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Abstract
Offline reinforcement learning (RL) has emerged as a promising paradigm for real-world applications since it aims to train

policies directly from datasets of past interactions with the environment. The past few years, algorithms have been

introduced to learn from high-dimensional observational states in offline settings. The general idea of these methods is to

encode the environment into a latent space and train policies on top of this smaller representation. In this paper, we extend

this general method to stochastic environments (i.e., where the reward function is stochastic) and consider a risk measure

instead of the classical expected return. First, we show that, under some assumptions, it is equivalent to minimizing a risk

measure in the latent space and in the natural space. Based on this result, we present Latent Offline Distributional Actor-

Critic (LODAC), an algorithm which is able to train policies in high-dimensional stochastic and offline settings to

minimize a given risk measure. Empirically, we show that using LODAC to minimize Conditional Value-at-Risk (CVaR)

outperforms previous methods in terms of CVaR and return on stochastic environments.

Keywords Offline RL � Risk-averse RL � High-dimensional RL � Distributional RL

1 Introduction

Often, human decisions are stored and this builds inter-

esting datasets. With the success of modern machine

learning tools, comes the hope of exploiting them to con-

struct useful decision helpers. To achieve this, we can use

an imitation learning approach [1]. However, in this case,

we will at best be as good as humans. Moreover, the per-

formance of this approach depends heavily on the quality

of the training dataset. In this work, we would like to avoid

these limitations and thus, we consider another framework:

reinforcement learning (RL).

RL has achieved impressive results in a number of

challenging areas, including games [2, 3], robotic control

[4, 5] and even health care [6, 7]. In particular, offline RL

seems to be really interesting for real-world applications as

it aims to train agents from a dataset of past interactions

with the environment.

With the digitization of society, more and more features

could be used to represent the environment. Unfortunately,

classical RL algorithms are not able to work with high-

dimensional states. Although we could manually choose a

feature subset, this choice is not straightforward and it

& Félicien Hêche
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could have a huge impact on the performances. Therefore,

it may be more practical to use RL algorithms capable of

learning from high-dimensional states.

It is common to evaluate RL algorithms on deterministic

(in the sense that the reward function is deterministic)

environments such as the DeepMind Control suite [8].

However, in many real-world applications, environments

are not deterministic but stochastic. In stochastic environ-

ments, the same action may lead to different outcomes due

to randomness. This can make it difficult for the agent to

distinguish between the quality of different actions and

states, thereby complicating the learning process. Due to

this inherent randomness, stochastic environments demand

a larger number of samples to accurately estimate value

functions and policies. On the other hand, offline learning

has limited data available for training. The combination of

these factors makes offline RL in stochastic environments

particularly challenging. Furthermore, the performance of

classical RL methods in such contexts remains unclear.

Moreover, and as presented in Sect. 5.2, our experiments

suggest that adding stochasticity to the environment

decreases significantly the performance of these

algorithms.

Based on these observations, we aim to develop a

method which is able to train policies in offline settings

with high-dimensional states while being robust to

stochasticity. In this paper, we present Latent Offline

Distributional Actor-Critic (LODAC), an algorithm

designed to train policies in high-dimensional, stochastic

environments within offline settings. The main idea is to

encode the natural environment space into a smaller rep-

resentation and train the agent directly in this latent space.

But instead of considering the expected return, we use a

risk measure. First, assuming some hypotheses, we show

that minimizing this risk measure in the latent space is

equivalent to minimizing the risk measure directly in the

natural state. This theoretical result provides a natural

framework: employ a latent variable model to encode the

natural state into a latent space, and subsequently train a

policy atop this latent space using a risk-sensitive RL

algorithm. In the experimental part, we evaluate our

algorithm on high-dimensional stochastic and deterministic

datasets. In the best of our knowledge, we are the first

authors to propose an algorithm to train policies in high-

dimensional, stochastic and offline settings.

2 Related work

Before going further into our work, we present some

related research.

As discussed and motivated in the previous section, this

paper focuses on offline RL [9]. Offline RL is a specific

approach of RL that aims to learn from past interactions

with the environment. This framework holds promise for

real-world applications as it enables the deployment of

trained policies. Therefore, it is not surprising that offline

RL has received a lot of attention in recent years [10–15].

One of the main problems in offline RL is that the

Q-function tends to be overly optimistic in the case of out-

of-distribution (OOD) states-actions pairs, where observa-

tional data is limited [16]. Several approaches have been

introduced to address this issue. While some studies extend

importance sampling methods [17, 18] other propose

model-based techniques [19, 20] or even incorporate

dataset re-weight sampling [21]. In our work, and follow-

ing previous researches [22–24], we build a conservative

estimation of the Q-function for OOD state-action pairs.

Another challenge encountered in our work is training

policies from high-dimensional states. Over the past years,

several algorithms have been proposed to address policy

training within such contexts. For instance, several meth-

ods have been developed to directly handle image inputs

[25–28]. Acquiring a meaningful representation of the

observation is crucial to tackle this type of problem.

Therefore, this issue has been studied by previous works

[29, 30]. Some researchers employ data augmentation

techniques to facilitate the learning of optimal representa-

tions [31]. However, these methods are limited to scenarios

involving image states. Hence, in our work, we adhere to

other common practices [32, 33] and we encode high-di-

mensional states into a latent space without relying on data

augmentation. Furthermore, we integrate planning within

this latent space, building upon studies that highlight its

potential for performance enhancement [34–36]. Subse-

quently, a common approach involves training policies

using classical RL algorithms, such as Soft Actor-Critic

(SAC) [4], on top of this compact representation [37, 38].

Unfortunately, these classical RL algorithms struggle to

train agents in stochastic environment. Therefore, in our

study, we employ a risk-sensitive RL method atop this

latent space.

Risk-sensitive RL is a specific approach to safe RL [39].

In safe RL, policies are trained to maximize performance

while satisfying some safety constraints during training

and/or in the deployment. In risk-sensitive RL, the focus is

on minimizing a measure of the risk induced by the

cumulative rewards, rather the maximizing the expected

return. Risk-sensitive RL has gained attention in recent

years [40–43]. Various risk measures may be considered,

such that Exponential Utility [44] Cumulative Prospect

Theory [45] or Conditional Value-at-Risk (CVaR) [46]. In

this work, given the robust theoretical underpinnings and

intuitive nature of Conditional Value-at-Risk [47, 48], we

opt to focus on this operator. Furthermore, prior research

suggests that taking into account Conditional Value-at-
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Risk instead of the classical expectation, can prevent the

performance gap between simulations and real-world

applications [49]. CVaR is really popular and has been

strongly studied in the context of RL for many years

[50–52]. For instance, [53] extend SAC in a distributional

settings, enabling the training of risk-averse policies.

However, this algorithm is not suited for offline RL. Other

authors presented O-RAAC [54], an algorithm which is

able to train risk-averse policies in an offline settings. In

this paper, OOD errors are managed through an imitation

learning component [55]. Finally, Ma et al. [56] presented

a method for training risk-averse policies in an offline

setting. In our work, we aim to extend this method to

enable the training of policies in the context of high-di-

mensional states.

3 Preliminaries

In this section, we introduce notations and recall concepts

we will use later.

Coherent risk measure Let ðX;F ;PÞ a probability space

and L2 :¼ L2ðX;F ;PÞ. A function R: L2 ! ð�1;þ1�
is called a coherent risk measure [57] if

1. RðCÞ ¼ C for all constants C.

2. Rðð1� kÞX þ kXÞ
� ð1� kÞRðXÞ þ kRðXÞ for k 2 ð0; 1Þ.

3. RðXÞ�RðX0Þ when X�X0.
4. RðXÞ� 0 when kXk � Xk2 ! 0 with RðXkÞ� 0.

5. RðkXÞ ¼ kRðXÞ for k[ 0.

Coherent risk measures have some interesting properties.

In particular, a risk measure is coherent if and only if, there

exists a risk envelope U such that

RðXÞ ¼ sup
d2U

Eq½dX� ð1Þ

[48, 58, 59]. A risk envelope is a nonempty convex

subset of P that is closed and where

P :¼ fd 2 L2 j d� 0, Ep½d� ¼ 1g.
The definition of a risk measure R might depend on a

probability distribution p. In some cases, it may be useful

to specify which distribution we are working with. Thus,

we sometimes use the notation Rp. There exists a lot of

different coherent risk measures, for example, the Wang

risk measure [60], the entropic Value-at-Risk [61] or

Conditional Value-at-Risk [46, 62].

Conditional Value-at-Risk (CVaRa) with probability

level a 2 ð0; 1Þ is defined as

CVaRaðXÞ

:¼ min
t2R

t þ 1

1� a
Ep

h
maxf0;X � tg

i� � ð2Þ

Moreover the risk envelope associated to CVaRa, can be

written as U ¼ fd 2 P j Ep½d� ¼ 1, 0� d� 1
ag [59, 63].

This rigorous definition may not be intuitive, but roughly

speaking, CVaRa is the expected value of X given the

upper a-tail of its conditional distribution, representing the

ð1� aÞ worst-case scenarios. In this paper, we use the

classical definition of Conditional Value-at-Risk presented

in risk measure literature. In particular, X should be inter-

preted as a loss function.

Offline RL We consider a Markov Decision Process

(MDP), ðS;A; p; r; l0; cÞ where S is the environment space,

A the action space, r the reward distribution

(rt � rð�jst; atÞ), p the transition probability distribution

(stþ1 � pð�jst; atÞÞ. l0 is the initial state distribution and

c 2 ð0; 1Þ denotes the discount factor. For the purpose of

notation, we define pðs0Þ :¼ l0ðs0Þ and we write the MDP

ðS;A; p; r; cÞ.
Actions are taking following a policy p which depends

on the environment state, (i.e., at � pð�jstÞ). A sequence on

the MDP ðS;A; p; r; cÞ, s ¼ s0; a0; r0; . . .sH , with si 2 S and

ai 2 A is called a trajectory. A trajectory of fixed length

H 2 N is called an episode. Given a policy p, a rollout

from state-action ðs; aÞ 2 S�A is a random sequence

fðs0; a0; r0Þ; ðs1; a1; r1Þ; . . .g where a0 ¼ a, s0 ¼ s,

stþ1 � pð�jst; atÞ, rt � rð�jst; atÞ and at � pð�jstÞ. Given a

policy p and a fixed length H, we have a trajectory dis-

tribution given by

ppðsÞ ¼ pðs0Þ
YH�1

t¼0

pðatjstÞpðstþ1jst; atÞrðrtjst; atÞ

The goal of classical risk-neutral RL algorithms is to find a

policy that maximizes the expected discounted return

Ep½
PH

t¼0 c
trt� where H could be infinite. Equivalently, we

can look for the policy that maximizes the Q-function,

which is defined as Qp: S�A ! R,

Qpðst; atÞ :¼ Ep½
PH

t0¼t c
t0�trt0 �.

Instead of this classical objective function, other choices

are possible. For example, the maximum entropy RL

objective function Ep½
PH

t¼0 rt þHðpð�jstÞÞ�, where H

denotes the entropy. This function has an interesting con-

nection with variational inference [64] and it has shown

impressive results in recent years [4, 19, 65].

In offline RL, we have access to a fixed dataset

D ¼ fðst; at; rt; stþ1Þg, where st 2 S, at 2 A, rt � rðst; atÞ
and stþ1 � pð�jst; atÞ, and we aim to train policies without

interaction with the environment. A such dataset comes

with the empirical behavior policy

pbðajsÞ :¼
P

ðst ;atÞ2D 1fst¼s;at¼agP
st2D 1fst¼sg

:
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Latent variable model There are different methods for

learning directly from high-dimensional states [29, 65, 66].

However, in this work, we build upon the framework

presented in Stochastic Latent Actor-Critic (SLAC) [38].

The main idea of this work is to train a latent variable

model to encode the natural MDP ðS;A; p; r; cÞ into a latent
space ðZ;A; q; r; cÞ and to train policies directly in this

space. To achieve this, the variational distribution

qðz1:H ; atþ1:H js1:t; a1:tÞ is factorized into a product of

inference term qðziþ1jzi; siþ1; aiÞ, latent dynamic term

qðziþ1jzi; aiÞ and policy term pðaijs1:t; a1:t�1Þ as follows
qðz1:H ; atþ1:H js1:t; a1:tÞ

¼
Yt
i¼0

qðziþ1jzi; siþ1; aiÞ
YH�1

i¼tþ1

qðziþ1jzi; aiÞ

YH�1

i¼tþ1

pðaijs1:i; a1:i�1Þ

ð3Þ

Using this factorization, the evidence lower bound (ELBO)

[67] and a really interesting theoretical approach [64], the

following objective function for the latent variable model is

derived

Ez1:t ;atþ1:H � q

�Xt
i¼0

logDðsiþ1jziþ1Þ

� DKL

�
qðziþ1jzi; siþ1; aiÞjjpðsiþ1jsi; aiÞ

�� ð4Þ

where DKL is the Kullback–Leibler divergence and D is a

decoder.

Distributional RL The aim of distributional RL is to

learn the distribution of the discounted cumulative rewards

Zp :¼ �
PH

t ctrt. Zp is a random variable. A classical

approach to distributional RL is to learn Zp implicitly using

its quantile function F�1
Zðs;aÞ: ½0; 1� ! R, which is defined as

F�1
Zðs;aÞðyÞ :¼ inffx 2 R j y�FZðs;aÞðxÞg and where FZðs;aÞ

is the cumulative density function of the random

variable Z(s, a). A model Qhðg; s; aÞ is used to approxi-

mate F�1
Zðs;aÞðgÞ. For ðs; a; r; s0Þ �D, a0 � pð�js0Þ,

g; g0 �Uniform½0; 1�, we define d :¼ r þ cQh0 ðg0; s0; a0Þ
�Qhðg; s; aÞ. Qh is trained using the s-Huber quantile

regression loss at threshold k [68]

Lkðd; gÞ

:¼
jg� 1fd\0gjðd2=2kÞ if jdj\k

jg� 1fd\0gjðjdj � k=2Þ otherwise.

(
ð5Þ

With this function FZðs;aÞ, different risk measures can be

computed, such that Cumulative Probability Weight

(CPW) [45], Wang measure [60] or Conditional Value-at-

Risk. For example, the following equation [69] is used to

compute CVaRa

CVaRaðXÞ ¼
1

1� a

Z 1

a
FZ�1ðs;aÞðsÞds ð6Þ

It is also possible to extend distributional RL to offline

settings. For example, O-RAAC [54] decomposes the actor

into two different components an imitation actor and a

perturbation model. CODAC [56] extends DSAC [70] in

offline settings. More precisely, the Qhðg; s; aÞ are trained

using the following loss function

aEg�U

"
Es�D

�
log
X
a

expðQhðg; s; aÞÞ
�

� Eðs;aÞ�D Qhðg; s; aÞ½ �
#
þ Lkðd; gÞ

ð7Þ

where U ¼ Uniform½0; 1�. The first term of the equation, is

introduced to avoid overly optimistic estimations for OOD

state-action pairs [22]. The second term (i.e. Lkðd; sÞÞ is the
classical objective function used to train the Q-function in a

distributional settings.

4 Theoretical considerations

In this paper, we aim to train policies in high-dimensional,

stochastic environment within offline settings. For a prac-

tical point of view, our idea is straightforward. Since

training with high-dimensional states directly fails and

following previous works [19, 38], we encode our high-

dimensional states into a more compact representation

using /: S ! Z, where Z ¼ /ðSÞ. Then, using /, we build
an MDP in the latent space and train policies directly on

top of this space.

However, from a theoretical point of view, this general

idea is not entirely clear. Is this latent MDP always well-

defined? If we find a policy that minimizes a risk measure

in the latent space, will it also minimize the risk measure in

the natural state?

The first goal of this section is to rigorously construct an

MDP in the latent space. Then, we show that, for certain

coherent risk measures and under some assumptions,

minimizing the risk measure in the latent space is equiv-

alent to minimizing it in the natural space. In particular, we

demonstrate that it is the case for Conditional Value-at-

Risk.

4.1 Theoretical results

First, we make the following assumptions

1. 8a 2 A we have rð�js; aÞ ¼ rð�js0; aÞ if /ðsÞ ¼ /ðs0Þ.
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2. We note Pð�jst; atÞ the probability measure with

probability density function pð�jst; atÞ. We suppose

that if st; s
0
t 2 S satisfy /ðstÞ ¼ /ðs0tÞ, then

Pð�jst; atÞ ¼ Pð�js0t; atÞ.
3. We note Qð�jzt; atÞ the probability image of Pð�jst; atÞ

by / and where st is any element of /�1ðztÞ. We

suppose Qð�jzt; atÞ admits a probability density func-

tions qð�jzt; atÞ.
Under these assumptions, / induces an MDP ðZ;A; q; r0; cÞ
where the reward distribution r0 is defined as r0ð�jz; aÞ :¼
rð�js; aÞ for any s 2 /�1ðzÞ. r0 is well defined by surjec-

tivity of / and by assumption (1). Q is well defined by

hypothesis (2).

Obviously, for a given policy p0 on the MDP

ðZ;A; q; r0; cÞ and fixed length H, we have a trajectory

distribution

qp0 ðs0Þ ¼ qðz0Þ
YH�1

t¼0

p0ðatjztÞqðztþ1jzt; atÞr0ðrtjzt; atÞ

Given a policy p and a fixed length H, we denote X the set

of all trajectories on the MDP ðS;A; p; r; cÞ, F the r-al-
gebra generated by these trajectories and Pp the probability

with probability distribution pp. Following the same idea

and given a policy p0, we denote X0 the set of trajectories of
length H on the MDP ðZ;A; q; r0Þ, F 0 the r-algebra gen-

erated by these trajectories and Qp0 the probability with

probability distribution qp0 . ðX;F ;PpÞ and ðX0;F 0;Qp0 Þ
are probability spaces.

/: S ! Z induces a map

X : ! X0

ðs0; a0; r0; . . .; sHÞ7!ð/ðs0Þ; a0; r0; . . .;/ðsHÞÞ

With a slight abuse of notation, we write it /.
We denote P the set of all policies p on the MDP

ðS;A; p; rÞ which satisfies pðajsÞ ¼ pðajs0Þ if /ðsÞ ¼ /ðs0Þ.
If p 2 P, then p induces a policy p0 on the MDP

ðZ;A; q; r0Þ, taking p0ðajzÞ :¼ pðajsÞ where s is any ele-

ment of /�1ðzÞ.
For any p 2 P, we denote p0 the associated policy on

the MDP ðZ;A; q; r0Þ as defined above. Furthermore, we

note P0 :¼ fp0 j p 2 Pg. If p0 2 P0, a policy p 2 P can be

defined as pðajsÞ :¼ p0ðaj/ðsÞÞ. X is a random variable on

X and X0 a random variable on X0.
With all these notations, we can introduce our first

result.

Lemma 1 Let p 2 P. Then,Qp0 is the probability image of

Pp by /.

Proof Let B0 :¼ Z0 � A0 � R0 � . . .ZH 2 F 0. We have

Ppð/�1ðB0ÞÞ

¼
Z
/�1ðB0Þ

ppðsÞds

¼
Z

/�1ðZ0Þ�A0�R0�.../�1ðZHÞ
pðs0Þpða0js0Þ

rðr0ja0; s0Þpðs1ja0; s0Þ. . .pðsH jaH�1; sH�1Þ

ds0da0dr0ds1. . .dsH

¼
Z

/�1ðZ0Þ�A0�R0�.../�1ðZHÞ
pðs0Þp0ða0j/ðs0ÞÞ

r0ðr0ja0;/ðs0ÞÞpðs1ja0; s0Þ. . .pðsH jaH�1; sH�1Þ

ds0da0dr0ds1. . .dsH

Then, denoting �s0 one arbitrary element of /�1ðz0Þ, we
obtain

Ppð/�1ðB0ÞÞ

¼
Z

Z0�A0�R0�.../�1ðZHÞ
qðz0Þp0ða0jz0Þr0ðr0ja0; z0Þ

pðs1ja0; �s0Þ. . .pðsH jaH�1; sH�1Þdz0. . .ds1. . .dsH

Iterating this process, we find

Ppð/�1ðB0ÞÞ

¼
Z

Z0�A0�R0�...ZH

qðz0Þp0ða0jz0Þr0ðr0ja0; z0Þ

qðz1ja0; z0Þ. . .qðzH jaH�1; zH�1Þdz0da0dr0. . .dzH

¼
Z

B0
qp0 ðs0Þds0 ¼ Qp0 ðB0Þ

h

This result is not a surprise but it has an interesting

implication. Indeed, it implies that if X0 	 / ¼ X, then

Eqp0 ½X0� ¼ Epp ½X�. And thus, we get the following result.

Corollary 1 Suppose X0 	 / ¼ X. Then, if a policy p0
H

satisfies

p0
H
¼ argminp02P0Eqp0 ½X

0�

its associated policy pH satisfies

pH ¼ argminp2PEpp ½X�

For a coherent risk measure R, we write U the risk

envelope associated to R in X and U 0 the corresponding

risk envelope in X0. If 8d 2 U , 9d0 2 U 0 such that d ¼
d0 	 / and 8d0 2 U 0 9d 2 U with d ¼ d0 	 / almost every-

where, we write U ¼ U 0 	 /.
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Proposition 1 Let R be a coherent risk measure. Suppose

that X0 	 / ¼ X and U ¼ U 0 	 /. Then, if a policy p0
H

satisfies

p0
H
¼ argminp02P0RðX0Þ

its associated policy pH verifies

pH ¼ argminp2PRðXÞ

Proof Since U ¼ U 0 	 /, we have

sup
d02U 0

Eq½d0X0� ¼ sup
d2U

Ep½dX�

Thus

RðX0Þ :¼ sup
d02U 0

Eq½d0X0� ¼ sup
d2U

Ep½dX� ¼ RðXÞ

Now, let p0
H
:¼ argminp02PRðX0Þ and pH the associated

policy. By contradiction, suppose there exists p1 with

Rp1ðXÞ\RpHðXÞ. But in this case and by the above

observation, we would have Rp0
1
ðX0Þ\Rp0

H
ðX0Þ. h

This result provides a useful criteria to prove the opti-

mality of a method. For example, consider RðXÞ ¼ Epp ½X�
which is obviously a coherent risk-measure. Its risk

envelope is U 
 1. And thus, Corollary 1 follows directly

from the last proposition too.

We also have the same result in the case where

RðXÞ ¼ CVaRaðXÞ.

Proposition 2 Suppose that X0 	 / ¼ X. Then, if a policy

p0
H
satisfies

p0
H
¼ argminp02P0CVaRaðX0Þ

its associated policy pH verifies

pH ¼ argminp2PCVaRaðXÞ

Proof Recall that the risk envelop of the CVaRa, takes the

form U ¼ fd j 0� d� 1
a Ep½d� ¼ 1g. First, we will show

that for each d0 2 U 0 there exists d 2 U such that

Eq½d0X0� ¼ Ep½dX�. Then, we will show that for each d 2 U

there exists d0 2 U 0 such that Ep½dX� ¼ Eq½d0X0�.

• Let d0 2 U 0. We define d :¼ d0 	 /. By construction, we

have 0� d� 1
a and Ep½d� ¼ Ep½d0 	 /� ¼ Eq½d0� ¼ 1 .

Thus, d 2 U . With the same idea, remark that

Eq½d0X0� ¼ Ep½dX�.
• Let d 2 U . By construction, dpp is a density function.

Let ~Pp its associated probability measure. We consider
~Qp0 the probability image of ~Pp by /. Then, remark that

~Qp0 is absolutely continuous with respect to Qp0 .

Indeed, if A satisfies Qp0 ðAÞ ¼ 0, we have

~Qp0 ðAÞ ¼ ~Ppð/�1ðAÞÞ ¼
Z

/�1ðAÞ
dðsÞpðsÞds

� 1

a
Ppð/�1ðAÞÞ ¼ 1

a
QpðAÞ ¼ 0

Thus by Radon-Nikodym, there exists d0 � 0, such that

for all B 2 F 0

~Qp0 ðBÞ ¼
Z

B

d0dQp0 ¼
Z

B

d0ðs0Þqp0 ðs0Þds0

We will show that d0 2 U 0. We define

C :¼ fs0 2 X0 j d0ðsÞ[ 1
ag. By contradiction, suppose

that C is not empty. On one hand have

~Qp0 ðCÞ ¼
Z

C

d0ðs0Þqpðs0Þds0

[
1

a

Z
C

qpðs0Þds0 ¼
1

a
Qp0 ðCÞ

And on the other hand, we have

~QpðCÞ ¼ ~Ppð/�1ðCÞÞ

¼
Z

/�1ðCÞ
dðsÞppðsÞds

� 1

a
Ppð/�1ðCÞÞ ¼ 1

a
Qp0 ðCÞ

Therefore C is empty and thus, 0� d0 � 1
a. Then, since

d0qp0 is a probability density function d0 2 U 0.

Finally, since, d0qp0 is the probability density func-

tion of the probability image of ~Pp, we obtain

Edpp ½X� ¼ Ed0qp0 ½X
0�

h

In particular, for

XðsÞ ¼
XH
t¼0

�rt � bHðpð�jstÞÞ

and

X0ðs0Þ :¼
XH
t¼0

�rt � bHðp0ð�jztÞÞ ;

(with b potentially null) we have

ðX0 	 /ÞðsÞ ¼
XH
t¼0

�rt � bHðp0ð�j/ðstÞÞÞ

¼
XH
t¼0

�rt � bHðpð�jstÞÞ ¼ XðsÞ

Therefore, we get the following result.
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Corollary 2 Let X: X ! R and X0: X0 ! R defined as

XðsÞ :¼
PH

t¼0 �rt � bHðpð�jstÞÞ and X0ðs0Þ :¼
PH

t¼0 �rt
�bHðp0ð�jztÞÞ. Then, if a policy p0

H
satisfies

p0
H
¼ argminp02P0CVaRaðX0Þ

its associated policy pH verifies

pH ¼ argminp2PCVaRaðXÞ

4.2 Discussion

The results presented in the last section establish a the-

oretical equivalence between minimizing the risk mea-

sure in the latent space and in the natural space.

However, to obtain this guarantee we need to make some

assumptions.

Assumptions (1), (2) ensure that the reward distribution

rð�jst; atÞ and the probability measure Pð�jst; atÞ are

insensitive to any change in /�1ðztÞ. Moreover p 2 P
ensures that the policy distribution is stable to any change

in /�1ðztÞ. Thus, and roughly speaking, these assumptions

guarantee we do not lose information by encoding st into

/ðstÞ, in terms of reward distribution, transition probability

measure and the optimal policy.

These theoretical considerations highlight that in order

to learn a meaningful latent representation of the natural

MDP, we should consider all components of the MDP and

not only focus on the environment space.

5 Latent Offline Distributional Actor-Critic

The theoretical results presented above justify our really

natural idea: encode the natural environment space S into a

compact representation Z and then, use a risk-sensitive

offline RL algorithm to learn on top of this space. This is

the general idea of LODAC.

5.1 Practical implementations of LODAC

In this section, we present the practical implementation of

LODAC used in our experiments.

First, we need to implement and train a latent variational

latent model. Following previous works [19, 23], our latent

variable model contains the following components

Image encoder: ht ¼ EhðstÞ
Latent transition model: zt � qhð�jzt�1; at�1Þ

Inference model: zt �/hð�jht; zt�1; at�1Þ
Image decoder: ŝt �Dhð�jztÞ

The image encoder, denoted as Eh, is a classical Convo-

lutional Neural Network consisting of 4 2D convolutional

layers. Each of them uses a kernel of size 4, a stride of 2

and Rectified Linear Unit (ReLU) as activation function.

These layers use 32, 64, 128 and 256 filters, respectively.

The inference and the latent transition model are

implemented as a Recurrent State Space Model (RSSM)

[66]. Specifically, a latent state contains two components

zt ¼ ½dt; xt� where dt is the deterministic part and xt the

stochastic. dt is computed using a dense layer which takes

xt�1; at�1 as input, uses Exponential Linear Unit as acti-

vation function and contains 256 hidden units. This layer is

followed by a gated recurrent unit (GRU) cell which uses

the hyperbolic tangent as activation function. The dimen-

sion of the output is 256. dt corresponds to the hidden state

of this GRU cell.

Then, the latent transition model employs two dense

layers. The first one uses Exponential Linear Unit as acti-

vation function and yields an output of dimension 256. The

second one does not have any activation function and

provide an output of dimension 128. This output is sub-

sequently split into two parts. The first part is interpreted as

the mean of a normal distribution, while the second part

(after applying a softplus) represents the standard devia-

tion. The stochastic component of the latent state xt is

sampled from this distribution.

The inference model computes the deterministic part of

the latent state dt using the first layers of the latent tran-

sition model. Then, dt and ht are fed into two consecutive

dense layers. The first one uses an Exponential Linear Unit

Fig. 1 Architecture of our latent variational model
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activation function and 256 hidden units. The final layer

does not have any activation function and the dimension of

the output is 128. Similar to the latent transition model, the

output is divided into two parts, which are interpreted as

the mean and the variance of a normal distribution. xt is

sampled from this distribution.

Finally, the decoder Dh consists of a dense layer with

1024 units followed by four deconvolutional layers. Each

of them have a stride of 2 and except the last layer which

do not have any activation function. All layers have ReLU

as activation function. The first two deconvolutional layers

have a kernel size of 5, while the last two have a kernel size

of 6. Finally, these layers contain 128, 64, 32, 32 and 3

filters, respectively. The reconstructed image is sampled

from a normal distribution where the mean is determined

by Dh and the standard deviation is fixed to one. The main

components of our latent variable model are presented in

Fig. 1.

These models have been trained using Adam optimizer,

a batch size of 64, a learning rate of 6 � 10�4 and the

following objective function [19]

Eqh

XH�1

t¼0

logDhðstþ1jztþ1Þ
"

�DKL /hðztþ1jstþ1; zt; atÞjjqhðztþ1jzt; atÞð Þ�
ð8Þ

Rewards estimation come from a sampling from a normal

distribution where the mean is determined by the output of

a neural network rh and the standard deviation is fixed to

one. rh contains one hidden dense layer with 128 units and

uses Exponential Linear Unit as activation function. rh is

trained using maximum log-likelihood.

After the training of these models, the dataset D is

encoded into the latent space and stored in a replay buffer

Blatent. More precisely, Blatent contains transitions of the

form ðz1:H ; r1:H ; a1:HÞ where z1:H �/hð�js1:H ; aH�1Þ and

s1:H ; r1:H�1; a1:H�1 �D. Next, we introduce a latent buffer

Bsynthetic which contains rollouts transitions performed

using the policy ph, the latent model qh and the reward

estimator rh.

The policy ph comprises three dense layers. The first

two use ReLU as activation function and 256 hidden units.

The final layer does not use any activation function and

yields two distinct numbers. The first number is interpreted

as the mean of a normal distribution and the second one as

a standard deviation. Action is sampled from this

distribution.

The critic Qh is implemented as a quantile distributional

critic network [71]. Specifically, we have Qhðg; z; aÞ ¼
fhðwhðz; aÞ � nhðgÞÞ where � denotes the element-wise

(Hadamard) product. wh is a dense layer with ReLU as

activation function, provides an output of dimension 256

and uses layer normalization [72]. nh consists of an

embedding of g into a space of dimension 64 followed by a

dense layer. Specifically, g is embedded into a vector

where the components take the form cosðigpÞ with i

ranging from 1 to 64. After that, this embedded vector is

fed to a dense layer which uses sigmoid as activation

function and produces an output of dimension 256. This

layer also employs layer normalization. Finally, the model

fh consists of two dense layers. The first one uses layer

normalization, ReLU as activation function and 256 hidden

units. The last layer does not use any activation function

and produces an output of dimension one.

Actor ph and critic Qh are trained on

B :¼ Bsynthetic [ Blatent. To achieve this, and based on our

empirical results, we follow Ma et al. [56]. Thus, the critic

Qh is iteratively chosen to minimize

aEg�U

"
Ez�B

�
log
X
a

expðQhðg; z; aÞÞ
�

� Eðz;aÞ�B Qhðg; z; aÞ½ �
#
þ Lkðd; g0Þ

ð9Þ

where U ¼ Uniform½0; 1�,

d ¼ rt þ cQhðg0; ztþ1; atþ1Þ � Qhðg; zt; atÞ

with ðzt; at; rtÞ�B, atþ1 � phð�jztÞ and Lk is the s-Huber
quantile regression loss as defined in (5). Following Kumar

et al. [22], Ma et al. [56], we add two parameters f;x 2
R[ 0 to the last equation

maxa� 0 a Eg�U

"
x

 
Ez�B

�
log
X
a

expðQhðg; z; aÞÞ
�

� Eðz;aÞ�B

�
Qhðg; z; aÞ

�!
� f

#
þ Lkðd; gÞ

f is used to threshold the difference between

Eðz;aÞ�B Qhðg; z; aÞ½ � and the regularizer

Ez�B log
P

a expðQhðg; z; aÞÞ
� 	

. The parameter x scales

this difference. Remark that if this difference (scaled to x)
is smaller than the parameter f, then a will be set to 0 and

only the term Lkðd; gÞ will be considered.

Furthermore, since the action space A is continuous, the

computation log
P

a expðQhðg; z; aÞ is intractable. To

overcome this problem, and as introduced in Kumar et al.

[22], we use the following approximation

log
X
a

expðQhðg; z; aÞÞ

 log

 
1

2M

XM

ai �UðAÞ

expðQhðg; z; aÞÞ
UðAÞ

� �

þ 1

2M

XM

ai � pð�jzÞ

expðQhðg; z; aÞÞ
pðaijzÞ

� �!
ð10Þ
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where UðAÞ ¼ UnifðAÞ and we choose M ¼ 10.

The actor is trained to minimize Conditional Value-at-

Risk of the negative cumulative reward, which can be

computed using the formula

CVaRaðZpÞ ¼
1

1� a

Z 1

a
Qhðg; z; aÞdg ð11Þ

ph and Qh have been trained using Adam optimizer with a

batch size of 256. Following previous works [19, 23],

batches of equal data mixed from Blatent and Bsynthetic are

used. While the critic has been trained using a learning rate

of 3 � 10�4, we used a value of 3 � 10�5 for the actor.

Finally, it is worth mentioning we used the clipped double

Q-learning trick [73] for training Qh. A summary of

LODAC can be found in Algorithm 1.

Remark that for training a policy using the approach

presented above, we need to be able to compute an

expectation of a uniform distribution (Eq. 9), approximate

log
P

a expðQhðg; z; aÞÞ using 10 and estimate Conditional

Value-at-Risk using the formula 11 to compute the loss of

the policy. Unfortunately, all these computations take time

and are unavoidable. Thus, it is not surprising that opti-

mizing a policy using this approach takes more time than

classical methods.

5.2 Experimental setup

In this section, we evaluate the performance of LODAC.

First, our method is compared with LOMPO [19], an

offline high-dimensional risk-free algorithm. Then, we

build a version of LODAC where the actor and the critic
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are trained using O-RAAC [54]. We denote it LODAC-O.

Moreover, it is also possible to use a risk-free offline RL in

the latent space. Thus, a risk-free policy is also trained in

the latent space using COMBO [23].

These algorithms are evaluated on the standard walker

walk task from the DeepMind Control suite [8], but here

we learn directly from the pixels of dimensions

3� 64� 64. As a standard practice, each action is repeated

two times on the ground environment and episodes of

length 1000 are used. These algorithms are tested on three

different datasets: expert, medium and expert-replay. Each

dataset consists of 100K transitions steps. More precisely,

the following datasets are built.

• Expert For the expert dataset, actions are chosen

according to an expert policy that has been trained

online, in a risk-free environment using SAC for 500K

training steps. The states used for this training are the

classical states provided by DeepMind Control suite.

• Medium In this dataset, actions are chosen according to

a policy that has been trained using the same method as

above. However, here, the training was stopped when

the policy achieves about half the performance of the

expert policy.

• Expert_replay The expert_replay dataset consists of

episode that were sampled from the expert policy

during the training.

The setup presented above allows to test our approach on

deterministic environments.

However, we would like to evaluate our algorithm on

stochastic environments too. To achieve this, we use the

same datasets, but we modify the reward using the fol-

lowing formula

rt �


rðst; atÞ � k1frðst ;atÞ[ rgBp0

�

where r is the classical reward function. r, k are hyperpa-

rameters and Bp0 is a Bernoulli distribution of parameter

p0. In our experiments, we choose k ¼ 8 and p0 ¼ 0:1.

Different values of r are used for each dataset such that

about the half of the states verify rðst; atÞ[ r.

Hyperparameters of each model have been manually

tuned based on our experiments and hyperparameters used

in previous papers. However, due to the substantial time

required to train these models (specifically LODAC and

LODAC-O), we were unable to test a wide range of

hyperparameter combinations.

Algorithms have been tested using the following pro-

cedure. First of all, to avoid excessive computation time

and for a more accurate comparison, we use the same latent

variable model for all algorithms.

We evaluate each algorithm using 100 episodes,

reporting the mean and CVaRa of the returns. LODAC and

LODAC-O are trained to minimize CVaR0:7. LOMPO and

COMBO are trained to maximize the return. We run 4

different random seeds. As introduced in Fu et al. [74], we

use the normalized score to compare our algorithms.

Specifically, a score of 0 corresponds to a fully random

policy and a score of 100 corresponds to an expert policy

on the deterministic task. However, and as suggested in

Agarwal et al. [75], instead of taking the mean of the

results, we consider the interquartile means (IQM).

5.3 Results discussion

In this section, we discuss the results of our experiments,

which are presented in Table 1 for the stochastic environ-

ment and in Table 2 for the deterministic environment. We

bold the highest score across all methods. Complete results

of all different runs can be found in Appendix A.

Stochastic environment The first general observation is

that LODAC and LODAC-O generally outperform risk-

free algorithms. The only exception is with the expert_re-

play dataset where LODAC-O provides worse results. This

is not really surprising since actors trained with O-RAAC

contains an imitation component, and obviously, the imi-

tation agent provides really poor performance on this

dataset. LODAC provides really interesting results as it

significantly outperforms risk-free algorithm in terms of

CVaR0:7 and return on all datasets. Moreover, it provides

better results than LODAC-O on the medium and the

expert_replay dataset, while achieving comparable result

on the expert dataset. A final observation is that risk-free

Table 1 Performances for the stochastic offline high-dimensional

walker_walk task on expert, medium and expert_replay datasets

Dataset type Algorithm Mean CVaR0:7

Expert LOMPO 8.67 1.92

Expert COMBO 10.96 3.72

Expert LODAC-O 18.54 4.92

Expert LODAC 18.70 4.32

Medium LOMPO 19.03 13.31

Medium COMBO 16.25 11.18

Medium LODAC-O 21.31 14.99

Medium LODAC 27.85 21.37

Expert_replay LOMPO 23.22 16.03

Expert_replay COMBO 20.01 14.12

Expert_replay LODAC-O 5.73 0.28

Expert_replay LODAC 39.4 30.14

We compare the mean and the CVaR0:7 of the returns. LODAC

outperforms other algorithms on the medium and expert_replay

datasets while achieving comparable results on the expert dataset. We

bold the highest score across all methods
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RL policies provide generally bad performances on this

stochastic environment.

Deterministic environment First, a drop of performance

between the deterministic and the stochastic environment

can be noticed. This is not surprising, as stochastic envi-

ronments are generally more challenging than deterministic

ones. However, this change appears to affect risk-free

algorithms more significantly than LODAC-O or LODAC.

Indeed, we get a difference of more than 27% with

LOMPO and COMBO on the medium and expert_replay

dataset in terms of return between the deterministic and the

stochastic environment. This difference even reached 42%

for COMBO on the expert_replay dataset. For LODAC-O

and for the same tasks, we obtain a deterioration of less

than 17%. In contrast to risk-free methods, and in a lesser

degree LODAC-O, adding stochasticity to the dataset does

not seem to have a significant impact on the performance of

LODAC. Indeed, with this algorithm we observe a drop in

performance of less than 9%. For the medium dataset, a

difference of only 5:23% can even be noticed.

6 Conclusion

While offline RL appears to be an interesting paradigm for

real-world applications, many of these real-world applica-

tions are high-dimensional and stochastic. However, cur-

rent high-dimensional offline RL algorithms are trained

and tested in deterministic environments. Our empirical

results suggest that adding stochasticity to the training

dataset significantly decreases the performance of high-

dimensional risk-free offline RL algorithms.

Based on this observation, we develop LODAC.

LODAC can be used to minimize various risk measures

like Conditional Value-at-Risk. Our theoretical considera-

tions in Sect. 4 show that our algorithm relies on a strong

theoretical foundation. Finally, the use of LODAC to

minimize CVaR empirically outperforms previous algo-

rithms in term of CVaR and return on stochastic high-

dimensional environments.

Appendix A Experimental results

In this section, we present our complete empirical results.

More precisely, you can find all results of the deterministic

environment in Table 3, and all results of the stochastic

environment can be found in Table 4.

Table 2 Performances for the deterministic offline high-dimensional

walker_walk task on expert, medium and expert_replay datasets

Dataset type Algorithm Mean CVaR0:7

Expert LOMPO 14.56 0.99

Expert COMBO 16.74 1.97

Expert LODAC-O 13.25 2.79

Expert LODAC 16.03 0.0

Medium LOMPO 52.2 42.56

Medium COMBO 43.71 25.89

Medium LODAC-O 37.33 31.12

Medium LODAC 33.08 5.79

Expert_replay LOMPO 55.86 35.10

Expert_replay COMBO 62.88 27.69

Expert_replay LODAC-O 15.81 2.90

Expert_replay LODAC 48.01 27.25

We compare the mean and the CVaR0:7 of the returns. We bold the

highest score across all methods

Table 3 Complete results for the deterministic offline high-dimen-

sional walker_walk task on expert, medium and expert_replay

datasets

Expert Medium Expert_replay

Mean CVaR0:7 Mean CVaR0:7 Mean CVaR0:7

LOMPO 174 65 419 298 410 274

177 98 583 501 523 341

71 26 515 437 601 411

193 37 527 428 586 387

COMBO 217 62 345 263 662 395

190 58 458 296 742 501

201 95 554 476 576 197

38 21 428 246 359 160

LODAC-O 149 68 385 334 107 59

178 44 428 357 194 104

149 73 381 309 224 51

186 67 384 321 180 78

LODAC 265 43 628 458 460 271

103 31 416 52 505 313

306 65 275 134 421 193

113 34 194 56 509 313

We compare the mean and the CVaR0:7 of the returns
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