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Abstract
Text-to-image generation intends to automatically produce a photo-realistic image, conditioned on a textual description. To

facilitate the real-world applications of text-to-image synthesis, we focus on studying the following three issues: (1) How to

ensure that generated samples are believable, realistic or natural? (2) How to exploit the latent space of the generator to edit

a synthesized image? (3) How to improve the explainability of a text-to-image generation framework? We introduce two

new data sets for benchmarking, i.e., the Good & Bad, bird and face, data sets consisting of successful as well as

unsuccessful generated samples. This data set can be used to effectively and efficiently acquire high-quality images by

increasing the probability of generating Good latent codes with a separate, new classifier. Additionally, we present a novel

algorithm which identifies semantically understandable directions in the latent space of a conditional text-to-image GAN

architecture by performing independent component analysis on the pre-trained weight values of the generator. Furthermore,

we develop a background-flattening loss (BFL), to improve the background appearance in the generated images. Subse-

quently, we introduce linear-interpolation analysis between pairs of text keywords. This is extended into a similar trian-

gular ‘linguistic’ interpolation. The visual array of interpolation results gives users a deep look into what the text-to-image

synthesis model has learned within the linguistic embeddings. Experimental results on the recent DiverGAN generator, pre-

trained on three common benchmark data sets demonstrate that our classifier achieves a better than 98% accuracy in

predicting Good/Bad classes for synthetic samples and our proposed approach is able to derive various interpretable se-

mantic properties for the text-to-image GAN model.

Keywords Generative adversarial network (GAN) � Text-to-image generation � A Good & Bad data set �
Latent-space manipulation

1 Introduction

The task of text-to-image synthesis aims at automatically

generating high-quality and semantically consistent ima-

ges, given natural-language descriptions. It has recently

gathered increasing interest from researchers due to its

numerous potential applications, e.g., data augmentation

for training image classifiers, photoediting according to

textual descriptions, the education of young children, etc.

With the advances in the generative adversarial network

(GAN) and the conditional generative adversarial network

(cGAN) [1], text-to-image generation has achieved

promising progress in both image quality and semantic

consistency. Nevertheless, it remains extremely challeng-

ing to coerce a conditional text-to-image GAN model to

generate, with high probability, believable and natural

images.1 Here, we want to address three research questions

in order to improve easier methods to generate high-quality

images:

1. How to ensure that generated samples are believable,

realistic or natural?

2. How to exploit the latent space of the generator to edit

a synthesized image?

& Zhenxing Zhang

z.zhang@rug.nl

Lambert Schomaker

l.r.b.schomaker@rug.nl

1 Bernoulli Institute, University of Groningen, Groningen, The

Netherlands 1 A preliminary version of this paper was submitted to ArXiv on [2].

123

Neural Computing and Applications (2024) 36:2549–2572
https://doi.org/10.1007/s00521-023-09185-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2887-9873
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-09185-6&amp;domain=pdf
https://doi.org/10.1007/s00521-023-09185-6


3. How to improve the explainability of a text-to-image

generation framework?

One particular disadvantage of synthetic image-generation

algorithms is that the performance evaluation is more dif-

ficult than is the case in classification problems where a

‘hard’ accuracy can be computed. In case of the cGAN this

issue is most clearly present for end users: How to ensure

that generated images are believable, realistic or natural?

In current literature, the good examples are often cherry

picked while occasionally also the less successful samples

are shown. However, for actual use in data augmentation or

in artistic applications, one would like to guarantee that

generated images are good, i.e., of a sufficiently believable

natural quality. Given the high dimensionality of latent

codes, there is a very high prior probability of non-suc-

cessful patterns to be generated for a given input noise

probe. How to construct a random latent-code generator

with an increased probability of drawing successful sam-

ples? After the generator/discriminator pair has done its

best effort, apparently additional constraints are necessary.

Here, we intend to train a classifier to accurately dis-

tinguish successful synthesized samples from unsuccessful

generated pictures after training a text-to-image generation

framework. This is based on the assumption that there is a

nonlinear boundary separating high-resolution images from

inadequate samples in the fake image space. To this end,

we created a Good & Bad data set, both for a bird and a

face-image collection, which consists of a large number of

realistic as well as implausible samples synthesized by the

recent DiverGAN [3] that was pretrained on the CUB bird

[4] data set and the Multi-Modal CelebA-HQ data set [5],

respectively. We choose these samples by following strict

principles in order to ensure the quality of the selected

images. To acquire a superior classifier, we train the CNN

model (e.g., ResNet [6]) from the pre-trained weights on

our Good & Bad data set. We expect that the well-trained

network can correctly predict the quality class of synthe-

sized images. Therefore, we are able to effectively and

efficiently derive photo-realistic images from the synthe-

sized samples while obtaining corresponding Good latent

vectors. More importantly, the discovery of Good latent

codes provides a strong basis for further research, such as

data augmentation and latent-space manipulation.

Latent vectors contributing to diversity play a significant

role in the image-generation process. Recent works [7–9]

reveal that there exists a wide range of meaningful

semantic factors in the latent space of a GAN, such as

facial attributes and head poses for face synthesis and

layout for scene generation [9]. These semantically

understandable control directions can be utilized for dis-

entangled image editing, like semantic face editing and

scene manipulation. By moving the latent code of a

synthetic sample toward and backward the direction, we

are able to vary the desired attribute while keeping other

image contents unchanged. That is to say, given a suc-

cessful latent code, we can derive a wealth of similar but

semantically diverse pleasing images via latent-space

navigation. To better facilitate the application of text-to-

image synthesis, we need to address the question: How to

identify useful control directions in the latent space of a

conditional text-to-image GAN model? While current

approaches mainly focus on studying the latent space of a

GAN, there still is a lack of understanding of the rela-

tionship between the latent space of a cGAN and the

explainable semantic space in which a synthetic sample is

embedded.

In this paper, we present a novel algorithm to capture the

interpretable latent-space semantic properties for a text-to-

image synthesis model. Considering the fact that identified

directions denote different semantic factors of the edited

object (e.g., pose and smile for the face model), we argue

that these vectors should be fully independent rather than

just uncorrelated. Based on recent studies [7, 8], we assume

that the pre-trained weights of a conditional text-to-image

GAN architecture contain a set of useful directions. In fact,

the initial linear layer projects the latent vector to the visual

feature map, where a latent space is transformed into

another space and ultimately into an output image. To

acquire both independent and orthogonal components, we

introduce the independent component analysis (ICA)

algorithm under an additional orthogonality constraint [10]

to investigate the pre-trained weight matrix of the first

dense layer. In addition, we mathematically show that

Semantic Factorization (SeFa) [7], GANSpace [8] and

regular PCA typically achieve almost the identical results

when sampling enough data for GANSpace. Furthermore,

we develop a Background-Flattening Loss (BFL), to

improve the background appearance in the edited sample.

Multiple interesting latent-space directions found by our

presented algorithm are visualized in Fig. 1.

We expect that our proposed semantic-discovery

method can provide valuable insight into the correlation

between latent vectors and image variations. However, it

remains particularly difficult to explain what a conditional

text-to-image GAN model has learned within the text

space. How to understand the relation between the textual

(linguistic) probes and the generated image factors? This

constitutes the last research topic of the current contribu-

tion. To alleviate the problem, we qualitatively analyze the

roles played by the linguistic embeddings in the generated-

image semantic space through linear interpolation analysis

between pairs of keywords. We show that although

semantic properties contained in the picture change con-

tinuously in the latent space, the appearance of the image

does not always vary smoothly along with the contrasting
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word embeddings. In addition, we extend a pairwise linear

interpolation to a triangular interpolation for simultane-

ously investigating three keywords in the given textual

description.

The recent DiverGAN [3] has the ability to adopt a

generator/discriminator pair to synthesize diverse and high-

quality samples, given a textual description and different

injected noise on the latent vector. We therefore carry out a

serious of experiments on the DiverGAN generator that

was trained on three popular text-to-image data sets (i.e.,

the CUB bird [4], MS COCO [11] and Multi-Modal Cel-

ebA-HQ [5] data sets). The experimental results in the

current study represent an improvement in performance

and explainability in the analyzed algorithm [3]. Mean-

while, our well-trained classifier achieves impressive

classification accuracy (bird: 98.09% and face: 99.16%) on

the Good & Bad data set and our proposed semantic-

discovery algorithm can lead to a more precise control over

the latent space of the DiverGAN model, which validate

the effectiveness of our presented methods. The contribu-

tions of this work can be summarized as follows:

• We construct two new Good & Bad data sets to study

how to ensure that generated images are believable

while training two corresponding classifiers to separate

successful generated images from unsuccessful syn-

thetic samples.

• We introduce the ICA algorithm to identify meaningful

attributes in the latent space of a conditional text-to-

image GAN model. Simultaneously, we analyze the

correspondences between SeFa, GANSpace and regular

PCA.

• We introduce linear interpolation analysis between

pairs of contrastive keywords and a similar triangular

‘linguistic’ interpolation for an improved explainability

of a text-to-image generation architecture.

The remainder of the paper is organized as follows. We

introduce the related works in Sect. 2. Section 3 briefly

depicts the single-stage text-to-image framework and the

corresponding latent space. In Sect. 4, we describe our

proposed approach in detail. The experimental results are

presented in Sect. 5, and Sect. 6 draws the conclusions.

2 Related works

In this section, we depict the research fields associated with

our work, i.e., a GAN, cGAN-based text-to-image gener-

ation and latent-space manipulation.

2.1 Generative adversarial network (GAN)

Goodfellow et al. [12] presented the GAN paradigm that

serves as a basic model for synthetic tasks via adversarial

training and consists of a generator and a discriminator.

A GAN has achieved state-of-the-art performance in a

variety of applications, e.g., text-to-image synthesis [13],

person image generation [14], face photo-sketch synthesis

[15], image inpainting [16] and image de-raining [17],

since it is capable of producing photo-realistic images.

The initial generator network of a GAN mainly com-

prises multi-layer perceptrons and rectifier linear activa-

tions, while the discriminator net utilizes the maxout

network [18]. This type of architecture shows competitive

samples with other generative models on simple image data

sets, such as MNIST [19]. Moreover, researchers explore

different structures of a GAN in order to further improve

image quality. Denton et al. [20] designed a Laplacian

pyramid framework of an adversarial network, namely

LAPGAN that produces plausible pictures in a coarse-to-

fine manner. Radford et al. [21] introduced a deep convo-

lutional GAN (DCGAN) integrating convolutional layers

This bird is brown and white in color, with a brown 
beak.

The person has wavy hair, and high cheekbones. She is 
young and wears necklace, heavy makeup, and lipstick.

rotation

background

size

pose

hair

smile

Latent-code navigation Latent-code navigation

Fig. 1 Interpretable latent-space directions identified in DiverGAN

[3] that was pre-trained on the CUB bird [4] (left side) and Multi-

Modal CelebA-HQ [5] (right side) data sets. For each set of pictures,

the middle column is the original image based on a Good latent code,

while the samples on the left and right of it are the output by freezing

the textual description and moving the latent vector backward and

forward from the center, over the axis discovered by our proposed

algorithm

Neural Computing and Applications (2024) 36:2549–2572 2551

123



and Batch Normalization (BN) [22] into both a generator

and a discriminator. Mirza et al. [1] proposed a cGAN by

imposing conditional constraints (e.g., class labels, text

descriptions and low-resolution images) on both the gen-

erator network and the discriminator network to obtain

specific samples.

Recently, several models with a high-computational cost

are introduced to yield visually plausible pictures. Zhang

et al. [23] presented SAGAN which applies the self-at-

tention mechanism [24] to effectively capture the semantic

affinities between widely separated image regions. Brock

et al. [25] developed a large-scale architecture based on

SAGAN while deploying orthogonal regularization to the

generator net, obtaining excellent performance on image

diversity. Karras et al. [26] proposed a novel generator

framework named StyleGAN where adaptive instance

normalization is utilized to control the generator network.

Kumar et al. [27] proposed to combine Phase-space

reconstruction (PSR) with GANs to improve the prediction

accuracy of stock price movement direction. The experi-

mental results showed that the presented approach reduced

the root-mean-square error value from 0.0585 to 0.0295

and the average processing time from 3 min 26 s to 2 min

8 s, validating its effectiveness. Jameel et al. [28] utilized a

cGAN to produce a variety of new medical pictures for the

purpose of data augmentation. They discovered that data

augmentation using the cGAN performs better than tradi-

tional data-augmentation techniques. The current paper

focuses on studying and improving the conditional text-to-

image GAN approach.

2.2 cGAN in text-to-image generation

Owing to the success of a GAN on image quality, the task

of text-to-image synthesis has achieved significant advan-

ces over the past few years. Existing approaches for text-to-

image generation can be roughly cast into two categories:

(1) multi-stage models and (2) single-stage methods.

Multi-stage models Zhang et al. [29] introduced a multi-

stage architecture called StackGAN, in which each stage

comprises a generator and a discriminator, and the gener-

ator of the next stage receives the result of the previous

stage as the input. It is worth mentioning that StackGAN

served as a solid basis for the future study of text-to-image

synthesis. Xu et al. [30] proposed AttnGAN inserting a

spatial attention module into the multi-stage framework to

bridge the semantic gap between the words in a textual

description and the related image subregions. The intro-

duced spatial-attention mechanism is able to derive the

relationship between the image subregions and the words

in a sentence. The most relevant subregions to the words

were particularly focused. Qiao et al. [31] presented Mir-

rorGAN where an image-to-text model is leveraged to

guarantee the semantic consistency between natural-lan-

guage descriptions and visual contents. Zhu et al. [32]

designed DMGAN which introduce a dynamic-memory

module to produce high-quality samples in the initial stage.

Specifically, a memory writing gate and a response gate are

designed to better fuse the textual and image information.

OP-GAN presented by Hinz et al. [33] explicitly modeled

the objects of an image while developing a new evaluation

metric termed as semantic object accuracy. Cheng et al.

[34] presented RiFeGAN, in which an attention-based

caption-matching algorithm is utilized to enrich the textual

description and a multi-captions attentional GAN model is

exploited to yield photo-realistic pictures. It should be

noted that the multi-stage models are unattractive due to

complicated design and training.

Single-stage methods are an attempt to remedy this disad-

vantage. Reed et al. [35] were the first to attempt to employ

the cGAN to synthesize specific images based on the given

text descriptions. Tao et al. [36] proposed DFGAN where a

matching-aware zero-centered gradient penalty loss is

introduced to help stabilize the training of the conditional

text-to-image GAN model. Z. Zhang et al. [37] designed

DTGAN by utilizing spatial and channel attention modules

and the conditional normalization to yield photo-realistic

samples with a generator/discriminator pair. More impor-

tantly, they spread the sentence-related attention over

many, even all layers of the generator networks. This

allows for an influence of the text over features at various

hierarchical levels in the pipeline architecture, from crude

early features to abstract late features. H. Zhang et al. [38]

developed XMC-GAN which studied contrastive learning

in the context of text-to-image generation while producing

visually plausible images via a simple single-stage frame-

work. Zhang et al. [3] presented an efficient and effective

single-stage framework called DiverGAN which is capable

of generating diverse, plausible and semantically consistent

images according to a natural-language description. To be

specific, they proposed two novel word-level attention

modules, i.e., a channel-attention module (CAM) and a

pixel-attention module (PAM), which allow DiverGAN to

effectively disentangle the attributes of the text description

while accurately controlling the regions of synthetic ima-

ges. Xia et al. [5] developed TediGAN for image synthesis

and control with natural-language descriptions. TediGAN

comprises an inversion module, visual-language learning

and instance-level optimization. Wang et al. [39] proposed

a unified architecture for both text-to-image generation and

text-driven image manipulation. In the current study we

will adopt the DiverGAN generator due to its excellent

performance on image quality and diversity in order to

perform comprehensive experiments and facilitate the

generation of good images.
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2.3 Studies on the latent space of a GAN

Recent studies [7–9] on a GAN reveal that a latent space

possesses a range of semantically understandable infor-

mation (e.g., pose and smile for the face data set), which

plays a vital role in detangled sample manipulation. We are

able to realistically edit the generated image by moving its

latent vector toward the direction corresponding to the

desired attribute. Several methods have been proposed to

capture interpretable semantic factors and mainly fall into

two types: (1) unsupervised models and (2) supervised

approaches.

Supervised latent-space manipulation Shen et al. [9]

developed a framework termed as InterfaceGAN where

labeled samples (e.g., gender and age) are utilized to train a

linear Support Vector Machine (SVM) [40] and the

acquired SVM boundaries lead to the meaningful manip-

ulation of the facial attributes. Goetschalckx et al. [41]

proposed GANalyze applying an accessor module to opti-

mize the training process while learning the latent-space

directions as the desired cognitive semantics.

Unsupervised latent-space manipulation Voynov et al.

[42] introduced a matrix and a classifier to identify inter-

pretable latent-space directions in an unsupervised fashion.

Jahanian et al. [43] studied the attributes concerning color

transformations and camera movements by operating

source pictures. Härkönen et al. [8] designed a novel

pipeline named GANSpace, which performed PCA on a

series of collected latent vectors and employed obtained

principal components as the meaningful directions in the

latent space. Peebles et al. [44] presented the Hessian

Penalty, a regularization term for the unsupervised dis-

covery of useful semantic factors. Wang et al. [44] devel-

oped Hijack-GAN introducing an iterative scheme to

control the image-generation process. Shen et al. [7] pro-

posed Semantic Factorization (SeFa) which directly

decomposed the weight matrix of a well-trained GAN

model for semantic image editing. Patashnik et al. [45]

introduced Contrastive Language-Image Pre-training

(CLIP) models [46] to control the latent space using a text

prompt. The current work aims at identifying controllable

directions in the latent space of conditional text-to-image

GAN models.

3 Preliminary

In this section, we briefly describe the single-stage text-to-

image synthesis architecture and the corresponding latent

space to help understand the issues we attempt to address.

Single-stage pipeline The single-stage text-to-image

generation framework (illustrated in Fig. 2) is composed of

a generator network and a discriminator net, which are

perceived as playing a minmax zero-sum game. Let S ¼
fðCi; IiÞgNi¼1 denote a collection of N text-image pairs for

training, where Ii is a picture and Ci ¼ ðc1
i ; c

2
i ; :::; c

K
i Þ

comprises K textual descriptions. Word-embedding vectors

w and a sentence-embedding vector s are commonly

acquired by applying a bidirectional Long Short-Term

Memory (LSTM) network [47] on a natural-language

description ci randomly picked from Ci. After that, the

generator G(z, (w, s)) is trained to produce a perceptually

realistic and semantically related image Îi according to a

latent code z randomly sampled from a frozen distribution

and word/sentence embedding vectors (w, s). To be

specific, G(z, (w, s)) consists of multiple layers where the

first layer F0 maps a latent code into a feature map and

intermediate blocks typically leverage modulation modules

(e.g., attention models [48, 49]) to reinforce the visual

feature map to ensure image quality and semantic consis-

tency. The last layer Gc transforms the feature map into the

ultimate sample. Mathematically,

h0 ¼ F0ðzÞ ð1Þ

h1 ¼ B1ðh0; ðw; sÞÞ ð2Þ

hi ¼ Biðhi�1 "; ðw; sÞÞ for i ¼ 2; 3; :::; 7 ð3Þ

Î ¼ Gcðh7Þ ð4Þ

where F0 denotes a fully connected layer and Bi is a

modulation block that facilitates the feature map with

textual features.

Compared with G(z, (w, s)), the discriminator of the

single-stage pipeline aims at distinguishing the real text-

image pair ðci; IiÞ from the fake text-image pair ðci; ÎiÞ.
Latent-space analysis For a pre-trained and fixed gen-

erator G(z, (w, s)), the quality of the generated sample

depends on the random latent code z, word embeddings w

and the corresponding sentence vector s. Consequently, the

output of the network only relies on z when determining the

input text description. It implicitly means that if we ignore

the linguistic space of the conditional input-text probes,

G(z, (w, s)) can be regarded as a deterministic function G:

Z ! X . Here, Z represents the latent space, in which the

latent code z 2 Rl is commonly sampled from a l-dimen-

sion Gaussian distribution. X denotes the synthetic image

space including visually realistic samples as well as

implausible generated pictures. Moreover, the map from Z

to X is not surjective [50]. Accordingly, even a superior

text-to-image generation generator fails to ensure the

quality of a synthesized sample, given random latent vec-

tors. In order to promote the applicability of text-to-image

generation in practice, this paper intends to optimize the

latent space of a conditional text-to-image GAN model to
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effectively avoid unsuccessful synthetic samples while

automatically obtaining high-quality images.

Latent-space manipulation It has been widely observed

that the latent space of a GAN incorporates certain

semantic information, like pose and size for the CUB bird

data set. Suppose we have a Good latent code zg that

contributes to a successful generated sample, and a well-

trained generator G(z, (w, s)) that can yield dissimilar and

semantically consistent pictures according to different

textual descriptions and injected noise, we target to

manipulate the semantic factor of the successful synthe-

sized sample via latent-space navigation. To this end, we

need to first identify a series of semantically inter-

pretable latent-space directions N ¼ ðn1; n2; � � � ; nkÞ, where

ni 2 Rl for all i 2 1; 2; � � � ; k. Then, the attribute of the

high-quality sample generated by zg can be varied by

editing zg with zge ¼ zg þ an, where a denotes the mix

factor and n 2 Rl is the direction corresponding to the

desired property.

4 Proposed methodology

This paper is part of a larger research, which focuses on

proposing novel architectures for text-to-image generation

while addressing significant issues present in a conditional

text-to-image GAN model. An overall framework for the

research is visualized in Fig. 3, consisting of DTGAN [37],

DiverGAN [3] and three different research questions, i.e.,

RQ1: increasing the probability of generating natural

images and RQ2: improving the (visual) explainability of a

conditional text-to-image GAN model latent-space and

RQ3: addressing textual explainability using the linguistic

latent space point. Both DTGAN and DiverGAN are cap-

able of adopting a single generator/discriminator pair to

produce photo-realistic and semantically correlated image

samples on the basis of given natural-language descrip-

tions. In DTGAN, we presented dual-attention models,

conditional adaptive instance-layer normalization and a

new type of visual loss. In DiverGAN, we extended the

sentence-level attention models introduced in DTGAN to

word-level attention modules, in order to better control an

image-generation process using word features. By inserting

a dense layer into the pipeline we were able to address the

lack-of-diversity problem present in many current single-

stage text-to-image GAN models. The explanation is that

unlike feature maps, dense layers prevent the simple

propagation of image fragments toward the output and

force the network to fundamentally reorganize the visual

features.

In this section, we elaborate on the proposed procedure

automatically finding successful synthetic samples from

generated images while acquiring corresponding Good

latent codes. After that, based on a Good latent vector, we

describe the independent component analysis method that

identifies meaningful latent-space directions for a condi-

tional text-to-image GAN model. Subsequently, we intro-

duce linear interpolation analysis between contrastive

keywords as well as a similar triangular ‘linguistic’ inter-

polation for an improved explainability of a text-to-image

generation framework.

4.1 Discovering successful synthesized samples
and Good latent codes

Given a fixed conditional text-to-image GAN model, the

generator maps the latent space and the linguistic embed-

dings to the fake data distribution. It is well known that the

synthetic sample space consists of high-resolution pictures

from Good latent vectors as well as unreasonable images

from Bad latent codes. However, we only need successful

generated samples and corresponding Good latent codes for

wide real-world applications. In this subsection, we con-

centrate on proposing a framework for recognizing plau-

sible images from numerous synthesized samples while

deriving corresponding Good latent vectors.

4.1.1 Pairwise linear interpolation of latent codes

It has been extensively observed [3, 9] that when per-

forming the linear interpolation between a successful

starting-point latent vector and a successful end-point

latent code, the appearance and the semantics of generated

samples change continuously. In addition, DiverGAN [3]

word vectors

noise vector

sentence vector

Fig. 2 A simplified single-stage text-to-image generation architecture consisting of a generator G and a discriminator D. The input of the

generator is a random latent code z and the word/sentence embeddings (w, s), and the output is a synthetic sample
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discovers that the generator is likely to synthesize a set of

high-resolution pictures based on the pairwise linear

interpolation between two Good latent codes. This would

imply that there may be close relation between successful

synthesized images in the fake data space. That is to say,

we may acquire a range of visually realistic pictures by

sampling the latent vectors around a Good latent code.

To further explore the semantic relationship between a

plausible sample and an inadequate image in the synthetic

image space, we visualize the samples generated by lin-

early interpolating a successful starting-point latent vector

z0 and an unsuccessful end-point latent code z1. To be

specific, the pairwise linear interpolation of latent codes is

defined as:

f ðcÞ ¼ Gðð1 � cÞz0 þ cz1; ðw; sÞÞ for c 2 ½0; 1� ð5Þ

where c is a scalar mixing parameter, G is the generator,

and (w, s) are word/sentence embedding vectors. In an

attempt to quantitatively measure if there is a smooth

transition from a perceptually plausible sample to an

unsuccessful generated image, we calculate the learned

perceptual image patch similarity (LPIPS) [51] score and

the perceptual loss [52] which reflect the diversity between

two close interpolation samples.

We empirically observe that although the first and last

part of interpolation results change gradually with the

variations of the latent vectors, both the LPIPS score and

the perceptual loss between intermediate samples are the

largest and considerably increase, which we detail in

Sect. 5.2.1. In other words, when linearly interpolating an

unsuccessful latent code and a Good latent vector, the

appearance and the semantics do not always vary smoothly

along with the latent vectors. We therefore make the

assumption that there exists a nonlinear boundary sepa-

rating successful generated images from unsuccessful

synthesized samples in the fake image space. It implicitly

means that image quality in the synthetic sample space

may be distinguished. Suppose we have a nonlinear image-

quality function fq : X ! t, where t represents the quality

score. We are able to classify a synthesized sample as

realistic or unsuccessful.

4.1.2 Good & Bad data set creation

Our goal is to train a powerful classifier that can distinguish

successful generated samples from unsuccessful synthetic

images. To this end, we built two novel data sets (i.e., the

Good & Bad bird and face data sets) conditioned on the

CUB bird data set [4] and the Multi-Modal CelebA-HQ

data set [5], respectively. The Good & Bad data set is a

collection of perceptually realistic as well as implausible

samples generated by a well-trained and fixed text-to-im-

age GAN architecture. The construction of the data set is

based on a pilot study [53] on initial manual labeling

(210?210 samples), which was used as the training set for

automatic good vs bad binary classification. However, such

a data set is too small to obtain a training set suitable for

end-to-end, deep-learning based quality classification of

generated images. Using strict criteria, an extended col-

lection of mixed manual and automatic ‘good’ and ‘bad’

samples was constructed, within one day. Specifically, the

used Good & Bad bird data set consists of 6700 synthe-

sized samples, i.e., 2700 Good and 4000 Bad birds. The

Good & Bad face data set contains 2000 successful gen-

erated faces as well as 2000 unsuccessful synthetic faces. A

summary of the Good & Bad data set is reported in

Fig. 3 The overall framework for the research questions of this paper. t and z denote the textual features of an input natural-language description

and a latent code in the latent space, respectively
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Table 1. We visualize a snapshot of our data set in Fig. 4.

Our data set is available at https://zenodo.org/record/

6283798#.YhkN_ujMI2w. Below, we describe the proce-

dure followed to construct the Good & Bad data set.

Image collection The first stage of creating the Good &

Bad data set involves producing a large set of candidate

samples for each data set. The DiverGAN [3] has the

ability to adopt a generator/discriminator pair to produce

diverse, perceptually plausible and semantically consistent

pictures, given a textual description and different injected

noise on the latent vector. We therefore choose a pre-

trained DiverGAN generator to acquire candidate images.

We generated 30,000 synthesized samples as the basis for

the selection of a Good & Bad bird data set and a Good &

Bad face data set, respectively.

Image selection Given a variety of candidate pictures, we

choose images according to the following criteria:

(1) A successful generated image is supposed to have

vivid shape, rich color distributions, clear back-

ground as well as realistic details. For the face data

set, photo-realistic images should also have pleasing,

undistorted facial attributes (e.g., eyes, hair, makeup,

head and mouth) and expressions.

(2) A synthetic picture with strange shape, blurry

background or unclear color is viewed as Bad.

Meanwhile, we reject faces with an implausible

facial appearance or ornamentation (e.g., hat and

glasses) as unsuccessful samples.

(3) We exclude ambiguous images of the type where

also for the human judge, the classification as Good

or Bad is difficult. For instance, a bird with only a

slightly strange body (e.g., lacking legs) is judged as

an ambiguous-quality picture.

For the Good & Bad bird data set, we find it inefficient

to manually choose thousands of plausible birds from

30,000 collected samples. To reduce the selection labor, we

propose a process to obtain the desired birds as follows

(depicted in Fig. 5):

Table 1 Statistics of the Good & Bad bird and face data sets. ‘Bird’

represents the Good & Bad bird data set, and ‘Face’ denotes the

Good & Bad face data set

Data set Train Test Total

Bird 5200 1500 6700

Face 3200 800 4000

(a) The Good & Bad bird dataset
Good Samples Bad Samples

(b) The Good & Bad face dataset
Good Samples Bad Samples

Fig. 4 A snapshot of the Good & Bad bird (three top rows) and face (three bottom rows) data sets: The left column is from the Good data set;

the right column is from the Bad data set. These samples are synthesized by the recent DiverGAN generator [3]
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(1) Based on the principles mentioned before, we select

420 synthesized samples (i.e., 210 Good and 210 Bad

birds) as the initial Good & Bad bird data set, which

is split into a training set (i.e., 150 Good and 150 Bad

birds) and a testing set (i.e., 60 Good and 60 Bad

birds). We intend to use these labeled samples to

train a simple classification model to try to predict

the quality class of synthesized images. However, it

is difficult to directly apply a traditional classifier

(e.g., a linear SVM) to separate realistic images

adequately from inadequate samples, since the image

instances exist in a nonlinear manifold [54]. In the

meantime, we cannot train a deep neural network

(e.g., VGG [55]) from scratch to label a synthetic

sample as Good or Bad due to the small number of

the samples in the initial Good & Bad training set.

Bengio et al. [56] postulate that deep convolutional

networks have the ability to linearize the manifold of

pictures into a Euclidean subspace of deep features.

Inspired by this hypothesis, we expect that Good and

Bad samples can be classified by an approximately

linear boundary in such deep-feature space.

(2) We adopt the publicly available VGG-16 network

trained on ImageNet to transform the image samples

from the training set (i.e., 150 Good and 150 Bad

samples) into the deep-feature representation of layer

VGG-16/Conv5_1. The obtained deep features and

the corresponding labels (i.e., Good and Bad) are

used to fit a linear SVM model for automatic labeling

of the samples in the deep-feature space. To evaluate

the performance of the model, we transform the

testing samples (i.e., 60 Good and 60 Bad birds) into

deep-feature vectors while applying the learned

SVM boundary to predict the classes for the unseen

samples.

(3) In order to harvest an expanded set of Good or Bad

samples, we use the trained SVM model to automat-

ically label the 30,000 collected birds. We manually

choose 2700 Good and 2000 Bad birds from the

images that are classified as Good, which is not a

laborious task due to the performance of the SVM.

Moreover, to boost the diversity of Bad birds on our

data set, we select 2000 Bad birds from the samples

that are predicted as Bad. Finally, 2700 Good and

4000 Bad birds are acquired as the final, expanded

Good & Bad bird data set. Also for the faces, we

discovered that it is easy to label the synthesized

samples as Good or Bad. We therefore manually

select 2000 Good and 2000 Bad samples from 30,000

synthetic faces for the Good & Bad face data set.

The manual selection was realized in one day.

Splitting of the data set The Good & Bad face data set is

randomly divided into the training and test sets with a ratio

of 4:1. After the splitting, the training set comprises 3200

images, i.e., 1600 Good and 1600 Bad faces. The test set

consists of 800 samples including 400 Good and 400 Bad

faces. The Good & Bad bird data set contains 6700 birds,

where 5200 images (i.e., 2200 Good and 3000 Bad birds)

belong to the training set and the other 1500 images (i.e.,

500 Good and 1000 Bad birds) belong to the test set.

4.1.3 Synthetic samples classification

Given the extensive training set obtained in this manner, it

is now possible to do the quality classification by end-to-

end deep learning instead of using an unmodified, pre-

trained CNN and an SVM. To fully automatically distin-

guish successful synthesized samples from unrealistic

images, we attempt to fine-tune a pre-trained CNN model

Good Image

Step1: Map samples into the deep-feature space

VGG-16 Network

Bad Image VGG-16 Network

Deep-feature space

Step2: Train a linear SVM

Good samples

Bad samples

SVM boundary

Fig. 5 A schematic outline of the first two steps for automatically discovering Good birds from the generated images
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(e.g., ResNet [6]) on the proposed Good & Bad data set,

which we will detail in Sect. 5.2.3. We expect that this

approach is able to achieve the best results. We therefore

have the ability to effectively and efficiently identify

photo-realistic samples from generated images while

acquiring corresponding Good latent vectors. These Good

latent codes can be exploited for further research, facili-

tating and extending the applicability of text-to-image

generation in practice. For instance, we can produce a

wealth of high-quality samples by conducting the pairwise

linear interpolation between Good latent codes, e.g., for the

purpose of data augmentation. Given a Good latent vector,

we can synthesize several similar but semantically diverse

pleasing generated samples via latent-space navigation,

which will be discussed in the next section.

4.2 Identifying meaningful latent-space
directions

In this subsection, we mathematically show that Semantic

Factorization (SeFa) [7] approximately identifies the prin-

cipal components, as PCA does. Furthermore, we propose a

technique to capture semantically interpretable latent-space

directions for a conditional text-to-image GAN model. To

optimize the edited sample, the background-flattening trick

is presented to fine-tune the background appearance.

4.2.1 Analyzing the correspondences between SeFa,
GANSpace and PCA

We attempt to discuss the relationship between SeFa [7]

and GANSpace [8], since they both introduce an algorith-

mically simple but surprisingly effective technique to

derive semantically understandable directions. Specifically,

GANSpace collects a set of latent codes and conducts PCA

on them to identify the significant latent-space directions.

SeFa proposes to directly decompose the pre-trained

weights for semantic image editing. Mathematically, SeFa

is formulated as in [7]:

ATAni � kini ¼ 0 ð6Þ

where A 2 Rd�l is the weight matrix of the first transfor-

mation step in the generator and fnigki¼1 indicate k most

meaningful directions. The solutions to Eq. 6 correspond to

the eigenvectors of ATA with respect to the k largest

eigenvalues. A is usually normalized by L2 norm when

implementing SeFa. The formulation of SeFa can almost be

perceived as PCA [57] on A, since the results of PCA are

the eigen vectors of the covariance matrix CA associated

with A and CA is similar to ATA. Specifically, CA is denoted

as in [57]:

CA ¼ 1

d � 1
ðA�\A[ ÞTðA�\A[ Þ ð7Þ

where \A[ represents the mean from each column of A

and CA is the covariance matrix of A. The difference

between regular PCA and SeFa is located in the normal-

ization of A. We therefore argue that SeFa is approximately

equivalent to regular PCA on the pre-trained weights. That

is to say, GANSpace and SeFa perform PCA on the latent

vectors and the pre-trained weights, respectively.

4.2.2 Independent component analysis for semantic
discovery in the latent space

It has been observed that the pre-trained weights of the

standard GAN contain semantically useful information. We

can capture the meaningful latent-space directions in an

unsupervised manner by exploiting the well-trained

weights of the generator. A conditional text-to-image GAN

generator typically leverages a dense layer to transform a

latent code into a visual feature map, where a latent space

is projected to another space and ultimately into an output

image. We make the assumption that there exists a wealth

of semantics in the initial fully connected weight matrix of

a text-to-image GAN model, due to the linguistic content

of the text. We aim at presenting a simple algorithm

extracting the main patterns of the pre-trained weights as

the interpretable latent-space directions. More specifically,

we hypothesize that when given the pre-trained weight

matrix A of the first linear layer of the generator, we can

obtain a suite of k meaningful semantic factors N ¼
ðn1; n2; � � � ; nkÞ by processing the weight matrix A.

Mathematically,

N ¼ f ðAÞ ð8Þ

where f ð�Þ is the function for semantic discovery. These

acquired semantics should denote different attributes of the

image. For example, n1 represents pose, n2 represents

smile, and n3 represents gender for the face data set. To

better manipulate the image generation, we argue that these

components should be fully independent rather than just

uncorrelated (orthogonal). However, when employing PCA

as f ð�Þ to discover the controllable latent-space directions,

the obtained principal components are only uncorrelated,

but not independent. Meanwhile, PCA is optimal for

Gaussian data only [10], while the pre-trained weight

matrix A is not guaranteed to be Gaussian. Here, we pro-
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pose to utilize independent component analysis (ICA) to

identify useful latent-space semantics for a conditional

text-to-image GAN model.

The goal of ICA is to describe a M � L data matrix X in

terms of independent components. It is denoted as in [10]:

X ¼ BS ð9Þ

where B is a M � T mixing matrix and S is a T � L source

matrix consisting of T independent components.

ICA is commonly viewed as a more powerful tool than

PCA [58], since it is able to make use of higher-order

statistical information incorporating a variety of significant

features. Furthermore, ICA is adequate for analyzing non-

Gaussian data. To maximize both the independence and the

orthogonality between the directions, i.e., n1; n2; � � � ; nk, we

apply a fast ICA under an additional orthogonality con-

straint [10] to directly decompose the pre-trained weight

matrix to derive the meaningful directions in the latent

space. The obtained vectors are therefore not only inde-

pendent but also orthogonal. We expect that the compo-

nents can lead to a more precise control over the latent

space of the DiverGAN [3] model.

4.2.3 Background flattening

A movement along an effective direction in the latent space

should not only accurately change the desired attribute, but

also maintain other image content, e.g., the background.

However, when applying existing semantic-discovery

methods even our introduced algorithm on the text-to-im-

age generation model, we find that the background

appearance in the edited sample usually varies along with

the target attribute. To overcome this issue, we develop a

Background-Flattening Loss (BFL) to fine-tune the

acquired directions to improve the background. This loss is

defined by using both low-level pixels and high-level fea-

tures, ensuring that the background is optimized and other

image contents are preserved. Specifically, it is denoted as:

Lflattenðx1; x2Þ ¼ jjx1 � x2jj1 þ LLPIPSðx1; x2Þ ð10Þ

where x1; x2 refer to a source sample and an edited sample,

respectively. We leverage the Adam algorithm to optimize

the independent components.

We empirically find that we are able to employ our

proposed BFL to remove the patterns representing the

background. To be specific, we can obtain a sample with a

white background by increasing the distance (i.e., the BFL)

between samples generated by different directions, since

the white background and the black background will lead

to the maximum loss values. After that, to remove the

background, we take the white-background sample as the

source image while reducing the distance between the

source sample and the edited samples.

4.3 Improving the explainability
of the conditional text-to-image GAN

In addition to the latent space, a conditional text-to-image

GAN model also contains the linguistic embeddings, in

which word and sentence vectors are adopted to module the

visual feature map for semantic consistency. Despite high-

quality pictures achieved by the existing approaches, we

yet do not understand what a text-to-image generation

architecture has learned within the linguistic space of the

conditional input-text probes.

In order to understand ‘embeddings’ in deep learning,

several methods have been proposed. A common method is

to visualize the space using, e.g., t-SNE or k-means clus-

tering. This may give some insights on the location of

dominant image categories in the subspace. An alternative

approach is to utilize—yet another—step of dimensionality

reduction by applying standard PCA on the embedding.

However, this still does not lead to good explanations and

an easy controllability of the image-generation process. In

this subsection, we start from Good latent vectors and

introduce two basic techniques to provide insights into the

explainability of a text-to-image synthesis framework.

4.3.1 Linear interpolation and semantic interpretability

We study the linear interpolation between a pair of key-

words in order to qualitatively explore how well the gen-

erator exploits the linguistic space of the conditional input-

text probes as well as testing the influence of individual,

different words on the generated sample. We can observe

how the samples vary as a word in the given text is

replaced with another word, for instance by using a polarity

axis of qualifier key words (dark-light, red-blue, etc.). More

specifically, we can first acquire two word embeddings

(i.e., w0 and w1) and two corresponding sentence vectors

(i.e., s0 and s1) by only altering a significant word (e.g., the

color attribute value and the background value) in the input

natural-language description. Afterward, the results are

obtained by performing the linear interpolation between the

initial textual description ðw0; s0Þ and the changed

description ðw1; s1Þ while keeping the Good latent code z

frozen. Mathematically, this proposed text-space linear

interpolation combines the latent code, the word and the

sentence embeddings and is formulated as:

hðcÞ ¼ Gðz; ð1 � cÞw0 þ cw1; ð1 � cÞs0 þ cs1Þ ð11Þ

where c 2 ½0; 1� is a scalar mixing parameter and z is a

successful latent code.

For the CUB bird data set, when we vary the color

attribute value in the given sentence, we empirically

explore what happens in the color mix: Do we, e.g., get an
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average color interpolation in RGB space or does the net-

work find another solution for the intermediate points

between two disparate embeddings?

In general, our presented text-space linear interpolation

has the following advantages:

• The linear interpolation between a pair of keywords can

be utilized to quantitatively control the attribute of the

synthetic sample, when the attribute varies smoothly

with the variations of the word vectors. For example,

the length of the beak of a bird can be adjusted precisely

via the text-space linear interpolation between the word

embeddings of ‘short’ and ‘long.’

• When the attribute of the synthesized sample does not

change gradually along with the word embeddings, we

can exploit a text-space linear interpolation to produce a

variety of novel samples. Take bird synthesis as an

example: When conducting the linear interpolation

between color keywords, the generator is likely to

generate a new bird whose body contains two colors

(e.g., red patches and blue patches) in the middle of the

interpolation results.

• Through the linear interpolation between contrastive

keywords, we can take a deep look into which

keywords play important roles in yielding foreground

images as well as which image (background) regions

are determined by the terms in the text probe.

4.3.2 Triangular interpolation and semantic interpretability

We extend the pairwise linear interpolation between two

points to the interpolation between three points, i.e., in the

2-simplex, for further studying the generator and better

performing data augmentation. Since this kind of interpo-

lation forms a triangular plane, we name it the triangular

interpolation. The triangular interpolation is able to gen-

erate more and more diverse samples conditioned on three

corners (e.g., latent vectors and keywords), spanning a field

rather than a line.

Similar to the linear interpolation between a pair of

keywords, we need to derive three word embeddings (i.e.,

w0, w1 and w2) and three corresponding sentence vectors

(i.e., s0, s1 and s2) as corners to define the presented text-

space triangular interpolation:

hðc1; c2Þ ¼ Gðz; ð1 � c1 � c2Þw0 þ c1w1 þ c2w2;

ð1 � c1 � c2Þs0 þ c1s1 þ c2s2Þ
ð12Þ

where c1 2 ½0; 1� and c2 2 ½0; 1� are mixing scalar param-

eters and z is a successful latent vector.

For the sake of attribute analysis, we can obtain three

new textual descriptions by replacing the attribute word in

the initial natural-language description with another two

attribute words. Then, through the triangular interpolation

between keywords, the generator has the ability to yield

pictures based on the above three attributes. Moreover, we

expect that the text-space triangular interpolation should

achieve the same visual smoothness as the text-space linear

interpolation. In other words, when fixing the weight (i.e.,

c2) of the third text in the triangular interpolation between

keywords, the attributes of the image vary gradually along

with the word embeddings if the interpolation results of a

text-space linear interpolation between the first two textual

descriptions change continuously.

The text-space triangular interpolation has obvious

advantages over the linear interpolation between a pair of

keywords. Firstly, the text-space triangular interpolation is

able to produce more image variation to perform data

augmentation than the pairwise linear interpolation. Sec-

ondly, we can simultaneously control two different attri-

butes (e.g., color and the length of the beak) via the

triangular interpolation between keywords. Thirdly,

through the text-space triangular interpolation, three iden-

tical attributes (e.g., red, yellow and blue) can be combined

to synthesize a novel sample.

5 Experiments

5.1 Experimental settings

Data sets We perform a set of experiments on three broadly

utilized text-to-image data sets, i.e., the CUB bird [4], MS

COCO [11] and Multi-Modal CelebA-HQ [5] data sets.

• CUB bird The CUB bird data set contains a total of

11,788 images, in which 8855 images are taken as the

training set and the remaining 2933 images are

employed for testing. Each bird is associated with 10

textual descriptions.

• MS COCO The MS COCO data set is a more

challenging data set consisting of 123,287 images in

total, which are split into 82,783 training pictures and

40,504 test pictures. Each image includes 5 human

annotated captions.

• Multi-Modal CelebA-HQ The Multi-Modal CelebA-HQ

data set is composed of 24,000 and 6000 faces for

training and testing, respectively. Each face is anno-

tated with 10 sentences.

Implementation details We take the recent DiverGAN

generator [3] as the backbone generator, which is pre-

trained on the CUB bird, Multi-Modal CelebA-HQ and MS

COCO data sets. The image size of the proposed Good &

Bad data set is set to 256 � 256 � 3. We set the output

dimension of the CNN models (e.g., ResNet [6] and VGG

[59]) to 2. We adopt the Adam optimizer with a batch size
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of 64 [60] to fine-tune the classification network pre-

trained on ImageNet. We utilize the learning-rate finder

technique [61] to acquire a suitable learning rate. The one

cycle learning rate scheduler is leveraged to dynamically

alter the learning rate, while the model is training. We set

the mix factor to 3 [7] for SeFa and our proposed algo-

rithm. The scalar parameter for GANSpace [8] is set to 20

on the CUB bird data set and 9 on the COCO data set,

respectively. These two parameter values were determined

empirically and are needed to compensate for intrinsic

scaling differences between the compared methods

(Fig. 10). Due to the chosen parameter values, the gradual

changes over the horizontal axes of the different approa-

ches are visually more comparable in the figure. We

employ the Adam optimizer with b ¼ ð0:0; 0:9Þ [37] to fine

tune the identified directions. We set the learning rate to

0.0001, as in [37]. The steps of a linear interpolation

between two embedded vectors are set to 10. We set the

steps of c1 and c2 in a triangular ‘linguistic’ interpolation to

10. This number is mainly chosen for visual inspection. A

smaller number would not show the gradual changes,

whereas a larger number would both show a redundant

picture and would lead to thumbnail images along the

horizontal axis that would be too small. Our methods are

implemented by PyTorch. We conduct all the experiments

on a single NVIDIA Tesla V100 GPU (32 GB memory).

5.2 Results of finding Good synthetic samples

5.2.1 Results of the pairwise linear interpolation of latent
codes

To better understand the transition process from a suc-

cessful synthesized sample to an unsuccessful generated

image, we visualize the results of the pairwise linear

interpolation between a Good latent code and a Bad latent

vector in Fig. 6a. It can be observed that for the first five

and the last two pictures, both the background and the

visual appearance of footholds vary gradually along with

the latent vectors. However, the background, the visual

appearance of footholds, the positions, the shapes and even

the orientations (7 th ! 8 th sample) of the birds do not

change continuously from the 6th image to the 8th sample.

It suggests that there may exist a nonlinear boundary sep-

arating Good samples from Bad images in the fake data

space.

We also show the corresponding LPIPS score and the

perceptual loss (presented in Fig. 6b and c) to quantita-

tively compare the diversity between two close samples. It

can be seen that the increase of the 6th point (6 th ! 7 th

sample) is the largest and the 7th point (7 th ! 8th

sample) obtains the highest score for both the LPIPS and

the perceptual loss. Meanwhile, both points are over the red

line which is an approximate boundary distinguishing

smooth changes from discontinuous variations and deter-

mined by our observations. The results of Fig. 6b and c

match what observe in Fig. 6a, indicating that the visual

appearance of the birds does not always vary smoothly

along with the latent codes.

5.2.2 Results on the initial Good & Bad bird data set

We try different methods to classify a synthetic sample as

Good or Bad on the initial Good & Bad bird data set (i.e.,

210 Good and 210 Bad birds). The results are reported in

Table 2. Here, we discover that all methods using the

learned feature vectors of a well-trained VGG-16 network

achieve over 94%, suggesting that there exists a (almost)

linear boundary in the deep-feature space which can

accurately distinguish Good samples from Bad samples. In

addition, the conv5_1 activation in the pre-trained network

obtains the best performance (accuracy: 97.5%). We also

attempted to employ the SVM with radial basis function

(RBF) kernel to classify deep features, acquiring the same

result as the linear SVM. Moreover, it can be observed that

directly operating on the image pixels (accuracy: 70.0%)

and the latent space (accuracy: 75.8%) does not work well

for the classification of Good and Bad samples/latent

codes. To boost the accuracy, we conduct PCA on the

image pixels to reduce the dimension to 128 and apply a

linear SVM to identify realistic samples. However, the

accuracy is only improved by 3.3%. The above results

confirm the effectiveness of our proposed framework. It

should be noted that at 420 test samples, the 95% confi-

dence margin is ±1.5% under the Gaussian or binomial

assumption. This means that VGG-16(conv5 3) can be

considered as having a worse performance than the two

winning variants (Table 2, bottom).

We visualize some typical output samples selected from

the test set (Ngood=60, Nbad=60) in Fig. 7 according to

their distance to the decision boundary of the trained SVM.

It can be observed that Good samples are distinguishable

from Bad samples. Meanwhile, the Bad birds around the

boundary may have higher quality than the Bad birds far

from the decision boundary. It should be noted that in non-

ergodic problems, where there is not a natural single signal

source for the Good (or the Bad) images, but there rather

exists a partitioning of space, the SVM discriminant value

for a sample is not guaranteed to be consistent with the

intuitive prototypicality of the heterogeneous underlying

class [62] due to the lack of a central density for that class.

Neural Computing and Applications (2024) 36:2549–2572 2561

123



5.2.3 Results on the Good & Bad data set

The classification results We fine-tune the pre-trained CNN

models (i.e., ResNet and VGG) on the Good & Bad data

set in order to accurately predict the quality classes of

generated images. The comparison between VGG-11,

VGG-16, VGG-19, ResNet-18, ResNet-50 and Res-Net-

101 with respect to the classification performance on the

Good & Bad bird and face data sets is shown in Table 3.

We can observe that ResNet-50 achieves the best result

(accuracy: 98.09%) on the Good & Bad bird data set and

ResNet-101 impressively acquires the accuracy of 99.16%

on the Good & Bad face data set. It can also be seen that

ResNet performs better than VGG and all the networks

obtain a better than 95% accuracy on both the Good & Bad

bird data set and the Good & Bad face data set. The above

results demonstrate that the Good and Bad samples in the

synthetic image space can be effectively distinguished by a

well-trained deep convolutional network. It should be

noted that at 4700 test samples, the 95% confidence margin

is ±0.45% under the Gaussian or binomial assumption.

This implies that for faces (Table 3, right column), Res-

net101 is the clear winner, whereas for birds (Table 3, left

column), VGG-19, ResNet-18, ResNet-50 and Res-Net-

101 have a similar performance, statistically.

(a) An example of pairwise linear interpolation of latent codes

(b) The results of the LPIPS score (c) The results of the perceptual loss

Fig. 6 A random example of a pairwise linear interpolation between

latent vectors (left=Good ! right=Bad). The red bounding box in

a emphasizes a discontinuous range within the linear-interpolation

results. The dashed red line in b and c is an approximate boundary

distinguishing smooth changes from discontinuous variations,

determined by our observations. The index number represents the

comparison, starting with 0, i.e., the comparison between the first and

the second image on the left. The discontinuity is quantitatively

revealed both in LPIPS and in perceptual loss (Color figure online)

Table 2 Classification accuracy on the separation boundary with

respect to image quality.

Methods Accuracy (%)

Image 70.0

PCA-Image 73.3

Latent Code 75.8

VGG-16(conv5 3) 94.2

VGG� 16ðconv5 2Þ 96:7

VGG� 16ðconv5 1Þ 97:5

PCA-Image refers to using PCA on the image pixels after reducing

the dimensionality to 128 and applying SVM to identify realistic

samples. Latent Code refers to the direct application of SVM in the

latent space. Image refers to a direct application of SVM on the image

pixels. At 420 test samples, the 95% confidence margin is ±1.5%,

allowing to indicate the best two methods (bold)

-8~0

D
is

ta
n
ce

0

>30

0~5

<-50

Fig. 7 Example of partitioning of latent-code space between Good
(two top rows) and Bad latent codes (two bottom rows), as determined

by the discriminant value (distance) computed by a linear SVM

(training set: Ngood=150, Nbad=150.)
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Visualization of the learned representation To visually

investigate the distribution of the features learned by the

CNN models (i.e., ResNet-50 for the Good & Bad bird

data set and ResNet-101 for the Good & Bad face data

set), we exploit the PCA and t-SNE [64] approaches to

embed the samples on the Good & Bad data set into a

2-dimensional space as shown in Fig. 8. From the scatter

plots in this figure, we can see that the learned represen-

tations of the classification networks from different classes

(i.e., Good and Bad) are well separated, indicating that the

image classification models can project the plausible vs

unrealistic samples into two different regions of the latent

spaces. Therefore, discovering photo-realistic samples

from synthesized images appears to be feasible. It can also

be observed that Good & Bad samples in the faces data set

are more separable in PCA than the Good & Bad samples

in the bird data set, which may explain why ResNet-101

trained on the face data set performs better than ResNet-50

trained on finding good vs bad samples in the bird data set.

The latter is consistent with the obtained classification

score.

Explaining the classification prediction We leverage

three different methods (i.e., Layer-CAM [65], integrated

gradient [66] and extremal perturbation [67]) to explain the

image classification prediction obtained by ResNet-50

trained on the Good & Bad bird data set and ResNet-101

trained on the Good & Bad face data set. Figure 9 shows

the explanation for the top 1 predicted class, suggesting

that the classification network derives the results by con-

centrates on the discriminative regions of the objects (i.e.,

birds and face). For instance, Layer-CAM visualization

(2nd and 6th column) localizes the heads and belly of the

birds and the noses, mouths and eyes of the faces. Mean-

while, integrated gradient (3rd and 7th column) and

extremal perturbation (4th and 8th column) correctly

highlight the branches and the whole bodies of the birds

while capturing the hat and the entire faces, pinpointing the

reason why the samples are classified into the corre-

sponding categories. More importantly, the blurry regions

of the images (6th, 7th and 8th column) are accurately

identified by these explainable approaches. That is to say,

our classification model can separate implausible regions

from high-quality patches and discover successful synthetic

samples from generated images.

Quantitative comparison of image quality We evaluate

the image quality of the proposed Good & Bad data set

quantitatively. We randomly select 2000 Good images and

2000 Bad images from the data set to compute the Fréchet

inception distance (FID) score, which is reported in

Table 4. We can see that Good samples achieve signifi-

cantly lower FID scores than Bad samples on the Good &

Bad bird and face data sets, which suggests the usefulness

of the proposed method. Since the inception score (IS) may

be saturated, even over-fitted [3, 36, 37] and we do not

have enough pictures, we do not compare the IS on our

data set.

5.3 Results of latent-space manipulation

5.3.1 Comparison between SeFa, GANSpace and PCA

Figure 10 plots the latent-code manipulation results of

SeFa [7], GANSpace [8] and regular PCA on the CUB bird

Table 3 Classification

performance of the deep

convolutional networks on the

Good & Bad bird and face data

sets. Bird refers to the Good &

Bad bird data set, and Face
refers to the Good & Bad face

data set

Classification performance/%

Method Data set

Bird Face

VGG-11 96.53 98.08

VGG-16 95.70 97.84

VGG-19 97.85 98.20

ResNet-18 97.59 98.68

ResNet-50 98.09 98.56

ResNet-101 97.79 99.16

The best results are in bold

Fig. 8 Separability of the Good & Bad classes, left a for the birds,

right b for the face-image data set, by utilizing the PCA and t-SNE

[63] methods. These scatter plots show the good separability of the

two qualitative classes: The yellow color represents the Good sample,

while purple dots represent Bad image samples (Color figure online)

Neural Computing and Applications (2024) 36:2549–2572 2563

123



and COCO data sets. We discover that these three

approaches derive almost the identical directions although

for some components (e.g., 4th principal component) the

negative and the positive side is reversed, supporting our

claim in Sect. 4.2.1. Note that GANSpace is implemented

by leveraging the first dense layer of DiverGAN to collect

10,000 sets of feature maps while performing PCA on them

to obtain principal components as useful attributes. Addi-

tionally, we adjust the max mix factor to 20 on the CUB

bird data set and 9 on the COCO data set, respectively. The

above analysis suggests that when enough data are sam-

pled, SeFa is similar to GANSpace for DiverGAN.

5.3.2 Comparison with unsupervised methods

For qualitative comparison, we visualize the meaningful

directions identified by our proposed algorithm and SeFa

on the CUB bird and Multi-Modal CelebA-HQ data sets in

Fig. 11. We can tell that our method is able to derive

several fine-grained semantics corresponding to rotation,

background and size for the bird model and pose, hair and

smile for the face model, validating its effectiveness.

Meanwhile, our approach leads to a more powerful control

over the latent codes than SeFa. For example, when editing

the size of the bird, our algorithm better preserves the

background appearance. Our method also achieves better

performance than SeFa from the perspective of smiling. It

can also be seen that our method captures the same rotation

and pose attributes as SeFa. The reason for this may be that

ICA under orthogonal constraint and PCA can discover

Fig. 9 Explaining the image classification prediction made by

ResNet-50 on the Good & Bad bird data set (three top rows) and

ResNet-101 on the Good & Bad face data set (three bottom rows)

using Layer-CAM [65], integrated gradient [66] and extremal

perturbation [67]. The left half of the grid is from the Good data

set; the right half of the grid is from the Bad data set, separated by the

dashed line

Table 4 The FID of Good pictures and Bad pictures on the Good &

Bad data set. A lower FID score means that the generated pictures are

closer to the corresponding real pictures. Bird refers to the Good &

Bad bird data set, and Face refers to the Good & Bad face data set

Data set Good Bad

Bird 38.28 47.39

Face 30.93 45.62

The best results are in bold
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exactly the same most representative semantics (rotation

for the bird model and pose for the face model).

We discovered that our algorithm is able to better

remove the smile than SeFa, which is illustrated in Fig. 12.

We can observe that our method can edit the smile on the

face while preserving other attributes, such as pose, back-

ground and hair. However, when removing the smile using

SeFa, background and hair style are changed.

We perform quantitative analysis on two captured

semantics, i.e., smile and size, in order to further validate

the effectiveness of our algorithm. To quantitatively eval-

uate the direction about smile identified by our approach,

following [9], we train a smiling classifier on the Multi-

Modal CelebA-HQ data set with ResNet-50 network [6].

The result of the classifier may indicate whether the dis-

covered direction is correlated with the desired attribute.

Note that since many significant attributes, such as gender,

age and glasses, are only manipulated by textual descrip-

tions, we do not train the corresponding predictors. For the

quantitative analysis of the direction about the size of the

bird, inspired by [45], we use the cosine distance between

the CLIP embeddings of the edited birds and the text ‘a

large bird’ as the evaluation metric. The reason behind

using the CLIP loss is that it can effectively guide image

manipulation through a text prompt. The results are

depicted in Table 5. We can see that our algorithm out-

performs SeFa on both the smile and the size of the bird,

which suggests its effectiveness. The above results

demonstrate that based on the Good latent codes found by

our well-trained classification model, we can adopt our

presented algorithm to acquire a wealth of semantically

diverse and perceptually realistic samples.

5.3.3 Human evaluation

We conduct a human-preference test on the Multi-Modal

CelebA-HQ data set to compare our method with SeFa. We

randomly select 100 successful synthesized faces while

employing the directions (i.e., smile and hair) found by

these two approaches. The user is asked to control the

relevant dimension using a slider, for both methods. Users

Fig. 10 Visualization of

individual components within

the latent codes, for (1) SeFa

[7], (2) GANSpace [8] and (3)

regular PCA. The original

source image is in the left

column (2 examples, a and b).

For each principal component

(pc1-pc4), example images from

the negative and the positive

side of its axis are shown
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are then asked to choose the sample with the most accurate

change. Two human subjects participated in this evalua-

tion. The performance indicator is the percentage of cases

where a method was selected as the best. As illustrated in

Fig. 13, our method performs better than SeFa with respect

to the control of smile and hair, which demonstrates the

superiority of our proposed algorithm.

Fig. 11 Qualitative comparison of the meaningful latent-space directions discovered by a SeFa [7] and b our proposed algorithm on (1) the CUB

bird (four top rows) and (2) Multi-Modal CelebA-HQ (four bottom rows) data sets
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5.3.4 Results of background flattening

To prove the effectiveness of background flatten, we apply

it to optimize the directions obtained by our proposed

algorithm. The results are illustrated in Fig. 14. By com-

paring the first row with the second row, we can see that

the background is significantly improved and other image

contents are maintained, indicating that the presented

background-flattening method can be employed for exist-

ing latent-code manipulation approaches to fine-tune the

backgrounds of synthetic samples. As can be observed in

the third row, background flattening can also be leveraged

to remove the background while keeping the birds

unchanged.

5.4 Results of a ‘linguistic’ interpolation

5.4.1 Results of the linear interpolation between keywords

Figure 15 shows the qualitative results of the linear ‘lin-

guistic’ interpolation of DiverGAN on the CUB bird data

set, indicating that the attributes correlated with the syn-

thesized sample do not always change gradually with the

variations of word embeddings. For instance, the color of

the bird does not vary continuously from ‘red’ to ‘blue’ in

the first row. In the medium of interpolation results,

DiverGAN generates multiple novel birds, whose bodies

are composed of red and blue patches. However, the color

attribute of the bird changes gradually from ‘red’ to ‘yel-

low’ in the second row. We are able to acquire an average

color interpolation in RGB space by merging the first and

second attributes. We can also see that in the third row, the

length of the beak varies smoothly along with textual

vectors, while other attributes remain unchanged. Further-

more, while the color of the beak changes continuously

with the variations of word embeddings, the shape of the

bird varies largely in the fourth row. The above results

suggest that DiverGAN has the ability to capture the sig-

nificant words (e.g., the color of the body and the length of

the beak) in the given textual description. More impor-

tantly, by exploiting the characteristic as well as the linear

interpolation between a pair of keywords, we can precisely

control the image-generation process while producing

various novel samples.

The qualitative results of the linear interpolation

between contrastive keywords on the COCO data set are

shown in Fig. 16. We can observe that DiverGAN accu-

rately identifies ‘beach,’ ‘snow’ and ‘men’ while generat-

ing the corresponding image samples. In addition, the

background (1st and 2nd row) and the object (3rd row)

change continuously along with linguistic vectors. It can

also be seen that although we change the ‘acting’ word

Fig. 12 Qualitative comparison of the removing-smile latent-space direction discovered by a SeFa [7] and b our proposed algorithm on the

Multi-Modal CelebA-HQ data set. �Smile indicates the removing-smile image

Table 5 Quantitative analysis of

the size and smiling semantics

discovered by our method and

SeFa [7]

Method Size " Smile "

SeFa 0.25 0.54

Ours 0.27 0.56

The best scores are in bold

Fig. 13 Human-rater preference (Pref.) for the method SeFa [7] and

our proposed method with respect to the task ’control the smile’ (blue

bars) and the task ’control the hair’ (orange bars) on the Multi-Modal

CelebA-HQ data set. The y axis represents the percentage of trials

where a method was chosen. The sum of the voting percentages over

methods is 100% within a task. The total number of trials per task is

100, i.e., 200 votes were obtained (Color figure online)
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from ‘grazing’ to ‘skiing,’ the background significantly

varies from ‘grass’ to ‘snow’ in the fourth row, which

demonstrates that some words (e.g., ‘skiing’) play a vital

role in the generation process of image samples. Further-

more, the above analysis indicates that when given ade-

quate training images, DiverGAN is able to control the

background (e.g., from grass to beach) and object (e.g.,

from animals to men) of complex scenes with the help of

the linear ‘linguistic’ interpolation, since DiverGAN is able

to learn the corresponding semantics in the linguistic space

of the conditional input-text probes.

In addition to visualizing effective examples of the

linear interpolation between keywords, we also present

some unsuccessful results in Fig. 17. As can be observed in

Fig. 17, the size of the bird (1st and 2nd row) does not vary

with the variations of the word (from ‘small’ to ‘big’ and

from ‘small’ to ‘medium’). In addition, we can see that the

background (3rd row) and the object (4th row) unfortu-

nately do not change along with the word (from ‘grass’ to

‘street’ and from ‘animals’ to ‘cows’). At this point we can

conclude that many meaningful contrasts can be learned

(Fig. 16), but there are areas where the method is not able

to capture important variations along a dimension. This

may be due to architectural or data-related limitations. In

order to improve our insights, we will look at a triangular

interpolation in the next subsection.

Fig. 14 Visualization of

background flatten and

background removal for the

meaningful directions acquired

by our proposed method

Fig. 15 ‘Linguistic’ interpolation of DiverGAN random latent-code samples on the CUB data set, for four text input probes
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5.4.2 Results of a triangular ‘linguistic’ interpolation

The triangular interpolation for linguistic attributes (i.e.,

the points between snow, grass, beach) in two dimensions

is shown in Fig. 18. We can observe that the transitions

toward the three corner points are natural as well as

smooth. Furthermore, the interpolation results achieve a

balanced triangular shape within the triangle, such that the

center marked in red is the combination of three linguistic

attributes. If the application concerns data augmentation,

55 believable samples are obtained by performing the tri-

angular interpolation between keywords.

6 Conclusion

In this paper, we propose several techniques to overcome

the challenges of text-to-image generation in real-world

applications. To ensure the quality of synthetic pictures, we

created a Good & Bad data set, both for a bird and a face-

image collection, which comprises high-resolution as well

as implausible synthesized samples, in which the images

are chosen by following strict principles. Based on the

Good & Bad data set, we fine-tune the deep convolutional

network trained on ImageNet to classify a generated image

as Good or Bad. To better understand and exploit the latent

space of a conditional text-to-image GAN model, we

introduce the independent component analysis (ICA)

algorithm under an additional orthogonal constraint that

Fig. 16 ‘Linguistic’ interpolation of DiverGAN random latent-code samples on the COCO data set, for four text input probes

Fig. 17 Unsuccessful ‘linguistic’ interpolation of DiverGAN random latent-code samples on the CUB and COCO data sets, for four text input

probes. For the third row, the desired attribute (i.e., a street) is not emerging
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can extract both independent and orthogonal components

from the pre-trained weight matrix of the generator as the

semantically interpretable latent-space directions. In addi-

tion, we designed a background-flattening loss (BFL) to

optimize the background appearance in the edited sample.

To provide valuable insight into the relationship between

the linguistic embeddings and the synthetic-sample

semantic space, we conduct linear interpolation analysis

between pairs of keywords. Meanwhile, we extend a

pairwise linear interpolation to a triangular interpolation

conditioned on three corners to further analyze the model.

We evaluate our presented approaches on the recent

DiverGAN generator that was pre-trained on three popular

data sets, i.e., the CUB bird, Multi-Modal CelebA-HQ and

MS COCO data sets. Extensive experimental results sug-

gest that our well-trained classifier is able to accurately

predict the quality classes of the samples from the testing

set and our introduced algorithm can derive meaningful

semantic properties in the latent space of DiverGAN,

which validates the effectiveness of our proposed methods.

Furthermore, we show that semantics contained in the

image change gradually with the variations of latent codes,

but the attributes of the sample do not always vary con-

tinuously along with the word embeddings: For some

contrasts, there may exist fast transitions along the latent

axis. This may not be surprising because not all semantic

categories are guaranteed to have a fluent transition. In

many applications, size and relative size of objects will be

considered as an important control variable. However, we

find that DiverGAN, being a convolutional neural network,

cannot capture the size of objects. Notably, this invariance

is desirable in a classification context, but not optimal in a

generative application. Furthermore, DiverGAN cannot

understand some words in the given textual description.

This may be due to the lack of (diverse) textual descrip-

tions in the labels accompanying the images in the data

sets, a common problem in generative text-to-image

approaches. The advent of large language models may help

in diversifying the textual annotations in image collections.

In the future, we will explore how to utilize the presented

approach to perform data augmentation for training image

classifiers. Instead of a Monte Carlo like random sampling

of augmentation candidate images, our method allows for a

more targeted sampling procedures, taking into account

semantic contrasts and/or the estimated quality of gener-

ated images.
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