in their diagnosis and treatment. Deep

learning models have shown promise in improving seizure

recognition accuracy, but optimizing their performance

remains a challenge. To tackle this challenge, the study

introduces a new approach to optimize epileptic seizure

recognition using deep learning models. A dataset of

Electroencephalography (EEG) recordings from multiple

subjects was employed, and nine deep learning architec-

tures were trained using various preprocessing techniques.

Among the architectures tested, the Conv1D ? LSTM

model, which combines a 1D convolutional neural network

(Conv1D) with a Long Short-Term Memory (LSTM) net-

work, achieved the highest test accuracy of 0.993 when

augmented with dropout layers. The LSTM architecture

alone also performed well, with a slightly lower accuracy

of 0.986. Additionally, the Bidirectional LSTM (BiLSTM)

and Gated Recurrent Unit (GRU) architectures exhibited

exceptional performance, achieving accuracies of 0.983

and 0.984, respectively. Furthermore, the study highlights

the importance of preprocessing techniques such as feature

scaling. Standard scaling proved advantageous, signifi-

cantly improving the accuracy of both the BiLSTM and

GRU models compared to MinMax scaling. The study also

explored the impact of Principal Component Analysis

(PCA) on model performance, revealing that retaining 50%

and 90% of the features yielded the best results across

different architectures. Additionally, the study demon-

strated the effectiveness of chi-square feature selection in

enhancing the classification performance of the BiLSTM

and GRU models. Importantly, the findings emphasize that

different deep learning architectures respond differently to

feature scaling, PCA, and feature selection methods.

Understanding these nuances is crucial for developing

optimized models for epileptic seizure recognition, ulti-

mately leading to improved patient outcomes and enhanced

quality of life for individuals with epilepsy. While this

study has demonstrated impressive results in optimizing

the recognition of epileptic seizures, there are still several

limitations that need to be acknowledged including: the

size and variability of the dataset used may be limited,

impacting the model’s ability to generalize, imbalanced

class distribution could lead to biased model training per-

forming better on the majority class, the models’ perfor-

mance may be limited when applied to EEG data from

different devices or institutions, and the real-time perfor-

mance of the deep learning models was not thoroughly

evaluated which is essential for clinical application.

Additionally, the lack of interpretability may hinder clini-

cal adoption and the ability to provide meaningful insights,

and further clinical validation and regulatory approval are

required to translate this research into a clinically appli-

cable tool. However, addressing these limitations through

larger and more variable datasets, techniques to handle

class imbalance, assessing generalizability to different

EEG devices, thoroughly evaluating real-time perfor-

mance, developing interpretability methods, and conduct-

ing clinical trials could contribute to the development of

robust and reliable tools for improving epilepsy diagnosis

and patient outcomes.

Appendix

Appendix Definition

AUC Area Under the Curve

BiLSTM Bidirectional LSTM

CNN Convolutional Neural Network

CSV Comma-Separated Values.

DNN Deep Neural Networks

DWT Discrete Wavelet Transform

EDF European Data Format

EEG Electroencephalography

EM-PCA Expectation–Maximization Principal Component

Analysis

FN False Negative

FP False Positive

GA Gramian Angular

GRU Gated Recurrent Unit

KNN k-nearest neighbors

LSTM Long Short-Term Memory

MAE Multivariate Autoencoder

MLP Multilayer Perceptron

MSPCA Multi-Scale Principal Component Analysis

NLSTM Non-Linear Long Short-Term Memory

PCA Principal Component Analysis

PSO Particle Swarm Optimization

RNN recurrent neural network

ROC Receiver Operating Characteristic

STFT Comma-Separated Values
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Appendix Definition

SVM Support Vector Machine

TGCN Temporal Graph Convolutional Network

TN True Negative

TP True Positive
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