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Abstract
Attributed graph clustering, the task of grouping nodes into communities using both graph structure and node attributes, is

a fundamental problem in graph analysis. Recent approaches have utilized deep learning for node embedding followed by

conventional clustering methods. However, these methods often suffer from the limitations of relying on the original

network structure, which may be inadequate for clustering due to sparsity and noise, and using separate approaches that

yield suboptimal embeddings for clustering. To address these limitations, we propose a novel method called Deep

Attributed Clustering with High-order Proximity Preserve (DAC-HPP) for attributed graph clustering. DAC-HPP leverages

an end-to-end deep clustering framework that integrates high-order proximities and fosters structural cohesiveness and

attribute homogeneity. We introduce a modified Random Walk with Restart that captures k-order structural and attribute

information, enabling the modelling of interactions between network structure and high-order proximities. A consensus

matrix representation is constructed by combining diverse proximity measures, and a deep joint clustering approach is

employed to leverage the complementary strengths of embedding and clustering. In summary, DAC-HPP offers a unique

solution for attributed graph clustering by incorporating high-order proximities and employing an end-to-end deep clus-

tering framework. Extensive experiments demonstrate its effectiveness, showcasing its superiority over existing methods.

Evaluation on synthetic and real networks demonstrates that DAC-HPP outperforms seven state-of-the-art approaches,

confirming its potential for advancing attributed graph clustering research.
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1 Introduction

Recently, complex networks have been a prevalent tool to

model many real-world entities and their relationships,

such as online social networks, collaboration networks,

citation networks, protein-protein interaction networks, and

so on [1]. One fundamental component of these real net-

works is their underlying communities. Generally, a

community is usually regarded as a group of nodes that are

closely connected internally, whereas the external links

between different communities are sparse. A network may

contain several communities. The task of community

detection [2] aims to find all these communities, which is

also called graph clustering [3].

Traditional community detection algorithms rely solely

on network topology to find communities. However, as the

scale of networks grows, data sparsity difficulties in the

network architecture may arise. It is insufficient to rely just

on network topological structure to locate communities [4].

Consequently, most researchers exploit the attributed

properties of nodes to compensate for structural sparsity in

the real-world social network. In recent years, there has

been an explosion of algorithms for attributed graph clus-

tering that combine network topology and attribute features

[5].
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Attributed graph clustering is a new area that has lately

received a lot of attention [6, 7]. The goal of attribute-

based graph clustering is to put graph nodes into separate

groups based on their attributes. Attributed graph clustering

methods are divided into three methods traditional clus-

tering, non-negative matrix factorization (NMF), and deep

clustering. In traditional clustering, structure and attributes

are combined as a pre-processing step, and after basic

community detection methods, they are used to identify

clusters [8]. Another method is the non-negative matrix

factorization (NMF) method. NMF is a matrix method that

consists of approximating a non-negative matrix of high

rank by a product of non-negative matrices of lower rank,

using the Frobenius norm as the approximation error [9].

NMF has been widely used in attributed graph clustering

[10]. In this method, the adjacency matrix and the attribute

matrix, which represent the node structure and node

information of the network, are combined to form a hybrid

matrix of structure and attributes that, after NMF obtain

communities. Used to refer to methods. Traditional meth-

ods and NMF cannot be used for large data sets due to their

high complexity. In contrast to these methods, deep clus-

tering methods have been proposed which, using graph

embedding procedures, represent each node in the network

as a low-dimensional continuous vector such that main

network information is efficiently encoded [11].

Deep learning advancements have recently ushered in a

paradigm shift in artificial intelligence and machine

learning, with astounding success on a wide range of tasks,

including clustering. As a result, deep clustering has

received a lot of attention [12, 13]. Deep clustering

employs the deep learning method, followed by a nonlinear

dimensional reduction to obtain high-discriminative fea-

tures and the adoption of the node clustering algorithm for

this new feature space. Deep clustering is divided into two

categories based on whether these two steps are performed

separately or simultaneously with a cost function: the two-

phase and one-phase methods [14].

The two-phase group acquires communities in two

stages. The embedding vector of each node is first learned

using a network embedding technique. Second, the

embedding vectors are grouped together using a traditional

clustering technique like K-means or spectral clustering.

This two-staged method is perfect for combining the ben-

efits of network embedding with traditional clustering

methods. The disadvantage is that the node clustering task

is not helpful for the graph embedding learning and may

not be the best match for the learned embedding for the

future node clustering task. The one-phase method inte-

grates new representation vectors and community detection

into a single stage. Each node’s new representation and

community membership vectors are optimized and output

simultaneously. The one-phase deep clustering has the

potential to produce better results than two separate steps:

During optimization, improved representation layer is

learned to improve the cluster layer; the cluster layer, in

turn, provides information to enhance the embedding [15].

However, most existing joint algorithms fail to integrate

the global information of topologies and attributes into

low-dimensional vector spaces. In complex attributed net-

works, inaccurate community detection may result from

not taking the above factors into consideration.

In general, the deep-attributed graph clustering problem

has three major obstacles.

• Most of them use two separate methods to do node

representation learning and clustering. As a result, the

networks’ performance is limited since node clustering

cannot be trained entirely.

• The majority of them don’t provide the best represen-

tations of nodes because they don’t reconstruct both

node attributes and graph structure simultaneously.

Most of them don’t give the best representations of

nodes because they don’t at the same time.

• Prior research on attribute similarity focused mostly on

the microscopic structure of networks and ignored

global trends. So, the learned representations can’t be

used well for tasks like attributed graph clustering.

This paper presents an improved input of deep clustering

for community detection, which overcomes the drawbacks

of existing deep clustering-based community detection

methods in attributed networks. We merge structural and

attribute node information in a global, simultaneous, and

integrated manner. We utilize a personalized random walk

with a restart, which generates the matrix in some steps by

integrating structural information and node attribute. The

final matrix is created by combining these matrices. Then

using deep join clustering to find the clusters. The authors

evaluated the effectiveness of the proposed model using a

variety of synthetic and real-world attributed networks; the

experimental results show that our model performs better

than traditional methods.

Our main contributions are summarized as follows:

• We propose a novel end-to-end approach called Deep

Attributed Clustering with High-order Proximity Pre-

serve (DAC-HPP) for attributed networks. This method

jointly optimizes embedding learning and node cluster-

ing within a unified framework, resulting in mutual

benefits for both components.

• To integrate the structural and attribute information of

the network globally, the DAC-HPP algorithm con-

structs a consensus matrix by leveraging a random walk

with restart method, facilitating the fusion of structure

and attribute information.
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• In order to capture long-distance similarities and

enhance the topological structure, we introduce the

concept of high-order attribute proximity.

• Through extensive testing on various synthetic and real-

world attributed networks, our proposed approach

demonstrates significant performance improvements

compared to seven state-of-the-art methods tailored

for attributed networks.

The paper is organized as follows. Section 2 provides an

overview of traditional attributed graph clustering and deep

attributed clustering. Section 3 covers the preliminaries of

our work, including key concepts such as Random Walk

with Restart, High-Order Structure Proximity, deep

autoencoder, consensus matrix, and the proposed algorithm

DAC-HPP. In Sect. 4, we present extensive experimental

evaluations of our method on synthetic and real-world

networks, demonstrating its effectiveness compared to

existing techniques. Section 5 is the Discussion section,

where we analyze and interpret the experimental results,

discussing the implications, strengths, and weaknesses of

our approach. Finally, in Sect. 6, we conclude the paper by

summarizing the key contributions of our research.

2 Related work

Attributed graph clustering represents one of the most

fundamental and actively researched problems in machine

learning. Throughout the years, numerous approaches have

been proposed to tackle the challenge of clustering attrib-

uted graphs, resulting in a wide range of methodologies and

techniques [5, 16, 17]. These approaches can be catego-

rized into three main groups: traditional clustering meth-

ods, nonnegative matrix factorization techniques, and deep

clustering-based approaches.

2.1 Traditional method

In traditional methods, the initial step is to develop a way

to fuse structural and attribute data, after which a com-

munity detection method is applied. Weigh-based methods

are well-known instances of these categories, in which

topological and attributed-based similarities are combined

and assigned to the edges of the original graph, trans-

forming the graph into a weighted graph. The modified

graph can then be used in conjunction with any traditional

community detection method [18, 19]. This study [20]

assumes that in a network, there may be certain nodes with

similar attributes, and as a result, they tend to belong to the

same community. Despite this, they are not connected by a

link due to several circumstances, such as sparsity. As a

result, they proposed augmenting the original network by

adding a k-Nearest Neighbour (kNN) graph containing

node attributes. The community structure of the improved

network is then extracted using a clustering method,

including K-means. Li et al. [21] have suggested an over-

lapping technique that uses a combination of local and

global information about nodes in the network structure.

An enhanced version of PageRank is used to provide global

information. To find overlapping communities, the struc-

tural information and node attributes are combined into

forms of node convergence degrees.

Proposed weight modification approach (PWMA) and

proposed linear combination approach (PLCA) approaches

have been proposed by Alinejad et al. [22]. The original

attributed network is fed into PWMA, which transforms it

into a non-attributed network. In this phase, similarity

measures (Jaccard, cosine, and angular) would be used; in

this study, they are Jaccard, cosine, and angular. The sec-

ond phase is to detect communities in the constructed

secondary network using mixed-integer linear program-

ming (MILP) method. PWMA does not add or remove

edges from the original network, only the weights change.

The idea behind PLCA [23] is that by utilizing a linear

combination of network topology and attributes, nodes

with a similarity higher than the desired threshold but that

are structurally divided can be held close together. The

transformation phase to the secondary network is also

included in PLCA, but its edge set may differ from that of

the source network and edges may be added.

2.2 Nonnegative matrix factorization

Nonnegative matrix factorization methods: NMF is a low-

rank matrix factorization model that has been around for a

long time [24]. Given a nonnegative matrix

X ¼ ½X1;X2; ::;Xn�, which is formed from a collection of n

m-dimension data vectors and a desired reduced dimension

d (such that d�minðm; nÞÞ, The goal of NMF is to discover

two nonnegative matrices W ¼ ½Wip�m�d 2 Rm�d
þ and

H ¼ ½Hip�n�d 2 Rn�d
þ , which can well approximate the

original matrix X in the form of their product:

X ¼ WHT ð1Þ

where W and H are the basis matrix and coefficient matrix,

respectively. In order to estimate the factorization matrices,

it gets the following objective function:

min
W ;H

‘ðW ;HÞ ¼ kX �WHTk2F s.t. W � 0;H� 0: ð2Þ

The non-negativity constraints on both factor matrices

result in parts-based representation, which is compatible

with the notion of learning the parts in order to form the

whole. The conventional NMF model: X¼WHT can be
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directly used to detect communities by substituting X with

A. Each column of the matrix W corresponds to a com-

munity representation. Furthermore, each column of matrix

H represents the membership between overall pairs of

communities and nodes. As a result, it can assign a com-

munity label to the node by determining the index of the

biggest element in the coefficient matrix, and the NMF

detection rule is:

communityðvjÞ ¼ arg max
i¼1;2;...;Vj1

ð3Þ

Different versions of NMF have been introduced to

attributed graph clustering in recent years. Ye Li proposed

[25] a pioneering approach for community detection that

effectively incorporates both community structures and

node attributes. The method introduces a community

structure embedding technique, which encodes inherent

community structures based on underlying community

memberships. By leveraging the information from both

node attributes and the community structure embedding,

the method formulates attributed community detection as

an optimization problem using nonnegative matrix factor-

ization. Xiao Wang [26] introduced the Semantic Com-

munity Identification (SCI) method, a novel approach for

attributed graph clustering that combines network topo-

logical and node semantic information. SCI utilizes non-

negative matrix factorization (NMF) to integrate topology-

based community memberships and node attribute-based

community attributes. The fundamental idea behind SCI is

that nodes with similar community memberships are more

likely to be connected, while nodes with attributes con-

sistent with the underlying community attributes are more

likely to belong to the same community. Li et al. [27]

proposed an embedding-based method using NMF in

which the node attributes and community structure

embedding were used to detect communities of the net-

work. The proposed study gives two joint nonnegative

matrix factorization algorithms that don’t need any

parameters. These algorithms can find community struc-

tures in attribute networks.

Jianyong [28], a new graph neural network encoding

method is suggested for attribute graph clustering. Each

edge in an attribute network is connected to a continuous

variable based on the encoder. A continuous-valued vector

is transformed by nonlinear transformation into a discrete-

valued community grouping solution. To assess the attri-

bute homogeneity of nodes in communities, two objective

functions for single-attribute and multi-attribute networks

are proposed. The methods integrate topology and attribute

data to produce more sensible and understandable results.

The study’s authors [29] propose a nonlinear NMF-based

model called NMFGAAE, which aims to improve

performance by combining NMF community detection

with graph attention autoencoder models.

2.3 Deep clustering-based

In graphs, deep clustering algorithms can capture complex

and nonlinear node properties [30]. For this purpose, sev-

eral recent papers have introduced deep clustering methods

into graph-attributed clustering tasks with the goal of

learning useful node embeddings for clustering. These

studies use both two-phase and one-phase modelling

methods [31, 32]. Feature learning and clustering are

regarded as upstream and downstream tasks in the two-

phase technique. One-phase methods use standard cluster-

ing algorithms like k-means and spectral clustering along

with the node embedding that was learned by the deep

learning method to make clusters.

In this study [33], the representation mechanism is based

on autoencoders that transform attributes into node

embedding vectors based on network topology using an

adversarial learning algorithm. ANRL [34] presents a

neighbour improvement autoencoder that reconstructs its

target neighbours rather than itself in order to represent

node attribute data. The attribute encoder is used to create

an attribute-aware Skip-gram model that describes the

relationships between each node and its direct or indirect

neighbours. In order to capture high nonlinearity while

preserving the topological structure and node attribute

proximities, DANE [35] uses a deep attributed network

modelling. Both topological structure and node attributes

are encoded into low-dimensional vectors using two auto-

encoders.

The one-phase methods create an end-to-end framework

that may directly get cluster results by integrating feature

learning with clustering. Using these methods, the discrete

clustering issue is often converted into a differentiable

optimisation problem and integrated into a single frame-

work [36]. DNENC (Deep Neighbour-aware Embedded

Node) [37] performs end-to-end graph embedding and

node clustering using an unsupervized deep neighbour-

aware embedding algorithm. The topological structure and

node content of a graph are encoded into a compact rep-

resentation using a neighbour-aware graph autoencoder

that gradually integrates information from neighbours

using an attentional or convolutional encoder. In this study,

a SENet (spectral embedding network) [38] for attributed

graph clustering is proposed. By including the knowledge

of common neighbours, the noisy and sparse graph struc-

ture may be significantly enhanced. By learning node

embeddings in response to a spectral clustering loss,

information about the global cluster structure can be

explicitly or implicitly added to the node embeddings of

different layers.
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3 Proposed method

In this section, we elaborate on the DAC-HPP (Deep

Attributed Clustering with High-order Proximity Preserve)

method, specifically designed for deep attributed graph

clustering with a focus on higher similarity. Firstly, we

provide an overview of the network formulation and key

definitions. Subsequently, we explain the DAC-HPP

method, which consists of two essential steps. The first step

involves constructing a consensus matrix that combines

both structural and attribute information to create prox-

imity matrices, with a particular emphasis on high-order

similarity. We then integrate these proximity matrices into

the input for the end-to-end clustering framework. In the

second step, we employ an end-to-end framework to dis-

cover clusters. This framework includes a layer represen-

tation comprising a deep autoencoder, along with a

clustering layer incorporating a self-supervisor. Detailed

explanations of our proposed model will be presented in

subsequent sections.

3.1 Problem formulation

We define an attributed network as G ¼ ðV ;E; TÞ where

V ¼ fV1;V2; . . .;Vng and E ¼ fE1;E2; . . .;Emg and T ¼
ft1; t2; . . .; ttg represent nodes, edges, and node attributes,

respectively. The adjacency matrix A for G materializes the

edges between nodes of the graph in the form of the matrix

such that the Aij contains the value of 1 if vi and vj have a

common edge and 0 otherwise. Our objective is to partition

the graph’s nodes G into k clusters C ¼ fC1;C2; . . .;Ckg.
Additionally, attributed graphs are considered of as undi-

rected, connected, and simple graphs in which each node

attribute fits a unique multi-dimensional schema. The

various notations used in this paper are listed in Table 1.

Definition 1. Random walk with restart (RWR): Many

graph mining applications like link prediction, recom-

mendation, anomaly detection, semi-supervized learning,

and network embedding depend on the ability to calculate

effective node-to-node similarity [39]. RWR [40] is a

useful node-to-node relevance score that takes into account

global network topology [41] and detailed edge relation-

ships [42]. RWR calculates the proximity between two

nodes by exploring the global network topology many

times. Starting at a seed node, the random walker dis-

tributes its resources by (1) moving to one of its sur-

rounding nodes with probability 1� c and (2) restarting

with probability c from the seed node. This method is

continued until all nodes have been visited. The probability

vector created at this point comprises the proximity scores

of all nodes as well as the seed node. The equation (4)

represents the proximity scores of all nodes throughout

each step.

p ¼ ð1� cÞWpþ cq ð4Þ

where q is a vector with a seed node is set to 1 while the

remaining elements are set to 0, W is network adjacency

matrix, which represents the matrix of node transitions, and

Wi;j reflects the probability of transitioning from node j to

node i. c is set to 0.8 according to Woojeong et al. [41]

work. After several repetitions, p would attain a

stable state. As a result, it diffuses its resources throughout

the network by multiplying the adjacency matrix. The

proximity score matrix P can be made by iterating the pi
value, which is the result of RWR for the seed node i. Each

entry in the matrix shows how close node j is to the seed

node i.

Definition 2. High-order structure proximity: In terms of

structure proximity, two nodes are the same if they are

connected and have the same k-order neighbours. The

adjacency matrix represents the first-order proximity,

which describes the local pairwise similarity between

vertices. In most cases, the first-order proximity matrix is

insufficient to adequately capture the pairwise proximity

between vertices [43, 44]. As a result, higher-order prox-

imity is used to describe vertices’ strength. The number of

shared neighbours between vertices, for example, can be

used to define second-order proximity. The probability that

a 2-step random walk from vi reaches vj may also be used

to represent the second-order proximity between vi and vj.

If vi and vj have a lot of shared neighbours, the probability

will be high. We can easily generalize the probabilistic

setup based on a random walk to k-order proximity: the

probability that a random walk starts at vi and goes

Table 1 Notations and explanation

The given complex network G

Nodes set V

Edges set E

Attribute set T

The number of nodes n

The number of communities k

The embedded features vector Z

The adjacency matrix A 2 Rn�n

The attributed matrix T 2 Rn�t
þ

The proximity matrix P 2 Rn�t
þ

The consensus matrix C 2 Rn�n

The representation loss Lrep

The clustering loss Lclu
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approximately k steps to vj. The transition probability

matrix of a single-step random walk is the normalized

adjacency matrix A. The k-step transition probability

matrix may thus be computed as the k-order proximity

matrix

Ak ¼ A � A � A � � �A
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ð5Þ

where Ak
ij represents the k-order proximity between vertex

vi and vj.

Definition 3. High-order attribute proximity: Smoothing

a data set is an approximation function in image processing

that aims to capture essential patterns in the data while

ignoring noise or other fine-scale structure phenomena. As

a result, we developed the attribute smoothing filter with

topological high-order neighbours, which preserves the

intrinsic properties of the attribute while reducing noise.

The mean filter is a suitable choice for our deep clustering

tasks. The average value of neighbour nodes is calculated

using the mean filter. An averaged smoothness attribute

value can well represent the pairwise similarity nodes in a

k-order neighbour, which is precisely what we want the

attribute homogeneity in clustering to achieve [45]. The

size of the filter window is something to consider. The

value of neighbour nodes is calculated via smoothing fil-

tering, and the number of neighbour nodes is proportional

to the smoothing effect. The number of high-order neigh-

bours was used to determine the window size.

We can increase the smoothing effect by expanding the

range of neighbours in this way. More information from

neighbours can be introduced through a bigger window.

We may also use high-order proximity to interpolate global

topological relations while conserving local structure

information. High-order proximity can direct the filtering

process when using high-order neighbours as the filter

window. As a result, we define the attribute smoothing

filter for node i with high-order topological neighbours as

the following:

smoothNðhÞ:i ¼
PjNhðiÞj

1 Tj
jNhðiÞj

ð6Þ

in which jNhðiÞj is the high-order neighbours of node i.

After computing the attribute smoothing filter using the

high-order neighbour, we’ll use cosine similarity to deter-

mine how similar each node is to its neighbours. Therefore,

we used the influence of the high-order neighbour to con-

sider the similarity of each node to its neighbour node. The

similarity pair nodes vi and vj from the attribute perspec-

tive, taking into account the high-order neighbour, will be

defined as follows:

Sði; jÞ ¼ SumðTi � TjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SumðTi � TiÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SumðTj � TjÞ
p ; ð7Þ

where Ti and Tj are the one-hot attribute vector represen-

tation of node vi and vj, respectively.

Definition 4. Deep autoencoder: Deep learning is a sub-

field of machine learning based on multi-level data repre-

sentation learning, in which low-level features are passed

up through layers to higher-level features. These deep

architectures have made significant progress in the field of

deep clustering by automatically learning essential features

from images, text, or graph data. In recent years, the

autoencoder (AE) algorithm and its deep version (DAE),

like classic dimensionality reduction methods, have had a

lot of success [46]. A single autoencoder (AE) consists of a

two-layer neural network consisting of an encoder and a

decoder.

Let ai 2 RN be an adjacency vector of A that contains

the ith node’s local neighbourhood. The autoencoder

architecture consists of a collection of nonlinear transfor-

mations on ai split down into separate parts: encoder gðaiÞ:
RD ! RN and decoder f ðgðaiÞÞ: RN ! RD The encoder and

decoder’s hidden representations are calculated as follows:

Encoder zi ¼ gðaiÞ ¼ f ðWexi þ b1Þ

Decoder ai ¼ ai ¼ f ðziÞ ¼ f ðWdxi þ b2Þ

autoencoder ai ¼ hðaiÞ ¼ f ðgðaiÞÞ

ð8Þ

in which f is a nonlinear activation function like sigmoid or

ReLU. We is encoder weights, Wd is decoder weights, b is

the bias parameters.

In some datasets, the number of input features may

surpass the capacity of a single autoencoder and have a

complex relationship. Consequently, the use of a single

autoencoder is inadequate. Therefore, a stack autocorrela-

tor is used in these situations. As an input feature, it pro-

vides the ðk þ 1Þth layer, which is the hidden layer of the

kth AE. A crucial feature of stacked autoencoders is

unsupervized pre-training, layer by layer as input is pro-

cessed. The first layer can be utilized as an input for the

following autoencoder once it has been pre-trained. Back-

propagation can be used to fine-tune a neural network that

has already been trained. The last layer may be used for

traditional supervized classification.

3.2 Constructing consensus matrix

Creating an accurate input matrix is a critical challenge in

deep clustering as it significantly impacts the output of the

learning framework. Deep clustering aims to achieve more

precise clusters by incorporating higher-order proximity

information, as relying solely on first-order or second-order
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proximity may not fully capture the underlying relation-

ships between nodes. In traditional clustering methods,

first-order proximity is often represented using pairwise

similarity or distance measures, but this approach may

struggle to capture the complex relationships present in

real-world datasets. Second-order proximity, which con-

siders pairwise relationships between neighbouring nodes,

provides a more detailed representation but still has limi-

tations in capturing the global structure of the data. On the

other hand, higher-order proximity takes into account

multi-step relationships and offers a more comprehensive

view of the data structure. By integrating high-order

structural and attribute information, we can better capture

the intricate relationships and dependencies within the

data, leading to improved clustering accuracy. Thus, the

use of high-order structural and attribute information is

crucial in overcoming these limitations and enhancing

clustering performance.

In this section, we propose an approach that addresses

these challenges by integrating high-order structural and

attribute information into a deep clustering framework. Our

method consists of two distinct components, each con-

tributing to the integration process. The first component

utilizes a personalized random walk with restart technique,

incorporating variable step lengths, to generate a proximity

matrix. This personalized random walk effectively captures

the intricate relationships within the graph by considering

both structural and attribute similarities. The second com-

ponent involves combining the generated proximity matrix

with another matrix to construct a consensus matrix. This

consensus matrix aggregates information from multiple

sources, yielding a unified representation that encompasses

both structural and attribute characteristics. In the subse-

quent sections, we will delve into detailed explanations of

each component, elucidating their respective roles in

enhancing the integration of high-order structural and

attribute information within our proposed deep clustering

framework.

3.2.1 Step-based proximity matrix calculation

We construct a step-based proximity transition matrix,

denoted as Pt, by performing a random walk on the net-

work. This matrix captures the proximity between nodes

based on the t-degree of proximity, taking into account

both the structure matrix A and the attribute proximity

matrix S at each step t. In terms of the structure random

walk, if there is a link between a pair of nodes ðvi; vjÞ, it
indicates their high similarity, implying that node vi will

likely transition to node vj with a high probability. Simi-

larly, in terms of attribute proximity, if a pair of nodes

ðvi; vjÞ share many common attributes, they are expected to

have a closer relationship.

To capture the best similarity between node pairs ðvi; vjÞ
based on both structural and attribute information, we

define a personalized random walk with restart. In this

process, a seed node vi transitions to the next node based on

the structure matrix A with probability a, and hops to other

nodes based on the attribute proximity matrix S with

probability 1� a. The first-degree link between nodes vi
and vj is represented as follows:

P1
ij ¼

aAði; jÞ þ ð1� aÞSij if eu; ev 2 E

ð1� aÞSij otherwise

�

ð9Þ

where A is the structure matrix containing the transition

probabilities between nodes within one step, and S is the

attribute proximity matrix containing the same informa-

tion. Once this step is completed, we can use the t-th

proximity matrix Pt to simulate the (t?1)-th step-based

proximity for any t� 1 as follows:

Ptþ1 ¼ aPtAþ ð1� aÞSt ð10Þ

In the above equation, the proximity at the (t?1)-th step is

obtained by multiplying the t-th step proximity matrix Pt

with the graph structure matrix A, weighted by a. The

closeness of node attributes at the (t?1)-th step is captured

by St, as node attributes are dynamic and change with the

network structure. Finally, the t-th structure proximity and

attribute proximity are combined to form the final (t?1)-th

step proximity. It is expected that higher-order proximity

will be more effective than lower-order proximity in cap-

turing the complex relationships within the network.

3.2.2 Integrating high-order structural and attribute
information

In this section, we propose a method for generating the

consensus matrix by integrating multiple matrices that

contain global structural and attribute information at dif-

ferent steps of a random walk restart. This integration

process results in a final consensus matrix that effectively

combines high-order structural and attribute information.

To begin, we integrate the t-degree proximity matrix

sequences P1;P2; :::;Pt into the previously calculated

consensus matrix C � Rjnj�jnj. This consensus matrix pre-

serves both the local and global structural information of

the graph, as well as the node attribute information. To

account for the varying importance of nodes with different

levels of proximity, we utilize a weight function that

monotonically decreases as step t increases. By applying

this weight function, the proximity consensus matrix C is

defined as the combination of different k-step data,
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allowing us to capture the comprehensive global structural

information of the graph.

In our approach, we assume a fixed length of random

walk steps (t) to be 5. Additionally, we set the parameter b,
which represents the importance of each matrix in the

combination process, to 0.9. These values are based on

previous research studies that have investigated optimal

parameters for the consensus matrix.

The integration of the proximity matrices is mathemat-

ically expressed by the following equation:

C ¼
X
M

m¼1

wðtÞ:Pt ð11Þ

where the weight function w(t) is defined as wðtÞ ¼ bt, with
b 2 ð0; 1Þ. This equation captures the combination of dif-

ferent k-step data, allowing us to effectively capture the

global structural information related to the graph. The

creation of the consensus matrix involves two main com-

ponents: proximity matrix calculation and the integration

of the proximity matrices, as illustrated in Fig. 1.

3.3 The end-to-end framework of DAC-HPP

Attributed graph clustering aims to identify community

structures in attributed networks, which poses challenges

due to the requirement for an effective representation of

both the network’s topology structure and attributes in

clustering analysis. In recent years, attributed graph clus-

tering has evolved from traditional shallow methods to

deep learning approaches, harnessing unique feature rep-

resentations and the potential of deep learning. Deep

clustering utilizes deep learning methods, followed by

nonlinear dimensional reduction, to extract highly dis-

criminative features and applies node clustering algorithms

in this novel representation space.

To address these limitations and challenges, we propose

DAC-HPP, a novel end-to-end deep attributed graph clus-

tering method. DAC-HPP utilizes personalized random

walk with restart to capture high-order similarities of

structural and attribute information, enabling it to concur-

rently extract latent embeddings and predict clustering

assignments. The method consists of two modules: repre-

sentation learning and clustering, similar to existing deep

clustering methods.

The representation learning module employs Graph

Neural Networks (GNNs) to learn cluster-friendly node

embeddings, while the clustering module estimates the

number of clusters. As effective representations contribute

to strong clustering and high-quality clustering provides

supervisory signals for representation learning, these

modules mutually support each other. In a unified frame-

work, we jointly optimize the parameters of these com-

ponents using the following equation:

Fig. 1 The process of creating the consensus matrix, including the generation of random walks of different lengths and their combination
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Lfinal ¼ Lrep þ aLclu ð12Þ

where a� 0 acts as a control coefficient to balance the

representation module and clustering module, and Lrep and

Lclu represent the objective functions of the representation

learning phase and cluster estimation phase, respectively.

During the representation learning phase, the decoder

reconstructs the attributes, denoted as bX ¼ bZ
l

a. Conse-

quently, the autoencoder’s reconstruction loss is defined as:

Lrep ¼
1

2N
kX � bXk22 ð13Þ

After obtaining the latent representation bZ
l

a 2 Rn�d from

the node attributes, we use it to construct the soft cluster

assignment Qa 2 Rn�k, where qa denotes the probability

that node vi is assigned to cluster k and is calculated using

Eq. 14:

qaik ¼
ð1þ ðkqai � lkak

2Þ
P

j ð1þ ðkqai � lkak
2Þ

ð14Þ

In Eq. (14), the Student’s t-distribution is used as a kernel

to measure the similarity between the node representation

zi and the clustering centre lak . The higher the probability,

the closer the nodes are to the cluster centre, resulting in

more accurate soft assignments. The target distribution Pa

is then built using Eq. (15) to emphasize data points

assigned with high certainty and improve cluster purity. It

is important to note that the initial centres lak
ðk ¼ 1; 2; :::; kÞ are obtained by pre-training the autoen-

coder solely on reducing the reconstruction loss. After that,

we initialize the learned representations using K-means and

do not employ K-means clustering during the iterative

training.

pij ¼
q2ij=

P

i qij
P

jðq2ij=
P

i qijÞ
ð15Þ

In accordance with the other research [47], we aim to force

the current assignment Qa to converge to the goal distri-

bution Pa, enabling for the joint training of representation

and cluster assignments to produce the final clusters. The

KL divergence between two distributions is used to define

the clustering loss as shown below.

Lclu ¼ KlðQkPÞ ¼
X

i

X

j

log tij
qij
pij

ð16Þ

Fig. 2 The basic architecture of the model we propose the input

adjacent matrix (A) and the attribute matrix (X) of an attributed graph

are, respectively. Hidden layer outputs h is integrated into node

embeddings Z via the encoder model. After that, the structural and

content decoders reconstruct A and X, respectively. We use ‘‘A’’ and

‘‘X’’ to represent the decoder’s output. To achieve self-separation

regularization, the KL-divergence between node similarity distribu-

tions P and Q is minimized. P and Q are pairwise node embedding

similarities represented by the student’s t-distribution
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We minimize Eq. (16) to get reliable clusters, and as Qa

reaches idempotence, it approaches 0. At this point, the

cluster structure is obvious and the cluster distribution’s

entropy is low. The core idea of deeply embedded clus-

tering, commonly known as ‘‘self-supervized,’’ is presented

in this approach [48]. The proposed algorithm comprises

two primary components. The first component involves

generating an input that incorporates global information

regarding the structure and attributes. On the other hand,

the second component is an end-to-end clustering frame-

work, as illustrated in Fig. 2.

4 Experimental results

In this section, we conduct extensive experiments on syn-

thetic networks and real-world networks to evaluate the

effectiveness of DAC-HPP. All the experiments are per-

formed on a processor: Core i7 @ 4.2 GHz, RAM: 16 GB,

and a 64-bit Windows operating system. Additionally, we

use the Python programming language to implement DAC-

HPP.

The organization’s structure is shown below Sect. 4.1

summarizes the datasets used in the following studies. In

sect. 4.2, it is explained how many nodes should be in each

layer of the autoencoder. SCNCD [49], SA-cluster [50],

CDE [25], SCI [26], TASNMF [27], CE-MOEA [19], and

SENet [38] are seven well-known and state-of-the-art

comparison methods discussed in Sect. 4.3. The evaluation

metrics are discussed in Sect. 4.4. The method’s efficiency

is examined on several types of synthetic datasets in Sect.

4.5. The detailed findings of the synthetic dataset were

compared to five state-of-the-art methodologies based on

three commonly used evaluation measures. The results of

the performance evaluation on real-world datasets are

presented in Sect. 4.6.

4.1 Datasets description

The detailed information on synthetic networks and real-

world networks is as follows.

4.1.1 Synthetic dataset

LFR-EA is a synthetic network generated using the

benchmark proposed by Elhadi and Agam [51], which is an

extension of the LFR benchmark by Lancichinetti et al.

[52]. This network generator utilizes two parameters, l and

m, both ranging from [0.1, 0.8], to control the structure and

attribute values. The mixing parameter l determines the

ratio of intra- and inter-community connections. Lower

values of l result in a clearer community structure, with

more intra-cluster links compared to inter-cluster links. On

the other hand, m represents the noise attribute parameter,

where lower values lead to similar features among nodes

belonging to the same community. By combining different

values of l and m, graphs with varying levels of structural

and attribute ambiguity can be generated.

A benchmark network consisting of 1000 nodes is

generated, named LFR-EA-1000, to evaluate all aspects of
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DAC-HPP. A variety of instances of the parameter com-

bination reported in Table 2 are generated. We take the

average of the results from ten runs because making net-

works is a random process, and different runs may end up

with different partitions.

4.1.2 Real-world dataset

In addition to synthetic networks, the proposed method is

tested on six real-world attributed networks with known

community structures.

The WEBKB dataset [53] consists of four webpage

networks of students from four universities: Texas, Cornell,

Washington, and Wisconsin, in which the students’ web-

sites correspond to nodes, and the links between them are

considered edges. Also, the presence or absence of key-

words in the webpages is content information of nodes, and

there exist five communities of these webpages: course,

faculty, student, project, and staff.

Cora [53] and PubMed [53] are citation networks in

which vertices represent articles, and a link connects two

articles provided that one of them cites the other.

Keywords in articles play the role of nodal attributes.

Table 3 summarizes the fundamental statistical properties

of the used datasets.

4.2 Parameter settings

The middle-hidden layer of the deep autoencoder is mostly

used for cluster analysis. The deep neural network analysis

was used to demonstrate that the findings for all datasets

were consistent. The network was configured as a full

autoencoder, with the dimensions selecting different layer

number depths. In general, the community detection per-

formance of the deep autoencoder structure with 3 layers is

superior to that of the deep autoencoder structure with 2

layers. For various synthetic and real-world networks, the

deep autoencoder structure in this study employs a varying

number of stacked autoencoders. The layer settings for

each dataset on the stacked autoencoder are detailed in

Table 4.

Additionally, we configured the deep autoencoders to

activate each layer using the sigmoid function. To train the

model, we gave the deep autoencoders 10 random initial-

izations and used the low-dimensional representation of the

hidden layer as the output.

4.3 Baselines

This paper compares DAC-HPP with seven state-of-the-art

attributed graph clustering methods. All the baselines are

performed with default parameters, and their introductions

are summarized as follows.

• SCNCD [49] came up with an overlapping community

detection algorithm based on a spectral clustering

algorithm that uses the degree of node and structure

convergence by combining the attributes of nodes and

the network’s structure.

• SA-cluster [50] uses random walks to obtain a unified

distance measure between nodes in an augmented

network. The augmented graph captures the structural

Table 2 LFR-EA-1000 parameters setting

Parameter Values

Number of vertices (N) 1000

Average degree (k) 25

Maximum degree (maxk) 40

Mixing parameter ðlÞ [0.1:0.8]

Exponent for the community size distribution ðs1Þ 1

Minimum for the community size (minc) 60

Maximum for the community size (maxc) 100

Number of attributes 10

Attribute’s domain clusters assignment (ainf) 1

Attribute range (R) 15

Attribute noise (ainf) [0.1:0.8]

Table 3 Dataset statistical properties

Datasets jV j jEj NA NC

Texas 187 328 1703 5

Cornell 195 304 1703 5

Washington 230 448 1703 5

Wisconsin 265 530 1703 5

Cora 2708 5429 1433 5

PubMed 19,717 44,338 500 3

Table 4 Neural network structures

Datasets Layer configuration

Texas N-128-64

Cornell N-128-64

Washington N-128-64

Wisconsin N-256-128

Cora N-2048-1024-512

PubMed N-16,384-8192-4096-2048

LFR-EA N-512-256-128
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and attribute-based proximities, and therefore the

obtained distance can represent both similarities. Then,

these similarities between node pairs are used by a

clustering algorithm, i.e., K-medoids, to find the

partitions.

• CDE [25] proposed an NMF-based embedding method

to learn the network’s community layout using struc-

tural and node attributes.

• SCI [26] proposed an NMF-based method that combi-

nes the nodes’ topological and attributed community

memberships into a single community structure.

• TASNMF [27] proposes a parameter-free joint nonneg-

ative matrix factorization model that can integrate

topology and attribute data from complex networks.

• CE-MOEA [19] proposes a nonlinear NMF-based

model, which aims to improve performance by com-

bining NMF community detection with graph attention

autoencoder models.

• SENet [38] is a spectral embedding network for

attributed graph clustering that enhances graph structure

by utilizing the knowledge of common neighbours and

determining node embeddings using a spectral cluster-

ing loss.

4.4 Evaluation metrics

In this paper, two types of assessment metrics are used to

compare the quality of communities generated by different

methods: quality-based and information-recovery-based

metrics. In the first type, the quality of identified commu-

nities is assessed using the basic definition of community.

On the other hand, information recovery-based metrics are

based on network partitions’ ground truth information.

4.4.1 Information recovery-based metrics

Let X and Y represent two different sets of discovered

communities and ground-truth communities, respectively.

Then xi and yi represent the ith community of these sets. To

compare the two sets, we can use the Normalized Mutual

Information (NMI) and the Rand Index (RI).

• NMI [54]: NMI can be used in clustering to measure

the similarity of two clustering results and is an

important measure of community discovery, which

can basically evaluate the accuracy of a community

division in relation to a standard division in a more

objective way. The value range of NMI is from 0 to 1,

and a higher number means that the results are closer.

The NMI is defined by

NMIðA;BÞ ¼
�2

P CA

i¼1

P CB

j¼1Cijlog
nCij

CiCj
P CA

i¼1Ci � log Ci

n þ
P CB

j¼1Cj � log Cj

n

;

ð17Þ

where CAðCBÞ is the number of clusters in the sets of

A(B), CiðCjÞ is the sum of the elements of C in

rowi(columnj), and n is the number of vertices. If the set

of predicted clusters is the same as existing clusters, i.e.

A ¼ B, then NMI ¼ 1, and in case they are completely

different, NMI ¼ 0.

• RI [55]: The Rand Index computes the percentage of

node pairs that are correctly clustered. Suppose we have

access to the ground truth clusters C ¼
fC1;C2;C3; . . .;Ckg and the obtained clusters by the

clustering method C
0 ¼ fC0

1;C
0
2;C

0
3; . . .;C

0
kg. Then sup-

pose that G1 represents the pair of nodes that are both

present in the same clusters of C and C
0
, G2 represents

the pair of nodes that are present in the same clusters of

C, but not present in the same clusters of C
0
, G3

represents the pair of nodes that are not present in the

same clusters of C, but present in the same clusters of

C
0
, and finally G4 represents the pair of nodes that

neither are both present in the same clusters of C, nor

C
0
. Then, the RI measure can be calculated using the

following equation:

RI ¼ G1 þ G4

G1 þ G2 þ G3 þ G4

ð18Þ

4.4.2 Quality-based metrics

In many networks, the lack of ground-truth communities

has made comparing community detection approaches

difficult. As a result, quality-based metrics are supplied to

assess the quality of network partitioning based on network

definitions. In this paper, we use modularity, a quality-

based criterion, to look at how well-discovered communi-

ties are doing.

• Modularity [56]: Newman first proposed the definition

of modularity to measure the goodness of community

discovery algorithms. One criterion for judging whether

a community discovery result is reasonable is by

determining whether the nodes are tightly connected

within the community, while the connections between

different communities are sparser, and communities

that satisfy this condition will have a larger modularity.

Nowadays, equation (19) is commonly used to calculate

modularity.
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QðXÞ ¼ 1

2kEk
X

ij

Aij �
KiKj

2kEk

� �

dij; ð19Þ

where ki denotes the node’s degree i and dij the Kro-

necker delta function, as follows:

dij ¼ 1; vi and vj are in the same community;

0; otherwise:

�

4.5 Evaluation of synthetic networks

We first compare the performance of algorithms on LFR-

EA networks by using NMI, RI, and modularity.

In this section, we evaluate the performance of the

comparison methods on synthetic networks in terms of both

information recovery and quality-based metrics during two

experiments. Eight networks were created for this experi-

ment with the parameters N = 1000, k = 25, max� k = 40,

min� c = 60, max� c = 100, nattr = 10 (int attr [1, 15]), m
= 0.5, and the mixing parameters [0.1, 0.8] to examine how

well various methods performed in networks with various

resolutions of the community structure controlled by l. It
should be noted that the visibility of distinct community

structures decreases as the value of the l parameter

increases.

The findings shown in Fig. 3 provide evidence to sup-

port this claim. This figure compares the NMI performance

of DAC-HPP with that of other methods on these networks.

According to the results in Fig. 3, the majority of the

methods perform well for small values of the mixing

parameter ð0:1� l� 0:4Þ. At the same time, the NMI

values for all methods fall as the value rises. As a result, all

of the approaches perform poorly in the range of l� 0:7.

However, we note that the DAC-HPP of performance

decline is slower than that of other comparison techniques.

Aside from l = 0.5, DAC-HPP also outperforms the

competition, especially on networks with larger values that

are more complex. In the network with l = 0.5, the CDE

has the highest performance, NMI = 0.902, while DAC-

HPP has the second-highest performance with NMI =

0.8892. Additionally, Fig. 4 shows that DAC-HPP out-

performs competitors in terms of RI with a sizable differ-

ence. Based on the RI in Fig. 4, the CDE and SENet

Fig. 3 Performance comparison

of methods in terms of NMI on

synthetic networks with m ¼ 0:5
and l 2 ½0:1; 0:8�

Fig. 4 Performance comparison

of methods in terms of RI on

synthetic networks with m ¼ 0:5
and l 2 ½0:1; 0:8�
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methods are ranked second and third, respectively. Addi-

tionally, when compared to other methods, these methods

have an average rank of 2 and 3 according to the RI shown

in Fig. 4.

In this experiment, the quality-based metric, modularity,

is used to evaluate the quality of discovered communities

by comparison methods, and its numerical results are

reported in Table 5. It is seen that DAC-HPP has the best

or second-best performance in all cases. In other words,

DAC-HPP works better in 7 cases, while CDE has better

performance in the other two. This experiment shows the

power of DAC-HPP to detect communities of high quality.

In every case, DAC-HPP is shown to have the best or

second-best performance. In other words, DAC-HPP per-

forms better in 6 circumstances, whereas CDE performs

better in two different situations. This experiment demon-

strates the DAC-HPP’s ability to detect high-quality clus-

ters compared to other methods.

As was already established, most community detection

methods cannot accurately identify the community struc-

ture for l� 0:7. Additionally, DAC-HPP performs second

best in the l = 0.5 for NMI and modularity. As a result, in

the second experiment, the networks with l = 0.5 and l =

0.6 faced competition from the comparison methods. This

experiment also aims to determine how sensitive commu-

nity detection algorithms are to m, representing the attribute

noise value. In order to achieve these goals, we created

various networks in the second experiment using the

parameters N = 1000, k = 25, max� k = 40, min� c = 60,

max� c = 100, nattr = 10 (int attr [1, 15]), m = 0.5, and the

mixing parameters [0.1, 0.8].

We compare these networks’ performance in terms of

NMI, RI, and modularity using the comparison techniques.

The NMI outcomes of this experiment on the networks

with the two mixing parameter values l l= 0.5 and l = 0.6

are shown in Figs. 5 and 6. These findings demonstrate that

DAC-HPP consistently has the greatest NMI value. The

second and third-best results, respectively, belong to SENet

and CDE. The gradient of the charts for the two algorithms,

SCNCD and CE-MOEA, are both extremely tiny, indicat-

ing that the m parameter has little impact on the two

algorithms’ performance. The SCNCD approach with an

ideal alpha has the lowest NMI in both scenarios (l = 0.5

and l=0.6).

Table 5 Quality evaluation in

terms of modularity on synthetic

networks

Methods l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SCNCD 0.1162 0.2833 0.2654 0.0191 0.1224 0.0148 0.0660 0.0435

SA-Cluster 0.5494 0.5005 0.3188 0.3375 0.2573 0.1940 0.1591 0.1455

SCI 0.2957 0.1850 0.1757 0.0747 0.0497 0.0378 0.0310 0.0136

CDE 0.8059 0.7315 0.6355 0.5460 0.4246 0.3309 0.1651 0.1554

TASNMF 0.4370 0.4223 0.3575 0.2875 0.2167 0.1466 0.1023 0.0429

CE-MOEA 0.1340 0.1280 0.1331 0.1340 0.1259 0.0964 0.0361 0.0334

SENet 0.8099 0.7244 0.6188 0.5250 0.3958 0.2729 0.1408 0.1025

DAC-HPP 0.8106 0.7409 0.6276 0.5499 0.4288 0.3093 0.1655 0.1406

Fig. 5 Performance comparison

of methods in terms of NMI on

synthetic networks with m 2
½0:1; 0:8� l ¼ 0:5
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Figures 7 and 8 depict the outcomes of method com-

parisons in terms of RI, demonstrating the superiority of

DAC-HPP over the competition. These findings show that,

following DAC-HPP, two approaches, SENet and CDE,

perform the best when measured against other comparison

methods.

Additionally, Table 6 shows the numerical results of

methods in terms of modularity. Also, in this situation,

DAC-HPP consistently performs at the top and second-

highest levels. Apart from m = 0.1, which has the second-

highest NMI value after SENet in this scenario, the DAC-

HPP has the greatest NMI values overall when l = 0.5. In

other words, DAC-HPP outperforms all other comparison

methods by raising the network’s attribute noise. At vari-

ous values of m, DAC-HPP has the highest and second-

highest values in the l = 0.6. The CDE method’s first rank

modularity is acceptable when attribute noise is l = 0.3 or

l = 0.5. However, these methods become less effective as

the v values rise. These test results show that DAC-HPP is

Fig. 6 Performance comparison

of methods in terms of NMI on

synthetic networks with m 2
½0:1; 0:8� l ¼ 0:6

Fig. 7 Performance comparison

of methods in terms of RI on

synthetic networks with m 2
½0:1; 0:8� l ¼ 0:5

Fig. 8 Performance comparison

of methods in terms of RI on

synthetic networks with m 2
½0:1; 0:8� l ¼ 0:6
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a better way to find high-quality communities than other

methods.

4.6 Evaluation of real-world networks

In this subsection, we conducted a comprehensive com-

parison of DAC-HPP with other existing methods on real-

world networks characterized by a high dimension of

attributes. The performance evaluation was carried out on

six diverse datasets: Texas, Cornell, Washington, Wis-

consin, Cora, and PubMed. To assess the effectiveness of

DAC-HPP, we employed three widely-used evaluation

metrics: NMI, modularity, and RI.

The results presented in Table 7 provide valuable

insights into the performance of DAC-HPP across the

different datasets. Starting with the Texas dataset, DAC-

HPP demonstrated outstanding performance by achieving

the highest scores in all three metrics—NMI, modularity,

and RI. This exceptional performance indicates that DAC-

HPP effectively captures the underlying patterns and

structures within the dataset, leading to highly accurate and

meaningful clustering results. Similarly, in the Cornell

dataset, DAC-HPP emerged as the top performer, sur-

passing other methods in all three metrics. This showcases

the robustness and reliability of DAC-HPP in capturing the

intrinsic characteristics of the dataset and generating high-

quality clusters. Moving on to the Washington dataset,

DAC-HPP ranked second in NMI, but it outperformed

other methods in terms of modularity and RI. This

indicates that DAC-HPP successfully identifies cohesive

and well-connected communities within the network,

resulting in superior modularity and RI scores.

In the Wisconsin dataset, DAC-HPP once again

demonstrated its superiority by securing the first position in

all three metrics. This highlights its ability to effectively

handle high-dimensional attribute data and produce accu-

rate clustering results. Analyzing the Cora dataset, DAC-

HPP showcased its strength by securing the first position in

both NMI and modularity. This indicates its capability to

capture meaningful patterns and uncover cohesive com-

munities within the dataset. Although DAC-HPP did not

achieve the highest RI score in the Cora dataset, its strong

performance in the other two metrics underscores its

effectiveness in community discovery tasks. Lastly, in the

PubMed dataset, DAC-HPP achieved the highest scores in

modularity and RI. This highlights its ability to effectively

identify well-connected and cohesive communities within

the network, leading to a higher modularity score. Addi-

tionally, the high RI score reflects DAC-HPP’s success in

accurately clustering node pairs. Overall, the evaluation

results consistently demonstrate that DAC-HPP outper-

forms other comparison methods across the NMI, modu-

larity, and RI metrics. This highlights the effectiveness of

DAC-HPP in accurately uncovering community structures

and discovering meaningful patterns in real-world net-

works characterized by high-dimensional attributes.

Table 6 Quality evaluation in

terms of modularity on synthetic

networks with l 2 f0:5; 0:6g
and m 2 ½0:1; 0:8�

l Methods m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SCNCD 0.2170 0.1904 0.0909 0.0635 0.0539 0.0204 0.0157 0.0201

SA-Clu 0.2627 0.2603 0.2566 0.2250 0.2006 0.2044 0.2010 0.1910

SCI 0.2801 0.1880 0.1713 0.1112 0.08012 0.0704 0.0307 0.0152

0.5 CDE 0.285 0.2774 0.2706 0.2699 0.2447 0.2378 0.2378 0.2178

TASNMF 0.2081 0.1964 0.1449 0.1044 0.0805 0.0620 0.0587 0.0488

CE-MOEA 0.1889 0.1719 0.1528 0.1454 0.1244 0.0983 0.0485 0.0309

SENet 0.3582 0.3402 0.3067 0.2893 0.2827 0.2769 0.2508 0.1959

DAC-HPP 0.3921 0.3826 0.3710 0.3303 0.2989 0.2709 0.2654 0.2301

SCNCD 0.1147 0.814 0.773 0.0628 0.0621 0.0490 0.0294 0.0209

SA-Clu 0.1727 0.1681 0.1494 0.1433 0.1612 0.1556 0.1485 0.1440

SCI 0.1967 0.1808 0.0866 0.0844 0.0399 0.0421 0.0269 0.0195

0.6 CDE 0.2579 0.2526 0.2451 0.2183 0.2004 0.1694 0.1784 0.1589

TASNMF 0.1054 0.0983 0.0656 0.0451 0.0250 0.0225 0.0136 0.0107

CE-MOEA 0.1604 0.1407 0.126 0.0806 0.0707 0.0506 0.0350 0.0299

SENet 0.1843 0.1678 0.1581 0.1405 0.1309 0.1219 0.1092 0.1048

DAC-HPP 0.2618 0.2536 0.2081 0.1969 0.2014 0.2009 0.1994 0.1884
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5 Discussion

Our proposed method, Deep Attributed Clustering with

High-order Proximity Preserve (DAC-HPP), introduces

several significant advancements in the field of attributed

graph clustering. Through rigorous comparisons with

existing techniques, we have demonstrated the superior

performance and accuracy of DAC-HPP in terms of clus-

tering effectiveness. By employing an end-to-end frame-

work, DAC-HPP optimizes both embedding learning and

node clustering jointly, resulting in improved outcomes

compared to separate approaches. The construction of a

consensus matrix, which integrates diverse degrees of

proximity, facilitates the fusion of structural and attribute

information, capturing the global characteristics of the

network. The insights derived from the consensus matrix

representation have revealed novel findings and patterns in

attributed graph clustering. Moreover, DAC-HPP exhibits

practical applicability in various domains, including social

network analysis, recommendation systems, and bioinfor-

matics. Nevertheless, we acknowledge the existing chal-

lenges, such as scalability, computational efficiency, and

applicability to large-scale networks, that need to be

addressed. Future research directions could explore the

incorporation of temporal dynamics or the integration of

additional data modalities. In conclusion, DAC-HPP sig-

nificantly contributes to the field of attributed graph clus-

tering by refining existing techniques and providing a

deeper understanding of the underlying processes.

6 Conclusion

Attributed graph clustering plays an important role in

complex network analysis. It provides us with an under-

standing of the structures and functions of a complex net-

work. In this work, we propose a new attributed graph

clustering method based on deep clustering methods called

Deep Attributed Clustering with High-order Proximity

Preserve, or DAC-HPP, which is a deep end-to-end clus-

tering in attributed networks with high structural cohe-

siveness and attribute homogeneity. By merging the

different degrees of proximity, we construct a consensus

matrix representation of the network that serves as the basis

for deep clustering. By using a modified Random Walk

with Restart on high-order proximities, it is feasible to

capture the k-order of structure and the attributed infor-

mation. Extensive experiments were conducted on syn-

thetic and real-world benchmark datasets to demonstrate

the validity of our model, and the results show that our

model achieves new state-of-the-art performance. In recent

years, detecting communities in multi-modal networks

Table 7 Quality evaluation in terms of NMI, Modularity, and RI on

real-world networks

Data-set Method NMI " Modularity " RI "

Texas SCNCD 0.1646 0.0112 0.6302

SA-Cluster 0.0459 0.0336 0.6302

SCI 0.2153 0.0940 0.6534

CDE 0.3208 0.3151 0.6367

TASNMF 0.3142 0.0124 0.6434

CE-MOEA 0.1084 0.2054 0.6237

SENet 0.1481 0.1145 0.6302

DAC-HPP 0.3284 0.3630 0.7069

Cornell SCNCD 0.0938 0.1797 0.7176

SA-Cluster 0.0457 0.0282 0.6111

SCI 0.1516 0.0496 0.7190

CDE 0.3403 0.1383 0.7193

TASNMF 0.1525 0.0337 0.7183

CE-MOEA 0.1329 0.1095 0.5099

SENet 0.0265 0.1068 0.7181

DAC-HPP 0.3505 0.4076 0.7233

Washington SCNCD 0.1111 0.0162 0.5827

SA-Cluster 0.0546 0.0226 0.4620

SCI 0.1304 0.1063 0.5144

CDE 0.4079 0.3625 0.4660

TASNMF 0.1999 0.1005 0.4521

CE-MOEA 0.1699 0.1720 0.4896

SENet 0.0935 0.1134 0.5048

DAC-HPP 0.4004 0.3889 0.7233

Wisconsin SCNCD 0.0461 0.1459 0.6751

SA-Cluster 0.0294 0.0441 0.3475

SCI 0.1823 0.0916 0.6336

TASNMF 0.1848 0.1641 0.6792

CE-MOEA 0.1453 0.1587 0.6044

SENet 0.0420 0.1217 0.6751

DAC-HPP 0.4401 0.3809 0.6802

Cora SCNCD 0.1125 0.1445 0.7603

SA-Cluster 0.1190 0.2835 0.7535

SCI 0.2138 0.2357 0.8042

CDE 0.5037 0.3703 0.8118

TASNMF 0.1225 0.1732 0.7942

CE-MOEA 0.2503 0.0358 0.7535

SENet 0.3469 0.3305 0.8134

DAC-HPP 0.5430 0.4282 0.8119

PubMed SCNCD 0.0964 0.1834 0.5273

SA-Cluster 0.1005 0.3127 0.5423

SCI 0.1415 0.3102 0.5617

CDE 0.4032 0.4756 0.7121

TASNMF 0.1848 0.2203 0.6508

CE-MOEA – – –

SENet 0.1143 0.3106 0.5624

DAC-HPP 0.4099 0.4631 0.7356

Neural Computing and Applications (2023) 35:24493–24511 24509

123



based on their higher-order structure has drawn increasing

attention. However, capturing the higher-order relations

between nodes is much more difficult in different modals

because the topological structure varies. Therefore, how to

combine the higher-order structural information from all

modals of the network to discover the community structure

is more challenging than in a single-modal network. We

are considering this topic for our future work.
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