
ORIGINAL ARTICLE

Neural networks as an approximator for a family of optimization
algorithm solutions for online applications

Arturo D. López-Rojas1 • Carlos A. Cruz-Villar1

Received: 10 July 2023 / Accepted: 21 October 2023 / Published online: 30 November 2023
� The Author(s) 2023

Abstract
In this paper, we propose a sufficient condition at which a neural network can approximate a set of optimization algorithm

solutions; we establish under which conditions a neural network can replace an optimization algorithm to solve a problem

with the objective of safely deploying that network in a system where online solutions are necessary to simplify the

hardware or allowing the processor to solve the optimization problem on time. To that end, first, we define the family of

optimization problems to be addressed; then, we construct a vector with the parameters on which the solution depends, in

order to propose a function based on the first-order Karush–Kuhn–Tucker conditions to find conditions under which the

inverse of the proposed function maps the problem minimizer with respect to the constructed vector, we provide the

sufficiency proof of, both, existence and feasibility of approximation by a neural network regarding the inverse function.

Two case studies are proposed, one numerical case showing how a neural network can solve an optimization problem faster

than popular solvers to illustrate how it can be implemented in applications where the computation time is tight, and the

other case is a Model Predictive Control implementation with the optimization problem solver replaced by a neural

network which allows a hardware downgrade; both cases are presented with time statistics comparisons.

Keywords Neural network � Optimization � Optimality conditions � Approximations � Model Predictive Control

1 Introduction

There is a close relationship between neural networks and

optimization; conventionally, training a neural network

(NN) relies on minimizing an objective function that rep-

resents the difference between several samples of the net-

work output and samples of the desired output according to

the input (supervised learning); a classic example is

Backpropagation [34], where it is shown the construction

of an objective function and how to use the derivative of

the objective function to build an algorithm to solve an

optimization problem, transforming the neural network

training into an optimization problem.

In the opposite direction, using neural networks to solve

optimization problems have been explored, works as

Cybenko [9] and Hornik et al. [13] show that a neural

network can be used as an approximation of a function,

using neural networks replacing functions in optimization

problems can be seen in Villarrubia et al. [31], where an

objective function is replaced by a neural network when the

use of numerical algorithms based on Lagrange multipliers

or the Kuhn–Tucker [17] conditions is not possible.

Previous works such as [23] propose a method to map an

optimization problem into a neural network to avoid local

minimums; similarly, some techniques use a neural net-

work’s structure and convergence capabilities to solve

optimization problems faster. In [33], neural networks are

used to increase convergence speed in genetic algorithms

used in solving optimization problems. In [7], a way to

build a neural network similar to an array of operational

amplifiers that, in the steady state, converge to a solution of

an optimization problem. In [19], Authors use one-layer

recurrent neural networks to provide an always descending

direction of its states for solving nonsmooth pseudoconvex

& Arturo D. López-Rojas

desaix.rojas@cinvestav.mx

Carlos A. Cruz-Villar

cacruz@cinvestav.mx

1 Sección de Mecatrónica, Departamento de Ingenierı́a

Eléctrica, CINVESTAV, Av. Instituto Politécnico Nacional,

14740 México City, México

123

Neural Computing and Applications (2024) 36:3125–3140
https://doi.org/10.1007/s00521-023-09203-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-6118-8113
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-09203-7&domain=pdf
https://doi.org/10.1007/s00521-023-09203-7

optimization problems. From another perspective, in [35], a

method to transform a convex optimization problem into a

system of ordinary differential equations (ODE) based on

neural networks is proposed; the main characteristics are

the convergence to the solution, which is more time effi-

cient and less sensitive to initial conditions than other

algorithms.

References [7] and [35] show ways to solve optimiza-

tion problems faster than non-neural networks’ numerical

algorithms, which are necessary for applications that

require online solutions, such as optimal control [10],

mobile applications electronics [24], and autonomous

decision-making [29], among others.

In this paper, we present sufficient conditions under

which a neural network can replace a numerical algorithm

that solves a family of optimization problems. To this end,

first, we present a family of optimization problems and a

vector of parameters on which the solution depends; then,

based on the Karush–Kuhn–Tucker (KKT) first-order

conditions, we propose a function that maps the solutions

to the KKT conditions and the presented parameters vector.

Finally, we find conditions under which the inverse of the

proposed function exists and can be replaced by a neural

network. In contrast with the previously mentioned works,

we do not attempt to solve one particular optimization

problem; we develop a way to know if a neural network,

trained with solutions to several examples of the family of

problems, can substitute a numerical optimization algo-

rithm for solving the problem for different values of the

parameter vector; the input to the network is the parameter

vector (which is known in the formulation of the opti-

mization problem), and the output is the minimizer.

The primary motivation for substituting an optimization

algorithm with a trained neural network is the advantage of

the neural network over a numerical algorithm in terms of

portability since it can be formulated with only sigmoidal

functions [9] in contrast with some algorithms that need

gradients calculations and matrix inversions; another

advantage of the neural network is its execution time,

which takes a known number of operations. Meanwhile, a

numerical algorithm converges to a solution in an initial

point-dependent number of iterations, also nowadays spe-

cialized hardware for running neural networks has been

developed, such as [20], making it advantageous to replace

optimization algorithms in online applications, for exam-

ple, in [2] an analysis of different architectures of micro-

processor performance on MPC implementation with

ACADO [14] as a numerical algorithm is presented,

showing that the Atmel ARM Architecture cannot be used

when the optimal control problem has more than two states

due to a memory overflow; in this work, a three-state MPC

implementation is performed with a neural network in

substitution of the same numerical algorithm.

This paper is organized as follows. In Sect. 2, we recall

the preliminary results and definitions that will be used

throughout the paper. In Sect. 3, we establish the family of

optimization problems and a parameter vector that will be

useful in Sect. 4, where we present the sufficient condition

for an optimization problem solution to be found by a

neural network replacing a numerical algorithm. In Sect. 5,

we present one analytical and numerical example and one

control experiment to illustrate our proposal’s effective-

ness. In Sects. 6 and 7, discussion and conclusions are

presented, respectively.

2 Theoretical preliminaries

Our main result relies on two works, one from functional

analysis, Theorem 1 in [8], and one from neural networks,

Theorem 2.5 in [13].

Definition 1 Let f : Rn ! Rn be a Lipschitz function, the

generalized Jacobian of f around x0, denoted of ðx0Þ is the
convex hull of all matrices M of the form:

M ¼ lim
xi!x0

Jf ðxiÞ

Where Jf(x) is a n� n Jacobian of partial derivatives.

Theorem 1 in [8] holds; if of ðx0Þ is of maximal rank,

then, there exist a neighborhood U and V of x0 and f ðx0Þ,
respectively, and a Lipschitzian function g : V ! Rn such

that:

1. gðf ðuÞÞ ¼ u for every u 2 U

2. f ðgðvÞÞ ¼ v for every v 2 V

Definition 2 A function W : R ! ½0; 1� is a squashing

functions if is not-decreasing, limx!1 WðxÞ ¼ 1 and

limx!�1 WðxÞ ¼ 0.

Theorem 2.5 in [13] holds that a multi-output feedfor-

ward network whose activation functions are any squashing

functions can approximate, to a desired degree of accuracy,

any continuous or measurable function from Rr ! Rs with

s; r 2 Zþ.

3 Family of optimization problems

In this section, we describe the family P1 of optimization

problems that are analyzed in this work; we define it as

follows:

min

x 2 Rn
f ðx;DÞ ð1Þ

Subject to:

giðx;DÞ� 0 : i ¼ 1; 2; 3; :::::;m ð2Þ

3126 Neural Computing and Applications (2024) 36:3125–3140

123

With D 2 Rnd , mb\n and mb �m, being mb the number of

active constraints.

The objective function f(x, D) is a map Rnþnd ! R, at

least, twice differentiable w.r.t D and x, giðx;DÞ is the i-th

inequality constraint, at least twice differentiable, w.r.t. D

and x, Rnþnd ! R. Functions f(x, D) and giðx;DÞ are at

least once differentiable by x and then once differentiable

by D. The term D can have any real value, and each gen-

erates a different problem, that’s why P1 is a family of

problems.

Assumption 1 P1 has at least one solution x� that fulfills

the KKT first-order conditions:

rxf ðx�;DÞ þ
Xm

i¼1

k�irxgiðx�;DÞ ¼ 0 ð3Þ

k�i giðx�;DÞ ¼ 0 ð4Þ

k�i � 0 ð5Þ

giðx�;DÞ� 0 ð6Þ

with i ¼ 1; 2; 3; :::;m, where ki is the Lagrangian multiplier

and k�i is the local optimal Lagrangian multiplier associated

with the i-th constraint.

Vector D is denoted as parameter vector on which the

solution depends, but it is not an optimization variable; the

following example, problem P2, shows how D is related to

the problem statement and solution.

Example 1

min

x1; x2
ðx1 � d1Þ2 þ ðx2 � d2Þ2 ð7Þ

Subject to:

x1 � d3 � 0 ð8Þ

d3; d2; d1 � 0 ð9Þ

With D ¼ ½d1; d2; d3�T .

The solution to problem P2 is a function of D, being x�

the minimizer, if we analytically solve P2, we can express

it as x� ¼ foptðDÞ; in this example, there are two possibil-

ities for foptðDÞ, showed below, which depend on the

relationship between d1 and d3.

-Constraint (8) is not active and d3 [d1:

x� ¼ foptðDÞ ¼
d1

d2

� �
ð10Þ

-Constraint (8) is active and d3 � d1:

x� ¼ foptðDÞ ¼
d3

d2

� �
ð11Þ

3.1 On defined optimization problems family

The Family defined at the beginning of this section belongs

to the subset of a general nonlinear continuous optimiza-

tion problem (shown in Theorem 4.3.1 and 4.4.2 in [4]) in

which x is a KKT point (fulfills Assumption 1), and the

condition of being a minimum can be verified by their KKT

second-order conditions, and the following gradients are

defined.

rDgiðx;DÞ
rDrxgiðx;DÞ
rDrxf ðx;DÞ

With i ¼ 1; 2; :::;m.

There are no special structures in this family that restrict

f(x, D) and giðx;DÞ of P1 to any form; for example, any

quadratic objective function with linear constraints could

be a member of this family; however, the MPC example in

Sect. 5 has another form and is still part of the P1 family.

4 Sufficient condition for a neural network
as an approximator of an optimization
problem solver

Definition 3 The verification function denoted Cðk; x;DÞ
is a mapping Rmþnþnd ! Rmþnþnd where:

Cðk; x;DÞ ¼
Gðx;DÞk

rxf ðx;DÞ þ
Pm

i¼1 kirxgiðx;DÞ
D

2
64

3
75 ð12Þ

Where G(x, D) and k are the constraints in matrix repre-

sentation and the Lagrange multipliers in a vector array,

respectively (13), rkf is the gradient of f with respect to

vector k; also, to shorten the notation, we state the

Lagrangian function in (14).

Gðx; DÞ ¼

g1ðx;DÞ 0 0 :::: 0

0 g2ðx;DÞ 0 :::: 0

0 0 g3ðx;DÞ :::: 0

0 0 0 :::: gmðx;DÞ

2

6664

3

7775;

k ¼

k1
k2
:

:

:

km

2
666666664

3
777777775

ð13Þ

Neural Computing and Applications (2024) 36:3125–3140 3127

123

Lðx;D; kÞ ¼ f ðx;DÞ þ
Xm

i¼1

kigiðx;DÞ ð14Þ

We can rewrite equation (12) as follows:

Cðk; x;DÞ ¼
Gðx;DÞk

rxLðx;D; kÞ
D

2
64

3
75 ð15Þ

Theorem 1 For a problem P1, the Jacobian oCðk�; x�;DÞ
exists, and if it is of maximal rank, then, exists a Lipschitz

function H : Rmþnþnd ! Rmþnþnd such that

Hð01�ðmþnÞ;DÞ ¼ ½k�; x�;D�T .

Proof We define x0 ¼ ½k; x;D�T and then, calculate the

Jacobian oC
ox0

According to problem definition P1, which includes

Assumption 1 in Sect. 3 (has a solution that fulfills the first

KKT sufficient conditions), it is possible to say that (16)

exists and is defined in x0� :¼
k�

x�

D

2
4

3
5, which includes an

extreme point of P1, then, we can say that Cðx0�Þ is dif-

ferentiable and, as a consequence, continuous. Moreover,

based on definitions of continuity (for example, [16]), it is

also Lipschitz in x0�.

If (16) has maximal rank and choose u ¼ x0� and f ðuÞ ¼

v ¼
01�m

01�n

D

2

4

3

5 to express Cðk�; x�;DÞ as f in Definition 1,

then, H fulfills the conditions shown in [8] (recalled on

Sect. 2), proving Theorem 1, making (17) true.

Hð01�mþn;DÞ ¼ gðf ðuÞÞ ¼
k�

x�

D

2
64

3
75 ð17Þ

Remark 1 The function H can be expressed as C�1, the

inverse of C; nevertheless, we do not intend to find an

explicit form of C�1. Theorem 1 provides the condition

under which C�1 exists.

Theorem 2 For optimization problems in the family P1, a

feedforward neural network approximates a map, to a

desired degree of accuracy, from 01�m; 01�n;D½ �T to x0� if

the Jacobian oCðk�; x�;DÞ is of maximal rank.

Proof By Theorem 1, we know that if the Jacobian

oCðk�; x�;DÞ is of maximal rank, then, there is a function

H that maps Rmþnþnd ! Rmþnþnd, and by Theorem 2.5 in

[13], we also know that a feedforward network can

approximate any continuous function from Rr ! Rs if we

consider s ¼ r ¼ mþ nþ nd , then, Theorem 2 is proven.

5 Examples of application in numerical
optimization problems

This section shows two examples of theoretical analysis

and application; in the first one, a Sequential Quadratic

Programming (SQP) algorithm is used to solve a numerical

optimization problem. The subproblem, in each algorithm

step, is approximated by a neural network making the

precision of the approximated solution essential to solve

the main problem; this will show the equivalence of using a

numerical algorithm solver and a neural network in terms

of achieving the same solution in a numerical experiment;

in the second example, we show a model predictive control

application, which main component is the solution of an

oC

ox0
¼

Gðx;DÞ

k1rxg1ðx;DÞT

k2rxg2ðx;DÞT

:

:

:

kmrxgmðx;DÞT

2

666666664

3

777777775

k1rDg1ðx;DÞT

k2rDg2ðxÞT

:

:

:

kmrDgmðx;DÞT

2

666666664

3

777777775

rxg1ðx;DÞ ::: rxgmðx;DÞ½ � r2
xxLðx; k;DÞ r2

xDLðx; k;DÞ
0 0 Ind�nd

2

66666666666664

3

77777777777775

ð16Þ

3128 Neural Computing and Applications (2024) 36:3125–3140

123

optimal control problem that can be formulated as an

optimization problem. That control proposal has been

implemented in recent years in works such as [3] where it

is presented an experimental implementation around a

neighborhood of the unstable equilibrium point of a system

without making a theoretical analysis of using an NN

instead of a numerical algorithm; another similar applica-

tions is shown in [15]; they make an analysis of the effects

of replacing the numerical algorithm by a neural network in

MPC with linear dynamics; the implementation of that

result has been applied in works such as [1]; in this way,

we test the effectiveness of the application of neural net-

works in different scenarios, including an application

where online solutions are necessary, and then, we show

how using this method; we can use a low-capacity micro-

processor (which, due to memory size, cannot support the

numerical algorithm solver as shown in [2]) to deploy the

neural network and substitute an on-board computer.

5.1 Example 1: numerical experiment

In this example, we use an algorithm that converts a main

problem into a series of subproblems; in this case, we use

sequential quadratic programming (SQP) similar to the one

shown in [5], where the approximation of the solution of

the subproblems needs to be precise to find the solution to

the main problem, this precision requirement helps to

show, in a numerical example that the NN is able to

approximate a solution of the subproblem well enough [13]

to be used in an SQP algorithm and solve of the main

problem.

This algorithm is proposed for problems of the follow-

ing form P3:

min

x 2 Rn f ðxÞ ð18Þ

Subject to:

giðxÞ� 0 : i ¼ 1; 2; 3; :::::;m

With mb\n, mb is the number of active constraints, f ðxÞ :
Rn ! R is at least twice differentiable, and giðxÞ : Rn ! R

is the i-th constraint which needs to be at least twice dif-

ferentiable w.r.t x.

Then, we define L as follows:

L ¼ f ðxÞ þ
Xm

i¼1

kigðiÞ ð19Þ

Algorithm 5.1:

1. Define a termination constant � 	 0, choose xk and kk
(the subscript k ¼ 0 is referred to the number of

iterations) that satisfies the constraints and rxxL[0.

2. While jrxLj2 [� do:

• Solve subproblem P4 for d�k ; k
QP�
k , which are the

minimizer and Lagrange multipliers, respectively,

associated with the solution of P4:

min

d 2 Rn

1

2
dTrxxLðxk; kkÞdþrxf ðxkÞd

Subject to:

gðxkÞ þ rxgðxkÞd� 01�m

• Make xkþ1 ¼ xk þ d�k and kkþ1 ¼ kQP�k .

• Make k ¼ k þ 1 and calculate rxxLðxk; kkÞ, gðxkÞ
and rxf ðxkÞ.

end

3. x� ¼ xk is the minimizer of the main problem.

We define the numerical example P5 as follows:

min

x 2 R2
ðx1 � 5Þ4 þ ðx2 � 3Þ2 ð20Þ

Subject to:

3x1 � x22 þ 2� 0

Which, according to algorithm 5.1, has a quadratic sub-

problem P6

min

d 2 R2
6d21ðx1 � 5Þ2 þ ð1� kÞd22 þ 4d1ðx1 � 5Þ3 þ 2d2ðx2 � 3Þ

ð21Þ

Subject to:

3x1 � x22 þ 2þ 3d1 � 2x2d2 � 0

5.1.1 Analysis of P6

In this example, vector D contains x1; x2 and k which, in

the first iteration, k ¼ 0 are selected and in further itera-

tions are calculated, as shown in Algorithm 5.1, which

means D ¼ ½x1; x2; k�T , then, x0 is defined as follows:

x0ðkQP; d;DÞ ¼

kQP

d1
d2
x1

x2

k

2
666666664

3
777777775

ð22Þ

Where kQP is the Lagrange multiplier related to the con-

straint in the solution to problem P6. The verification

function is shown in (23):

Neural Computing and Applications (2024) 36:3125–3140 3129

123

CðkQP; d;DÞ ¼

kQPð3x1 � x22 þ 2þ 3d1 � 2x2d2Þ
12d1ðx1 � 5Þ2 þ 4ðx1 � 5Þ3 þ 3kQP

ð2� 2kÞd2 þ 2ðx2 � 3Þ � 2x2k
QP

x1

x2

k

2
6666666664

3
7777777775

ð23Þ

The Jacobian takes the form (24).

With gqp ¼ 3x1 � x22 þ 2þ 3d�1 � 2x2d
�
2 and

C24 ¼ 24ðx1 � 5Þd�1 þ 12ðx1 � 52Þ.
When there is only one constraint, the analysis is divi-

ded into two cases:

1. gqp\0 y kQP� ¼ 0.

2. gqp ¼ 0 y kQP� [0.

In the first case, it is easy to transform (24) by column and

row operations to an equivalent matrix (25).

gqp 0 0 0 0 0

3 12ðx1 � 5Þ2 0 0 0 0

2x2 0 2� 2k 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

ð25Þ

Then, to implement, an SQP algorithm is necessary that

(26) to be definite positive, which means (25) has a trian-

gular form and, according to [12] and [11], is of maximal

rank while using Algorithm 5.1.

12ðx1 � 5Þ2 0

0 2� 2k

" #
ð26Þ

The equivalent matrix, using row operations, of the second

case Jacobian is shown in (27), by the same analysis of case

1, and with kQP� not negative (condition for case 2) and

(28) being a condition to use SQP then (24) is of maximal

rank for both cases if 3� 4x2
2

2�2k k
QP� 6¼ 0 which, according

to P6 KKT second-order conditions, the following condi-

tion should be true in a minimum 3� 4x2
2

2�2k k
QP� [0.

3kQP� 0 0 0 0 0

12ðx1 � 5Þ2 3� 4x22
2� 2k

kQP� 0 0 0 0

0 2x2 2� 2k 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
66666666664

3
77777777775

ð27Þ

2� 2k[0 ð28Þ

According to Theorems 1 and 2, the neural network will

approximate the solution of P6. Perhaps, a valid thought that

comes out is, why do not approximate the solution of P5

directly? Of course, it is possible to perform that analysis;

nevertheless, this numerical example is done to show that, in

practice, a neural network is precise enough to solve subprob-

lem P6 and lead to the same solution of P5 using other

algorithms.

5.1.2 Numerical implementation

The procedure to train the neural network is the following,

first, solve the optimization problem P6 for different values

of D using MatLab [22] function fmincon as a solver;

1990000 examples were collected, each example form a

pair of data y0 and x0, as shown in (29), being the input and

output of the NN, respectively. Where x0 is the solution of

oCðkQP; d;DÞ ¼

gqp 2kQP 3x2k
QP 0 0 0

3 12ðx1 � 5Þ2 0 C24 0 0

2x2 0 2� 2k 0 2� 2kQP � 2d2
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2

6666666664

3

7777777775

ð24Þ

3130 Neural Computing and Applications (2024) 36:3125–3140

123

P6 found using fmincon with y0 as an input, each input is

selected to make (26) definite positive and every input–

output combination fulfills 3� 4x2
2

2�2k k
QP� 6¼ 0, this data are

available in the repository referenced in this work.

y0 ¼
x1

x2

k

2

64

3

75; x0 ¼
kQP

d�1
d�2

2

64

3

75 ð29Þ

This data where used as training data in supervised training

on Tensorflow [21].

To make a more efficient training and network design,

the inputs and outputs shown in (29) are different from

y0 ¼ ½0; 0; 0; DT �T and (22) used in the theoretical anal-

ysis, the reasons and justifications for these differences are

listed below.

• The absence of explicit zeros in y0 is because, in

common activation functions, such as the sigmoid

shown in (30), that input will not have any effect while

increasing the input size.

• Vector D is missing in x0 as in the implementation,

replicating the input in the output is not necessary since

it is already known and can be misleading in the

training process because the training error will decrease

without not necessarily approximating the unknown

output, k� and x�.

In this example, we use a feedforward neural network whose

architecture is shown in Fig. 1, where Nj is the j-th neuron in

the hidden layer and the output neuron Ni
o, with i ¼ 1; 2; 3,

is associated with the desired output, the activation function

of the only hidden layer is the sigmoid function (30), and the

output layer has a linear activation function (31).

rj ¼
1

1þ exp ð�ðW1jy0 þ b1jÞÞ
ð30Þ

with j ¼ 1; 2; :::; 650. Where W1j ¼ ½w1
j1
;w1

j2
; :::;w1

jmþnþnd
�

are the weights for every input and b1j is the bias for the j-

th neuron.

si ¼ b2i þ
X350

j¼1

w2jrj ð31Þ

With i ¼ 1; 2; 3. Where w2j is the j-th weight associated

with rj as an input to the si neuron and b2i is the bias

associated with the output neuron si.

In the next example, we skipped the mathematical

description of the NN since the architecture is not the

objective of this paper as long as a feedforward network is

selected.

A mean squared error is used as an objective function

with a training error of eP ¼ 1:06� 10�4, the optimizer

used is RMSProp, sigmoid as hidden layer activation

function, linear activation function in the output layer, 90%

of the 1048575 examples with the form of (29), while

fulfilling (26) and (28), as data training and 10% as vali-

dation with a mean squared error of eP ¼ 7:22� 10�5. The

mean squared error is defined as follows:

eP ¼ 1

ne

Xne

mu¼1

ðjSmu
� x0mu

j2Þ ð32Þ

Where Smu
is the output of the neural network; with

Smu
¼ ½s1; s2:s3�, ne is the number of examples, and x0mu

is

the output of the training sample mu.

The data are available as supplementary information and

is generated by a combination of x1 2 ½�2:95; 7� in 0.05

intervals, x2 a randomly chosen in ð�4; 1:5Þ and 0\k\1

fulfilling (28); any combination that makes (26) not posi-

tive definite or 3� 4x2
2

2�2k k
QP� ¼ 0 is discarded.

The data generated is scaled, as suggested in works [30]

and [26], by the normalization (33).

Vn ¼
Vo �MV

SV
ð33Þ

Where Vn is the normalized value, Vo is the original value,

and MV and SV are the mean and standard deviation of the

set of values Vo, respectively.

The data are generated without noise, and at the end of

the training, there was not overfit; therefore, any other data

preparation was avoided. A Jupyter notebook with the

program used for training the NN shown in Fig. 1 can be

found in the supplementary information.

Main problem P5 is solved according to algorithm 5.1,

the subproblem P6 is solved by MatLab fmincon, Scipy [32]

and approximated by the neural network Hardcoded in

MatLab and Python, those results are shown in Table 1,

and the algorithm initial conditions are x ¼ ½0 3:5�, k ¼ 0:5

and � ¼ 0:003.

The number of iterations is too small to use them as a

valid set for statistic computing time. To have a bigger set,

we solved 1000 examples of subproblem P6 with random
Fig. 1 Neural network for numerical example 3

Neural Computing and Applications (2024) 36:3125–3140 3131

123

values of the training data set, and those results are pre-

sented in Table 2. Experiments were done on a Personal

Computer with an Intel Core i3-10110U CPU @ 2.10GHz,

12 GB ram memory, running on Windows 10.

Table 1 shows that the neural network is adequate for

solving the main problem P5. Two of the main motivations

for using an NN instead of a numerical algorithm in online

implementations are the speed and consistency of the

execution time; both can be seen in Table 2 where the

neural network is faster and with less standard deviation

than the numerical algorithms. The lower standard devia-

tion can be explained by the way a neural network works

since its output is obtained by a known quantity of oper-

ations of the input through the hidden layer until the output

layer while most of the numerical algorithms use initial

points and tolerance-dependent iterative processes where

only a convergence rate is known and not an exact number

of iterations. On the other hand, the speed advantage of the

NN in this work could be because the NN is composed of

functions as (30), and sums as (31) in contrast with gradient

calculations and inverse matrix approximation used in

some fminunc/Scipy subprocesses which take more com-

puting time than the used in NN; nevertheless, this is a

hypothesis with Table 2 as support, and it cannot be

affirmed for every algorithm-NN comparison; however,

proving a general statement is out of the scope of this

paper.

Remark 2 Regarding Table 2, neither Python nor MatLab

language were implemented on real-time platforms there

are variations in the execution time of the neural network,

even when every execution takes the same number of

operations, nevertheless, in terms of computing time, we

can see that the neural network is better in every statistic

used as a performance measure. In Sect. 5.2.6, a soft real-

time example is shown.

5.2 Example 2. Model predictive control.

Model predictive control (MPC) is an ample range of

control methods that explicitly use the model of a process

to obtain the control signal that minimizes an objective

function [6]. In this example, we use the scheme shown in

Fig. 2, based on a constant time horizon N and a dis-

cretization of the nonlinear model of the process.

The general optimal control problem P7 in this experi-

ment, shown in Fig. 2, is formulated as follows:

min

U 2 RN
Hðx; x̂;UÞ ð34Þ

Subject to:

x̂ðt þ 1Þ ¼ fiðx̂;UðtÞÞ; x̂ð0Þ ¼ xðtÞ ð35Þ

U�Umax;�U�Umin ð36Þ

Where H is the objective functional designed to achieve the

desired output at the discrete-time N, minimize the control

magnitude, and/or avoid an increase in the states

Table 1 Comparative chart for

problem P5
Solver Minimizer found Number of iterations

fmincon x�1 ¼ 4:4405; x�2 ¼ 3:9143; k� ¼ 0:2336 k ¼ 9

Neural network MatLab x�1 ¼ 4:4436; x�2 ¼ 3:9148; k� ¼ 0:2316 k ¼ 8

Scipy x�1 ¼ 4:438; x�2 ¼ 3:9134; k� ¼ 0:2334 k ¼ 8

Neural network Python x�1 ¼ 4:4436; x�2 ¼ 3:9148; k� ¼ 0:2316 k ¼ 8

Table 2 Time statistics of 1000

executions
Statistics NN MatLab fminunc NN Python Scipy

Mean (s) 1:6� 10�3 0.0107 1:6� 10�3 0.087

Maximum (s) 0.0231 0.322 0.0107 0.2414

Minimum (s) 1:1� 10�3 6:1� 10�3 5:05� 10�4 0.0645

Standard deviation (s) 8:509� 10�4 0.0116 1:9� 10�3 0.0201

Fig. 2 Control scheme used in MPC

3132 Neural Computing and Applications (2024) 36:3125–3140

123

magnitude. Expression (35) represents the discretized

model of the process at the initial condition x(t); x repre-

sents the actual states of the process, while x̂ is the dis-

cretized predicted states, and U is a N-dimension vector

whose entries are the control inputs for the predicted pro-

cess (35), bounded by the upper and lower bounds Umax

and Umin, respectively.

The MPC applied in this example follows Algorithm

5.2.

Algorithm 5.2:

1. Define a constant integer time horizon N, which is the

number of control samples and future states calculated

at time t in each iteration.

2. To measure the states x(t) of the process at time t.

3. To solve the optimal control problem P7 and obtain a

piecewise-constant signal control in form of a m� N-

dimension matrix U�. Where m is the number of

control inputs, in this example m ¼ 1.

4. To apply the first calculated control value in vector U�,
U�ð1Þ, to the process and go to step 1.

In an MPC implementation, the optimal control problem in

step 2 is solved with a numerical algorithm; in this

example, we compare that type of implementation versus

approximating the solution of P7 with a neural network. In

this example, we show a neural network in an MPC

implementation of a one-degree-of-freedom inertial wheel-

driven pendulum, the main difference with [3], is that we

will use the complete range of movement of the pendulum,

which has a nonlinear dynamic, making it also different to

the analysis in [15], then we substitute the on-board com-

puter (necessary to run the implemented numerical algo-

rithm solver) by a microprocessor using less flash memory

than the one available in the ARM microprocessor shown

in [2], which was not able to run the algorithm, achieving

the same results as both, the neural network and the opti-

mization numerical algorithm in an on-board computer

implementation, while showing that less expensive com-

ponents can be used with the same results.

This proposal is different from the current use of Neural

Networks on MPCs mainly on the function that is

approximated by the NN, as shown in the survey [27], most

of these MPCs control applications use NN to approximate

uncertainties on the plant model when it makes not reliable

to solve the optimization problem on time in online

applications. In both cases, the proposal presented in this

work could be implemented, because the NN (in those

applications) will approximate equations (34), and the

problem could still be analyzed with our proposal; never-

theless, our proposal could be used instead of the second

case since in our proposal the entire solution of the opti-

mization problem is approximated (if it fulfills Theorems 1

and 2), while the first principles approximation only

approximates a part of the problem and a numerical algo-

rithm is still necessary to solve the problem.

Other uses of neural networks in control have been

reported in the literature outside the MPC field, recent

works are more focused on control systems with uncer-

tainties based on existing control schemes, for example,

[18]. As these schemes are based on classical control

methods, it is difficult to compare against our proposal but

analysis as [28] shows a benchmark of MPC versus clas-

sical popular high-performance control methods in elec-

trical machines with a favorable result on MPC.

The main reason to show an MPC example in this work

is to show a physical experiment when an online precise

solution is necessary to accomplish the control objective,

and how our proposal has an advantage of computational

time, and less computational power is required against the

state of the art numerical algorithms for solving opti-

mization problems in online applications.

5.2.1 Problem statement for example 2

An MPC control of an inertial wheel-actuated pendulum,

with the parameters shown in Fig. 3, with the control

objective of moving the pendulum from the stable equilib-

rium H ¼ 0 to the unstable equilibrium H ¼ p is

considered.

The dynamics of the system described in Fig. 3 is shown

below.

€H ¼ � 1

ml2

� �
mgl sinðHÞ þ k _Hþ s� k1 _W
� �

ð37Þ

€W ¼ 1

jd

� �
s� k1 _W
� �

ð38Þ

Where m and k are the mass and friction constant related to

the pendulum, respectively, g is the gravitational constant,

k1 and jd are the friction constant and the inertial moment

Fig. 3 Inertial wheel-actuated pendulum

Neural Computing and Applications (2024) 36:3125–3140 3133

123

related to the inertial wheel respectively, and s is the torque
applied to the wheel.

5.2.2 MPC solution for example 2

To formulate the optimization problem, the dynamic

Eqs. (37) and (38) are expressed in space state variables as

follows, with x1 :¼ H, x2 :¼ _H, x3 :¼ _W and s :¼ u:

_x1 ¼ x2 ð39Þ

_x2 ¼� ð 1

ml2
Þðmgl sinðx1Þ þ kx2 þ u� k1x3Þ ð40Þ

_x3 ¼ð1
jd
Þðu� k1x3Þ ð41Þ

To implement algorithm 5.2, the following problem P8 is

formulated with a sample time h ¼ 0:0075s, prediction

horizon N ¼ 2, and Euler numerical integration.

min

uð1Þ; uð2Þ
p1ðx1ð3Þ � r1ðkÞÞ2 þ p2ðx2ð3Þ � r2ðkÞÞ2 þ p3ðx1ð3Þ � r3ðkÞÞ2 ð42Þ

Subject to:

x1ð1Þ ¼ Hm

x2ð1Þ ¼ _Hm

x3ð1Þ ¼ _Wm

x1ð2Þ ¼ x1ð1Þ þ hx2ð1Þ

x2ð2Þ ¼ x2ð1Þ � ð h

ml2
Þðmgl sinðx1ð1ÞÞ þ kx2ð1Þ þ uð1Þ � k1x3ð1ÞÞ

x3ð2Þ ¼ x3ð1Þ þ ðh
jd
Þðuð1Þ � k1x3ð1ÞÞ

x1ð3Þ ¼ x1ð2Þ þ hx2ð2Þ

x2ð3Þ ¼ x2ð2Þ � ð h

ml2
Þðmgl sinðx1ð2ÞÞ þ kx2ð2Þ þ uð2Þ � k1x3ð2ÞÞ

x3ð3Þ ¼ x3ð2Þ þ ðh
jd
Þðuð2Þ � k1x3ð2ÞÞ

ð43Þ
umin � uð1Þ� umax

umin � uð2Þ� umax
ð44Þ

Where Hm, _Hm and _Wm are the measured states, the terms

p1, p2 and p3 are weights that work as penalization in the

objective function when the terminal states x1ð3Þ, x2ð3Þ and
x3ð3Þ are different to r1ðkÞ, r2ðkÞ and r3ðkÞ, respectively; in
this case, r2ðkÞ ¼ r3ðkÞ ¼ 0 are selected, r1ðkÞ is the

desired angle Hd at sample time k; this is a traditional way

to construct an objective function [6].

Problem P8 can be formulated in the form of P1 as

follows:

min

uð1Þ; uð2Þ
f ðx1ð1Þ; x2ð1Þ; x3ð1Þ; uð1Þ; uð2Þ; r1ðkÞ; r2ðkÞ; r3ðkÞÞ

ð45Þ

Subject to:

g1 ¼ uð1Þ � umax � 0

g2 ¼ �uð1Þ þ umin � 0

g3 ¼ uð2Þ � umax � 0

g4 ¼ �uð2Þ þ umin � 0

ð46Þ

Where function f is the result of substituting the equality

constraints (discretized system dynamic) (43) into (42).

5.2.3 Analysis of P8

As mentioned before, r1ðkÞ, r2ðkÞ and r3ðkÞ are the desired
output, set-pint; according to Fig. 2, then, vectors r ¼
½r1ðkÞ; r2ðkÞ; r3ðkÞ�T and xð1Þ ¼ ½x1ð1Þ; x2ð1Þ; x3ð1Þ� are

useful to be chosen as D; then, we can express x0 as (47):

x0ðk; u; Þ ¼ ½k1; k2; k3; k4; uð1Þ; uð2Þ; r1ðkÞ;
r2ðkÞ; r3ðkÞ; x1ð1Þ; x2ð1Þ; x3ð1Þ�T

ð47Þ

With a verification function (48).

Cðx0Þ ¼
GðuÞk

ruf ðu;DÞ þ
Pm

i¼1 kirugiðuÞ
D

2

64

3

75 ð48Þ

Where:

u ¼
uð1Þ
uð2Þ

� �
; k ¼

k1
k2
k3
k4

2
6664

3
7775;D ¼

r1

r2

r3

x1ð1Þ
x2ð1Þ
x3ð1Þ

2
666666664

3
777777775

;

GðuÞ ¼

g1 0 0 0

0 g2 0 0

0 0 g3 0

0 0 0 g4

2
6664

3
7775

The Jacobian of (48) is (49).

3134 Neural Computing and Applications (2024) 36:3125–3140

123

Using an analysis like the previous example and since

constraints g1 and g2 cannot be active at the same time

(same case with g3 and g4), there are 5 cases generated by

the constraints. Values Ci (i=1,2,...,12), R1, R2, and R3 are

derived from the calculation of the Jacobian and are not

presented in order to maintain clean writing, and we

directly present the requirements for (49) to have maximal

rank in all the cases:

R4 ¼
2p2h

2

ðml2Þ2
þ 2p3h

2

j2d
6¼ 0 ð50Þ

R1 �
R3R2

R4

¼ 2h4ðp1p2j2d þ p1p3ðml2Þ2 þ p2p3k
2ÞÞ

ðml2Þ2ðp2j2d þ p3ðml2Þ2Þ
6¼ 0

ð51Þ

For control purposes, the weight related to x1 must be

p1 [0; the analysis made for problem P8 shows that p2 or

p3 needs to be different to 0; in this case, we used that

information to define those values on equation (42); to

fulfill expression (50) and (51), we selected p1 ¼ 100000,

p2 ¼ 0:1 and p3 ¼ 0:001; as a conclusion for this analysis,

the Jacobian (49) is of maximal rank. The choice of p2 and

p3 based on our proposal shows how this analysis could

help in the definition of the optimization problem, in order

to guarantee that the solution could be approximated by a

Neural Network, in this case, our analysis led us to com-

plement the initial cost function (42).

5.2.4 MPC implementation for example 2

A block diagram of the inertial wheel-driven pendulum

implementation is shown in Fig. 4, and a picture of the real

system is shown in Fig. 5.

The experimental setup selected to implement algorithm

5.2 is described as follows: ACADO toolbox [14] is used to

solve the problem P8 at each sample time in order to

achieve a sampling time h ¼ 0:0075s; Robot Operating

System (ROS) [25] is installed into a Raspberry Pi 4 and

used as a programming environment.

Fig. 4 Block diagram of pendulum implementation

oCðx0�Þ ¼

g1 0 0 0 k1 0 0 0 0 0 0 0

0 g2 0 0 � k2 0 0 0 0 0 0 0

0 0 g3 0 0 k3 0 0 0 0 0 0

0 0 0 g4 0 � k4 0 0 0 0 0 0

1 � 1 0 0 R1 R2 C1 C2 C3 C4 C5 C6

0 0 1 � 1 R3 R4 C7 C8 C9 C10 C11 C12

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

2
666666666666666666666664

3
777777777777777777777775

ð49Þ

Neural Computing and Applications (2024) 36:3125–3140 3135

123

An offline trajectory is programmed as a desired output,

which in each optimal control problem is a constant value

equal to the value of the trajectory in that sampling time.

Figure 6 shows the pendulum’s behavior using the

numerical algorithm ACADO as a numerical algorithm

solver in the MPC.

In this example, the performance of the MPC with

ACADO as an optimization solver is considered adequate

because it achieves the control objective, which, in this

example, is to achieve the unstable equilibrium at H ¼ p
(since this work is not specifically about control, states x2
and x3 are not shown); Fig. 6 shows oscillations around the

desired angle, this is due to the reduction in the Gearmotor

that causes sudden stops when there the PWM is bellow

20%; nevertheless, the objective is considered achieved.

5.2.5 MPC implementation of example 2 with a neural
network

Following the same process as the previous example, the

architecture of the network is shown in Fig. 7; in (52), the

input y0 and output x0 are shown.

y0 ¼

r1

r2

r3

x1ð1Þ
x2ð1Þ
x3ð1Þ

2

666666664

3

777777775

; x0 ¼ u�1 ð52Þ

In this example, every value of x0 in the training data is

obtained by running experiments with the control

scheme of the previous subsection, where r1 was the

desired output (striped line in Fig. 6), r2 ¼ r3 ¼ 0 and x the

states measured at each sample time.

A mean squared error is used as an objective function

with a training error of eP ¼ 3:67� 10�3, the optimizer

used is RMSProp, ReLu is used as hidden layer activation

function, a linear activation function is used in the output

layer, 90% of the 5500 examples according to (52) where

used as data training and 10% as validation data with a

mean squared error of eP ¼ 1:72� 10�3. The data set was

gathered by running 5 times the experiment presented in

Sect. 5.2.4 and prepared using the same procedure as the

data set in Example 1, such data set is available in the

supplementary information.

The performance of this MPC with the neural network

shown in Fig. 7, as an approximator for the solution of

Fig. 5 Frontal and lateral view of the experimental setup

Fig. 6 Desired and actual angle with ACADO as a solver in MPC

Fig. 7 Neural network for example 4: MPC

3136 Neural Computing and Applications (2024) 36:3125–3140

123

problem P8 with the same block diagram of Fig. 4 is shown

in Fig. 8.

The performance of the MPC with ACADO and the

neural network was almost the same in terms of achieving

the control objective. The trajectory-following mean

squared error of the MPC with ACADO is 0.0036 rad, and

for the MPC with neural network is 0.0033 rad.

The time performance after 1000 executions of each

optimal control solver (ACADO and Neural network) is

shown in Table 3; the time performance of the NN was

better in each statistic. One remarkable difference in this

example is that the implementation of optimal control

solvers such as ACADO to solve MPC implementations

requires a microprocessor with more ROM memory,

dynamic memory, and/or RAM than a general-use micro-

controller, in contrast, the implementation of a neural

network does not need that computational power, making it

more suitable for projects where the computational power

is a limitation, that’s why in the following subsection we

perform the substitution of the on-board computer (Rasp-

berry pi 4) for an ARM architecture microprocessor.

5.2.6 MPC implementation on a microcontroller

In Adhau et al. [2], they test the performance of an MPC

implementation using ACADO to generate an embedded

software on ARM Cortex M3 microprocessor, PYNQ

FPGA, and Raspberry Pi. They show that the ARM soft-

ware was not able to run the optimization algorithm due to

a memory overflow. In the experiment presented below, we

implemented the trained network in the last subsection on a

Tensilica Xtensa LX6 32-bit-based microcontroller which

has similar uses as the ARM. This comparison could be

seen as unfair since the microprocessor used has more

RAM and SRAM than the ARM. Nevertheless, this

implementation uses only 271kB of RAM and 42kB of

SRAM, and the ARM shown in [2] has a RAM of 512KB

and 96kB of SRAM.

Even when the selected microcontroller can read both

encoders, we decided to have almost the same experi-

mental implementation as the one used with the Raspberry

Pi, Fig. 9 shows the block diagram.

Similar to the Raspberry Pi MPC implementation, the

NN was hardcoded in the microcontroller implementation,

Fig. 8 Desired and actual angle with a neural network as an approximator for the optimal problem solution in MPC

Table 3 Time statistics of 1000 executions

Statistics ACADO Neural network

Mean (s) 2:8� 10�3 3:28� 10�4

Maximum (s) 0.0117 6:909� 10�4

Minimum (s) 2:7� 10�3 3:14� 10�4

Standard deviation (s) 5:11� 10�4 3:16� 10�5

Fig. 9 Block diagram of pendulum implementation

Neural Computing and Applications (2024) 36:3125–3140 3137

123

which makes it almost identical to the performance shown

in Fig. 10.

On behalf of the time performance, the way we measure

the time of execution was by using the micros() function

provided by the Arduino IDE, which shows the number of

microseconds elapsed since the microprocessor was turned

on, after 1000 executions, the time that it takes to calculate

the output of the neural network is (always) 1:5� 10�4

seconds, this differs to the results in Table 3 due to the use

of a microcontroller instead of a microprocessor with an

operative system on which each execution time can vary

because of the internal process that the microprocessor

could prioritize, while the microcontroller is used dedi-

cated entirely on running the network.

6 Discussion

The examples presented in this work illustrate the precision

of the neural network approximation in solving the opti-

mization problem, Example 2 shows how to use the anal-

ysis using Theorems 1 and 2 to help in complementing the

cost function, nevertheless, it is also shown how the

Jacobian oC
ox0 grows as the dimension of D, x and/or k grow,

and in consequence, it is more difficult to demonstrate that
oC
ox0 is of maximal rank, there is not a general way to avoid

this problem but we can observe that particular modifica-

tions to the optimization problem can help, for instance, on

Example 2, we can work on optimal solutions that always

fulfills the KKT condition (4) with k ¼ 0 and the KKT

second-order condition r2
xxLðx; k;DÞ is definite positive,

then the Jacobian can always be of maximal rank with the

form of (53), even when this can be seen as a solution for

MPC implementation, it will also reduce the family of

application on which it can be implemented. Finding a

family of optimization problems where this analysis could

be used once for all the family could be a starting point for

future work.

oC

ox0
¼

Gðx;DÞ 0 0

rxg1ðx;DÞ ::: rxgmðx;DÞ½ � r2
xxLðx; k;DÞ 0

0 0 Ind�nd

2

64

3

75

ð53Þ

7 Conclusions

We have considered a family of optimization problems in

which we can find the necessary conditions for a neural

network to approximate the solution for a given parameter

vector. In the examples shown in this work, Theorems 1

and 2, sufficient conditions can lead to the use of the

Jacobian as design criteria when using neural networks as

solution approximators replacing numerical algorithms.

In example two, an online application of our results has

been tested with positive results; moreover, the condition

for the Jacobian to be of maximal rank leads to criteria for

choosing weights in the objective function, ensuring

trustworthy substitution of the numerical algorithm by an

NN.

Time consumption and computational power saving can

be improved using an NN instead of a numerical algorithm

for problems where the network can be trained offline.

The work presented has shown that neural networks can

replace numerical algorithms to solve optimization prob-

lems of the family presented; the replacement can be an

improvement in applications in which the computing time

Fig. 10 Desired and actual angle with a neural network as an approximator for the optimal problem solution in microprocessor MPC

implementation

3138 Neural Computing and Applications (2024) 36:3125–3140

123

is important, as well as having the minimum standard

deviation possible; one example is real-time applications.

Analysis similar to example one can lead to defining

families of optimization problems where individual testing

of the conditions of the theorems would not be necessary

since the Jacobian is of maximal rank in every scenario.

Data Availability The data sets generated during and/or analyzed

during the current study are publicly available and can be found at:

https://doi.org/10.17605/OSF.IO/BGYN8.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Abu-Ali M, Berkel F, Manderla M, Reimann S, Kennel R,

Abdelrahem M (2022) Deep learning-based long-horizon MPC:

robust, high performing, and computationally efficient control for

PMSM drives. IEEE Trans Power Electron 37(10):12486–12501

2. Adhau S, Patil S, Ingole D, Sonawane D (2019) Implementation

and analysis of nonlinear model predictive controller on

embedded systems for real-time applications. In 2019 18th

European control conference (ECC). IEEE, pp 3359-3364

3. Baimukashev, D., Sandibay, N., Rakhim, B., Varol, H. A., &

Rubagotti, M. (2020, July). Deep learning-based approximate

optimal control of a reaction-wheel-actuated spherical inverted

pendulum. In 2020 IEEE/ASME international conference on

advanced intelligent mechatronics (AIM). IEEE, pp 1322-1328

4. Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear program

theory algoritm. John Wiley & Sons

5. Bonnans JF, Gilbert JC, Lemaréchal C, Sagastizábal CA (2006)

Numerical optimization: theoretical and practical aspects.

Springer, pp 204–206

6. Camacho EF, Alba CB (2013) Model predictive control. Springer

7. Cichocki A, Unbehauen R (1993) Neural networks for opti-

mization and signal processing. Wiley Inc., pp 169-227

8. Clarke F (1976) On the inverse function theorem. Pac J Math

64(1):97–102

9. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 2(4):303–314

10. Dai L, Cao Q, Xia Y, Gao Y (2017) Distributed MPC for for-

mation of multi-agent systems with collision avoidance and

obstacle avoidance. J Frank Inst 354(4):2068–2085

11. Grossman SI (2008) Álgebra lineal. McGraw Hill Educación,

pp 117-154

12. Horn RA, Johnson CR (2012) Matrix analysis. Cambridge

University Press, pp 486–488

13. Hornik K, Stinchcombe M, White H (1989) Multilayer feedfor-

ward networks are universal approximators. Neural Networks

2(5):359–366

14. Houska B, Ferreau HJ, Diehl M (2011) ACADO toolkit-An open-

source framework for automatic control and dynamic optimiza-

tion. Optim Control Appl Methods 32(3):298–312

15. Karg B, Lucia S (2020) Efficient representation and approxima-

tion of model predictive control laws via deep learning. IEEE

Trans Cybernet 50(9):3866–3878

16. Kreyszig E (1991) Introductory functional analysis with appli-

cations, vol 17. Wiley, pp 20–21

17. Kuhn HW, Tucker AW (1951) Nonlinear programming In: Pro-

ceedings of the second berkeley symposium on mathematical

statistics and probability. University of California Press, Berke-

ley, California, pp 481–492

18. Kumar R, Singh UP, Bali A, Raj K (2023) Hybrid neural network

controller for uncertain nonlinear discrete-time systems with non-

symmetric dead zone and unknown disturbances. Int J Control

96(8):2003–2011

19. Liu N, Wang J, Qin S (2022) A one-layer recurrent neural net-

work for nonsmooth pseudoconvex optimization with quasicon-

vex inequality and affine equality constraints. Neural Netw

147:1–9

20. M1076 analog matrix processor (2021) Mythic. https://mythic.ai/

products/m1076-analog-matrix-processor

21. Martı́n A, Ashish A, Paul B, Eugene B, Zhifeng C, Craig C, Greg

S, Andy D, Jeffrey D, Matthieu D, Sanjay G, Ian G, Andrew H,

Geoffrey I, Michael I, Rafal J, Yangqing J, Lukasz K, Manjunath

K, Josh L, Dan M, Mike S, Rajat M, Sherry M, Derek M, Chris O,

Jonathon S, Benoit S, Ilya S, Kunal T, Paul T, Vincent V, Vijay

V, Fernanda V, Oriol V, Pete W, Martin W, Martin W, Yuan Y

and Xiaoqiang Z (2015) TensorFlow: Large-scale machine

learning on heterogeneous systems. Tensorflow.org

22. MATLAB (2020) version R2020a. The MathWorks Inc, Natick,

Massachusetts

23. Peterson C, Söderberg B (1989) A new method for mapping

optimization problems onto neural networks. Int J Neural Syst

1(01):3–22

24. Prakash A, Wang S, Mitra T (2020) Mobile application proces-

sors: techniques for software power-performance optimization.

IEEE Consum Electron Mag 9(4):67–76

25. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J,

Wheeler R, Ng AY (2009) ROS: an open-source robot operating

system. In ICRA workshop on open source software, vol 3(3.2),

p 5

26. Rafiq MY, Bugmann G, Easterbrook DJ (2001) Neural network

design for engineering applications. Comput Struct

79(17):1541–1552

27. Ren YM, Alhajeri MS, Luo J, Chen S, Abdullah F, Wu Z,

Christofides PD (2022) A tutorial review of neural network

modeling approaches for model predictive control. Comput Chem

Eng 2022:107956

28. Rodriguez J, Garcia C, Mora A, Davari SA, Rodas J, Valencia

DF, Mijatovic N (2021) Latest advances of model predictive

control in electrical drives-Part II: applications and benchmarking

with classical control methods. IEEE Trans Power Electron

37(5):5047–5061

Neural Computing and Applications (2024) 36:3125–3140 3139

123

https://doi.org/10.17605/OSF.IO/BGYN8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://mythic.ai/products/m1076-analog-matrix-processor
https://mythic.ai/products/m1076-analog-matrix-processor

29. Schwarting W, Alonso-Mora J, Rus D (2018) Planning and

decision-making for autonomous vehicles. Annu Rev Control

Robot Auton Syst 1(1):187–210

30. Swingler K (1996) Applying neural networks: a practical guide.

Morgan Kaufmann

31. Villarrubia G, De Paz JF, Chamoso P, De la Prieta F (2018)

Artificial neural networks used in optimization problems. Neu-

rocomputing 272:10–16

32. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,

Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J,

van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N,

Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng

Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R,

Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro

AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors (2020)

SciPy 1.0: fundamental algorithms for scientific computing in

Python. Nat Methods 17(3):261-272

33. Wang P, Ye K, Hao X, Wang J (2023) Combining multi-objec-

tive genetic algorithm and neural network dynamically for the

complex optimization problems in physics. Sci Rep 13(1):880

34. Werbos PJ (1990) Backpropagation through time: what it does

and how to do it. Proc IEEE 78(10):1550–1560

35. Xia Y, Feng G, Wang J (2008) A novel recurrent neural network

for solving nonlinear optimization problems with inequality

constraints. IEEE Trans Neural Netw 19(8):1340–1353

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

3140 Neural Computing and Applications (2024) 36:3125–3140

123

	Neural networks as an approximator for a family of optimization algorithm solutions for online applications
	Abstract
	Introduction
	Theoretical preliminaries
	Family of optimization problems
	On defined optimization problems family

	Sufficient condition for a neural network as an approximator of an optimization problem solver
	Examples of application in numerical optimization problems
	Example 1: numerical experiment
	Analysis of P_6
	Numerical implementation

	Example 2. Model predictive control.
	Problem statement for example 2
	MPC solution for example 2
	Analysis of P_{8}
	MPC implementation for example 2
	MPC implementation of example 2 with a neural network
	MPC implementation on a microcontroller

	Discussion
	Conclusions
	Open Access
	References

