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Abstract
Very sensitive loads require the safe operation of electrical distribution networks, including hospitals, nuclear and radiation

installations, industries used by divers, etc. To address this issue, the provided paper suggests an innovative method for

evaluating the appropriate allocation of Distribution STATic COMpensator (DSTATCOM) to alleviate total power losses,

relieve voltage deviation, and lessen capital annual price in power distribution grids (PDGs). An innovative approach,

known as the modified capuchin search algorithm (mCapSA), has been introduced for the first time, which is capable of

addressing several issues regarding optimal DSTATCOM allocation. Furthermore, the analytic hierarchy process method

approach is suggested to generate the most suitable weighting factors for the objective function. In order to verify the

feasibility of the proposed mCapSA methodology and the performance of DSTATCOM, it has been tested on two standard

buses, the 33-bus PDG and the 118-bus PDG, with a load modeling case study based on real measurements and analysis of

the middle Egyptian power distribution grid. The proposed mCapSA technique’s accuracy is evaluated by comparing it to

other 7 recent optimization algorithms including the original CapSA. Furthermore, the Wilcoxon sign rank test is used to

assess the significance of the results. Based on the simulation results, it has been demonstrated that optimal DSTATCOM

allocation contributes greatly to the reduction of power loss, augmentation of the voltage profile, and reduction of total

annual costs. As a result of optimized DSTATCOM allocation in PDGs, distribution-level uncertainties can also be

reduced.

Keywords Power distribution grid � DSTATCOM � CEC’2020 � Modified capuchin search algorithm � Regime loadability

study

List of symbols
QDSTATCOM;i Reactive power injected by

DSTATCOM

MObjF Multi-objective function

Vnew;i Absolute voltage at node i

j1, j2, j3, and
j4

Weighting factors of the objective

function

PLoss(i,j),

QLoss(i,j)

Active and reactive power losses,

respectively through ‘‘i-bus’’ and ‘‘j-

bus’’

PTLoss;b Total base power losses
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PDST,TLoss System active losses including

DSTATCOMs

IVDb Index of the voltage deviation at the

basic-scenario

IVDDST Index of the voltage deviation with

DSTATCOM location

Vmax, Vmin Maximum and minimum voltage levels,

respectively

Vi,DST, Vi,b Voltage with DSTATCOM and the base

one, respectively

IVSDb Index of the voltage stability deviation at

the base case

IVSDDST Index of the voltage stability deviation

with DSTATCOM

VS, VSmax Voltage stability and its maximum

value, respectively

Enb, EnDST Energy price before and after allocating

the DSTATCOM, respectively

Cen Coefficient of the energy price rate

(60 $/MWh)

bDST Operational cost of the QDSTATCOM

bLoc Investment price of the QDSTATCOM

location

WDST Reactive power set 0 or 1

ICI and IRI Consistency and random indexes,

respectively

Pj,eff and Qj,eff Effective values of active and reactive

loads

kmax Maximum eigenvalue

1 Introduction

A typical power distribution grid (PDG) has a radial

structure since it is easier to protect and has a reduced short

circuit level. A distribution system delivers power to clients

to meet their needs. It has the highest losses as compared to

the generating and transmission systems due to low volt-

age, high current flow, a high R/X ratio, and the radial

nature [1, 2]. According to the literature, about 10–13% of

total generated power is squandered as I2R losses in PDG

[3]. Researchers have paid close attention to distribution

networks in recent years because they play an imperative

role in the quality and planning of power systems. Power

quality degradation impacts a number of significant

demands. These may include divers’ heavy industries,

hospitals, emergency systems, and nuclear and radiation

installations. For example according to the international

atomic authority section [2, 4], the research reactors are

suffering from interruptions in voltage profiles that may

cause Loss of Off-site Power Supply (LOPS). A reliable

on-site power supply with reliable power quality is crucial

for ensuring the safety of nuclear reactors as well as

safeguarding the public and the environment from the

radioactive dangers posed by LOPS. By installing appro-

priate compensatory devices, distribution system losses can

be minimized. In this regard, capacitors are critical in

decreasing power losses in PDG. It is also possible to

increase voltage levels across buses using capacitors;

however, providing a variable reactive power source is

extremely challenging [5, 6]. As a result, distributors must

account for these capacitor costs as well as installing them

in appropriate places with optimal sizes. Another problem

with capacitor placement is that load balancing is not

possible due to capacitor operating issues such as reso-

nance. Furthermore, one of the key complications associ-

ated with the use of capacitors in PDG is the oscillation in

nature of capacitor devices when compared to inductive

components with comparable circuits [7]. To address these

issues, Distributed Flexible Alternating Current Transmis-

sion Systems (D-FACTS) are utilized in PDGs to minify

power losses and increase bus voltages. D-FACTS devices

can offer higher performance and lower-cost way of

improving network controllability and reliability, increas-

ing asset utilization, and improving end-user power quality

while minimizing environmental impact and system cost

[8–11]. Presently, quality issues in electrical power net-

works are becoming more sophisticated at all levels. As a

result, maintaining appropriate levels of electric power

quality is a considerable task [10].

Distribution Static Compensator (DSTATCOM) and

Static Var Compensator (SVC) are the most commonly

utilized D-FACTS devices. As evidenced in previous

studies [12–17], the DSTATCOM is the preferred appro-

priate device since it provides excellent reactive power

while preventing unbalanced loading in PDG. Furthermore,

it has outstanding characteristics such as no resonance or

transient harmonics troubles, low harmonic content output,

and small footprint [12, 13]. Voltage source converters are

used in customized DSTATCOM devices. It can also

function as a shunted device, capacitor connection, and

conjunction transformer. It is used to regulate system bus

voltages, control power factor, real power, and reactive

power. DSTATCOM can supply capacitive and inductive

modal adjustment that is both quick and permanent [14].

DSTATCOM is the most effective device for eliminating

harmonic deformity from the system and avoiding imbal-

ance [15]. DSTATCOM deployment maximizes annual

cost savings, lowers power losses, increases load ability,

boosts stability, adapts for reactive power, and maintains

power quality [16]. Ultimately, DSTATCOM has numer-

ous benefits, including low power losses, low harmonic
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output, robust regulatory capabilities, relatively inexpen-

sive, and tiny size [17]. Consequently, finding the most

effective allocation of DSTATCOM has a serious influence

on PDG. Table 1 outlines the primary advantages and

purposes of DSTATCOM and SVC.

1.1 Literature review

DSTATCOM allocations have received little attention

from researchers. So far, different strategies for DSTAT-

COM allocation have been adopted, including (1) modal

analysis, (2) analytical techniques, and (3) optimization

algorithms.

Originally, modal analysis approaches and time-domain

simulation were employed to solve the DSTATCOM

determination issue in the distribution systems (DS) to

foster power goodness [18].

Analytical approaches, on the other hand, are employed

to tackle DSTATCOM layout issues in PDG for loss relief

and bus voltage augmentation [19]. The power loss index

(PLI) is taken into account while resolving DSTATCOM

allocation concerns in PDG [20]. The voltage stability

index (VSI) has been determined before locating the

DSTATCOM devices optimally in different PDGs [21].

The PLI and VSI are taken into account while resolving

DSTATCOM allocation concerns in PDGs [22, 23]. In

[24], the VSI has been employed to elect the candidate

nodes for locating the DSTATCOM devices. For handling

uncertain attributes of loads by [25], the Monte Carlo

simulation (MCS) technique is applied. The analytical

approach-based technique has been utilized to deduce the

allocation of distributed generators (DG) and DSTATCOM

based on the VSI and loss sensibility factor (LSF) [26].

Numerous researches have focused on recent techniques

and methodologies. However, these researches can be

divided in two categories.

In the first category, many researchers considered the

study of the optimum allocation of DSTATCOM. Like the

particle swarm optimization (PSO) [27], bacterial foraging

optimization algorithm (BFOA) [28], and echolocation-

based bat algorithm (EBA) [29] have been introduced to

minify the losses and operational costs, as well as to

enhance the voltage profile in PDG. The multi-objective

genetic algorithm (MOGA) [30] has been developed to

consider the average current total harmonic distortion

(THD) and the overall operational prices as the main

objective function (ObjF). Differential evolution (DE) and

long-term planning of DSTATCOM allocation have been

proposed to maximize the total net profit (TNP) with

annual savings price and minimize the energy price [31].

Based on the modified crow search algorithm (MCSA)

developed [32], with the aim of minimizing system losses,

the pollution index (PI) is calculated based on pollution

levels, operation costs, and enhancing voltage levels. In

this paper [32], the MCSA has been compared with the

Crow search algorithm (CSA), differential evolution (DE),

and harmony search algorithm (HSA). The total power

losses have been reduced by utilizing the harmony search

algorithm (HAS) to allocate the DSTATCOM in the PDG

[33]. A multi-objective seeker optimization algorithm

(MOSOA) was developed considering the pareto-optimal

solution to deduce the final optimal results of DSTATCOM

allocation [34]. In addition, the contingency load-loss

index (CLLI) has been used to estimate reliability as a

planning tool in [34]. The dragonfly algorithm (DA) has

been introduced by [35] to allocate the DSTATCOM in

PDG. The DA has been validated by a comprehensive

analysis with PSO and genetic algorithm (GA). In [36], the

improved bacterial foraging search algorithm (IBFA) has

been utilized for increasing the bus voltages and stability

with minifying the system losses based on the DSTAT-

COM compensation. Based on [37], the DSTATCOMs

have been installed and sized based on the discrete–con-

tinuous vortex search algorithm (DCVSA) to minify the

energy losses and annual investments. In [38], the MOPSO

was utilized to minify the system losses by maximizing the

voltage levels and the transmission by ensuring the con-

ditions limits of the node voltage violation and the line

loading to allocate the DSTATCOM in DS optimally. The

authors in [39] introduced the hybrid analytical–coyote

optimization technique (COA) for minifying the power

losses and enhancing the voltage levels of the DS based on

the DSTATCOM compensation. Under different load

conditions, the installation and capacity of the DSTAT-

COM have been optimized using the Bat Algorithm (BA)

[40]. The immune algorithm (IA) was suggested to ensure

system power quality, minimize power losses, and reduce

the installation price of DSTATCOM in PDG [41]. Noori

et al. [42] implements the multi-objective improved golden

ratio optimization algorithm (MOIGROM) for the simul-

taneous allocation of capacitors and DSTATCOM in the

Table 1 The main benefits and applications of DSTATCOM and SVC

Impact on system performance D-STATCOM SVC

Load flow control Good Good

Voltage control Best Best

Transient stability Better Good

Dynamic stability Best Better

Annual saving Best Good

Harmonic resonance sensitivity Not High

Dynamic variation range High Low

Reactive power generation High Low
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PDG. Moreover, the power-loss-reduction-factor (PLRF)

was used to detect the suggested candidate nodes to locate

the capacitors and DSTATCOM in PDGs.

In the second category, the optimum allocation of

DSTATCOM with distributed generators (DGs) have been

considered. However, the improved PSO was utilized in

[43] to allocate the DGs and DSTATCOM in PDG with a

focus on the following indexes; voltage profile enhance-

ment Index (VPEI), benefit cost ratio (BCR), and emission

cost benefit index (ECBI). In [44], the modified ant lion

optimizer (MALO) has been employed to allocate the

Photovoltaic DG (PVDG) and DSTATCOM in PDG for

minifying the system cost and enhancing the voltage levels

(profile/stability). DG and DSTATCOM have been

assigned to PDG based on Multi-Objective Functions

(MObjF), using several hybrid optimizers, mainly the

Firefly Algorithm (FA) via particle swarm optimizations

(PSO) [45]. In this research paper [45], the proposed

acceleration coefficients for PSO were considered using the

following methodologies such as; Adaptive Acceleration

Coefficients (FA-AAC-PSO), Autonomous Particle Groups

(FA-APG-PSO), Time-Varying Acceleration (FA-TVA-

PSO), Nonlinear Dynamic Acceleration Coefficients (FA-

NDAC-PSO), and Sine Cosine Acceleration Coefficients

(FA-SCAC-PSO).

Table 2 summarizes previous DSTATCOM allocation

approaches.

According to Table 2, it is able to note that: (1) most of

the objective-functions (ObjFs) have been utilized to ana-

lyze the optimum location and capacity of DSTATCOM in

power distribution grids (PDGs) focusing on minifying the

power/energy losses and enhancing the voltage levels. Not

many ObjFs were considered the investment and operating

prices. (2) The latest methodologies have presented the

investment and operational prices of the DSTATCOM

making an allowance for daily demand power graphs into

the study. (3) A lot of optimizers have been implemented

depending upon the principles of metaheuristic techniques

to overcome the problems of DSTATCOM allocations in

PDGs and to try ensuring the possibility of escaping from

local optimum. In addition, the No-Free-Lunch theory [46]

dictates that some mentioned methodologies do not guar-

antee suitable results in other applications since they

remain anchored in the local optimum.

In relation to that, this article proposes an effective

algorithm, which combined the Capuchin Search Algo-

rithm (CapSA) [47] with centroid-based fuzzy mutation

called mCapSA. mCapSA’s main role is to prevent pre-

mature convergence of search agents by balancing explo-

ration and exploitation phases without avoiding the

immobility of local optimal solutions. The performance of

the proposed algorithm is evaluated on CEC’2020 test suite

and compared with several optimization algorithms

including; Particle swarm optimization (PSO) [48], Evo-

lution strategy with covariance matrix adaptation (CMA-

ES) [49], Gravitational search algorithm (GSA) [50],

Whale optimization algorithm (WOA) [51], Harris’ Hawks

optimization (HHO) [52], Archimedes optimization algo-

rithm (AOA) [53], and the original CapSA. Furthermore,

the Wilcoxon sign rank test is used to verify the relevance

of the results. Due to the aforementioned and previous

reasons, as well as based on specialized literature, the

proposed mCapSA is used to locate and demonstrate

DSTATCOM optimally in PDGs via the multi-objective

function (MObjF) approach. Furthermore, the research

paper presents an analytic hierarchy process (AHP) algo-

rithm for selecting weighting factors (WFs) to improve

MObjF performance and effectiveness [54, 55]. The

advanced scheme is implemented on 33-bus and 118-bus

standard systems. The scheme is further applied to a

practical model of the power demand of the Middle

Egyptian power distribution grid (MEPDG). A 33-bus

standard system is used to model the power demand of the

MEPDG. Furthermore, it has been implemented a com-

prehensive study that applied on 33-bus and 118-bus

standard PDG between the proposed approach (mCapSA)

with its original one and with other recent optimizers in the

literature such as basic particle swarm optimizer (PSO)

[45], basic Firefly Algorithm (FA) [45], hybrid FA-PSO

[45], FA-Sine Cosine Acceleration Coefficients-PSO (FA-

SCAC-PSO), FA-Nonlinear Dynamic Acceleration Coef-

ficients-PSO (FA-NDAC-PSO) [45], FA-Adaptive Accel-

eration Coefficients-PSO (FA-AAC-PSO) [45], FA-

Autonomous Particles Groups-PSO (FA-APG-PSO) [45],

and FA-Time-Varying Acceleration-PSO (FA-TVA-PSO)

[45], bacterial foraging optimization algorithm (BFOA)

[28], multi-objective PSO (MOPSO) [42], multi-objective

golden ratio optimization method (MOGROM) [42], and

the improved one of MOGROM named (MOIGROM) [42].

However, the main contributions are summarized as

follows:

• Developing an effective optimization called mCapSA

to enhance the performance of the original CapSA.

• The performance of the mCapSA is legalized based on

the CEC’2020 test suite.

• The analytical hierarchy process (AHP) algorithm is

utilized to elect the most suitable weighting factors

(WFs) to enhance the multi-objective function (MObjF)

performance and effectivity via mCapSA optimizer

process.

• Sufficient comprehensive analysis is executed between

the efficient mCapSa and 7 recent optimizers consid-

ering the original one.
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Table 2 Applied approaches for DSTATCOM placement techniques

Method Objective function Approach discussion Test systems Demerits References

Modal

analysis

Power loss and voltage

profile

Voltage profile and power

losses were examined after

and before DSTATCOM

devices were placed

33-bus DS A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

There was no consideration

given to the large-scale system

of the network in the study

[18]

Analytical

methods

Power loss and voltage

profile

DSTATCOM is modeled to

determine the optimal size to

maintain a voltage magnitude

of 1 p.u. at the node where it

is connected, as well as to

supply the reactive power for

compensation

33-bus DS A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

There was no consideration

given to the large-scale system

of the network in the study

The objective function is limited

to improving the voltage

profile

[19]

Loss relief, PLI Power loss is calculated using

load flow methods, and the

node with the greatest PLI

value is perfectly suited for

the DSTATCOM installation

UK 38-bus

practical DS

A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

There was no consideration

given to the large-scale system

of the network in the study

The objective function is limited

to power losses minimization

[20]

VSI The authors employed VSI to

determine the best location for

DSTATCOM

12, 34, and

69-bus DS

Statistical assessment for the

competitive algorithms, higher

bus and real-time radial

distribution systems haven’t

considered

A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

[21]

Power loss and voltage

profile

Voltage profile and power

losses were examined after

and before these devices were

placed. It has been considered

the SI and PLI to develop the

allocation of DSTATCOM

33-bus DS A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

The study neglected the

operating cost of the system

[22]
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Table 2 (continued)

Method Objective function Approach discussion Test systems Demerits References

Power loss, voltage

profile, and energy

saving

Using VSI and PLI approaches

to determine D-STATCOM

placement in PDG. The

D-STATCOM capacity has

been developed based on the

variational technique for PDG

33-bus DS A limited objective functions

were used based on

minimizing the system losses

It was observed that the

proposed scheme was not

guaranteed to be globally

optimal based on the

comparison of the numerical

results with other optimization

algorithms

The study neglected the

operating cost of the system

[23]

VSI, pollution index (PI),

power loss, and

economic index (EI)

The authors’ work includes a

number of sensitivity indices

for determining the most

advantageous DSTATCOM

selection

51-Bus DS The trend of the objective

function with the number of

iterations has not been

considered to illustrate at what

iteration reaching to the

optimal solutions. Statistical

assessment for the competitive

algorithms, higher bus and

real-time radial distribution

systems haven’t considered

[24]

Active power loss, and

VSI

The proposed technique relies

heavily on VSI and active

power loss. The MCS

approach was used to correct

for load variations

33-bus and

94-bus PDG

The author compared the

numerical results with only

one optimization algorithm to

validate the proposed scheme,

which is not enough.

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[25]

VSI, and LSF For DSTATCOM allocation,

PLI and VSI are employed as

ObjF indices

33 bus PDG A limited objective functions

were used based on

minimizing the system losses

There was no consideration

given to the large-scale system

of the network in the study

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[26]

Optimization

techniques

Total power loss along

with enhancing voltage

profile

PSO is employed for the

concurrent allocation of

DSTATCOM and DG

problems for voltage profile

augmentation and power loss

minimization

12, 34, and

69-bus PDG

limited objective functions were

used based on minimizing the

system losses and voltage

deviation

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[27]

Total power loss along

with voltage profile and

total operational cost

BFOA was employed to tackle

the DSTATCOM and DG

allocation problems in PDG

using a multi-objective

function

33-bus and

119-bus DS

Statistical analysis of

competitive algorithms, higher
bus, and real-time radial

distribution systems has not

been carried out

[28]
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Table 2 (continued)

Method Objective function Approach discussion Test systems Demerits References

Total power loss along

with voltage deviation

The candidate allocation of

DSTATCOM for the system’s

power loss lessening has been

solved by using the EBA

method

69-bus PDG Limited objective functions

were used based on

minimizing the system losses

and voltage deviation.

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[29]

Total

installation/operational

prices and THD

In DS, the MOGA approach is

employed for ObjFs such as

THD and total construction

costs

33-bus DS The study neglected the

operating cost of the system

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

There was no consideration

given to the large-scale system

of the network in the study

[30]

Energy price, TNP, and

the annual saving price

DE with a backward-forward

sweep is utilized for load flow

in DS, and when compared to

another methodologies, the

DE approach provides less

CPU time, less power loss, a

lot of ObjF, and the highest

TNP

30, 33, and

69-bus DS

The study neglected the

operating cost of the system

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[31]

Line losses, VSI, PI, and

improvement in

financial benefits

MCSA’s control restrictions

were logically modified by

making them adaptable with

iterations at various loading

levels. The suggested

algorithm is evaluated in

comparison to the CSA, HSA,

and DE algorithms

51-Bus DS The study neglected the

operating cost of the system

There was no consideration

given to the large-scale system

of the network in the study

[32]

Total power losses

lessening

The HSA is used to determine

the best position and size of

DSTATCOM

33-Bus DS A limited objective functions

were used based on

minimizing the system losses

The author compared the

numerical results with only

one optimization algorithm to

validate the proposed scheme,

which is not enough.

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

There was no consideration

given to the large-scale system

of the network in the study

[33]
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Table 2 (continued)

Method Objective function Approach discussion Test systems Demerits References

Voltage profile control The MOSOA algorithm was

utilized for placement with a

Pareto-optimal solution, and

the results were compared to

the NSGA-II technique for DS

planning

54-bus DS The variable load models and

hourly load variation haven’t

been considered

The author compared the

numerical results with only

one optimization algorithm to

validate the proposed scheme,

which is not enough

The study neglected the

operating cost of the system

There was no consideration

given to the large-scale system

of the network in the study

[34]

Voltage levels and power

loss index

In terms of cost analysis and

convergence speed, the novel

swarm astuteness-based DA

model is compared to PSO

and GA

33-bus DS A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

There was no consideration

given to the large-scale system

of the network in the study

The objective function is

limited. Statistical assessment

for the competitive

algorithms, higher bus and

real-time radial distribution

systems haven’t considered

[35]

Minimization of ILR,

maximization of IVPE,

and minimization of

IPR

Maximizing system rewards

through optimal positioning of

DG and DSTATCOM

considering load changings

33-Bus and

69-bus DS

The study neglected the

operating cost of the system

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[43]

Minify power losses and

enhance stability and

profile levels

Improved IBFA is employed for

sizing and placing the

DSTATCOM in the

distribution sector

Practical Quha

feeder of

78-buse of

Lachi’s PDG

of Ethiopia

The author compared the

numerical results with only

one optimization algorithm to

validate the proposed scheme,

which is not enough

The study neglected the

operating costs of the system

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[36]

Minify energy losses and

annum investments

prices

DCVSA has been employed,

where, the DSTATCOMs

were installed at the nodes

evaluated by the discrete

portion of the codification,

while continuous portion

determined their optimum

capacity

33-Bus and

69-bus DS

A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

The study neglected the

operating cost of the system

[37]
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Table 2 (continued)

Method Objective function Approach discussion Test systems Demerits References

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

Minify system losses and

enhance voltage levels

with the transmitted

power

MOPSO methodology has been

proposed to find the optimal

solutions for allocate the

DSTATCOM with the

reconfiguration of the power

network at the same time

33-Bus and

69-bus DS

A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

The study neglected the

operating cost of the system

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[38]

Active power losses

minimization and

voltage profile

improvement

Hybrid analytical–COA has

been proposed, where the

DSTATCOMs were located at

the buses determining by the

COA method, while the

analytical algorithm evaluated

their optimum capacity

33-Bus and

69-bus DS

A very limited objective

functions were used based on

minimizing the system losses

The analytical technique is used

to determine the proper sizes

of DSTATCOMs, while the

COA is used to specify the

locations into RDS

The work focused on

minimizing the total system

losses without caring about

the efficient improvement in

the voltage profile according

to the comparisons between

other algorithms

Global optimality was not

guaranteed

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[39]

Reducing the system

power losses

VSI is performed to search the

best placement for locating the

DSTATCOM. The size of the

DSTATCOM was evaluated

optimally by proposing the

BA

33-Bus and

69-bus DS

A limited objective functions

were used based on

minimizing the system losses

The study neglected the

operating cost of the system

Statistical analysis of

competitive algorithms, higher

bus, and real-time radial

distribution systems has not

been carried out

[40]

Minify power losses and

annum investments

prices

IA technique was proposed to

find the place and size of the

DSTATCOM

33-Bus and

69-bus DS

A comparison was not

conducted between the

numerical results and those

obtained using other

optimization algorithms and

techniques to validate the

proposed method

[41]
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• The performance of the proposed approach is compared

with several other optimization algorithms in the

literature which solved the same problem.

• An application of real-time measurements of the power

load curve of the middle Egyptian distribution grid was

conducted on the 33-bus grid, to determine the

efficiency and validity of the proposed scheme.

The following structure of the manuscript is divided as:

Sect. 2 introduces the mathematical scheme formulation.

Section 3 defines the basic concept of CapSA. In Sect. 4,

the implementation of the mCapSA algorithm is intro-

duced. The performance estimation of mCapSA is

explained in Sect. 5. The simulation findings as well as

commentaries are drawn in Sect. 6. Finally, Sect. 7 dedu-

ces the conclusions.

2 Mathematical scheme formulation

Over the last 2 decades, the growing utilization of renew-

able energy-based distributed generators (DG) in the grid

along with rapid demand growth has generated new prob-

lems for utilities in terms of voltage stability, power

quality, and effective energy utilization. As a result, paying

close attention to DSTACOMs’ technology has become a

critical issue that must be considered for its impact on the

distribution system (DS). It has become essential to

determine the most appropriate allocation of DSTACOMs

to address these issues. This is because they constitute the

main issue under network constraints, including load flow,

with the purpose of enhancing overall system performance.

Figure 1 presents a sample distribution network consider-

ing the DSTATCOM connection.

This paper uses the Backward-forward sweep method

(BFSM) as an alternative to standard approaches to load

flow reckoning due to the low X/R ratio, imbalanced load,

and radially laid-out nature of PDG [2, 56].

2.1 Modelling of DSTATCOM

The DSTATCOM device is considered to be a device

related to FACTs. At a point of common coupling (PCC),

DSTATCOM can absorb/inject the reactive currents. As

illustrated by Fig. 1, the DSTATCOM device can be con-

nected to the selected bus based on an optimization algo-

rithm with the optimum capacity. In DSTATCOM device,

the voltage amplitude and its angle are regulated based on

the PID controller controlling the node voltage and to

enhance the power factor (PF) [11]. DSTATCOM can

either produce or consume the reactive power that under-

goes in this manuscript. The phasor diagram after

Table 2 (continued)

Method Objective function Approach discussion Test systems Demerits References

Minify the cost index,

voltage deviation index

(VDI), and maximize

the VSI

MALO has been suggested to

minimize the multi-objective

function based on the optimal

management of PVDG and

DSTATCOM in PDG

69-Bus and

118-bus DS

The author compared the

numerical results with only

one optimization algorithm to

validate the proposed scheme,

which is not enough.

Statistical assessment for the

competitive algorithms hasn’t

presented

[44]

Power losses, short

circuit, voltage

deviation, net saving,

as well as

environmental

pollution reduction

FA-SCAC-PSO has been

proposed to allocate the

PVDG and DSTATCOM in

PDG. In addition, a

comprehensive analysis was

implemented between

numerous acceleration

coefficients for PSO

considering various hybrid

methodologies-based FA

33-Bus and

69-bus DS. In

addition to the

practical

205-bus

Algerian DS

The variable load models,

hourly variation of DG power-

based PV and WT renewable

sources, and the installation

costs of DG and DSTATCOM

systems haven’t been

considered (i.e., the effect of

DSTATCOM has not been

considered/studied clearly)

[45]

Minify power losses,

annum investments

prices, and voltage

deviations

MOIGROM has been employed

to allocate capacitors and

DSTATCOM considering

different scenarios as

separately location for each

device and simultaneously in

various PDGs

13-Bus, 69-bus,

and 118-bus

PDGs

A very limited objective

functions were used based on

minimizing the system losses

Statistical assessment for the

competitive algorithms hasn’t

presented

[42]
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DSTATCOM integration is presented by [41]. Moreover,

the reactive power exchanged with the grid at node i are

estimated by the equations in [45]. However, the reactive

power injected by DSTATCOM is computed as in the

following formula,

QDSTATCOM;i ¼ Vnew;i � IDSTATCOM ð1Þ

IDSTATCOM ¼ IDSTATCOMj j\ hnew þ p
2

� �
ð2Þ

Vnew;i ¼ Vnew;i

�� ��\hnew ð3Þ

where Vnew;i

�� �� is the absolute voltage at node i

2.2 multi-objective function (MObjF) approach

In the proposed work, the suggested MObjF approach is

implemented including the objective function of power

losses (ObjF1), voltage deviation (ObjF2), voltage stability

(ObjF3), and the capital annual price (ObjF4) that can be

evaluated in the following formula,

MObjF ¼ j1ObjF1 þ j2ObjF2 þ j3ObjF3 þ j4ObjF4 ð4Þ

where the j1, j2, j3, and j4 are the weighting factors and

they have been determined in this paper using AHP method

that is explained in Sect. 2.4.

Based on Fig. 1, the power losses, which are active

PLoss(i,j) and reactive QLoss(i,j), through ‘‘i-bus’’ and ‘‘j-bus’’

are estimated by the following equations,

PLossði;jÞ ¼ Ri;j

P2
i;j þ Q2

i;j

� �

V2
i

ð5Þ

QLossði;jÞ ¼ Xi;j

P2
i;j þ Q2

i;j

� �

V2
i

ð6Þ

wherever, Vi is the voltage at i-bus, R and X are the

resistance and reactance of the branch, respectively.

The total basic active power loss of PDGs is evaluated

as,

PTLoss;b ¼
XN
j¼1

PLossði;jÞ ð7Þ

wherever, N is the branches number.

Hence, the ObjF1 is evaluated as a proportion of the

system active losses including DSTATCOMs (PDST,TLoss)

to the basic one with no DSTATCOMs as follows,

ObjF1 ¼
PDST;TLoss

PTLoss;b
ð8Þ

The ObjF2 approach is formulated as follows:

The index of the voltage deviation at the basic-scenario

(IVDb) without DSTATCOMs is formulated as follows,

IVDb ¼
Xnb
i¼2

ðVmax � Vi;bÞ=ðVmax � VminÞ
� �2h

� ðVi;b � VminÞ=ðVmax � VminÞ
� �2i

ð9Þ

The index of the voltage deviation with DSTATCOM

location (IVDDST) can be written as follows,

Fig. 1 The distribution grid sample including DSTATCOM
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IVDDST ¼
Xnb
i¼2

ðVmax � Vi;DSTÞ=ðVmax � VminÞ
� �2h

� ðVi;DST � VminÞ=ðVmax � VminÞ
� �2i

ð10Þ

where the voltage boundaries Vmax and Vmin are deemed to

be 1.05 p.u. and 0.95 p.u, and the ‘nb’ represents the node

number. Consequently, the ObjF2 is realized to be the ratio

between the difference of the base index and the index with

DSTATCOM allocation to the base one as follows,

ObjF2 ¼
IVDb

IVDDST þ IVDb
ð11Þ

The main purpose of the voltage stability (VS) evalua-

tion is to inspect the level of system security. Based on the

power flow determination, the VS of network nodes can be

maximized while avoiding voltage collapse potential. The

VS is deduced from Fig. 1 as follows,

VSðjÞ ¼ Vij j4�4� ½Pj;eff � Xij � Qj;eff � Rij�2

� 4� ½Pj;eff � Rij � Qj;eff � Xij� � Vij j2
ð12Þ

where the Pj,eff and Qj,eff are the effective values of active

and reactive loads, consequently, that are beyond jth-bus.

Regarding the VS estimation, the ObjF3 is the ratio of

the voltage stability deviation in the base case to the dif-

ference between the base index and the index with

DSTATCOM integration as follows:

The Index of the voltage stability deviation at the basic

scenario (IVSDb) with no DSTATCOM can be expressed

by,

IVSDb ¼
Xnb
i¼2

ð1=VSmaxÞ � ð1=VSi;bÞ
� �2h i

ð13Þ

On the other hand, the Index of the voltage stability

deviation with DSTATCOM (IVSDDST) can be deduced

by,

IVSDDST ¼
Xnb
i¼2

ð1=VSmaxÞ � ð1=VSi;DSTÞ
� �2h i

ð14Þ

Finally, the ObjF3 is given as follows,

ObjF3 ¼
IVSD;b

IVSDDST þ IVSD;b
ð15Þ

The capital annual price (CAPt) of the proposed

scheme as ObjF4 is made up two parts as follows:

(I) the first part is the energy price after allocating the

DSTATCOM can be rewritten in the following formula,

EnDST ¼
XTp
tr¼1

PWFð Þtr � Cen � PDST;TLoss � Th ð16Þ

where Cen is the coefficient of the energy price rate (60 $/

MWh) [45], Tp is the scheduling period of years (Tp = 30

years), tr is years’ number, Th can be considered as the

hour/year. Equation (17) gives the present-worth-factor

(PWF) by the following formula,

PWF ¼ 1þ InfR

1þ IntR
ð17Þ

wherever, the inflation (InfR) and interest (IntR) equal 9%

and 12.5%, respectively [2].

On the other hand, the energy price in the base scenario

with no DSTATCOM location and it can be estimated by

the following equation,

Enb ¼
XTp
tr¼1

PWFð Þtr � Cen � PTLoss;b � Th ð18Þ

(II) the second part is formulated to include the total

operational and location costs of the DSTATCOM

(TOLDST) can be formulated by the following:

TOLDST ¼
XnLL
i¼1

ki
XnDST
i¼1

QDSTATCOM;i

"

� 1þ að ÞTDST�a

1þ að ÞTDST�1
� bDST þ

XnDST
i¼1

Di � bLoc

# ð19Þ

where a = 0.1 that represents the expected rate of return

and TDST is the longevity of the DSTATCOM [41]. The

bDST is the operational cost of the QDSTATCOM (bDST = 5.3

$/kVAR) [42]. Di is the number of DSTATCOM locations.

The bLoc is the investment price of the QDSTATCOM location

(bLoc = 1600 $/location) [42]. The nDST is the DSTAT-

COM number. Ty is the time period based on the ith load

level (LL). The nLL is the number of the LL. The ki is the
ratio of the period of the ith LL to the full time period and it

can be evaluated as follows [41],

ki ¼

1; if LL ¼ 0
Tyi

PnLL
i¼1

Tyi

; if LL [ 1

8>><
>>:

ð20Þ

Then, the ObjF4 can be estimated as the ratio of CAPt by

the following equation,

ObjF4 ¼
Enb

EnDST þ TOLDSTð Þ þ Enb
¼ CAPt;b

CAPt;DST þ CAPt;b

ð21Þ

2.3 Constraints

The limitations that assure stellar performance of the pro-

posed system can be deduced as follows:
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• Power balance constraints can be written according to

Fig. 1 as follows,

Pj ¼ Pi;j � PL;j � Ri;j

P2
i;j þ Q2

i;j

� �

V2
i

ð22Þ

Qj ¼ Qi;j � QL;j � Xi;j

P2
i;j þ Q2

i;j

� �

V2
i

þ wDST � QDSTATCOM;j

� �
ð23Þ

where the WDST is the reactive power set 0 or 1.

• Voltage profile level,

Vmin
i

�� ��� Vij j � Vmax
i

�� ��; 8i 2 nb ð24Þ

• DSTATCOM size,

Qmin
DSTATCOM �QDSTATCOM � Qmax

DSTATCOM ð25Þ

• DSTATCOM location,

2�DSTATCOMLocation � nb ð26Þ

2.4 AHP method for weighting factors
assignment

Adding weights to each objective function (ObjF) may

enhance the performance of the current scheme. The pre-

pared AHP algorithm is the suitable tool to deduce the

optimum weights for the specific objective [54, 55]. The

AHP constructions, steps, and definitions can be deduced

by [54, 55]. However, to start with the AHP method, it is

required to construct the reciprocal matrix [A] based upon

the decision maker’s pairwise comparison in the range of

1–9. As mentioned by [55], in the first step, a pairwise

comparison matrix is formed on a scale from 1 to 9 by

comparing the importance of each of the indices. (There-

fore in the current manuscript, indices refer to objectives.)

The larger the scale value, the more important the index is.

In this paper, it is therefore the power losses that are of the

utmost importance, followed by the voltage level, voltage

stability, and the annual total cost. In this case, the

weighting factor of power losses will be the highest, fol-

lowed by the weighting factors of voltage level, voltage

stability, and the annual total cost.

However, the [A] matrix size can be estimated consid-

ering the elected Number of objective functions (NF). The

individual ObjF can be represented as a row, where the

element higher value of such row specifies the significance

of such ObjF versus the other one. Equation (27) estimated

the square matrix [A] as follows [54, 55],

A ¼

aii aij : : aiNF
1=aji ajj : : ajNF
: : : : :
: : : : :

1=aNFi 1=aNFj : : aNFNF

2
66664

3
77775

ð27Þ

where aii equals unity representing the self-value that is

dedicated to objective i. The mutual value aij = 1/aji sets to

objective j in contrast to objective i. The variables i and j e
[1, NF].

However, the weighting-factors (WFs) for each objec-

tive i is determined using the following Eq. (28),

ji ¼

ffiffiffiffiffiffiffiffiffiffiQNF
j¼1

NF
q

aij

PNF
i¼1

ffiffiffiffiffiffiffiffiffiffiQNF
j¼1

NF
q

aij

ð28Þ

where the WFs is introduced in as a vector in the following

form j ¼ j1; j2; . . .; jNF½ �T.
Finally, the consistency of the matrix [A] can be verified

based on the index of consistency ratio (ICR) as follows,

ICR ¼ ICI
IRI

\0:1; where ICI ¼
ðkmax � NFÞ
ðNF� 1Þ ð29Þ

where ICI and IRI are the consistency and random indexes,

correspondingly. In the case of the ICR is below 0.1 p.u.,

then, the weight of each index is sensible. The value of the

random index, IRI depends upon the NF as well as these

values are found by Table 3 [54, 55].

The maximum eigenvalue (kmax) can be evaluated by

the following form,

A½ � W½ � ¼ kmax W½ � ð30Þ

2.5 Sensitivity index algorithm (SIA)

In Fig. 1, the line active losses (Pline(i,j)) can be defined

based on the effective values of active and reactive loads

Pj,eff ? Qj,eff, consequently, that are behind jth bus by the

following Eq. (31),

Plineði;jÞ ¼ Rij

P2
j;eff þ jQ2

j;eff

� �

V2
j

ð31Þ

Table 3 Random index (IRI) values

NF 1 2 3 4 5 6 7 8 9

IRI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45
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Henceforward, the first derivative of Eq. (31) according

to the Pj,eff is defined as the Sensitivity Index of Losses

(SIL) that is expressed by Eq. (32) [2],

SILði;jÞ ¼
2 � Pj;eff � Rij

V2
j

ð32Þ

The existing values of the SIL are arranged based on the

voltage stability index (VSI) values that are given by

Eq. (12) from high to low in descendant order for all lines.

As a means of reducing the research space for the proposed

techniques, it will be selected (2/3) as a candidate node

from the existing results of the SIA method to deduce the

most optimal values.

3 Capuchin search algorithm (CapSA)

This section presents the design of Capuchin search algo-

rithm (CapSA), which can focus on the attitude of the

capuchin monkeys as a major social model of animals

seeking food, in detail [47]. As follows, CapSA consists of

three main stages: Leaping motion (global search),

Swinging motion (local search) and Climbing motion (lo-

cal search):

3.1 Stage 1: Leaping motion

The leaping motion considering the jumping strategy is

comparable to the global search. The actual distance

stimulated by the capuchin outfits the horizontal distance,

x, among the source tree branch and the target tree.

Mathematically, the third law of motion can be utilized to

define the x as follows,

x ¼ xo þ vt þ 1

2
at2 ð33Þ

where x and x0 are the new and initial positions of the

capuchin. The v and v0 are the velocity and the initial one

of the capuchins. The a is the acceleration, and t can be

defined as the time instance.

The v during the jumping motion is defined based up on

the first law of motion as follows,

v ¼ v0 þ at ð34Þ

3.2 Swinging motion

This movement approach can be simulated a local search

procedure, which is presented by two models. Consistent

with the trigonometry rules, the x throughout the swinging

motion of the capuchin is identified by Eq. (35),

x ¼ l sin h ð35Þ

where h is the angle.

3.3 Climbing motion

This climbing motion is termed by means of a demon-

strative and a theoretical model. The capuchin position

throughout the climbing or sliding a tree is evaluated via

Eqs. (33) and (34) as follows,

x ¼ x0 þ v0t þ
1

2
vf � v0
� �

t2 ð36Þ

where t = 1, which is the iteration to identify the incon-

sistency between iterations.

3.4 Arithmetical concept of CapSA

Like other swarm intelligence methodologies, the CapSA

method is defined as a population-based technique, which

can initialize a number of the established particles in

advance in a random form. It is imperative to note that the

singulars in capuchins’ swarms have two diversities: Lea-

der (i.e., Alpha) and supporters. However, Eq. (37) is

performed to assign the initial position of each capuchin in

the swarm as follows,

xi ¼ ubj þ r � ubj � lbj
� �

ð37Þ

where ubj and lbj are the higher and minor bounds of the ith

capuchin in the jth dimension, correspondingly. r 2 0; 1½ � is
a random number.

CapSA’s population is constructed by including both

individuals—the alpha of the team, as well as its followers.

However, the location of leader capuchins is defined by the

following formula,

x ¼Fj þ
Pbf vjð Þi2sin 2hð Þ

g

i\n=2; 0:1\�� 0:20

ð38Þ

The jumping angle of the capuchins h is formulated as,

h ¼ 3

2
r ð39Þ

In the CapSA methodology process, for the duration

global and local search implementation, the s is responsible
to realize a balance between exploration and exploitation.

This s factor is defined by Eq. (40),

s ¼ b0e
�b1

k
Kð Þb2 ð40Þ

where k/K represent the current/maximum iteration values.

The factors b0; b1 and b2 are arbitrarily designated as 2, 21,
and 2.

The velocity of the CapSA is estimated using the fol-

lowing formula,
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vij ¼ pvij þ sa1 xiibestes � xij

� �
r1 þ sa2 fjj � xij

� �
ð41Þ

The updated location of the alpha and the followers’

capuchins is deduced by follows,

x j
i ¼ fjj þ

PefPbf vij

� �2

sin 2hð Þ
g

; i\
n

2
; 0:2\�� 0:30 ð42Þ

where Pbf and Pef are the balance and elasticity factors’

probability of the capuchin motion on the ground. Hence,

the updated location of leader capuchins that utilize normal

walking is defined by the following Eq. (43),

xij ¼ xij þ vij; i\
n

20
:3\�� 0:50 ð43Þ

The two Pbf and Pef factors are responsible for the

efficient exploitation and exploration to boost the compe-

tence of the local as well as the global search strategy. The

estimated values of these factors are Pbf ¼ 0:7 and Pef ¼ 9

that have been deduced by intensive analysis.

Some of the capuchins are swinging on branches by

strolling over not large distances, where the leader and

followers may consider a local search for seeking foods on

as well as around the tree branches. These capuchins utilize

two processes, using tails to clutch on a tree branch as well

as using the swing process to detect the food sources on the

other side of the branch. Hence, the capuchins’ location is

estimated by Eq. (44) as follows,

xij ¼ fiþ Pbf � sin 2hð Þ; i\
n

2
; 0:5\�� 0:75 ð44Þ

Some of the capuchins are climbing on the trees and

branches numerous times throughout foraging in a process

similar to local search. Therefore, the capuchins’ location

is estimated by Eq. (45) as follows

xij ¼ Fj þ tPbf vij � vij�1

� �
; i\

n

2; 0:75
\�� 1:0 ð45Þ

where vij represents the velocity of the ith capuchin in the

jth dimension in a current form. On the other hand, the vij�1

introduces the previous velocity.

In some random conditions of the capuchins reposition,

the capuchins may execute new different ways to deduce a

better way for seeking the food source. The mention atti-

tude can be realized to allow the capuchins enhancing their

exploration professionally of the forest to evaluate new

regions for food sources. During foraging, these random

repositions are expressed using the following Eq. (46).

x j
i ¼ t � lbj þ �� ubj � lbj

� �� 	
; i\n=2; �� Pr ð46Þ

where the constant Pr ¼ 0:1 represents the possibility of

random search of the capuchins.

During the iteration process of the optimizer, the vari-

ance among successive iterations, ti � ti�1, is equal to 1.

Hence, the attitude of the accompanying capuchins fol-

lowing the alphas, can be deduced as follows,

xij ¼
1
2

xij þ xi�1
j

� �
n

2
� i� n ð47Þ

4 Modified capuchin search algorithm
(CapSA)

In the current section, the prepared mCapSA technique is

detailed as well as how it boosts search capabilities and

balances the exploration and exploitation phases. This is

compared with the original CapSA. The proposed fuzzy

mutation embedded in the capuchin search algorithm.

While CapSA is an efficient meta-heuristic algorithm, it

Table 4 Parameter setting of

mCapSA and the counterparts
Algorithms Variables

Common settings Search Agents number = 30

FEs = 100,000

Independent runs are 30

Dimensions (Dim) is 10

PSO Cognitive component = 1.8 Social component = 1.8 Inertia weight = 0.6

CMA-ES alpha_{mu} = 2

GSA a = 20, G0 = 100, Rnorm = 2, Rpower = 1

WOA a, variable decreases linearly from 2 to 0

a2, linearly decreases from - 1 to - 2

HHO E0 [ [- 1, 1], b = 1.5

AOA C1 = 2, C2 = 6, u = .9, l = .1

CapSA and mCapSA Pbf and Pef equal 7 and 9

Neural Computing and Applications (2024) 36:843–881 857

123



suffers from local optimum stagnation and low conver-

gence rate, as do many classical meta-heuristic algorithms.

CapSA may occasionally be affected by premature con-

vergence, skipping of the real solution, and failure to bal-

ance between the exploration and exploitation phases. In

order to address the previous shortcomings, we propose

two-pronged enhancements: (1) the injection of fuzzy

mutation; and (2) adding a decreasing time-dependent

factor to achieve the exploration–exploitation balance.

4.1 The injection of Fuzzy mutation

Fuzzy logic describes the fuzziness as Membership Func-

tions (MFs) in a graphical form that is used in fuzzy set

theory. The issues discussed above are addressed by

improving CapSA using a fuzzy mutation called centroid-

based fuzzy mutation. This mutation prevents premature

convergence of search agents. A mutation is applied

depending on its probability. The probability of mutation

(PiÞ is given by,

Fig. 2 The 2D visualization of the CEC’2020 benchmark functions
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Pi ¼ q� Pd þ u� Pc ð48Þ

where q = 0.6 and u = 0.4, Pd and Pc are given by,

Pd ¼
1

1þ dist
ð49Þ

Pc ¼ aþ b� tanh
unchanged

a


 �
� b


 �
ð50Þ

dist is the distance of the agent from the centroid, a = 0.5,

b = 0.5, a = 4, and b = 5, and unchanged is the number of

iterations for which the global best agent has remained

unchanged:

If the Pc is greater sufficient to achieve the agent

mutation, the mutation occur is given by,

Mq ¼ 0:5� U � Lð Þ � 1� t

T

� �2

ð51Þ

U and L are the bound of the problem, t current itera-

tion, and T is the total number of iterations.

4.2 Exploration–exploitation balance

From exploration to exploration, the CapSA heavily relies

on random parameters. As can be seen, the CapSA searches

through a large number of random values without avoiding

the immobility of local optimal solutions. So, here it will

be replaced with the decreasing time dependent factor that

is given by,

dtþ1 ¼ exp 1� t � Tð Þ
T


 �
ð52Þ

dtþ1 decreases with time to decrease the randomization

with time; therefore, the operation transfers from global

part to local part with dynamic behavior. However, the

pseudocode of the prepared mCapSA is illustrated by the

following Algorithm 1.

In conclusion, the proposed mCapSA has successfully

overcome the original CapSA limitations, avoiding local

optimum, more balance between exploration and

exploitation by introducing decreasing time-dependent

factor given by Eq. (52). Moreover, mCapSA has many

other advantages such as the injection of Fuzzy mutation in

the original CapSA given by Eqs. (48, 49, 50 and 51).

5 Performance estimation of mCapSA

The CEC’2020 test suite is implemented for evaluating the

performance of the developed mCapSA against quantita-

tively and qualitatively derived metrics. The statistical

Table 5 The mean, and STD of fitness values for 30 runs obtained by the competitor algorithms on the CEC’2020 functions with dim = 10

F# Measure mCapSA CapSA PSO CMA-ES GSA WOA HHO AOA

1 Mean 57,774.59 1.33E?09 2722.599 1473.465 4,120,692 56,765,151 87,682.51 287.6046

SD 75,230.11 4.36E?08 2454.018 1795.03 1,110,951 1.06E?08 135,332.9 257.5508

2 Mean 2278.862 4157.067 2942.733 2849.29 3050.653 3779.455 5357.955 4135.203

SD 376.8344 459.4572 530.7278 538.4246 463.3832 557.7885 829.1069 537.0174

3 Mean 751.8138 840.626 758.656 761.1005 905.724 926.9826 811.6151 777.1336

SD 10.47052 16.20023 13.17541 11.12685 24.18412 47.27067 8.240215 15.95857

4 Mean 1904.546 1923.502 1904.466 1904.332 1923.863 1956.317 1904.627 1967.138

SD 3.443114 12.82267 0.890588 1.524792 6.326033 51.159 1.404748 40.14008

5 Mean 158,514.3 2,456,668 128,493.6 95,661.38 478,455.4 1,459,383 1,308,017 802,157.8

SD 113,842.5 2,889,351 81,392.91 54,372.67 333,189.4 1,330,645 1,056,412 291,812.5

6 Mean 1948.126 1746.048 1976.921 1726.992 2234.764 2438.385 2117.649 2867.152

SD 172.1316 87.69753 131.5999 85.68643 248.604 261.5383 170.2656 210.0235

7 Mean 81,880.03 764,786.6 84,396.97 103,120.9 178,473 1,235,867 548,235 485,391.1

SD 44,691.67 724,344.2 71,383.56 59,885.75 144,702.9 1,169,516 416,453.9 207,733.2

8 Mean 2302.73 5036.113 3268.6 4271.042 3026.221 4110.059 6752.857 3484.568

SD 1.283546 2036.938 1237.164 1920.907 1458.297 1867.125 868.34 1540.111

9 Mean 2865.025 2928.665 2867.691 2865.302 3121.373 2988.309 2841.622 3178.992

SD 19.30359 20.42701 39.97781 22.49748 100.083 75.21588 42.37413 87.78172

10 Mean 2973.998 2971.261 2937.89 2993.499 2981.314 3041.337 2906.27 2993.027

SD 30.0435 56.15338 30.01468 13.25813 35.97589 49.74076 0.006741 10.5448

The bold values are the best
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Fig. 3 The boxplot curves of the proposed mCapSA and the competitor algorithms obtained over CEC’2020 functions with Dim = 10
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metrics such as the mean and standard deviation (STD) for

best-practice outcomes are determined for the prepared

mCapSA methodology and the corresponding item.

Moreover, qualitative metrics considering boxplot and

convergence curves are implemented. The proposed

mCapSA outcomes have been compared with other 7

techniques namely, Particle swarm optimization (PSO)

[48], Evolution strategy with covariance matrix adaptation

(CMA-ES) [49], Gravitational search algorithm (GSA)

[50], Whale optimization algorithm (WOA) [51], Harris’

Hawks optimization (HHO) [52], Archimedes optimization

algorithm (AOA) [53], and the original CapSA [47].

5.1 Parameters setting

It is noted in [57] that the parameters (that is, the popula-

tion size) of the algorithms used affect the performance of

the optimization algorithm and the quality of the search

process. To achieve fair and statistically significant com-

parative benchmarking, in addition to considering that the

algorithm’s nature is stochastic, each algorithm used in the

comparison process has its own parameters that must be set

to their default values.

Algorithm 1: Pseudo code of the prepared mCapSA.

1. Initialization Phase;
2. Initialize parameters ( 1, 2, N, T, )
3. Initialize the population xi (i = 1, 2, . . . N) randomly

4. Initialize the velocities vi (i = 1, 2, . . . N) randomly

5. Evaluate initial solutions 

6. Find the best solution and the global optimum;

7. select r random some leaders (<n/2) 

8. While (t < T) do

9. Update τ using Eq. (40)

10. Update  using Eq. (52)
11. For each agent i, do  

12. Update agents’ velocities using Eq. (41) 

13. if ( 1 > 0.9) then 

14. if (dt ≤ 0.8) then 

15. if ( 2 ≤ 0.01) then 

16. Update leader's position that leap on the trees using Eq. (38) 

17. Else if ( 2 ≤ 0.99) then 

18. Update leader's position that leap over riverbanks using Eq. (42) 

19. Else  

20. Update leader's position that walks on the ground using Eq. (43) 

21. End if

22. Else if (P< 1 ≤ 0.9) then 

23. Update leader's position that swing on tree branches using Eq. (44) 

24. Else if ( 1 > 0.95) then 

25. Update leader's position that climbs on trees using Eq. (45) 

26. Else  

27. Update leader's position that relocates randomly using Eq. (46) 

28. End if

29. Else  

30.      Update leader's position of the followers using Eq. (47) 

31. End if

32. End for

33. Evaluate each solution

34. Sort and update  using Eq. (50)

35. if (Pc > th) then 

36.      Update solution by applying mutation using Eq. (51)

37. Else  

38.      No change

39. END IF

40. Check the ending situation. In the case of the ending criterion is fulfilled, the technique will be ended, 

or else return to Step 5
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Fig. 4 The convergence curves of the proposed mCapSA and the competitor algorithms obtained on CEC’2020 functions with Dim = 10
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For fair evaluation, the proposed mCapSA algorithm

and the counterparts are evaluated in the same common

setting. The initial parameter settings of these algorithms

(default values) are reported in Table 4. For fair bench-

marking comparison, the population size N was set to 30,

the dimension of the optimization problem Dim was set as

10, each algorithm performs 30 runs for each function, the

maximum number of function evaluations (FEs) are

selected as 100,000.

5.2 Concept of CEC’2020 benchmark functions

Current subsection presents the estimation operation of the

novel form of the CapSA named mCapSA. The IEEE

Congress on Evolutionary Computation (CEC) [58] is then

developed as test problems to evaluate the performance of

the prepared techniques. First, the CEC’2020 benchmark

functions contained 10 test functions, including multi-

modal, unimodal, hybrid, and composition functions, for

more details see [59]. Figure 2 illustrates the 2D visual-

ization of CEC’2020 functions, making the differences and

nature of each issue easier to understand.

5.3 Statistical results

Table 5 presents the most significant results from the

proposed mCapSA technique and the counted items for the

statistical metrics over the CEC’2020 benchmark function

with Dim = 10. The most promising results (lower values)

are indicated in bold-red. The determined results revealed

Table 6 The Wilcoxon test results (p C 0.05) for each CEC’2020 function

F# mCapSA versus

CapSA

mCapSA versus

PSO

mCapSA versus

CMA-ES

mCapSA versus

GSA

mCapSA versus

WOA

mCapSA versus

HHO

mCapSA versus

AOA

1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.994102 3.02E-11

2 3.02E-11 1.39E-06 5.97E-05 1.25E-07 8.99E-11 5.57E-10 3.02E-11

3 3.02E-11 0.05012 0.002624 3.02E-11 3.02E-11 3.02E-11 5.53E-08

4 1.96E-10 5.07E-10 5.86E-06 1.33E-10 4.08E-11 0.446419 3.34E-11

5 1.78E-10 0.437641 0.026077 4.12E-06 1.41E-09 1.33E-10 4.98E-11

6 7.04E-07 0.549327 1.7E-08 8.29E-06 1.85E-08 0.000856 3.02E-11

7 5E-09 0.549327 0.245814 0.004856 8.1E-10 1.55E-09 3.34E-11

8 3.02E-11 0.520121 0.048413 3.02E-11 3.02E-11 5.57E-10 0.830253

9 9.92E-11 0.482517 0.876635 3.02E-11 1.61E-10 0.153667 3.02E-11

10 0.149449 6.28E-06 0.007959 0.641424 1.43E-08 2.99E-11 0.029205

Fig. 5 The single line diagram

of 33-bus standard PDG
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Table 7 The results of comprised proposed techniques on standard PDGs at different scales (33 and 118)

Order Proposed

method

QDST size (MVAr)/

bus

QDST, Tot

(MVAr)

PLoss

(kW)

LR% QLoss

(kVAr)

Vmin

(p.u.)

VSImin

(p.u.)

EnergyCost ($)

Case 1: 33-bus standard PDG

Base case – – 210.9678 – 143.013 0.9038 0.6672 2,115,286.523

6 AOA 0.5609/24

1.0109/30

0.4179/14

1.9897 138.3617 34.4157 94.3379 0.9347 0.7633 1,387,295.941

7 HHO 0.4993/24

1.0653/30

0.4212/14

1.9859 138.4371 34.3800 94.3968 0.9352 0.7649 1,388,051.669

4 WOA 0.5501/24

1.0506/30

0.4140/14

2.0147 138.3545 34.4191 94.3457 0.9348 0.7638 1,387,223.447

8 GSA 0.5653/24

1.0091/30

0.4223/14

1.9968 138.3896 34.4025 94.3616 0.9348 0.7638 1,387,575.665

5 CMA-ES 0.5500/24

1.0501/30

0.4150/14

2.0150 138.3591 34.4170 94.3492 0.9349 0.7639 1,387,269.551

3 PSO 0.5489/24

1.0536/30

0.4150/14

2.0175 138.3654 34.4139 94.3550 0.9349 0.7640 1,387,332.974

2 CapSA 0.5501/24

1.0525/30

0.4120/14

2.0146 138.3468 34.4228 94.3400 0.9347 0.7636 1,387,146.526

1

Best

mCapSA 0.5400/24

1.0549/30

0.4086/14

2.0035 138.3305 34.4305 94.3241 0.9347 0.7632 1,386,982.639

Case 2: 118-bus standard PDG

Base case – – 1297.7 – 978.471 0.8688 0.5698 13,011,688.314

5 AOA 1.8355/101

1.4644/31

1.0056/42

2.2429/110

2.3342/50

1.7181/74

1.9349/80

1.0486/96

13.5842 832.3679 35.8591 619.149 0.9137 0.6970 8,345,808.270

7 HHO 2.3111/101

1.3214/31

0.8505/42

2.3105/110

2.2918/50

1.5717/74

1.7968/80

1.4841/96

13.9379 833.0772 35.8045 620.192 0.9119 0.6914 8,352,919.587
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Table 7 (continued)

Order Proposed

method

QDST size (MVAr)/

bus

QDST, Tot

(MVAr)

PLoss

(kW)

LR% QLoss

(kVAr)

Vmin

(p.u.)

VSImin

(p.u.)

EnergyCost ($)

4 WOA 2.4444/101

1.9013/31

1.0195/42

2.2736/110

2.1919/50

1.6323/74

2.0088/80

1.2644/96

1.47361 832.3068 35.8638 620.764 0.9129 0.6944 8,345,196.046

8 GSA 2.0677/101

2.1307/31

1.2448/42

2.2593/110

2.1577/50

1.6491/74

1.8360/80

1.2495/96

14.5947 834.0682 35.7281 621.964 0.9128 0.6941 8,362,856.281

6 CMA-ES 2.0682/101

2.1579/31

1.1500/42

2.2603/110

2.1557/50

1.6477/74

1.8348/80

1.2472/96

14.5217 832.4310 35.8543 620.869 0.9127 0.6940 8,346,440.848

3 PSO 2.0559/101

0.8814/42

0.6947/23

2.2597/110

2.7025/50

1.6454/74

1.8306/80

1.2444/96

13.3146 832.2993 35.8644 619.909 0.9128 0.6941 8,345,120.367

2 CapSA 2.0306/101

2.5433/31

0.7714/42

2.1668/110

2.0872/50

1.5931/74

2.0283/80

1.2830/96

14.5036 830.6876 35.9886 620.845 0.9122 0.6924 8,328,960.071
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the superiority of the proposed mCapSA algorithm com-

pared to its counterparts in solving six of functions from

the CEC’2020 test suite. Moreover, the first rank in terms

of mean and STD is recorded for the developed mCapSA

methodology.

5.4 Boxplot performance analysis

Figure 3 displays boxplot curves for the proposed mCapSA

method and corresponding items to depict data distribu-

tions into quartiles over the ten CEC’2020 test suite for

Dim = 10. The lowermost and largest data items reached

by the algorithms are presented as the minimum and

maximum values in the boxplot’s curves, which are the

edges of the whiskers. The lower and upper quartiles are

restricted by the ends of the rectangles. A narrow boxplot

indicates that the data are closely matched. For most

functions, the boxplot analysis demonstrated that the pro-

posed mCapSA technique realized the most suitable distri-

bution with the lowest values in comparison with the other

challenger algorithms.

5.5 Convergence performance analysis

The convergence-curves of the proposed mCapSA method

and the counterparts over the 10 of CEC’2020 test suite for

Dim = 10 are provided by Fig. 4. It is noteworthy that the

developed mCapSA algorithm obtained the lowest values

Table 7 (continued)

Order Proposed

method

QDST size (MVAr)/

bus

QDST, Tot

(MVAr)

PLoss

(kW)

LR% QLoss

(kVAr)

Vmin

(p.u.)

VSImin

(p.u.)

EnergyCost ($)

1
Best

mCapSA 1.9700/31

1.3368/104

0.7874/42

1.9451/110

2.1802/50

1.6421/74

1.8622/80

1.2762/96

13.0000 828.0562 36.1914 616.803 0.9128 0.6941 8,302,576.958

Order Proposed method CAPt ($) Saving (%) ObjF1 ObjF2 ObjF3 ObjF4 MObjF CPU speed (s)/FEs

Case 1: 33-bus standard PDG

Base case 2,115,286.523 – – – – – – 0.9525 (s)/Non

6 AOA 1,455,767.806 31.1787 0.6558 0.6036 0.3247 0.5923 0.571426 122.767 (s)/200

7 HHO 1,456,402.426 31.1487 0.6562 0.6059 0.3198 0.5922 0.571308 127.050 (s)/200

4 WOA 1,456,496.264 31.1442 0.6558 0.6050 0.3217 0.5922 0.571248 121.093 (s)/200

8 GSA 1,456,276.124 31.1546 0.6559 0.6040 0.3239 0.5923 0.571443 120.735 (s)/200

5 CMA-ES 1,456,551.698 31.1416 0.6558 0.6051 0.3216 0.5922 0.571250 123.496 (s)/200

3 PSO 1,456,697.403 31.1347 0.6558 0.6052 0.3213 0.5921 0.571245 126.776 (s)/200

2 CapSA 1,456,415.847 31.1481 0.6557 0.6049 0.3219 0.5922 0.571243 119.559 (s)/200

1

Best

mCapSA 1,455,899.207 31.1725 0.6556 0.6046 0.3225 0.5923 0.571240 108.878 (s)/200

Case 2: 118-bus standard PDG

Base case 13,011,688.314 – – – – – – 0.9651 (s)/Non

5 AOA 8,793,315.527 32.4199 0.6414 0.5967 0.3000 0.5967 0.558286 247.0665 (s)/200

7 HHO 8,811,745.127 32.2782 0.6420 0.5963 0.3006 0.5962 0.558477 241.8300 (s)/200

4 WOA 8,829,565.230 32.1413 0.6414 0.5985 0.2952 0.5957 0.557787 273.4037 (s)/200

8 GSA 8,842,701.093 32.0403 0.6427 0.5984 0.2960 0.5954 0.558484 232.8189 (s)/200

6 CMA-ES 8,823,950.872 32.1844 0.6415 0.5981 0.2966 0.5959 0.557990 248.3261 (s)/200

3 PSO 8,784,002.038 32.4915 0.6414 0.5967 0.2995 0.5970 0.558152 244.8752 (s)/200

2 CapSA 8,805,888.994 32.3232 0.6401 0.5974 0.2984 0.5964 0.557556 237.2244 (s)/200

1 Best mCapSA 8,731,388.804 32.8958 0.6381 0.5968 0.2998 0.5984 0.556862 230.4002 (s)/200

Bold items represent the numerical results based on mCapSA technique
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of the ObjF for most functions, meaning that the prepared

technique is capable of achieving convergence quickly.

Furthermore, this convergence can be observed, making

the proposed mCapSA a promising optimization tool for

solving online optimization problems which require fast

calculations.

5.6 Statistical analysis using Wilcoxon’s rank
sum test

As a means of assessing the significance of the results and

complementing the statistical analysis, Wilcoxon rank sum

tests can be performed. A Wilcoxon test is carried out to

ensure that the evaluated performance is relatively

stable and not random. In [59], the Wilcoxon rank sum test

is described in detail. Using paired methods, Table 6

presents a comprehensive analysis of the average of the

highest quality solutions to date. This test has a signifi-

cance level of 5%. Based on the fact that the p-values for

most functions are B 0.05 (5% significance level), the

results for the four classes of the CEC’2020 test suite are

statistically significant. This confirms that the performance

of the mCapSA algorithm is not random. In conclusion, the

optimum solutions are achieved by applying an applicable

and prearranged set of optimization rules.

6 The existing results

The suggested scheme utilizing the mCapSA technique

was executed by means of MATLAB package’R2021a that

is executed on an Intel� CoreTM i5-5200U CPU

@2.20 GHz including a memory of 6.00 GB and 64-bit

operational system. Based on the above methodology steps

considering the AHP algorithm, the optimal weights j1, j2,
j3, and j4 for the MObjF are concluded as 0.4498, 0.2950,

0.1973, and 0.0579, respectively. Moreover, the kmax-

= 4.1155, while, the consistency and index ratios,

respectively, are ICR = 0.0428 and ICI = 0.0385, respec-

tively. Supplementary, the reciprocal matrix [A] can be

deduced as follows,

A ¼

1 1 3 9

1=1 1 1 5

1=3 1=1 1 3

1=9 1=5 1=3 1

2
664

3
775

The results of this work are performed considering 4

cases. In the first and second cases, the proposed

scheme was applied to 33-bus and 118-bus PDGs to assess

the performance of the studied optimization techniques

with the modified mCapSA method. Based on the com-

prehensive analysis with recently published optimizers for

DSTATCOM allocation, the mCapSA was validated.

Ultimately, the DSTATCOM performance based on the

mCapSA method was evaluated using the Egyptian case

study as a real load model applied to a 33-bus PDG for

24 h.

6.1 Case1: The results of 33-bus standard power
distribution grid (PDG)

The prepared methodology is tested on 33-bus standard

PDG, where the rated line voltage and MVA are 12.66 kV

and 100 MVA, respectively. The data of the 33-bus model

is given by [60]. Figure 5 illustrates the 33-bus single line

diagram. As illustrated in Table 7, in the base case, the

total active (Ploss) and reactive (Qloss) power losses are

210.9678 kW and 143.013 kVAR, respectively. Moreover,

the minimum voltage profile (Vmin) is 0.9038 p.u, minimum

Table 8 The existing values of

SIA method based on SIL via

VSI for 33-bus standard PDG

Bus § SIL VSI

6 0.01448 0.8011

28 0.01203 0.7332

29 0.00899 0.7219

8 0.00727 0.7354

3 0.00675 0.9064

7 0.00440 0.7560

5 0.00390 0.8140

4 0.00389 0.8790

24 0.00374 0.8828

13 0.00356 0.6835

9 0.00334 0.7168

10 0.00316 0.7140

30 0.00308 0.7090

31 0.00300 0.7061

27 0.00187 0.7598

25 0.00186 0.8063

14 0.00183 0.6792

23 0.00181 0.8949

17 0.00158 0.6672

26 0.00137 0.7977

2 0.00136 0.9354

32 0.00075 0.7053

15 0.00072 0.6751

16 0.00066 0.6690

22 0.00048 0.9198

12 0.00044 0.6904

11 0.00026 0.7093

Bold items shows the 2/3 of the

existing results by SIL based

VSI methodology. The italic

highlights illustrates the opti-

mum location of DSTATCOM

by mCapSA technique
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voltage stability index (VSImin) is 0.6672 p.u, and the

capital annual price (CAPt) is 2,115,286.523 $. However,

the existing results of the SIA algorithm based on the SIL

and VSI methodology are shown in Table 8. The proposed

mCapSA technique elected the optimal nodes 24, 30, and

14 for DSTATCOM location from 2/3 of the SIL results.

mCapSA and the other recently proposed optimizers

have been compared for allocating DSTATCOM in the

most appropriate positions and sizes (MVAr) as shown in

Table 7, where the optimal locations are 24(0.540),

30(1.0549), and 14(0.4086). Based on the comprehensive

analysis performed, it is quite evident that mCapSA is

superior in finding optimal solutions to the proposed

problem, where the active power loss reduction (LR) is

minimized by 34.4305% and the capital annual price

(CAPt) is saved by 31.1725%. The AOA method has the

highest net saving of 31.1787%, but it has the lowest LR of

34.4157% when compared with mCapSA. Moreover, all

the proposed methods such as original CapSA, PSO, WOA,

CMA-ES, AOA, HHO, and GSA have higher values of

Vmin and VSImin compared to mCapSA. However,

mCapSA has the lowest values of active (138.3305 kW)

and reactive (94.3241 kVAr) power losses, and its perfor-

mance spent only 108.878 s in 200 function evaluations,

Fig. 6 The result of compensated devices on voltage levels for 33-bus standard PDG

Fig. 7 The influence of compensated devices on voltage stability for 33-bus standard PDG
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the shortest CPU time. Furthermore, the mCapSA has the

lowest energy costs (1,386,982.639 $) and CAPt
(1,455,899.207 $), except the AOA method.

Figures 6 and 7 explain the performance effect of the

DSTATCOM devices on the voltage and stability profiles.

In addition, the convergence of the MObjF with the func-

tion evaluations has been illustrated in Fig. 8. Moreover,

Fig. 9 zooms in from Fig. 8 that illustrates the superiority

in convergence of the mCapSA algorithm to deduce the

optimal MObjF value of 0.571240.

Fig. 8 The performance of the objective function via function evaluations for 33-bus standard PDG

Fig. 9 The zoom-in of the performance of the objective function via function evaluations for 33-bus standard PDG
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6.2 Case2: The results of 118-bus standard
power distribution grid (PDG)

The 118-bus standard PDG is displayed in Fig. 10. The

118-bus PDG rated line voltage is 11 kV and the rated

MVA is 100. The PDG data in details can be found at [61].

According to Table 7, the base case of 118-bus PDG

illustrates that the Ploss and Qloss are 1297.7 kW and

978.471 kVAr, respectively, the Vmin is 0.8688 pu, VSImin

is 0.5698 pu, the CAPt is 13,011,688.314 $.

In Table 9, the deduced results of the SIA method are

used to reduce the research space needed by the developed

optimizers. This is done to determine the most critical

location for DSTATCOM devices. Thus, the proposed

optimizers have been optimized (2/3) using the existing

results of the SIA method. From Table 7, the optimizers

were elected based on the most optimum locations in the

following nodes {101, 31, 104, 42, 23, 110, 50, 74, 80, 96}.

The existing result in Table 7 proved that the superiority of

the proposed mCapSa to deduce the optimal solutions

relative that has the highest LR = 36.1914% and the CAP

net savings = 32.8958%, in addition, it has the lowest

capacity of the total DSTATCOM value = 13.0000 MVAr.

As illustrated by Table 7, despite the AOA and WOA

having the highest values of Vmin and VSImin, they failed to

find the global optimum of the other parameters. Fig-

ures 11 and 12 represented the influence of the DSTAT-

COM allocation on the voltage and stability index profiles.

Figure 13 shows how the MObjF compares with functional

evaluations, where the value of 0.556862 pu is the lowest

among the optimization algorithms, while the mCapSA

optimizer can complete its task in 230.4002 s. According

to these results, the mCapSA has strong ability to obtain

optimal solutions at different scales of the distribution

grids.

6.3 Case3: The comprehensive analysis
with the last studies from literature

In case 3, a comprehensive analysis has been conducted

between the proposed modified CapSA algorithm, its

original case, and the most recent published optimizers.

This analysis has been conducted to ensure the validity and

ability of the proposed mCapSA to achieve the global

Fig. 10 The single line diagram of 118-bus standard PDG
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Table 9 The existing values of SIL via VSI algorithm for 118-bus standard PDG

Bus § SIL VSI Bus § SIL VSI Bus § SIL VSI Bus § SIL VSI

70 0.024808 0.6108 110 0.003658 0.6717 41 0.001793 0.8408 60 0.000402 0.8798

30 0.018157 0.8527 39 0.003574 0.8913 100 0.001745 0.9363 14 0.000397 0.9466

64 0.016101 0.8791 63 0.003558 0.9277 56 0.001711 0.9107 112 0.000388 0.6770

101 0.014096 0.9083 40 0.003466 0.8787 55 0.001705 0.9224 25 0.000367 0.8723

31 0.012935 0.8366 49 0.003445 0.7068 51 0.001646 0.6968 75 0.000362 0.5701

78 0.010817 0.8508 50 0.003361 0.6995 111 0.001593 0.6774 93 0.000324 0.8015

68 0.010165 0.7198 36 0.003167 0.8840 57 0.001499 0.8879 61 0.000182 0.8780

33 0.009460 0.7806 79 0.003144 0.8404 71 0.001471 0.5976 44 0.000163 0.8348

34 0.009022 0.7615 19 0.003125 0.9134 97 0.001370 0.7909 94 0.000162 0.8008

104 0.007528 0.7952 20 0.003066 0.9075 81 0.001359 0.8290 16 0.000158 0.9456

42 0.006117 0.8372 48 0.002809 0.7187 12 0.001272 0.9492 95 0.000154 0.7969

35 0.006068 0.8868 29 0.002642 0.8992 82 0.000959 0.8269 87 0.000134 0.8460

103 0.005805 0.8153 105 0.002639 0.7605 86 0.000947 0.8463 26 0.000117 0.8720

58 0.005143 0.8844 32 0.002590 0.8076 53 0.000939 0.6842 45 0.000116 0.8344

47 0.005000 0.7313 74 0.002546 0.5747 54 0.000826 0.9360 84 0.000105 0.8258

108 0.004982 0.7006 66 0.002500 0.8145 24 0.000702 0.8727 98 0.000095 0.7905

102 0.004889 0.8716 107 0.002442 0.7125 43 0.000700 0.8358 88 0.000083 0.8373

18 0.004843 0.9254 80 0.002163 0.8327 76 0.000651 0.5698 17 0.000073 0.9367

65 0.004769 0.8530 90 0.002150 0.8068 52 0.000594 0.6902 85 0.000071 0.8469

69 0.004538 0.6203 72 0.002146 0.5858 13 0.000567 0.9471 46 0.000067 0.7420

106 0.004420 0.7440 96 0.002114 0.7914 37 0.000560 0.9255 15 0.000062 0.9459

89 0.004374 0.8217 91 0.002091 0.8039 22 0.000533 0.8783 77 0.000045 0.8672

23 0.004263 0.8740 109 0.001982 0.6799 92 0.000508 0.8022

67 0.004164 0.7580 73 0.001969 0.5768 59 0.000438 0.8811

38 0.003716 0.9037 21 0.001814 0.9045 83 0.000404 0.8262

Bold items shows the 2/3 of the existing results by SIL based VSI methodology. The italic highlights illustrates the optimum location of

DSTATCOM by mCapSA technique

Fig. 11 The influence of DSTATCOM devices on voltage levels for 118-bus standard PDG
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optimum of the current problem. However, Table 10

summarized the comprehensive study in two scenarios:

33-bus and 118-bus distribution systems.

The mCapSA was compared, in the case of 33-bus PDG,

with its original one, as well as with PSO, FA, hybrid FA-

PSO, FA-AAC-PSO, FA-APG-PSO, FA-TVA-PSO, FA-

NDAC-PSO, and FA-SCAC-PSO [45]. Following

Table 10, the optimization methods had been ordered to

start with the highest optimum solutions based on

mCapSA. By contrast, the mCapSA technique can reduce

the power system losses by 34.4305%. In addition, it can

reduce the total energy cost by 1,386,982.639 $ as com-

pared to previous optimization methods, including the

original. Furthermore, the mCapSA can improve the min-

imum voltage level to 0.9347 p.u., the highest in this

comprehensive study.

For the second case with 118-bus PDG, the mCapSA

method was compared with its original one as well as with

BFO [28], MOPSO [42], MOGROM [42], MOIGROM

[42], and the original CapSA methods. In Table 10, the

compared optimizers were sorted from the most optimum,

which is mCapSA, to the least optimum, which is BFO.

Fig. 12 The result of DSTATCOM devices on voltage stability for 118-bus standard PDG

Fig. 13 The performance of the objective function via function evaluations for 118-bus standard PDG
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Table 10 The comprehensive analysis between the proposed mCapSA and other methods in literature on 33-bus and 118-bus standard PDG

Technique QDST size MVAr (bus) PLoss LR % Energy cost ($) Vmin VSImin Algorithm order

Case 1: 33-bus distribution system

Base case – 210.9678 – 2,115,286.523 0.9038 0.6672 –

PSO [45] 0.3140 (15)

0.6569 (23)

1.1390 (29)

141.8247 32.7742 1,391,940.903 0.9324 – 10

FA [45] 0.4037 (14)

0.5668 (24)

1.0584 (30)

138.4071 34.3942 1,387,753.791 0.9345 – 5

FA-PSO [45] 0.4870 (11)

0.5629 (24)

1.0007 (30)

138.4244 34.3860 1,387,927.252 0.9312 – 8

FA-AAC-PSO [45] 0.4016 (14)

0.5298 (24)

1.0628 (30)

138.3928 34.4001 1,387,610.411 0.9344 – 4

FA-APG-PSO [45] 0.4126 (14)

0.5537 (24)

1.0572 (30)

138.4411 34.3781 1,388,094.696 0.9348 – 9

FA-TVA-PSO [45] 0.3982 (14)

0.6039 (24)

1.0464 (30)

138.4090 34.3933 1,387,772.842 0.9342 – 7

FA-NDAC-PSO [45] 0.4061 (14)

0.5524 (24)

1.0577 (30)

138.4074 34.3940 1,387,756.799 0.9346 – 6

FA-SCAC-PSO [45] 0.4021 (14)

0.5531 (24)

1.0594 (30)

138.3928 34.4001 1,387,610.411 0.9344 – 3

Proposed CapSA 0.5501 (24)

1.0525 (30)

0.4120 (14)

138.3468 34.4228 1,387,149.187 0.9347 0.7636 2

Proposed mCapSa 0.5400 (24)

1.0549 (30)

0.4086 (14)

138.3305 34.4305 1,386,982.639 0.9347 0.7632 1 Best

Case 2: 118-bus distribution system

Base case – 1297.7 – 13,011,688.314 0.8688 0.5698 –

BFO [28] 2.541 (38)

1.425 (46)

1.521 (74)

1.715 (91)

2.021 (118)

871.40 32.8504 8,737,186.560 0.9062 – 6

MOPSO [42] 1.371 (23)

1.012 (31)

0.668 (46)

0.634 (64)

1.500 (68)

1.333 (70)

1.134 (78)

1.327 (103)

1.476 (108)

851.54 34.3808 8,538,058.117 0.9272 – 4
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Although, the MOPSO, MOGROM, and MOIGROM have

the highest minimum voltage level, the mCapSA method-

ology has the lowest energy cost (8,302,576.958 $) and the

highest power system loss reduction (LR = 36.1914%).

According to the comprehensive analysis that is illus-

trated by Table 10, the mCapSA technique can find the

optimal solution of the proposed scheme successfully.

However, in this work, it is very relevant to examine the

performance of the DSTATCOM with load levels that can

be explained by the fourth case of the existing results.

6.4 Case 4: DSTATCOM performance study
at different load levels of Egyptian case
study

In the current case study, the performance of DSTATCOM

has been studied considering load modeling based on the

Table 10 (continued)

Technique QDST size MVAr (bus) PLoss LR % Energy cost ($) Vmin VSImin Algorithm order

MOGROM [42] 0.295 (23)

0.413 (30)

1.338 (42)

0.764 (58)

1.288 (78)

1.252 (104)

1.134 (78)

1.493 (106)

1.285 (108)

1.500 (113)

852.20 34.3300 8,544,675.678 0.9271 – 5

MOIGROM [42] 1.494 (23)

1.258 (47)

1.304 (64)

1.500 (70)

1.435 (78)

1.346 (89)

1.500 (101)

1.396 (106)

850.73 34.4432 8,529,936.564 0.9273 – 3

Proposed CapSA 2.0306 (101)

2.5433 (31)

0.7714 (42)

2.1668 (110)

2.0872 (50)

1.5931 (74)

2.0283 (80)

1.2830 (96)

830.6876 35.9886 8,328,960.071 0.9122 0.6924 2

Proposed mCapSA 1.9700 (31)

1.3368 (104)

0.7874 (42)

1.9451 (110)

2.1802 (50)

1.6421 (74)

1.8622 (80)

1.2762 (96)

828.0562 36.1914 8,302,576.958 0.9128 0.6941 1 Best

Bold items indicate the best results by the proposed mCapSA
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practical measurement and analysis of the Middle Egyptian

power distribution grid (MEPDG). As depicted in Fig. 14,

a power analyzer has been applied for 24 h to different load

points of the MEPDG. This is done to deduce the power

quality of the measured system and to determine the power

demand curve. The real load demand model illustrated by

Fig. 15 is applied to 33-bus standard PDG in this study. It

can be seen that the nominal load demand amounts to 84%

of the load at 10:00 a.m. and 22:00 p.m., as illustrated in

Fig. 15.

In the base case, the bus voltage and the voltage stability

profiles are shown in Figs. 16a and 17a, respectively.

After installing the DSTATCOMs optimally at buses 14,

24, and 30 as illustrated by Fig. 18, the bus voltage and

stability voltage profiles are improved to the extent shown

in Figs. 16b and 17b, respectively. It has been illustrated by

Fig. 18 that the DSTATCOMs devices compensate differ-

ent reactive power at nodes 24 and 30 at all times with

different load demand levels. The DSTATCOM device

located at bus 14 absorbs reactive power from the grid with

light loads from 01:00 a.m. to 8:00 a.m. and compensates

reactive power from 9:00 a.m. to 00:00. These devices had

a decisive impact on the performance of the grid using the

mCapSA technique. The MCapSA successfully minimized

the active and reactive losses as well as the installation and

operating costs of installed devices. This is done while

maximizing the net savings of the total annual price for the

device and its energy consumption, as depicted in Figs. 19,

20, and 21, respectively.

However, Table 11 illustrates the values of active and

reactive power losses that were reduced to 2926.5481 kW

by 33.4673% of active loss reduction and to 2000.489

kVAr by 32.9098% of reactive loss reduction. Moreover,

the total energy costs have been minimized to 1,222,636.99

$ with a net saving of 615,012.06 $. In addition, the total

capital annual cost has been minimized to 1,284,197.56 $

with a net saving of 553,451.49 $.

To conclude, the mCapSA technique proved superior in

finding the optimal allocation of DSTATCOM devices

within the PDG, regardless of the load level.

Fig. 14 The utilized power analyzer (model HIOKI-3196 with the

program of HIOKI-9624-50 ‘‘PQA-Hiview PRO’’)

Fig. 15 The spectrum of the real measured load curve in the MEPDG
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7 Conclusion

The prepared article presents an approach based on the

modified Capuchin Search Algorithm (mCapSA) with

sensitivity index algorithm (SIA) to deduce the optimum

siting and capacity of DSTATCOM devices in the power

distribution grids (PDGs). In order to estimate the power

flow, the backward/forward sweep algorithm (BFS) was

used. Moreover, the SIA has been employed to determine

the farthest applicant nodes, which are required to mini-

mize the search space for the proposed optimizer. By using

the SIA method, the prepared mCapSA enables DSTAT-

COM to determine the optimum capacity and siting of their

existing buses. A multi-objective function (MObjF)

approach is designed to improve the performance of the

proposed system and provide global optimal solutions. The

overall scheme has been verified on the 33-bus and 118-bus

PDGs. To evaluate the DSTATCOM devices in practice,

the proposed scheme has also been applied to the 33-bus

distribution system using the real load demand analysis of

the middle Egyptian distribution grid (MEPDG). This case

study demonstrates that the total net savings of capital

annual price (CAPt) is 30.1173% for 30 years, while the

active and reactive loss reduction of the modeled distri-

bution system are 33.4673% and 32.9098%, respectively,

for 30 years. To investigate the performance of the pre-

pared methodology, a comprehensive analysis of the

existing results in conjunction with the newly and previ-

ously published techniques has been conducted. However,

the proposed mCapSA technique proved superior in

deriving the optimum allocation of the DSTATCOM

devices in the PDGs. This was to enhance voltage levels,

minimize system losses, and minimize CAPt of the PDGs.

A future work will conclude with the operation manage-

ment of the distribution grids considering different load

Fig. 16 The voltage profile (per

unit) at a the base case and b the

case with mCapSA optimizer of

33-bus PDG at 24 (h)
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Fig. 17 The VSI curve (per

unit) at a the base case and b the

case with mCapSA optimizer of

33-bus PDG at 24 (h)

Fig. 18 Hourly kVAr outputs

from DSTATCOMs
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Fig. 19 The total active and reactive power with and without DSTATCOM installations

Fig. 20 The total energy cost with and without DSTATCOM installations
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levels using DSTATCOM with distributed generators

incorporating distributed storage batteries.
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Fig. 21 The capital annual price (CAPt) with and without DSTATCOM installations

Table 11 The total results of

base-case and with

DSTATCOM Installations at

24 h (different load conditions)

Items Base case DSTATCOM installation

Total active losses (kW) 4398.6637 2926.5481

Active loss reduction (%) – 33.4673

Total reactive losses (kVAr) 2981.774 2000.489

Reactive loss reduction (%) – 32.9098

Total energy cost ($) 1,837,649.05 1,222,636.99

Net saving of energy cost ($) – 615,012.06

Saving of energy cost (%) – 33.4673

Total purchased price of DSTATCOM ($) – 61,560.57

Capital annual price ($) 1,837,649.05 1,284,197.56

Net saving of Capital annual price ($) – 553,451.49

Total saving (%) – 30.1173
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