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Abstract
This paper aims to solve the Chinese Postman Problem (CPP) using an Ant Colony Optimization (ACO) algorithm. In

graph theory, the CPP looks for the shortest closed path that visits every edge of a connected undirected graph. This

problem has many applications, including route optimization, interactive system analysis, and flow design. Although

numerous algorithms aimed at solving CPP are present in the literature, very few meta-heuristic algorithms are proposed,

and no ACO applications have been proposed to solve them. This paper tries to fill this gap by presenting an ACO

algorithm that solves CPP (ACO-CPP). To prove its consistency and effectiveness, ACO-CPP is compared with a Genetic

Algorithm (GA) and a recursive algorithm throughout three experiments: (1) recursive-ACO-GA comparisons over ran-

domly generated graphs for the attainment of the global optimum; (2) ACO-GA statistical comparisons over specifically

generated graphs; (3) recursive-ACO-GA comparisons by changing ACO hyperparameters over randomly generated

graphs for the attainment of the global optimum. The experiments prove that the ACO-CPP algorithm is efficient and

exhibits a consistency similar to GA when the number of possible solutions to explore is relatively low. However, when

that number greatly exceeds those explored, ACO outperforms GA. This suggests that ACO is more suitable for solving

problems with a CPP structure.

Keywords Ant colony optimization � Meta-heuristic � Chinese postman problem � Eulerian path � Vehicle routing problem

1 Introduction

The Chinese Postman Problem (CPP), for the first time

proposed by the mathematician Kwan Mei-Ko in 1962 [1],

is a problem that consists of finding the shortest route to

deliver mail, traveling along every road and coming back

to the post office [2].

From its first formulation onward, the CPP has been the

subject of many real-life routing contexts, especially in

urban applications such as garbage collection service, street

sweeping, snow removal, sprinkling of salt on roads,

network maintenance, security patrolling, and postal

delivery service (mail carrier, newspaper boy) [3, 4].

To provide practical illustrations, real estate agents must

traverse on foot through the streets of their area of interest

within the city. They must navigate house by house to

identify properties whose owners are interested in renting

or selling as efficiently as possible. They aspire to

accomplish this task in the shortest amount of time. In

certain cities or specific sections, the need arises for

pedestrian delivery to all residents, akin to the classical

‘‘newspaper boy problem‘‘. This involves manually

sweeping streets and, in some cases, collecting waste and

depositing it into carts. Such scenarios are particularly

prevalent in historic city centers with narrow, winding

streets. Not to mention street tourism, exemplified by a

photographer who wishes to explore every thoroughfare in

a quaint ancient village before deciding on subjects for

photography. The underlying challenge across all these

instances is solving the Chinese Postman Problem (CPP).

The CPP belongs to the Vehicle Routing Problem (VRP)

class. However, many applications are out of this category,

for example, robot exploration, interactive system analysis,

and website usability [5].
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Considering graph theory, given a connected undirected

graph G(N, E) with N nodes and E edges with non-negative

weights, which can be seen, for example, as the modeling

of a road network where nodes are the crossroads and

edges the roads, the CPP problem consists in finding a

minimum-length path that starts at any node and traverses

the network edges at least once before returning to the

starting point [3].

One of the methodologies that can be used to solve this

problem is to exploit the concept that a connected undi-

rected graph G(N, E) has at least one circuit that traverses

every edge exactly once if and only if G contains exactly

zero nodes of odd-degrees, i.e., if every node has an even

degree, i.e., if it is an Euler graph [6].

A connected undirected graph G(N, E) always has a pair

number of odd-degree nodes, so it can be turned into an

augmented graph �GðN;E [ E0Þ by adding duplicated edges

that transform G(N, E) into an Euler graph [6].

In the CPP literature, several works use the Euler graph

methodology for solving efficiently the CPP on directed

and undirected graphs [3, 6–12]. However, among them,

very few are the methods that belong to the class of meta-

heuristics, and within this group, we can mention Genetic

Algorithms (GA) [5] and DNA computing [13].

Meta-heuristics are a kind of algorithmic concepts that

can be used to define heuristic methods applicable to a

broad set of different problems, i.e., in other words, gen-

eral-purpose algorithmic frameworks that can be applied to

various optimization problems with relatively few modifi-

cations [4, 14–16].

Within the domain of meta-heuristic optimization tech-

niques, there exists a diverse array of methodologies

encompassing approaches like Ant Colony Optimization

(ACO) [17–22], Genetic Algorithms (GA) [17, 19–24],

Particle Swarm Optimization (PSO)

[17, 18, 22, 23, 25, 26], Simulated Annealing (SA) [24, 26],

Artificial Bee Colony (ABC) [18, 25], Tabu Search (TS)

[19, 24], Bat Algorithm (BA) [26], Cuckoo Search (CS)

[25], Firefly Algorithm (FA) [25], Grey Wolf Optimization

(GWO) [25], Harmony search (HS) [25], Whale Opti-

mization (WOA) [27], Brain Storm Optimization (BSO)

[17], among others (Table 1).

Although, over the years, new meta-heuristics have been

proposed in the literature, ACO, GA, and PSO have con-

sistently demonstrated their remarkable adaptability to

diverse problem structures. Consequently, these three

methods find frequent application in many practical opti-

mization scenarios (Table 1).

Among these three meta-heuristics, ACO appears to be

better suited to handle the CPP problem than the others.

This preference stems from its extensive history of suc-

cessful applications closely aligned with the distinctive

characteristics inherent to CPP. Notably, ACO’s inaugural

deployment transpired in the Traveling Salesman Problem

(TSP) context, and subsequently, it was used successfully

for a wide array of vehicle routing problems (VRP). Fur-

thermore, it has been harnessed to tackle over one hundred

problems classified within the NP-hard category. Com-

prehensive analysis reveals that ACO possesses two pivotal

strengths: remarkable efficiency attributed to its adequate

local search capabilities and the capacity to facilitate a

robust probabilistic and adaptive solution generation pro-

cess across the search space [4].

ACO is part of the family of meta-heuristic algorithms.

It is a Swarm Intelligence (SI) method that takes inspiration

from the behavior of some ant species depositing pher-

omones on the ground to mark favorable paths that can be

followed by other members of the colony from the nest to a

source of food [4].

ACO algorithms have been generally applied for solving

optimization problems, generating several artificial ants

that build paths that converge to exact or approximate

solutions by exchanging quality information via a com-

munication scheme inspired by ant colony working char-

acteristics [4].

In literature, ACO was used successfully to tackle VRP

problems such as shortest path problem (SPP) [28, 29] and

traveling salesman problem (TSP) [4], but, to the best of

our knowledge, no ACO applications are present for

solving CPP.

This paper tries to fill this gap by presenting a new

algorithm for CPP called ACO-CPP; the algorithm has

been tested and compared with a Genetic Algorithm (GA)

and a recursive algorithm that explores all possible solu-

tions. The results show ACO-CPP proves to be efficient

and consistent. Moreover, it performs equally or better than

GAs.

The present work is structured as follows: Sect. 2 pre-

sents problem definitions and notations about CPP; Sect. 3

shows the general ACO framework and Sect. 4 shows its

real-word applications and most notable variants; Sect. 5

describes the proposed ACO-CPP algorithm; Sect. 6 pre-

sents the experimental results; Sect. 7 presents the con-

clusions drawn.

2 Problem definition

The following is a list of definitions useful to present the

notation used and enhance the understanding of this paper

(Fig. 1).

• Undirected graph G(N, E) �! consists of a set of N of

nodes and a set E of undirected edges where each edge
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eu ¼ ðni; njÞ in E connects two nodes ni and nj in N, and

has a positive weight wðeuÞ [2].
• Connected undirected graph �! represents a graph

with a path for every pair of nodes ni; nj 2 N, i.e., from

each node ni to every node nj [3].

• Path (or chain) �! in an undirected graph G is a

sequence of adjacent edges connected through a node

each other [3].

• Circuit (or cycle) �! consists of a closed path whose

initial and final nodes coincide, i.e., a path where the

starting point corresponds to the ending point [3].

• Degree of a node dðniÞ �! in an undirected graph G, is

the number of edges which is incident to the node [2].

• Eulerian path (or Eulerian trail) �! is a path that visits

every edge exactly once (allowing for revisiting

vertices more times).

• Euler’s Circuit (or tour, or cycle) �! is an Eulerian

path that starts and ends on the same node, i.e., a circuit

traverses every edge exactly once. A connected undi-

rected graph G where at least an Eulerian circuit exists

is defined as Euler’s graph.

In terms of Graph Theory, in a connected undirected

graph G(N, E), the CPP final objective is finding a closed

path (or circuit) that visits every edge at least once in such

a way as to obtain a tour with the lowest total cost [5, 2].

An essential and well-known result in the literature as

part of Euler’s Theorem claims that a connected undirected

graph G has a circuit that traverses every edge exactly once

if and only if precisely zero nodes of odd-degrees are

contained in it (i.e., if every node has an even degree) [3].

This means that when every node in a graph G has an

even degree, at least one Eulerian tour exists, and all

possible Eulerian tours represent optimal solutions to the

CPP. Thanks to this result, a possible approach for

addressing the CPP, given a graph G comprising both even

and odd-degree nodes, involves the conversion of odd-de-

gree nodes into even-degree nodes. This transformation

renders the graph even, and an even graph inherently

possesses Euler’s tours. One possible method for solving

the CPP, when provided with a graph, is to add edges

e0u 2 E0 to G to find the minimum-cost augmentation G0 of

G that satisfies the even-degree property for all nodes, i.e.,

dðniÞ ¼ 2k 8ni 2 N.

Suppose the degree of each node of a graph G is even. In

that case, at least an Eulerian tour exists. Therefore, a

possible CPP solution consists of finding the minimum-cost

augmentation G0 of G by adding edges in such a way as to

satisfy the even nodes’ property. In this way, an augmented

Euler’s graph �G ¼ G [ G0 will be generated, and the

solution will be finally found by identifying a route over it

[5, 2]. The problem of adding edges in such a way to satisfy

Table 1 Most recent articles related to the following two search modes: ‘‘Comparisons between meta-heuristics’’ and ‘‘meta-heuristic approaches

for solving the vehicle routing problem, Chinese postman problem, and traveling salesman problem’’

Title Year Method

Metaheuristic algorithms for solving the inverse kinematics of robot

manipulators [25]

2022 PSO ABC CS FA/

GWO/

HS

Solving a traveling salesman problem using meta-heuristics [27] 2022 WOA

An agglomerative greedy brain storm optimization algorithm for solving

the TSP [17]

2020 PSO ACO GA BSO

An enhanced swap sequence-based particle swarm optimization algorithm

to solve TSP [18]

2021 PSO ACO ABC

A review of the optimization algorithms on traveling salesman problem

[19]

2015 ACO GA TS

A critical analysis of the bat algorithm [26] 2020 PSO SA BA

Optimizing functional near-infrared spectroscopy (fNIRS) channels for

schizophrenic identification during a verbal fluency task using

metaheuristic algorithms [23]

2022 PSO GA

A statistical comparison of metaheuristics for unrelated parallel machine

scheduling problems with setup times [20]

2022 ACO GA

Heuristic methods for vehicle routing problem with the windows [24] 2000 GA SA TS

A nature inspired parameter tuning approach to cascade control for

hydraulically driven parallel robot platform [22]

2015 PSO ACO GA

Improved ant colony genetic algorithm for solving traveling salesman

problem [21]

2020 ACO GA
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the even nodes property can be mathematically formalized

as follows:

Find the set:

E0 � E ð1Þ

Minimize:

W ¼
X

wðe0uÞ; e0u 2 E0 ð2Þ

Subject to:

8ni 2 N 9k 2 N j dðniÞ ¼ 2k ð3Þ

�G ¼ G [ G0 ¼ ðN;E [ E0Þ is the Euler’s graph where there

is the solution of the CPP, G0 is a minimum-cost aug-

mentation of the graph, and dðniÞ is the degree of the

generic node ni. In this case, it is required that each node

becomes even [2].

The Handshaking Lemma states that in every finite

undirected graph, the number of nodes with odd degrees is

always even [30–32]. Therefore, a widespread method used

to satisfy the even nodes property consists of connecting

pairings of odd nodes through shortest paths (SPs). Solving

the CPP, therefore, means finding the minimum-cost

augmentation composed of the sum of SPs between couples

of nodes with odd degrees.

As long as a method of solution for the CPP consists of

finding a minimum-cost augmentation, an algorithmic

method that wants to explore all the possible solutions to

turn a non-Euler graph G into an Euler graph �G and find in

it an Euler tour would be written in the following steps:

1. Find all the odd nodes in the graph G. The total number

is always even [3, 5].

2. Determine each possible pairing of odd nodes and find

all the possible pairwise matching of SPs [3].

3. Explore all the possible combinations of pairings of

odd node couples.

4. Select the one with the shortest total length.

5. Build a graph �G ¼ G [ G0.

6. Find an Euler tour on �G.

The final tour is a circuit that is a CPP optimal solution on

the original graph, and its length is equal to the total length

of the edges in E plus the total length of the edges E0 due to
the minimum-length matching [3]. An Euler graph makes it

easy to find the Euler tour using well-known algorithms

Fig. 1 Graphs representation

and its characteristics
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such as Fleury’s or Hierholzer’s algorithm (description in

Sect. 5)[33, 3].

Exploring all the possible combinations of pairings of

odd node couples is an exact method. However, it is

unfeasible for problems with significant amounts of odd

nodes as, given the number of odd nodes Nodds of a graph

G, the number of possible combinations of pairings of odd

node couples c is the semi-factorial of the number n� ¼
Nodds � 1 which corresponds to the product of the number

n� with all the odd integers preceding it, that is:

c ¼ n�!! ¼ n� � ðn� � 2Þ � ð. . .Þ � 3 � 1

¼
Yn
��1
2

m¼0
2mþ 1; n� ¼ 2k þ 1; k 2 N

ð4Þ

3 Evolving the solution: the ACO strategy

In numerous ant species, ants release a substance known as

pheromone onto the ground as they travel to and from a

food source. This pheromone presence is detected by fel-

low ants, who then choose routes with higher concentra-

tions. This mechanism enables ants to transport food to

their nest efficiently.

Ant colony optimization is a meta-heuristic iterative

algorithm formalized for the first time by Dorigo et al. [34].

Within the framework of ACO, artificial ants work col-

lectively to construct solutions for an optimization prob-

lem. They share information about solution quality using a

communication scheme (pheromone updating) that resem-

bles the natural communication methods employed by real

ants.

The objective of the pheromone update process is to

enhance the pheromone levels associated with favorable or

promising solutions while reducing those connected with

unfavorable ones. Typically, this is accomplished through

two main steps: first, a reduction in all pheromone values

through pheromone evaporation, and second, an increase in

the pheromone levels related to a selected group of

advantageous solutions [4].

This algorithm framework generates several artificial

ants at each iteration, individually building a solution by

walking from node to node along a graph that encodes the

problem [4]. At the moment of each choice, an ant selects

one node rather than another according to a stochastic

mechanism biased by a parameter s called pheromone, a

variable associated with each edge that can be read and

modified by ants and whose aim is to be higher where the

solution results more convenient.

More specifically, let us consider a generic node ni

connected to a certain number of edges in which an arti-

ficial ant is located; each edge has a probability of being

crossed that is a combination of a stochastic mechanism

value with a proportional-to-pheromone value associated

with it.

At the end of each iteration, based on the quality of the

solutions constructed by the ants, pheromone values are

updated of an amount Ds in such a way as to bias the next

iteration ants in constructing solutions similar to the best

ones obtained in the previous iteration. In other words,

after the pheromone is deposited, subsequent artificial ants

are brought to use pheromone information as a guide

toward best quality search space regions [4].

Inside the iteration, the ACO meta-heuristic algorithmic

general framework can be traced back to three main phases

as shown in Algorithm 1:

1. AntsGeneration: a set of Nant artificial ants is gener-

ated and constructs solutions traveling through feasible

steps without violating the constraints. Given a graph

G, the process can be imagined as a walk on it where

the choice of each edge is guided by a stochastic

mechanism biased by the pheromone, respectively,

associated. The rule of the stochastic-pheromone

choice varies across the different ACO algorithms

proposed in literature [4].

2. LocalSearch: included in state-of-the-art ACO algo-

rithms [4] consists of improving the solutions obtained

through a local search.

3. PheromoneUpdating: the pheromone is updated

according to pheromone values that are associated

with good quality artificial ant solutions, and it is

decreased through pheromone evaporation [4].

Algorithm 1 ACO general framework [4]

4 ACO: real-word applications and most
notable variants

ACO has widely applied to various real-world scenarios.

Throughout its history, the typology of real-life applica-

tions where ACO has found greater diffusion are routing,

assignment, scheduling, and subsetting problems. How-

ever, it is essential to note that this list is not exhaustive, as

ACO and its variants have demonstrated their effectiveness

in an extensive range of applications [4]. Recent examples

of ACO applications include its utilization in solving the

Waste Collection Routing Problem (WCRP). This problem

Neural Computing and Applications (2024) 36:2901–2920 2905
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involves designing an optimal route to serve all customers

(represented as nodes) with minimal total travel time or

distance while employing the fewest number of vehicles,

considering specific constraints such as vehicle capacity

[35]. ACO has also been employed to address the Dynamic

Traveling Salesman Problem (DTSP). In this scenario, a

supplier must deliver parcels to customers, with parcels

arriving at the depot during distribution. The time a parcel

arrives at the depot is referred to as its release date [36]. In

E-logistics, ACO has been instrumental in tackling the

VRP for service providers, where vehicles must strategi-

cally visit pick-up nodes, such as warehouses, before

making customer deliveries. This multifaceted problem

entails minimizing total travel costs while accommodating

real-world constraints like heterogeneous vehicles, capac-

ity limits, time windows, and driver working durations

[37]. Additionally, ACO has been effectively employed in

optimizing trajectory tracking for nonlinear three-rigid-link

maneuvers (RLM) [38] and minimizing non-productive

tool travel time in drilling processes [39]. ACO’s versatility

also extends into the realm of optimizing neural network

algorithms [40]. In the context of cloud computing, where

service providers grapple with resource allocation, secu-

rity, privacy, and virtual machine migration, ACO has

proven successful in scheduling heterogeneous tasks, thus

enhancing Quality of Service (QoS) for clients as the

volume of client requests escalates within cloud environ-

ments [41]. Lastly, ACO has recently been employed to

generate optimal trajectories for industrial robots in

machining and additive manufacturing applications [42]. In

summary, ACO’s versatility and effectiveness have led to

its adoption in various applications, showcasing its adapt-

ability and value in addressing complex real-world

problems.

Numerous ACO algorithms have been introduced in the

academic literature. In this context, we outline the primary

characteristics of the three most prominent variants,

namely Ant System (AS), MAX-MIN Ant System

(MMAS), and Ant Colony System (ACS).

• Ant System (AS): AS is primarily characterized by the

simultaneous pheromone value updates performed by

all k ants that have constructed a solution during each

iteration [43]. In this scenario, the pheromone update

process is executed as follows:

sði; jÞ  ð1� qÞsði; jÞ þ
XN ant

k¼1
Dskði; jÞ ð5Þ

where q represents the evaporation rate, Nant denotes

the total number of ants, and Dskði; jÞ is the amount of

pheromone deposited on the edge (i, j) by ant k. Ant

System is the first ACO algorithm proposed in the

literature [43] and is generally used for solving routing

problems.

• MAX-MIN Ant System (MMAS): distinctive features

of MMAS include the exclusive pheromone trail

updates performed solely by the best ant and the

imposition of a pheromone value boundary [44]. The

pheromone update process is executed in the following

manner:

sði; jÞ  ½ð1� qÞsði; jÞ þ DsBestði; jÞ�smax
smin

ð6Þ

here, smax and smin represent the upper and lower

bounds set for pheromone levels, often determined

empirically. The operator ½x�smax
smin

is defined as follows:

½x�smax
smin
¼

smax x[ smax

smax x\smin

x otherwise

8
><

>:
ð7Þ

and DsBestði; jÞ is as follows:

DsBestði; jÞ ¼
1=LBest eu 2 Tour

0 otherwise

�
ð8Þ

where LBest represents the length of the tour undertaken

by the best ant. The determination of the best tour

length depends on the choices made by the designer,

whether it is based on the best ant of the current iter-

ation (iteration-best) or the best ant observed since the

beginning of the algorithm (best-so-far).

• Ant Colony System (ACS): the most interesting con-

tributions of ACS [45, 46] is the introduction of a local

pheromone update in addition to the pheromone update

performed at the end of the construction process (offline

pheromone update). The local pheromone update is

performed by all the ants after each construction step.

Each ant applies it only to the last edge traversed by

using:

sði; jÞ ¼ ð1� /Þsði; jÞ þ /s0 ð9Þ

where / 2 ð0; 1� is the pheromone decay coefficient,

and s0 is the initial value of the pheromone. The pri-

mary aim of the local update is to introduce diversity

into the search conducted by subsequent ants within an

iteration. By decreasing the pheromone concentration

on traversed edges, ants encourage the selection of

different edges by subsequent ants, generating distinct

solutions. This reduces the likelihood of multiple ants

producing identical solutions during a single iteration.
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5 ACO-CPP: ant colony optimization for CPP

5.1 General algorithm framework

In the context of ACO, an algorithm for solving the CPP

can be conceptualized as follows: The CPP involves

identifying the optimal pairings of odd nodes through SPs

to minimize the total cost. In our ACO-CPP approach, each

ant consists of a set of pairings of odd nodes, where each

pair represents an SP. The quality of an ant’s path is

determined by the total length, or cost, which corresponds

to the sum of its SPs.

Over several iterations, a group of ants is generated.

During the initial iteration, ants are created using a

heuristic scheme. Specifically, ants select random odd

nodes to move between, following a rule prioritizing higher

likelihood pairings resulting in shorter SPs. This initial

iteration serves as a heuristic exploration phase to find

better solutions. At the end of each iteration, ants that have

discovered superior solutions deposit a significant amount

of pheromone along their paths, while those with inferior

solutions contribute less. Throughout the paths marked by

pheromones, the evaporation chemical agent works to

decrease pheromone levels across the solution space

uniformly.

Starting from the second iteration, the pheromone

parameter exerts influence. During the construction of each

path, the ant is influenced by the heuristic factor and the

pheromone level, which represents the collective experi-

ence of previous ants in the search. As iterations progress,

the pheromone component increasingly affects the choices

of the ants, leading to more ants following a common path,

which indicates algorithm convergence toward a solution

(Fig. 2). If the search space has been sufficiently well

explored and the pheromone has guided ants to converge

along the best path, the global optimum of the CPP can be

attained.

In light of this operational framework, we introduce the

Ant Colony Optimization for CPP (ACO-CPP). The algo-

rithm begins by constructing a matrix denoted as D, rep-

resenting the SPs between pairs of odd vertices within the

initial graph G. Subsequently, the ants aim to identify the

optimal combination of SPs whose total length yields the

minimum-cost augmentation, denoted as G0. This entails

minimizing
P

wðeuÞ0. Finally, Hierholzer’s algorithm

obtains the Eulerian graph �G by finding a possible Euler

tour. The general ACO-CPP framework is shown in Fig. 3.

More in detail, the ACO-CPP algorithm starts from the

undirected graph G ¼ ðN;EÞ and gives as output an undi-

rected graph �G ¼ ðN;E [ E0Þ running the following

procedure:

1. Get odd nodes: All the Nodds odd-degree nodes are

identified in G; Nodds is always even [3].

2. Matrix of odd-pairs-SPs construction: a square anti-

diagonal matrix of distances D of order Nodds is built,

i.e., a matrix which contains in its cells the SPs

between odd nodes. Each index represents an odd

node, and each cell is the SP cost between the

corresponding odd-degree nodes, i.e., the minimum-

length matching. In other words, in such a matrix, for

each pairing, we find the edges that connect the odd

vertices with the shortest possible path. Dijkstra’s

algorithm calculates the shortest route between each

pair.

3. ACO search: The core of the ACO-CPP algorithm

presented in this paper consists of finding the best

combination of SPs between odd nodes (pairwise

matching), which minimizes the total cost of the

augmentation through an ACO search. According to

this, two matrices, g and s, are generated starting from

the matrix D described as follow:

• Attractiveness matrix(g): matrix of order Nodds

computed as the reciprocal of D changing the

diagonal values as 0 as in Equation (10). This

matrix represents the contribution, during the

selection of the shortest path (SP) by an ant, of

choosing one SP over another with a higher

probability based on the length of the SP:

gði; jÞ ¼ 1

Dði; jÞ ; i 6¼ j; gði; iÞ ¼ 0: ð10Þ

• Pheromone matrix(s): matrix of order Nodds that at

the starting point has for each cell the user-selected

value s0 as in Equation (11). As the iterations

progress, this matrix will see its values change due
Fig. 2 Example of a convergence graph obtained by using ACO-CPP

with 50 ants for 100 iterations on a graph with 48 nodes, 24 of which

have odd degrees, and with edge weights ranging from 1 to 1000
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to the contributions of the ants from past iterations.

Specifically, its cell values will change positively

the more past ants have found particular SPs more

convenient, considering their entire path. Simulta-

neously, all the cell values will change negatively

due to the contribution of pheromone evaporation.

This matrix represents the contribution, during an

ant’s selection of an SP, of choosing one SP over

another with a higher probability based on what the

experience of the past ants suggests as being more

convenient.

s ¼
s0 . . . s0

..

. . .
. ..

.

s0 . . . s0

0
BB@

1
CCA ð11Þ

At this point, it is necessary to find the best combi-

nation of odd pairings whose SPs sum is the least

possible. Each combination represents an ant and sig-

nifies the additional edges needed to solve CPP.

The ants generation consists in the generation of

Nant ants for itmax iterations. Each ant is associated

with a probability matrix P, defined as a Hadamard

product (element-wise product) between g and s. At the
beginning of the ants construction, this matrix appears

the same for all ants in the current iteration. However,

its values are subsequently modified differently based

on the choices made by the ants during their con-

struction process. Each cell represents a potential

choice (SP) made by an ant as it traverses its path.

Following this scheme, when an ant selects one cell

over another, it implies that the ant chooses an SP

between two nodes rather than an alternative one.

Specifically, matrix P is described as follows:

• Probability matrix (P): matrix defined as the

Hadamard product of Equation (12) with a and b,
two parameters user-selected called pheromone and

heuristic weights, which aim to control the relative

importance of the pheromone versus the heuristic

information [4]:

P ¼ ðsaÞ � ðgbÞ: ð12Þ

Such a matrix has the aim to outline the pairings

for Nodds=2 times. At first, a normalization of

matrix P is generated:

Pði; jÞ  Pði; jÞP
i;j Pði; jÞ ; ð13Þ

then, through a selection criterion, a couple of odd

nodes are selected; lastly, all the elements present

in the rows and columns corresponding to the

chosen nodes are set to 0. These three steps are

repeated for Nodds=2 times. Our ACO-CPP used

the Roulette selection method as a selection crite-

rion. Roulette selection is a kind of selection in

which the probability that one solution is selected is

directly proportional to the pheromone value owned

by the solution itself [47]. To establish a connection

between this definition and the current problem, let

us consider a scenario in which we have a proba-

bility matrix. From this matrix, we must select a

single cell representing a potential SP between two

odd nodes. This process involves two main steps.

Fig. 4 Example of constructing a Hierholzer’s Euler Tour using the

previously augmented graph as an illustration

Fig. 3 The ACO-CPP general

framework
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Firstly, we normalize all the values within the

matrix by dividing them by the sum of all the values

in matrix P. This normalization ensures that the

values are appropriately scaled. Secondly, we

compute the cumulative sum of all the elements in

the matrix, resulting in a set of values falling within

the range [0, 1]. At this stage, a random number in

the range [0, 1] is generated, and the cumulative

sum determines the boundaries within which this

number falls. These boundaries indicate the selec-

ted indexes corresponding to the choice.

After the construction of ants during an iteration,

a pheromone update is applied, which has two

components:

• Pheromone reinforcement: for each ant, pher-

omone is updated thought the formula of Equa-

tion (14), where Dsði; jÞ is the quantity of

pheromone laid on the edge ðni; njÞ by each ant, L

is the length of the tour constructed, and Q is a

constant user-selected:

sði; jÞ  sði; jÞ þ Dsði; jÞ; with Dsði; jÞ ¼ Q

L
;

ð14Þ

• Pheromone evaporation: for each iteration, pher-

omone evaporates thought the formula of Equa-

tion (15) where q is a constant user-selected called

Evaporation Rate:

sði; jÞ  ð1� qÞsði; jÞ; ð15Þ

Similarly to many other ACO algorithms in the liter-

ature [4], the ACO-CPP algorithm has features such as

the pheromone updating in both its forms pheromone

(reinforcement and evaporation) and the probability

matrix. However, the latter is used as a matrix of SPs

between odd nodes and presents the consequent

manipulations described in ‘‘Probability matrix (P)’’

point to adapt it to the CPP structure problem. The

graphic representation of the ACO search is shown in

Fig. 5.

4. Augmented Graph construction: an Ant is a possible

solution to the CPP problem (combination of odd

pairings), and the WinnerAnts are the best solutions the

ACO-CPP algorithm has found. The best-found com-

bination of extra edges G0 is used to generate a new

augmented graph �G ¼ G [ G0 ¼ ðN;E [ E0Þ that con-
tains no nodes of odd-degree; such a graph, known as

Euler Graph, has the property of containing at least one

possible route that may be a solution for the CPP [2],

and, such a possible route, known as Euler Tour, can be

found through algorithms like Hierholzer’s one [33, 3].

5. Hierholzer Euler Tour: An Euler tour is found using

Hierholzer’s algorithm. The general framework of

Hierholzer’s algorithm is the following: choose any

starting node ni, and follow a trail of edges from that

node until returning to ni. It is impossible to get stuck

at any node other than ni, because the even degree of

all vertices ensures that, when the trail enters another

node nj, an unused edge must be left nj. The tour

formed this way is a closed tour but may not cover all

the vertices and edges of the initial graph. As long as

there exists a node nk that belongs to the current tour

but that has adjacent edges not part of the tour, start

another trail from nk, following unused edges until

returning to nk, and join the tour formed in this way to

the previous tour. Since we assume the original graph

is connected, repeating the previous step will exhaust

all edges of the graph [48]. Such a circuit represents a

CPP optimal solution whose length is equal to the total

length of the edges in G plus the total length of the

edges in the minimum-length matching [3].

5.2 Encoding

ACO-CPP algorithm is written using PYTHON, and graphs

are represented using a weighted adjacency matrix and node

table encoding. In this context, the graph is represented as a

square weighted matrix which has the names of the nodes of

the graph as row and column indexes so that, if there exists an

edge from node ni to node nj, in the place ðni; njÞ there is a
number corresponding to its weight. Otherwise, it is 0. The

weighted node table encoding is a matrix Nedgesx3 where the

three columns indicate the starting node, the ending node,

and the weight of an edge of G.

Weighted adjacency matrix encoding was beneficial in

getting the odd nodes from the graph, and weighted node

table encoding showed its advantage for the random gen-

eration of weights during the graph construction.

We used the PYTHON object class for artificial ants

representation, characterized by two properties: Tour and

Cost. The Tour is a list of lists where each sub-list is an odd

vertices pairing. Cost is a float64 variable that contains the

SPs sum of all the odd pairings. The ant object structure is

defined as in Algorithm 2.

Algorithm 2 Ant encoding
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6 Experimental analysis

To evaluate the ACO-CPP performances, we developed an

algorithm to execute various test cases. In each test case,

we create a connected graph and then identify the best

solution using different combinations of:

• Recursive algorithm proposed by Araz Sharma1

• Genetic Algorithms of Jiang Hua and Kang Li-shan[5].

• ACO-CPP algorithm.

The following subsections will describe the various

experiment components, the experimental setup and the

experiment results.

6.1 Graph generation

Our graph generation algorithm can generate a connected

undirected graph with a desired number of nodes that are

randomly connected and with each weight value ranging

within the integer values [1; 1000]. Such a function was

designed to manage the number of nodes and the count of

Fig. 5 Workflow of the core of

the ACO-CPP. Red boxes

represent the nested for

iterations inside the main for

cycle (green boxes). Besides, in

one for cycle, there is a sub-

nesting for cycle (orange

boxes)

1 Sharma, A., Chinese Postman in Python: Detailed Implementation

& Explanation, with particular emphasis on a unique approach to

generating Odd Vertex Pairings using Recursion. Towards Data

Science, (2020), available at: https://towardsdatascience.com/chinese-

postman-in-python-8b1187a3e5a.
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odd nodes. Specifically, in the first phase, an undirected

graph with random connections where it is guaranteed the

property of connection GFC is generated by considering as

an object the number of nodes provided (Nnodes). Then,

considering the number of odd nodes (Nodds) user-required,

an augmented graph GA is built by randomly connecting

the nodes. The edges of both graphs are considered, and if

there are present self-loops or extra-edges, they are deleted.

New edges are added until the number of odd nodes user-

desired is obtained. Lastly, the two graphs are merged,

getting G, a not-weighed graph, and as the last step, each

edge is assigned a random weight ranging from 1 to

Wmax ¼ 1000. The pseudo-code of graph construction is

provided in Algorithm 3.

Algorithm 3 Undirected connected graph generation pseudo-code

6.2 Recursive algorithm

In the recursive algorithm, starting from the identified odd

nodes, all possible combinations of pairings are computed,

along with the corresponding subsequent cost of graph

augmentation. Among all the costs, the lowest value is

selected and stored.

6.3 Genetic algorithm

Genetic Algorithms have an object coding identical to

ACO-CPP. There is a matrix of SPs, and solutions are

coded as Genotypes, which are objects made by a list of

pairing of odd nodes (Tour) and a relative cost graph

augmentation (Cost).

In such an algorithm, an initial population is considered

for a certain number of iterations. Then, using selection

criteria, a portion pm and pc of it is chosen to produce a new

generation of child solutions through genetic operators like

mutation and crossover. Finally, from all the solutions in

the current iteration, a subset is selected to form the next

generation for the subsequent iteration. Roulette wheel

selection is always applied as a selection criterion, and the

best solution is selected at the end of the algorithm.

During the mutation process, for each pm;i genotype, two

random integers are generated within the range ½1;Nodds�,
which will represent the indices in the Genotype Tour to be

exchanged. To provide an example, let us assume

Nodds ¼ 8. When the mutation operator is applied to a

genotype, it randomly generates two indices, for instance,

i ¼ 3 and j ¼ 7. The operator then exchanges the genotype

values at positions i and j. As a result:

GentypeðiÞnew ¼ GenotypeðjÞold GentypeðjÞnew ¼ GenotypeðiÞold

ð16Þ

During crossover, a pair of genotypes is selected. A pair of

indexes corresponding to the position of a pair of odd

nodes in genotypes tour is individuated. Odd node values

are exchanged along those positions, and consequently, the

remainder of the genotype list tours are adjusted. To pro-

vide an example, let us assume Nodds ¼ 8. When the

crossover operator is applied to a genotype, it randomly

generates two adjacent indices, denoted as i and j, both

starting from an odd number. For instance, let us consider

i ¼ 3 and j ¼ 4. Next, two genotypes, labeled a and b, are

randomly selected from the population, and the odd nodes

between them are exchanged based on the specified indi-

ces, with adjustments made to the remaining elements. This

process can be described as follows:

GentypeðiÞa;new ¼ GenotypeðiÞb;old

GentypeðjÞa;new ¼ GenotypeðjÞb;old

ð17Þ

GentypeðiÞb;new ¼ GenotypeðiÞa;old

GentypeðjÞb;new ¼ GenotypeðjÞa;old

ð18Þ

6.4 ACO-CPP algorithm

The ACO-CPP algorithm starts from the odd nodes infor-

mation, generates the matrix of SPs D, and then for itmax
iterations develop Nant. Each ant is built in this way: at the

beginning are constructed the initial pheromone matrix s
and the heuristic matrix g, then the matrix P ¼ ðsaÞ � ðgbÞ.
Such a matrix for the number of odd pairings divided 2

times, for Nant ants, in a first moment, is updated in the

matrix Pði; jÞ ¼ Pði;jÞP
Pði;jÞ, then, using the function Roulette

wheel selection, finds the two odd nodes to connect and sets
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all the elements of both rows and columns of the odd nodes

indexes to 0.

After each iteration, pheromone updating is applied as

illustrated in Equation (14) and Equation (15). Specifically,

at the end of each iteration, every ant contributes to updating

the matrix s. This contribution, the pheromone reinforce-

ment, is more significant the shorter the total path the ant has

traversed along the cells of s, which corresponds to the tour

undertaken by the ant itself (Equation (14)). Following the

reinforcement phase, the evaporation phase is implemented,

involving a uniform reduction of all s values by an amount

specified in Equation (15). The underlying idea is to utilize

pheromone reinforcement to emphasize more favorable

paths while employing pheromone evaporation to diminish

less favorable paths.

The ACO-CPP algorithm is built in such a way as to

store the artificial ant, which shows the best solution of all

(Winner Ant). During the experiment, its hyperparameter

settings are those of Algorithm 4.

Algorithm 4 ACO-CPP parameters set in the experiment

6.5 Experimental setup

To evaluate the ACO-CPP performance, three different test

cases were carried out. We conducted the experiments 300

times to measure the effectiveness and the consistency of

ACO-CPP, setting the ACO-CPP parameters as in Algo-

rithm 4. For both meta-heuristics, we varied the choice of

the number of solutions explored (ants for ACO, and pm

and pc for GA) and the number of iterations within the

range of 10 to 40. A more comprehensive description of the

experiment is as follows:

• Experiment 1: Recursive-GA-ACO comparison con-

ducted to measure the meta-heuristics ability to obtain

the global optimum (Algorithm 5). We considered

graphs with varying numbers of odd nodes (ranging

from 4 to 12) and various combinations of hyperpa-

rameters designed to maintain a similar number of

solutions explored by the meta-heuristics. We per-

formed 300 measurements for different combinations of

graphs and hyperparameters to assess the augmentation

brought about by ACO and GA. This allowed us to

determine how often GA and ACO achieved the global

optimum during their respective runs.

• Experiment 2: GA-ACO statistics comparison for

measuring consistency and reproducibility (Algorithm

6). Five graphs with varying numbers of odd nodes

(ranging from 4 to 12) are generated (see Fig. 6 in

Sect. 1). Using different combinations of hyperparam-

eters designed to maintain a similar number of solutions

explored by the meta-heuristics, we conducted 300

measurements for each graph and hyperparameter

combination to calculate the graph augmentation pro-

duced by ACO and GA. From these measurements, we

computed the average and standard deviation. The

lower the average and standard deviation, the more

consistent the algorithm can find the best solution.

• Experiment 3: Recursive-GA-ACO comparison con-

ducted to measure the ability of meta-heuristics to

achieve the global optimum when varying the ACO

parameters a and b (Algorithm 7). This test case is

identical to the first one but explores different combi-

nations of hyperparameters a and b. The aim was to

investigate whether the proposed experimental setup

inherently exhibits characteristics that result in different

modes of exploring the search space to find the best

solution, depending on the chosen graph parameters.

The goal was to find the best combination of hyperpa-

rameters for solving it most effectively.

To conduct the experiments, we employed a computer

equipped with 12 GB of RAM and an i5 processor (2.30

GHz). With these specifications, the computer could solve

problems using the recursive algorithm and store all pos-

sible solutions in memory for graphs with up to 12 odd

nodes within a relatively short time frame. It required

several minutes to solve problems with 14 nodes, but it
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could not handle problems with 16 nodes or more. This

description emphasizes as in this case, it is possible to find

exact solutions for the CPP, but in general, as problems

become more complex, finding exact solutions becomes

impractical or exceedingly time-consuming, and the meta-

heuristics advantages start to show up.

The primary challenge in meta-heuristics is to obtain the

global optimumwithout getting trapped in a local minimum.

To assess the ability of ACO-CPP to attain the global

optimum with a certain level of accuracy, it is necessary to

compare it with an exact algorithm, such as the recursive

algorithm. Additionally, it is crucial to determine whether

the inherentworking scheme ofACO-CPP is better suited for

solving problems like CPP compared to other meta-heuris-

tics, therefore requiring a comparison with GA.

Algorithm 5 Experiment 1

Table 2 Number of tests where

the best solution is found by

varying the parameters Pm, Pc

and itmax for GA, while Nant
and itmax for ACO (ACO best

results over GA in bold)

Genotypes/Ants Number of tests where the best solution is found

½Pm=Pc� Nant itmax 4 Odds 6 Odds 8 Odds 10 Odds 12 Odds

6/6 10 300/300 299/300 220/300 72/300 8/300

10 10 300/300 297/300 282/300 242/300 192/300

6/6 20 300/300 300/300 271/300 134/300 39/300

10 20 300/300 296/300 292/300 285/300 243/300

10/10 10 300/300 300/300 275/300 121/300 21/300

20 10 299/300 297/300 300/300 279/300 248/300

10/10 20 300/300 300/300 299/300 201/300 57/300

20 20 300/300 300/300 293/300 286/300 267/300

10/10 30 300/300 300/300 300/300 258/300 103/300

20 30 300/300 297/300 295/300 292/300 261/300

16/16 20 300/300 300/300 300/300 254/300 97/300

30 20 300/300 299/300 294/300 287/300 267/300

16/16 30 300/300 300/300 300/300 279/300 145/300

30 30 300/300 300/300 298/300 287/300 280/300

16/16 40 300/300 300/300 300/300 354/362 163/242

30 40 300/300 298/300 295/300 341/362 213/242

20/20 30 300/300 300/300 300/300 291/300 181/300

40 30 300/300 299/300 298/300 288/300 278/300

20/20 40 300/300 300/300 300/300 296/300 226/300

40 40 300/300 300/300 296/300 291/300 273/300
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Algorithm 6 Experiment 2

Algorithm 7 Experiment 3
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Table 3 Minimum, maximum, average, and standard deviation of graph augmentations when the best solution is found in 5 graphs (ranging from

4 to 12 odd nodes) over 300 runs

Minimum, maximum, average and standard deviation of the best meta-heuristic solutions

itmax 4 Odds 6 Odds 8 Odds 10 Odds 12 Odds

½Pm=Pc� Nant Stat GA ACO GA ACO GA ACO GA ACO GA ACO

10 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2621.0 2157.0 3217.0 1741.0 4393.0 2686.0

6/6 Average 1270.0 1270.0 1197.0 1197.0 2300.4533 2157.0 2141.2633 1741.0 3300.8933 2335.8933

10 Std Dev 0 0 0 0 181.4907 0 382.6489 0 455.6600 60.3899

20 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2621.0 2157.0 3031.0 1741.0 4082.0 2396.0

6/6 Average 1270.0 1270.0 1197.0 1197.0 2211.7866 2157.0 1923.79 1741.0 2989.6566 2316.35

10 Std Dev 0 0 0 0 125.1705 0 286.9127 0 448.7917 10.3868

10 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2621.0 2157.0 2505.0 1741.0 4082.0 2396.0

10/10 Average 1270.0 1270.0 1197.0 1197.0 2213.5066 2157.0 1964.7366 1741.0 3037.0233 2315.27

20 Std Dev 0 0 0 0 131.6749 0 301.2844 0 404.4056 4.6765

20 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2481.0 2157.0 2347.0 1741.0 3685.0 2315.0

10/10 Average 1270.0 1270.0 1197.0 1197.0 2165.64 2157.0 1785.4733 1741.0 2708.5566 2315.0

20 Std Dev 0 0 0 0 52.2859 0 143.9865 0 346.6172 0

30 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2621.0 2157.0 2453.0 1741.0 4006.0 2315.0

10/10 Average 1270.0 1270.0 1197.0 1197.0 2165.0266 2157.0 1799.2766 1741.0 2672.3366 2315.0

20 Std Dev 0 0 0 0 52.5542 0 169.1625 0 351.3382 0

20 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 2453.0 1741.0 3364.0 2315.0

16/16 Average 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1754.32 1741.0 2554.8533 2315.0

30 Std Dev 0 0 0 0 0 0 82.5749 0 276.6442 0

30 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 3410.0 2315.0

16/16 Average 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2440.7166 2315.0

30 Std Dev 0 0 0 0 0 0 0 0 195.8497 0

40 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 3028.0 2315.0

16/16 Average 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2375.1166 2315.0

30 Std Dev 0 0 0 0 0 0 0 0 122.2043 0

30 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 2144.0 1741.0 3120.0 2315.0

20/20 Average 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1742.3433 1741.0 2388.7366 2315.0

40 Std Dev 0 0 0 0 0 2157.0 23.2672 0 143.089 6 0

40 Min 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2315.0 2315.0

Max 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 3028.0 2315.0

20/20 Average 1270.0 1270.0 1197.0 1197.0 2157.0 2157.0 1741.0 1741.0 2349.3566 2315.0

40 Std Dev 0 0 0 0 0 0 0 0 85.9779 0

The parameters Pm, Pc, and itmax are varied for GA, while Nant and itmax are varied for ACO
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Table 4 Number of tests where

the best solutions is found by

varying the parameters Pm, Pc

and itmax for GA, while Nant,
itmax, a, and b for ACO (best

results in bold)

ACO hyperparameters

a = 0.5, b = 1.5

a = 1, b = 1

a= 1.5, b = 0.5

Number of tests where the best solution is found

Nant ½Pm;Pc� itmax 4 Odds 6 Odds 8 Odds 10 Odds 12 Odds

299/300 294/300 281/300 250/300 217/300

10 10 299/300 298/300 287/300 241/300 191/300

300/300 299/300 282/300 214/300 118/300

6/6 10 300/300 298/300 229/300 60/300 10/300

299/300 293/300 292/300 277/300 246/300

10 20 300/300 296/300 288/300 279/300 250/300

300/300 299/300 284/300 260/300 225/300

6/6 20 300/300 300/300 278/300 144/300 43/300

298/300 298/300 285/300 283/300 253/300

20 10 299/300 298/300 288/300 282/300 238/300

300/300 300/300 291/300 274/300 204/300

10/10 10 300/300 300/300 268/300 204/300 23/300

299/300 298/300 291/300 279/300 269/300

20 20 300/300 299/300 293/300 280/300 273/300

300/300 300/300 294/300 272/300 259/300

10/10 10 300/300 300/300 296/300 202/300 61/300

297/300 300/300 295/300 290/30 272/300

20 30 300/300 299/300 294/300 285/300 273/300

300/300 300/300 296/300 287/300 253/300

10/10 30 300/300 300/300 300/300 253/300 117/300

297/300 300/300 291/300 285/30 279/300

30 20 299/300 300/300 294/300 287/300 276/300

300/300 300/300 294/300 280/30 271/300

15/15 20 300/300 300/300 299/300 249/30 96/300

299/300 295/300 296/300 288/30 275/300

30 30 300/300 297/300 295/300 286/300 277/300

300/300 300/300 296/300 277/300 266/300

15/15 30 300/300 300/300 300/300 278/300 165/300

299/300 300/300 300/300 293/300 281/300

30 40 299/300 299/300 298/300 292/300 277/300

300/300 300/300 298/300 290/300 270/300

16/16 40 300/300 300/300 300/300 288/300 205/300

300/300 297/300 296/300 288/300 280/300

40 30 300/300 298/300 296/300 288/300 272/300

300/300 300/300 299/300 289/300 270/300

20/20 300/300 300/300 300/300 289/300 188/300

300/300 298/300 298/300 290/300 284/300

40 40 300/300 300/300 299/300 288/300 281/300

300/300 299/300 299/300 291/300 276/300

20/20 300/300 300/300 300/300 292/300 227/300
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6.6 Experimental results

Tables 2, 3, and 4 show the results of experiments 1, 2, and

3, respectively. In Table 2, the number of tests where GA

and ACO-CPP found the best solution is represented. In

Table 3, the graph augmentations’ minimum, maximum,

average, and standard deviation. Finally, in Table 4, the

number of tests where the best solution was found by GA

and ACO-CPP while changing a and b.
Experiment 1: test results demonstrate that ACO-CPP

exhibits effectiveness and can converge toward the best

solution with success rates of 91% when the parameters

Nant and itmax are optimized according to the computa-

tional complexity of the problem. Furthermore, comparing

meta-heuristics, it is noteworthy that GA excels at finding

the global optimum when the number of solutions to

explore is limited. In contrast, ACO-CPP consistently

performs well in finding the global optimum, especially in

scenarios involving a wide range of potential solutions.

Experiment 1 reveals that ACO-CPP may not achieve the

global optimum as effectively as GA when dealing with a

relatively small number of possible solutions. However, it

demonstrates high effectiveness when the number of

solutions increases significantly.

Experiment 2: test results show that ACO-CPP is more

efficient and consistent than GA when it comes to obtain-

ing the best solutions in different runs. It consistently

demonstrates an equal or significantly lower average best

solution for all combinations and an equal or lower stan-

dard deviation.

Experiment 3: test results seem to suggest that the

proposed experimental setup is more easily solvable with

pheromone-based influence when the number of odd nodes

is less than 10. Conversely, it appears more easily solvable

with heuristic influence or a balanced combination of

heuristics and pheromones when the number of odd nodes

equals 12. The case with 10 nodes does not seem to exhibit

a clear preference.

In our interpretation, the first experiment shows that

when the hyperparameter settings are not optimized, ACO-

CPP exhibits advantages for complex problems but also

weaknesses when dealing with problems involving a lim-

ited number of solutions. The second experiment demon-

strates that ACO-CPP is a consistent algorithm, a desirable

meta-heuristic characteristic. Lastly, the third experiment

reveals that ACO-CPP is suitable when hyperparameters

are well set, even for problems with limited solutions.

Additionally, it unveils some other very interesting char-

acteristics: when an ant is at a point and has to decide

which point to move to (a couple of nodes), it has several

choices to consider. The ant’s decision is influenced by two

forces, each contributing to the choice. The first force that

can be seen as a ‘‘convenience force’’ is related to the

proximity of the nodes (the shortest path), and the closer

two nodes are, the higher the likelihood of selecting them

(heuristic force). The second force that can be seen as a

‘‘past experience force’’ is associated with the number of

ants that have previously passed through a particular cou-

ple of nodes and found it to be a good choice; the higher

this count, the greater the probability of selecting that node

(pheromone force).

In the experiment, assigning a higher value to a instead

of b is meant to give more importance to the pheromone

force in the first case and more importance to the heuristic

force in the second one. The results of the ACO experi-

ments reveal a certain pattern in the quality of solutions.

This pattern suggests that, in general, for problems with a

limited number of solutions to explore, giving more

importance to the pheromone force is advantageous. When

the number of odd nodes is 10, there is not one force that

outperforms the others. Ultimately, when the number of

possible solutions becomes significantly larger, it appears

that a heuristic or a balance between heuristic and pher-

omone forces is more favorable to choose. So, when the

ants give more weight to the pheromone force, graphs with

fewer than 10 nodes are better solved (relying on past ant

experiences). When more weight is given to the heuristic

force or a balance between the two is struck, more complex

graphs are solved more effectively.

GA finds solutions using three main operators: mutation,

crossover, and reproduction, each with its distinct way of

exploring the search space. Mutation can be seen as a

‘‘random exploration force’’, capable of exploring different

regions of the search space without a specific logic.

Reproduction can differently be seen as a ‘‘past experience

force’’, favoring solutions that have proven beneficial in the

past. Finally, crossover, similarly to reproduction, employs

the ‘‘past experience force’’ to conduct local searches and

explore the solution space.

A meta-heuristic can be more valuable than others in

different contexts, depending on how well its exploration

scheme aligns with the structure of the problem’s solutions.

Therefore, ACO-CPP appears to perform well, as GA, in

problems with a limited number of solutions when pher-

omone and heuristic parameters are properly configured.

Above all, ACO seems to be well-suited to solving CPP

due to its intrinsic nature for problems with a high number

of nodes generating a large number of potential solutions.

7 Conclusions

This paper proposes a solution to the Chinese Postman

Problem using an Ant Colony Optimization Algorithm

(ACO-CPP). ACO has demonstrated successful
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applications in both academic and real-world contexts.

While it has proven to be a highly effective method for

addressing route problems and other NP-hard category

problems over time [4], to the best of our knowledge, it has

never been tested on the CPP problem.

In this work, our ACO-CPP is evaluated through

experiments conducted on connected undirected graphs

with randomly generated connections between nodes and

edge weights randomly ranging from 1 to 1000. To assess

its consistency and effectiveness, ACO-CPP is compared

with a Genetic Algorithm (GA) and a recursive algorithm

in three separate experiments: (1) recursive-ACO-GA

comparisons involving randomly generated graphs to find

the global optimum; (2) statistic comparisons between

ACO and GA using specifically generated graphs; (3)

recursive-ACO(a/b)-GA hyperparameter comparisons over

randomly generated graphs for the attainment of the global

optimum.

The first and third experiments show the algorithm is

efficient. With the correct choice of hyperparameters, it can

match the performance of GA when dealing with problems

with a limited number of solutions to explore (less than 10

odd nodes). However, it surpasses GA when addressing

problems with a significantly larger number of solutions to

explore, achieving the global optimum with a high likeli-

hood (greater than 91%). Additionally, the second experi-

ment demonstrates that ACO-CPP exhibits better

consistency than GA across different runs.

In the context of the experiments, both GA and ACO

appear to perform well when the number of solutions is

relatively low, likely because there is no meta-heuristic

search method that outperforms significantly. However, as

the number of odd nodes increases, GA’s performance

seems to decline, leading solutions toward local minima.

On the contrary, ACO appears more adaptable, possibly

due to its pheromone-heuristic approach, making it better

suited to tackle the context.

As indicated in Equation (4), the number of solutions to

explore increases drastically with the increasing number of

pairs of odd nodes in the graph. The real novelty of our

ACO-CPP is its ability to address problems with many

solutions to explore and to obtain the global optimum by

exploring only a reduced portion of the search space,

especially in a context like that of CPP. This is achieved

while demonstrating superior performance and consistency

compared to the other method proposed (GA).

The presented ACO-CPP highlights all the meta-

heuristic strengths because, thanks to the pheromone

updating strategy, the artificial ants converge toward find-

ing the global optimal solution for a high percentage of

attempts while keeping the number of generated solutions

low. At the same time, it contains the typical meta-heuristic

weaknesses such as the risk of falling into local optima or

the difficulty in deciding which are the best parameters to

choose [49].

Due to its algorithmic structure, ACO-CPP seems suit-

able for solving problems such as Directed Chinese Post-

man Problem (DCPP) and Mixed Chinese Postman

Problem (MCPP). Future works will be aimed at designing

new experiments to measure its performance in this con-

text. This will involve adapting the recursive algorithm to

these contexts and proposing new meta-heuristics to solve

such problems for highly complex graphs.

Appendix A: graphs used for experiment 2

See Fig. 6.

Fig. 6 Graphs used for experiment 2

2918 Neural Computing and Applications (2024) 36:2901–2920

123



Acknowledgements The authors are deeply thankful to the Grant

Office of the University of Foggia for their support. Furthermore, they

sincerely thank Dr. Raffaele Sgarro for his precious contribution to

reviewing the code scripts.

Funding Open access funding provided by Università di Foggia
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