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Abstract
Multimodal Human Action Recognition (MHAR) is an important research topic in computer vision and event recognition

fields. In this work, we address the problem of MHAR by developing a novel audio-image and video fusion-based deep

learning framework that we call Multimodal Audio-Image and Video Action Recognizer (MAiVAR). We extract temporal

information using image representations of audio signals and spatial information from video modality with the help of

Convolutional Neutral Networks (CNN)-based feature extractors and fuse these features to recognize respective action

classes. We apply a high-level weights assignment algorithm for improving audio-visual interaction and convergence. This

proposed fusion-based framework utilizes the influence of audio and video feature maps and uses them to classify an

action. Compared with state-of-the-art audio-visual MHAR techniques, the proposed approach features a simpler yet more

accurate and more generalizable architecture, one that performs better with different audio-image representations. The

system achieves an accuracy 87.9% and 79.0% on UCF51 and Kinetics Sounds datasets, respectively. All code and models

for this paper will be available at https://tinyurl.com/4ps2ux6n.
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1 Introduction

Recent advances in the deep learning architectures,

improvements in communication mechanisms of Graphics

Processing Unit (GPU) hardware, as well as software

stacks have provided a boost in supporting computationally

complex tasks such as Multimodal Human Action Recog-

nition (MHAR). Understanding activities in a multimodal

information setting are a complex and resource hungry

task, one which has become an important research problem

in computer vision. Audio and video-based action recog-

nition has many potential applications in: visual acoustics-

based platforms; as described by Gao and Grauman [9];

sports analytics as noted by Vinyes Mora and Knottenbelt

[64]; smart social surveillance for COVID-19 as detailed

by citehuu2022action; self-driving vehicles as identified by

Kala [23]; and content-based search systems as examined

by Gibbon and Liu [13].

An action could be defined as: ‘‘Action is the most

elementary human -surrounding interaction with a mean-

ing’’ [19, p.2]. Action recognition typically aims to dis-

cover a class of short, segmented, atomic actions. Due to

their multifaceted nature, some of these approaches refer to

action recognition as plan recognition, goal recognition,

intent recognition, behavior recognition, location estima-

tion, event recognition and interaction recognition, as

evident in Shaikh and Chai [51], Vandersmissen et al [63],

Slade et al [54] and Jing et al [21], respectively. Human

Action Recognition (HAR) is the process of labeling
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actions performed by humans within a given sequence of

images, where it becomes the classification of goals of

human agents in a series of image frames.

It is observable that many objects in our daily life

operate concurrently to give meaning to an activity. This

interaction relies on quantifiable, yet multimodal signals.

Accordingly, joint learning of these multimodal quantities

may result in better feature representation for any down-

stream analysis. Multimodal understanding is a natural

human ability. In the context of MHAR, the goal is to

improve recognition performance by collecting critical

features from distinct modalities. These candidate features

are then combined using an optimal aggregation strategy,

which contributes to the overall learning of an action cat-

egory. From an early age, humans become used to applying

different senses to acquire visual as well as acoustics

information from their surroundings in order to understand

an event. However, recent approaches have generally

ignored the contribution of audio data in enhancing action

recognition. Further, multimodal data fusion has benefits

that can be applied across different fields Boehm et al [3].

Audio signals have significant properties that help with

efficient recognition in videos, where audio contains

dynamics and rich contextual temporal information Gaver

[12]. Most importantly, audio has a much lighter compu-

tational complexity as compared to video frames. Across

an entire video, audio can also be beneficial for selecting

critical features that are useful for recognition. For exam-

ple, the sound of a person talking at the start of a video can

suggest that the actual action has not yet started, while the

sound of an electric saw may indicate that the action is

taking place. Figure 1 shows a scenario where audio fea-

tures combined with video features yield a significant

improvement in recognizing classes where audio features

are the discriminating factor. In Fig. 1a, the sample

instance was incorrectly classified as a ‘‘Boxing Speed

Bag’’ with video-only features. However, with the fusion of

audio-image and video features, the same instance was

correctly recognized as ‘‘Boxing Punching Bag’’ due to

distinct audio features (shown in Fig. 1b).

Video modality contains spatial information, which is

inherently helpful for CNN-based classification architec-

tures. To better capture multimodality aspects of action

data, a recent trend has been to combine information from

different modalities, such as optical flow, RGB-difference

and warped-optical flow Wang et al [66]. For example, as

shown in Fig. 1, within a short clip of action of ’Boxing a

Punching Bag’, a single audio-image frame contains most

of the dynamic contextual information contained in the

audio, (i.e., the sound of a boxing glove hitting the bag),

while the accompanying video clip contains useful cues of

spatial dynamics.

Advanced computer vision technologies and artificial

intelligence algorithms have been proposed to recognize

human actions. Accordingly, Convolutional Neural Net-

works (CNNs) have been successful in image classification

Paoletti et al [45], Seo and Shin [50], Wan et al [65],

Sharma et al [53], digital recognition Baldominos et al [2],

Tao et al [60], Kulkarni and Rajendran [27], object

detection Jung et al [22], Deng et al [6] and many infor-

mation retrieval domains. In action recognition research,

CNN studies have predominantly used visual data, which is

rich in spatial information. However, most of these works

have not exploited the temporal and contextual information

that lies in accompanying audio.

In this paper, we pose and seek to answer the following

questions: (Q1) How well can CNN encode audio signals

using image-based representations? (Q2) How does

knowing information from one modality influences the

model in learning the action efficiently? (Q3) How do we

Fig. 1 Illustration of an

example a miss-classified

unimodal (Video-only)

compared to b correctly

classified example with

multimodal data (Audio-

image?Video) using proposed

MAiVAR framework
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fuse information found in both modalities so that it

improves model performance? While related questions

may been studied in the literature, to the best of our

knowledge, no study has been conducted to answer these

collective questions as a whole. Hence, we propose the

Multimodal Audio-Image and Video Action Recognizer

(MAiVAR) framework, a CNN-based audio-image to

video fusion-based technique that can be applied to video

and audio features for classifying actions. Additionally, we

propose an approach to extract meaningful image repre-

sentations of audio, which can significantly improve clas-

sification scores when used with CNN-based models.

The benefits of the proposed MAiVAR are threefold.

Firstly, MAiVAR has shown superior performance to

outperform state-of-the-art models on the same data con-

figuration for video representation when evaluated on

UCF51 Takahashi et al [58] and Kinetics Sounds Arand-

jelovic and Zisserman [1] datasets. Secondly, MAiVAR

naturally supports both audio and video inputs and can be

applied to different tasks without any change of architec-

ture. In particular, the models we used have different

architectures for video and audio feature extraction. In

contrast, existing video-only models typically require

variants of RGB modality to obtain optimal performance,

such as optical flow, warped-optical flow and RGB dif-

ference. Thirdly, compared with state-of-the-art video-

based CNN models, experimental results show that MAi-

VAR features converge faster during training. To the best

of our knowledge, MAiVAR is the first audio-image to

video fusion-based action classification framework that

uses image-based representations of audio to leverage CNN

architecture for better action recognition. The key contri-

butions of our work can be summarized as follows:

• We introduce MAiVAR, and a new multi-staged

multimodal framework that supports novel dominant

head audio-visual fusion. Our fusion approach elimi-

nates expensive fusion operations, significantly reduc-

ing the computational complexity of the model. Our

framework can be applied to different tasks with

minimal changes to the overall architecture.

• We build a new feature representation strategy to select

the most informative candidate representations for

audio-visual fusion.

• Unlike previous methods, we propose a high-level

weights assignment algorithm for better audio-visual

interaction and convergence.

• We achieve state-of-the-art or competitive results on

standard public benchmarks, validating the generaliz-

ability of our proposed approach through an extensive

evaluation.

This paper is a significant extension of our previous

work Shaikh et al [52] in a number of aspects. We extend

the original MAiVAR framework to validate scalability

and generalization by testing on a larger dataset (i.e.,

Kinetics-Sounds). We also provide more detailed discus-

sion on technical aspects and include more comprehensive

review of the related literature to better contextualize our

contribution.

The remainder of the paper is structured as follows.

Section 2 describes how our work differs from other clo-

sely related works on MHAR using audio and visual

modalities. Section 3 describes our proposed methodology.

Section 4 discusses the dataset and the training environ-

ment of the system. Section 5 provides an analysis and

comparison of the results obtained using the proposed

approach, and Sect. 6 presents the conclusion of this paper.

2 Related work

Much research has been conducted in the field of MHAR

Takahashi et al. [58], Long et al. [40], Tian et al. [61],

Brousmiche et al. [5], Li et al. [30–32, 35], Li and Tang

[34], where methods have been designed to combine

information from distinct modalities. This section uncovers

some existing works related to our approach, examining

them in terms of feature extraction and multimodal action

recognition approaches.

2.1 Feature extraction

Feature extraction is a process for yielding critical infor-

mation from raw instances, which in turn contributes to the

learning process. Temporal Segment Network (TSN) is

used as a feature extractor based on its temporal pooling of

frame-level features, where it has been rigorously used as

an efficient video feature extractor for different problems.

Gate-Shift Module (GSM) can turn a 2D CNN into a highly

efficient spatio-temporal feature extractor. For example,

when TSN is plugged into GSM Sudhakaran et al. [56], an

accuracy improvement of 32% is achieved. Furthermore,

Yang et al. [68] have used TSN with soft attention mech-

anism to capture important frames from each segment.

Moreover, Zhang et al. [69] have used the TSN model as a

feature extractor with ResNet101 for efficient behavior

recognition of pigs.

Recently, TSN has been adapted as a backbone in video

understanding scenarios Lei et al. [29], Girdhar et al. [14],

Li et al. [33], Zhou et al. [70], Kwon et al. [28] and is

typically used in conjunction with a succeeding module. In

Kwon et al. [28], TSN was employed as a 2D CNN

backbone to learn motion dynamics in videos. However,

IRV2 has been used for feature extraction from images Mei

et al. [43], helping with different image restoration and

enhancement tasks Gu et al. [16], Yan et al. [67].
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MAFnet Brousmiche et al. [5] are a multi-level atten-

tion-based fusion network that uses a lateral connection in

the form of a Feature-wise Linear Modulation (FiLM) layer

to incorporate modality conditioning among audio and

video clip streams. MAFnet uses both intermediate feature

fusion and late fusion of features to project the effect of the

combined feature, which adds an overhead to the overall

workflow. Spatial-Temporal Network (StNet) He et al. [17]

adapt IRV2 to model local and global spatio-temporal

features. The closest works to ours are Takahashi et al. [58]

and Wang et al. [66]. Takahashi et al. [58] have classified

audio events using 3D CNN with some representations of

audio action data, while we have proposed a different audio

representation strategy. Similarly, the temporal segment-

based approach used by Wang et al. [66] applies optical

flow modality variants with RGB, while our work uses

RGB-based features using TSN as the feature extractor for

the visual stream.

2.2 Multimodal action recognition

Multimodal action recognition employs multi-stream

approaches to incorporate different modalities. Motivated

by successes in image classification, CNNs have also been

applied in different visual action recognition works, where

several approaches have been designed to gain the benefits

of appearance information. TSN Wang et al. [66], TRN

Zhou et al. [70] and TSM Lin et al. [37] all are based on 2D

CNNs. All three models employ a two-stream approach

that uses both RGB and optical flow. Besides RGB and

optical flow streams, Temporal Binding Networks (TBN)

Kazakos et al. [25] adds audio as an additional modality as

well. SlowFast Feichtenhofer et al. [8] uses two RGB

streams with different resolutions and frame rates.

IMGAUD2VID Gao et al. [10] introduces a video

skimming mechanism for untrimmed videos, aided by

audio, to eliminate both short-term and long-term redun-

dancies. Accordingly, it uses audio to extract dynamic

scene information along with a single frame that captures

most of the appearance information, in order to form an

image-audio pair. These pairs are then used to select key

moments from the video for action recognition. Unlike

IMGAUD2VID, our idea captures more spatial information

along with the holistic dynamic information of the scene

from the image representations of audio.

An optimal strategy to fuse features from different

modalities is critical to take maximum advantage of each

modality. Existing multimodal action recognition approa-

ches have used fusion at early Feichtenhofer et al. [7],

middle Roitberg et al. [48] and late Patel et al. [47] stages

of neural networks. Different levels of fusion in the net-

work have been tested by Long et al. [39]. However, most

of these approaches have used only visual modalities. In

Long et al. [38], concatenation was used to fuse the visual

and audio modalities. Complex fusion techniques, such as

multimodal compact bilinear pooling (MCB) Gao et al.

[11] or dual multimodal residual fusion (DMR) Tian et al

[61] have also been studied.

In recent years, the surge in mobile device usage has

underscored the need for robust security measures, partic-

ularly given the integral role smartphones play in our lives

and the looming threats to user privacy. To address this, Li

et al. [32] has introduced ADFFDA, an innovative mobile

continuous authentication system that integrates an Adap-

tive Deep Feature Fusion scheme and a transformer-based

GAN for Data Augmentation, employing common smart-

phone sensors like the accelerometer, gyroscope, and

magnetometer, achieving a remarkably low mean equal

error rate of 0.01%. Similarly, DeFFusion, another system

by Li et al. [31], harnessed the same sensors but focused on

CNN-based continuous authentication by transforming

time domain data into the frequency domain, with an error

rate of 1.00 % in a 5-second window. Furthermore,

FusionAuth exploited these sensors to capture user

behavior, employing two novel feature fusion strategies

and achieving error rates as low as 1.47 % Li et al. [30].

Beside authentication, the massive influx of community-

contributed images has led to advancements in image

understanding. For instance, the Deep Collaborative

Embedding (DCE) model, as proposed by citeli2018deep,

seeks to understand these images by unifying the latent

space for images and tags. Concurrently, the weakly

supervised deep metric learning (WDML) algorithm

leverages both visual content and user tags for more effi-

cient image retrieval, addressing challenges like noisy or

subjective tags Li and Tang [34]. These diverse yet inter-

related studies collectively highlight the evolving land-

scape of device security and image understanding, stressing

the importance of leveraging deep learning techniques and

sensor data for better results.

2.3 Chromagram representations

Chroma features have been widely used in action recog-

nition because they are effective not only in capturing the

musical and rhythmic structure of action, but also in the

spectral information of an audio signal compactly and

efficiently. The main justification for using chroma features

for action recognition lies in their ability to represent the

pitch content of an audio signal in a musically meaningful

way. Chroma features are derived from the short-time

Fourier transform (STFT) of an audio signal, where each

frame of the STFT is mapped onto a 12-dimensional pitch

class profile. This pitch class profile summarizes the energy

of each pitch class in the frame, thereby providing a con-

cise representation of the harmonic content of the signal.
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For example, in a dance performance, the rhythm of the

music and the dancer’s movements is highly correlated.

Chroma features can capture this correlation by highlight-

ing the prominent pitch classes in the music and the cor-

responding rhythmic patterns in the dancer’s movements.

Similarly, in sports action recognition, the sound of the ball

being hit or kicked can be captured by the chroma features,

which can then be used to identify the type of sport being

played. Another advantage of chroma features is their

robustness to noise and variations in audio signal. Since

chroma features only capture the pitch content of an audio

signal, they are less sensitive to changes in the timbre or

dynamics of a signal. This makes them particularly useful

for recognizing actions in noisy or challenging environ-

ments where other features may be more prone to error.

Gouyon et al. [15] have shown that rhythmic descriptors

based on chroma features are effective for musical genre

classification. Moreover, chroma features are among the

most effective audio features for human action recognition,

particularly for recognizing actions that are accompanied by

music. In addition, chroma features are robust to variations

in the audio signal. Besides this, Lidy and Rauber [36] have

evaluated feature sets and fusion strategies for genre clas-

sification of music, finding that chroma features are rela-

tively robust to variations in the timbre and dynamics of the

signal. Similarly, citeravanelli2018learning have used

chroma features to learn speaker representations for speaker

diarization and found that they are robust to noise and

reverberation. Overall, the selection of chroma features for

action recognition is justified by their ability to capture the

musical and rhythmic structure of an action robustly and

effectively. These characteristics make them a popular

choice for many researchers and practitioners in the field.

3 Proposed methodology

In this section, we describe our overall proposed frame-

work, which fuses multimodal (audio-image and video)

data for action recognition. We start by providing a brief

overview of our proposed approach. We then discuss

individual components of the framework, which consist of

video and audio streams. Furthermore, we discuss network

architectures of visual and audio feature extractors. This is

followed by a brief discussion about the multimodal fusion

network, which fuses the features from individual streams.

3.1 Overview

Figure 2 presents the schematics of the MAiVAR frame-

work. We split each video V into k number of segments s of

equal duration so that an ith video sample could be defined

as

Vi ¼ fs1; s2; :::; skg: ð1Þ

A short snippet is then randomly selected from each seg-

ment. We then extract visual feature maps

ðfv1; :::; vTg; vt 2 RDvideoÞ and audio feature maps

ðfa1; :::; aTg; at 2 RDaudioÞ with pretrained modality specific

CNNs. Features maps are then reduced using average

pooling, which extracts t ¼ 1; :::; T temporal features

across k ¼ 1; :::;K modalities. Accordingly, we obtain a

richer multimodal representation of the entire video. These

features are then passed through a Multimodal Fusion

Network (MFN), which outputs the learned classifications.

The output of the framework is y 2 RN with N being the

number of classes. An example scheme of feature fusion is

shown in Fig. 3. To go beyond simple fusion, we initialize

the fusion network with weights from a trained Video

Multi-Layer Perceptron (VMLP) model. The weights from

VMLP are then directly injected into the fusion model,

which helps the fusion model perform quicker

convergence.

3.2 Visual stream

The duration of video input is t seconds, which is then

converted into a frame-based representation that is com-

patible with TSN. This is then fed as an input to the TSN

feature extractor. Each video clip thus represents an action

example. We extract the feature from TSN using the

AvgPool2d layer while pruning the original average con-

sensus layer. TSN produces an embedding of size 1024�
25 to allow the model to capture the spatio-temporal

structure of the RGB video. The resulting sequence is then

fed as input to the fusion model. The advantages of this

setup are: 1) the standard TSN architecture is easy to

implement and reproducible as it is off-the-shelf in Ten-

sorFlow and PyTorch, and 2) we intend to apply transfer

learning for Fusion MLP, whereby a standard architecture

makes transfer learning easier. We have adapted the

MMAction21 interface for using TSN as a feature

extractor.

3.3 Audio stream

For audio with a duration of t seconds, we convert it into an

image-based representation. This results in a 299� 299

image-based representation, referred to as an audio-image

of the whole action data sample. This audio-image is then

fed as an input to the IRV2 backbone. We then extract the

audio features from IRV2 using the AvgPool2D layer while

pruning the original classification layer. IRV2 produces an

embedding of size 1536 to allow the model to capture the

1 https://mmaction2.readthedocs.io/en/latest/.
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spectral audio information through image-based represen-

tation. The resulting sequence is then fed as input to the

fusion model. The advantage of this simple setup is that the

standard IRV2 architecture performs better on audio-image

representations as compared to several other CNN-based

models (discussed in Sect. 5.2), whereby it is compara-

tively easy to reproduce, as it is off-the-shelf and available

with PyTorch.2

3.4 Segment diffuser

A segment diffuser uses a TSN-based Wang et al [66]

feature extractor, pretrained with Kinetics-400 for pro-

jecting our visual embeddings. In TSN, the original

BNInception backbone is used. The consensus layer is

removed to expose features from the AvgPool2D layer of

the TSN model. The features from TSN are then fed as

input to the visual multilayer perceptron, which classifies

visual features into class labels. The weights from the

trained VMLP are then used to initialize the fusion

network.

3.5 Chroma diffuser

A chroma diffuser uses an IRV2-based feature extractor

initialized with weights from ImageNet for creating audio

embeddings for the audio MLP. In IRV2, all gradients were

kept frozen and the last layer was removed to expose

features from the average pooling layers of the model. The

Fig. 2 Overview of our proposed multi-staged architecture. In stage 1,

along the audio stream, the 2D audio is transformed into a grid-

compatible representation, which is subsequently resized to 224�
224 for feature extraction through chroma diffuser and then, linearly

projected onto the stage 2 for Multimodal Fusion. Along the visual

stream, the visual input is passed through a segment diffuser and then,

linearly projected onto the stage 2 for fusion. The output of the stage 2

is used for classification with a linear layer. For the fusion network,

weights from Video MLP were used to initialize the stage 2

Fig. 3 Scheme showing the

multimodal model architecture.

The audio-DNN and video-

DNN models output

independent action prediction

L1 and L2, respectively, based

on their respective input

datasets. The features from the

average pooling layers of the

audio-DNN and video-DNN are

combined to feed the fusion

module, which outputs the

multimodal action prediction

Lmulti

2 https://pytorch.org/docs/stable/index.html.
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features from IRV2 were then fed as input to the fusion

module, which fuses it with visual features.

3.6 Dominant head fusion

Dominant Head Fusion (DHF) processes unimodal feature

representations separately and then, learns a joint repre-

sentation using a middle layer. DHF concatenates the

visual and audio feature vectors and classifies the com-

bined feature dimension into action labels. The VMLP

model produces higher classification accuracy. Therefore,

the weights from the trained visual network were used to

initialize items and to fine-tune the DHF process.

All hidden layers, except the last fully connected layer,

are equipped with Rectified Linear Unit (ReLU) nonlin-

earity. The fusion network was trained by minimizing the

cross-entropy loss L with l1 regularization using back-

propagation:

h� ¼ argmin
W

X

i;j

Lðxij þ zij; y
i
j;WÞ ð2Þ

where xij and zij are the jth input vector from audio and

video features, respectively, yj is the corresponding class

label, and W is the set of network parameters, respectively.

For the audio-video fusion model, we used initialization

weights from the video classification model (see Algorithm

1). Empirically, the weights from the video model boost the

convergence speed of the fusion model.

Algorithm 1 Weights assignment algorithm

4 Experimental setup

4.1 Datasets

We evaluated the MAiVAR on two popular action recog-

nition datasets: UCF51 Takahashi et al [58] and Kinetics

Sounds Arandjelovic and Zisserman [1].

UCF51 is a subset of standard benchmark dataset

UCF101 Soomro et al [55] for action recognition. UCF101

consists of 13, 320 videos of 101 human action categories,

such as Apply Eye Makeup, Blow Dry Hair and

Table Tennis. However, 6,836 videos from 51 action

classes have audio channels. The average video length is

7.0 s. This dataset was partitioned into three splits for

training and testing. Number of samples per class is shown

in Fig. 5.

Kinetics Sounds is a subset of Kinetics Human Action

Video dataset (referred as Kinetics-400) Kay et al [24]. The

original version of Kinetics-400 dataset consists of

306, 245 videos divided into 400 action categories with

1� 150 clips for each action. However, Kinetics Sounds

consists of only action classes that are both visually and

aurally recognizable. The average video length is 9.7 sec-

onds. The subset possesses more than 22, 000 videos from

27 different action classes.
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4.2 Training

Input Pre-processing: We consider two modalities: RGB

and audio. For RGB, we used video frames as input that are

grouped into 25 frames for each segment. We followed

Wang et al [66] for visual pre-processing and augmenta-

tion. For audio, we used Librosa library McFee et al [42] to

generate six distinct image-based representations of audio

samples.

Data Augmentation: Audio-image representations were

normalized as per ImageNet configuration, with random

horizontal and vertical flips. We have followed Wang et al

[66] for visual data transformations.

Feature Extraction: The TSN-based Wang et al [66] fea-

ture extractor was used with BNInception Ioffe and Sze-

gedy [20] as backbone for visual data and IRV2 Szegedy

et al [57], which uses residual inception blocks for audio

feature extraction.

Fig. 4 Audio and video

representations at different

stages of the framework of data

samples
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Environment: The training environment consists of an

NVIDIA GeForce GTX 1080 Ti GPU accelerator 12GB

memory, Intel(R) Xeon(R) CPU E5-2650 v4 CPU.

Implementation: An IRV2 Szegedy et al [57] model pre-

trained on the ImageNet Russakovsky et al [49] dataset was

used to extract candidate feature representations from

image representations of audio. The models were imple-

mented using the PyTorch library Paszke et al [46]. Similar

to Takahashi et al [58], we have used split 1 of standard

train-test split provided by UCF101 Soomro et al [55].

Hyperparameters: The number of neurons in the hidden

layer for MFN block was 1024. An optimal batch size of

768 for MFN and 512 for VMLP was used. The networks

were trained using cross-entropy loss and Adam optimizer

Kingma and Ba [26] with a learning rate of 3� 10�5 for

MFN and 10�4 for VMLP. We shifted learned weights

from the video model to the fusion model for better weights

initialization.

5 Results and discussion

Tables 1 and 2 compare recognition performance of the

MAiVAR framework versus previous state-of-the-art

methods on two datasets. Firstly, we compared the per-

formance of the framework with baselines on both UCF51

and Kinetics Sounds datasets. Secondly, we demonstrate

the considerations that evolved the design of our

Fig. 5 A snapshot from UCF51

showing number of samples per

action class with audio-channel

Table 1 Classification accuracy

of MAiVAR compared to the

state-of-the-art methods on

UCF51 dataset

Year Method Accuracy [%]

2015 C3D Tran et al [62] 82.23

2016 TSN (RGB) Wang et al [66] 60.77

2017 C3D?AENet Takahashi et al [58] 85.33

2018 DMRNTian et al[61] 81.04

2018 DMRNTian et al[61] ?Brousmiche et al [5] features 82.93

2020 Attention Cluster Long et al [40] 84.79

2020 IMGAUD2VID Gao et al [10] 81.10

2022 STA-TSN (RGB)Yang et al [68] 82.1

2022 MAFnet Brousmiche et al [5] 86.72

2023 MAiVAR-WP 86.21

2023 MAiVAR-SC 86.26

2023 MAiVAR-SR 86.00

2023 MAiVAR-MFCC 83.95

2023 MAiVAR-MFS 86.11

2023 MAiVAR-CH 87.91
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framework. We present a comparison of different CNN-

based feature extractors followed by study of the efficiency

of different audio-image representations. Finally, we have

analyzed the impact of multimodal fusion as compared to

the unimodal alternatives. The benchmarks were repro-

duced using accuracy over the standard train and test split.

Following the evaluation protocol of Takahashi et al [58],

we used accuracy metrics to evaluate the performance of

the models that could be calculated as:

Accuracy ¼
PI

i¼1 TPiPI
i¼1 TPi þ

PI
i¼1 FPi

ð3Þ

where respective TPi and FPi indicate the number of cor-

rect and wrong predictions in the ith class. Accordingly, I is

the number of classes.

5.1 Comparisons with the state-of-the-art
methods

The validation sample from the datasets action categories

evaluate the system performance. Table 1 shows the

MAiVAR performance compared to other methods that use

audio-visual modalities including AENet Takahashi et al

[58], C3D Tran et al [62], IMGAUD2VID Gao et al [10]

and other TSN-based techniques Wang et al [66]. The

UCF51 dataset is comprised of fewer classes with relevant

audio information. Therefore, MAiVAR was able to exploit

the significant features that lies in audio signals among all

the architectures that use audio-visual features.

To demonstrate the generalization of MAiVAR, we

conducted experiments on a larger dataset, Kinetics-

Sounds, which is also focused toward human actions in

daily life and has potentially more recognizable samples

with both acoustic and visual information. Based in

Table 2, our proposed approach yielded competitive results

compared to other methods. MAiVAR is better capable of

Table 2 Classification accuracy

of MAiVAR compared to the

state-of-the-art methods on

Kinetics Sounds dataset

Year Method Accuracy [%]

2017 Supervised direct Arandjelovic and Zisserman [1] 65

2017 Supervised pretraining Arandjelovic and Zisserman [1] 74

2017 L3-Net Arandjelovic and Zisserman [1] 74

2020 Attention Cluster Long et al [40] 73.91

2018 DMRNTian et al [61] 77.5

2023 MAiVAR-CH (Ours) 79.01

Fig. 6 Performance analysis of

audio-image feature extractors

on the UCF51 dataset
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getting benefits from both modalities. Moreover, the pro-

posed framework demonstrated better mixing of audio and

visual information 3.6 than other baseline models.

5.2 Ablation study

5.2.1 Audio-image feature extraction

Several experiments were conducted to determine the

optimal design configuration for the proposed framework,

which can be broken down into the following points: (1)

different feature extractors for audio-image representa-

tions, (2) optimal audio-image representation, and (3)

analyzing the influence of hyper-parameter settings. We

tried several CNN-based feature extractors for audio-image

representations including: the smaller as well as wider

ResNet He et al [18], EfficientNet Tan and Le [59] and

Inception ResNet Szegedy et al [57]. Compared to IRV2,

ResNet101 and ResNet18 showed relatively better perfor-

mance (see Fig. 6).

5.2.2 Convergence of the audio representations

We also evaluated the performance of six different audio-

image representations for fusion with video features

including: (i) Wave plot, (ii) MFCC, (iii) MFCC feature

scaling, (iv) Spectral Centroids, (v) Spectral Rolloff and

(vi) Chromogram. A sample example of each audio-image

representation is shown in Fig. 9, along with a visual

representation of same data sample. As the structure of the

chromagram is well-suited for CNN-based models, chro-

magram-based representations performed better than other

competitor representations in the fusion process. Conver-

gence of each audio-image representation after fusion with

video modality is illustrated in Fig. 7. However, it can also

be observed that a unimodal representation learning with

higher accuracy is not the optimal candidate for achieving

better performance after multimodal fusion. As presented

in Table 3, it is evident that MFCCs Feature Scaling-based

representation produced the best audio-level accuracy, after

which fusion with chromagram-based representation pro-

duced optimal features for the fusion.

5.2.3 Multimodal fusion analysis

In this section, we analyze the impact of feature fusion. It

was observed that fusing extracted features from audio-

image and video provides better results than without

fusion. However, empirically it has been shown that

beyond simple concatenation, weights from one modality

can influence fusion with the other modality. The best

results are obtained when visual features and weights from

the VMLP model interact with audio-image features. We

learned that vision features and weights contribute more

than acoustic signals in this regard. This is aligned with

previous observations in Brousmiche et al [4, 5].

Figure 8 compares the embedding of the different fea-

tures extracted at different phases of the framework (shown

Fig. 7 Convergence of audio representations on the UCF51 dataset

Table 3 Validation accuracy of different audio representations before

and after fusion on UCF51

Representation Modalities

Audio Fusion

Waveplot 12.08 86.21

Spectral Centroids 13.22 86.26

Spectral Rolloff 16.46 86.00

MFCCs 12.96 83.95

MFCCs Feature Scaling 17.43 86.11

Chromagram 15.48 87.91
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in Fig. 2) on Kinetics-Sounds. For compatibility with

t-SNE der Maaten and Hinton [41], we transformed feature

maps from the average pooling layer to reduce the

embedding dimensions to 2D. We observed a better

clustering of the different action classes after the fusion of

audio and video features in the framework.

Fig. 9 Examples of segmented

video input and six different

audio-image representations of

the same action

Fig. 8 t-SNE visualization of the Kinetics Sounds embedding of different features (video (left), audio (middle) and fused (right)) in the

downstream path. Note that t-SNE embeddings do not use the class labels. Labels are only used during final visualization
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6 Conclusion

In this paper, we proposed a multimodal audio-image to

video action recognition framework called the Multimodal

Audio-image and Video Action Recognizer (MAiVAR).

We generated several audio-image representations and

compared their efficiency. We then extracted audio and

visual features using CNN-based models and fused them.

The framework achieves 87.91% accuracy on the UCF51

dataset and 79.01% accuracy on the Kinetics Sounds

dataset. Experiments demonstrated that visual modalities

are not indispensable. MAiVAR performed better in com-

parison with other baseline methods.

Future research could focus on exploring different

transformer-based architectures such as Video Transformer

Network Architecture (VidTr) Neimark et al [44], with

other optimal feature representations. The drawback of the

fusion-based model is that using complex modality repre-

sentations greatly influence computational complexity. To

address this issue, data and model-parallelism could be

used to simultaneously compute audio-visual modality

streams instead of synchronous execution.
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