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Abstract
Laser beam welding has become widely applied in many industrial fields in recent years. Solidification cracks remain one

of the most common welding faults that can prevent a safe welded joint. In civil engineering, convolutional neural

networks (CNNs) have been successfully used to detect cracks in roads and buildings by analysing images of the

constructed objects. These cracks are found in static objects, whereas the generation of a welding crack is a dynamic

process. Detecting the formation of cracks as early as possible is greatly important to ensure high welding quality. In this

study, two end-to-end models based on long short-term memory and three-dimensional convolutional networks (3D-CNN)

are proposed for automatic crack formation detection. To achieve maximum accuracy with minimal computational

complexity, we progressively modify the model to find the optimal structure. The controlled tensile weldability test is

conducted to generate long videos used for training and testing. The performance of the proposed models is compared with

the classical neural network ResNet-18, which has been proven to be a good transfer learning model for crack detection.

The results show that our models can detect the start time of crack formation earlier, while ResNet-18 only detects cracks

during the propagation stage.

Keywords Deep neural networks � Laser beam welding � Solidification cracks detection � Spatio-temporal features

extraction � Welding quality control system

1 Introduction

Laser beam welding is one of the most modern processes in

the manufacturing industry for joining metal materials.

Solidification cracking belongs to the serious faults in this

process. In order to avoid unnecessary costs and ensure

high quality, the long-term objective is to establish an

intelligent computer-based control system capable of

automatically detecting the formation of cracks to replace

manual detection which is time-consuming and laborious.

Furthermore, real-time crack detection will serve to adjust

the welding process in real time through automatic control

of the welding parameters. The formation of solidification

cracks during welding mainly depends on metallurgical

and thermo-mechanical factors. According to established

theories, from a thermo-mechanical point of view, the

strain and strain rate arising during welding near the

solidification front are responsible for the solidification

cracks. A solidification crack occurs in the so-called mushy

zone, i.e. in the zone immediately behind the weld pool
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where solidification is still incomplete. If the strains exceed

the ductility of the material within the mushy zone, solid-

ification cracks will appear. The formation of cracks can be

determined by measuring the strain state in the vicinity of

the weld pool. Optical flow estimation can be used to

calculate displacement and strain fields [1, 2]. Its main

disadvantage is the high computational cost, which makes

real-time monitoring difficult in practical applications.

In recent years, machine learning methods based on

neural networks have been widely researched and applied

in industrial fields. Among them, the convolutional neural

network (CNN) [3] was first proposed for the recognition

of handwritten digits, and then achieved remarkable suc-

cess for large-scale classification in the ImageNet data set

[4]. Nowadays, the CNN is widely employed in the com-

puter vision field due to its good performance, e.g. in image

classification, object detection, and action recognition.

Crack detection can be regarded as a binary classification

problem in image classification. By applying some classic

networks, cracks or defects in static images can be suc-

cessfully detected. However, these networks cannot capture

motion information. In the welding process, cracks can

occur at any time and the duration of the process is

unknown. Locating the initiation and end time of crack

formation in untrimmed videos is more complex. If frames

are analysed individually, the formation moment of tiny

cracks will be hard to identify, which leads to a delay in the

alarm. In this situation it is beneficial to consider temporal

information.

Action recognition is an extension of image classifica-

tion. It has received much attention in recent years and has

been widely applied in video analysis tasks, such as mon-

itoring abnormal events in surveillance cameras. The

commonly applied models can be divided into three types:

(1) The two-stream model [5], which contains two CNN

networks, one takes the optical flow as input to extract

motion information and the other one takes RGB images as

input. Each stream is followed by a softmax layer, and they

can be fused by averaging or using a SVM. (2) Long short-

term memory (LSTM) [6] has achieved outstanding pro-

gress in processing a data sequence, and LRCN [7] was

proposed to utilize a CNN model to extract spatial features

and then impose a LSTM on the result of the CNN to

extract temporal features. (3) A three-dimensional convo-

lutional network (3D-CNN) [8] is the third popular method

which replaces the 2D convolutional kernel with a 3D

kernel that contains an additional time dimension. The

optimal configuration of a 3D-CNN was explored by sys-

tematic research and named C3D [9]. Its successful

development makes it possible to learn crack generation

features from welding videos. To the best of our knowl-

edge, there is no work on capturing the dynamic crack

generation process. However, LSTM [6] and 3D-CNN [8]

models have shown promising results in capturing motion

features in videos. In this study, we propose two networks

based on CNN-LSTM and 3D-CNN for automatic crack

detection. A two-stream model has not been chosen

because of its low efficiency caused by the optical flow

calculation. The contributions of this work are as follows.

• A controlled tensile weldability test (CTW test) is set

up to generate digital images containing solidification

cracks. With this process 14 high-quality welding

videos totaling over 50,000 frames are collected.

• Two different models based on CNN-LSTM and 3D-

CNN are developed and compared. To the best of our

knowledge, this is the first work to detect temporal

boundaries of crack formation during the laser beam

welding process.

• The proposed models are evaluated with several

previously unseen test sets, and compared with the

ResNet-18 model [10] in accuracy and calculation cost.

Extensive experiments demonstrate that the boundaries

of cracks located by our models are more accurate than

those found using ResNet-18.

2 Related work

The rapid development of deep learning makes it a

tempting candidate to replace human visual inspections in

fault and defect detection. Two fault diagnosis methods are

proposed in [11] and [12] to address the problem of scarce

faulty samples and a deficit in labelled data. In static crack

detection, the trained deep learning model can effectively

detect cracks in different structures. A well-known CNN

model has successfully found concrete cracks in civil

infrastructures. Combined with a sliding window tech-

nique, it can detect cracks in images of any resolution,

outperforming the traditional Canny and Sobel methods

[13]. A fusion framework NB-CNN [14] has been proposed

to detect cracks on metallic surfaces in nuclear power

plants, while applying Naive Bayes decision to reduce the

false positive rate. A shallow CNN architecture optimized

on LeNet-5 [3] was proposed in surface concrete crack

detection [15]. CrackViT [16] combined the advantages of

CNN and transformer networks. It explored different

fusion methods for the two models, implementing pixel-

level crack extraction. In addition to crack detection, [17]

developed and compared four CNNs with different recep-

tive fields and performed the classification of different

types of pavement cracks.

The use of transfer learning can solve the challenge of

insufficient annotated data. For example, in [18], based on

the VGG-16 [19] architecture pre-trained on the ImageNet

data set, the influence of the model parameters were
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investigated using a small data set. In [20], the AlexNet [4]

architecture in fully trained transfer learning and classifier

modes was trained and compared with six common edge

detection schemes. [21] detected two common defects

(crack and corrosion) with two pre-trained networks, i.e.

VGG-16 and ResNet-18. Moreover, in [22] the perfor-

mance of 15 state-of-the-art convolutional neural networks

which detected cracks was compared in terms of number of

parameters, area under the curve (AUC), and inference

time.

In the welding area, the application of machine learning

in quality prediction and classification has also seen a rapid

increase. By learning from digital images collected by

high-speed cameras, many CNN-based models have been

established to predict different laser welding defects,

including porosity, level misalignment [23]; blowout,

humping, and undercut [24]; and slag inclusions, cracks,

floating holes, and lack of fusing (false friends) [25]. The

literature classified welding defects into five cate-

gories [26] (conduction welding, stable keyhole, unsta-

ble keyhole, blowout, and pores) through X-ray images.

The work in [27] extracted features from infrared image

sequences and designed an ensemble deep neural network

based on CNN and gated recurrent units (GRU), enabling

detection of four critical welding defects (sagging, lack of

penetration, lack of fusion, and geometric deviations of the

weld seam). The authors of [28] designed a high-quality

monitoring method for micro-plasma arc welding

(MPAW), which extracts the contour of the molten pool

region based on the method of Otsu and then applies a

support vector machine (SVM) to identify the lack of

fusion, humping, and sound weld states.

3 Methodology

A high-level description of our system architecture is

shown in Fig. 1. The data generation and pre-processing

will be introduced in the next section. This section is about

the learning methods which we have applied. Two different

machine learning models for analysing the videos of the

welding process are introduced in Sect. 3.1. The architec-

ture and hyperparameter details are provided in Sect. 3.2,

and the complexity analysis is given in Sect. 3.3.

3.1 Learning temporal features

Before exploring the model architectures, we concentrate

on temporal features. Including temporal aspects in the

models is the main novelty in this paper.

3.1.1 CNN-LSTM model

Since the formation and propagation of cracks are changing

with time, a CNN-based model [29] aims to learn the

features of previous information by stacking multiple

images together as the input. The drawback of this

approach is that the temporal information will be collapsed

after each convolution operation. In order to focus on both,

the spatial and temporal information, it has been proposed

to combine the LSTM with a CNN [7] for the latter’s good

performance in learning from the sequential data. The

architecture of the combined CNN-LSTM is shown in the

middle of Fig. 1, in the grey box. It is a simple sequential

integration of CNN and LSTM. The input consists of

several consecutive frames. First, each frame is sent to the

CNN individually to extract visual features, then the fea-

ture maps obtained by the CNN are flattened into a one-

dimensional vector and fed into the following LSTM in

sequence.

Figure 2 shows the internal implementation of the

LSTM. The inputs are Xt, the hidden state of the previous

timestep is ht�1, and the memory cell state is Ct�1. The

outputs are ht and Ct. Both ht and Ct retain the previous

information and affect the present output. In addition, the

LSTM incorporates three gates. The forget gate ft deter-

mines how many previous hidden states should be forgot-

ten, the input gate it determines how much current input

should be updated, and the output gate ot determines how

much of Ct should be transferred to ht. These modules

enable the LSTM to integrate previous and current data.

The formulas of the LSTM are given in Eq. (1), where ‘x’

denotes the input matrix at time t, ‘Wi’ are weight matrices

and ‘b’ is the offset value, ‘�’ denotes the matrix multi-

plication operation, ‘r’ denotes the sigmoid function

ensuring that the output lies between 0 and 1. It is applied

to each gate.

ft ¼ rðWxf xt þWhf ht�1 þ bf Þ

it ¼ rðWxixt þWhiht�1 þ biÞ
bct ¼ tanhðWxcxt þWhcht�1 þ bcÞ

ct ¼ ft � ct�1 þ it � ĉt�1

ot ¼ rðWxoxt þWhoht�1 þ boÞ

ht ¼ ot � tanhðctÞ

ð1Þ

3.1.2 3D-CNN model

Our second considered architecture is the 3D-CNN. The

3D-CNN is another network that is widely used in video

analysis. Unlike CNN-LSTM, it can extract both appear-

ance and motion features simultaneously. Compared with
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2D convolution, the 3D-CNN uses an additional dimension

in depth. Figure 3 illustrates the difference between mul-

tichannel convolution and 3D convolution applied to ima-

ges. The upper structure is a multichannel convolution, and

its input is a multichannel feature map. The feature map of

each channel is convolved with a kernel, and the results are

added; thus, the output is a single feature map. Multiple

such images have been stacked as the input to the CNN

model in [29], and each image is treated as a channel. As

can be seen from the figure, after the first convolution

layer, the temporal information is lost. The structure below

is a 3D convolution, and L represents the depth instead of

the number of channels. The kernel size of the 3D

convolution is k � k � d, generally d\L. Its output feature

map is still three-dimensional due to 3D convolution and

3D pooling operations. The kernel size of the 2D convo-

lution is k � k, and the number of channels is C. The total

number of parameters is therefore k � k � C. The 3D

convolution has k � k � d � L parameters, many more

than the 2D network.

The structure of the 3D-CNN is also shown in Fig. 1. It

contains five convolution layers, and each layer is followed

by a pooling layer. According to the findings for the C3D

model [9], the best kernel size is 3� 3� 3; so all filters are

of dimension 3� 3� 3 with stride 1� 1� 1 in the con-

volution layer. The kernel size in the pooling layer is 2�
2� 2 with stride 2� 2� 2, except for the first layer which

is equipped with 1� 2� 2 parameters in order to not

merge the temporal information at an early stage.

3.2 Model designs

The feature learning module consists of three main layers:

a convolutional, a pooling, and a fully connected layer. The

network can be built in various ways by setting different

hyperparameters and choosing different sequences of lay-

ers. The performance of the model can improve as the

model becomes more complex, and the mainstream models

(LeNet, AlexNet, VGG, GoogLeNet [30], and ResNet) are

designed increasingly deep. However, the time-consuming

models are inappropriate as the on-line crack detection

system usually requires immediate response. In this

Fig. 1 Overall architecture including the two different models for crack detection

Fig. 2 Internal structure of CNN-LSTM
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section, we systematically build networks with different

depth (number of layers) and width (numbers of filters) to

investigate the improvement in accuracy.

Compared with the images in the database ImageNet,

welding crack data contain fewer categories and has sim-

pler features, so we empirically design models with six to

eight layers (models A, B, C in Table 1); the pooling

operation is not regarded as a layer because it does not

contain parameters. In general, with an increase in depth of

the CNN, the performance will be better because each layer

can focus on different features. Next, we fix the network

depth and change the width (models D, E). According to

[31], the last column of Table 1 is the theoretical time

complexity (relative to model A), calculated by Eq. (2):

O
X
L

l¼1

D2
k � Nl�1 � Nl � Dw � Dh

 !

ð2Þ

where L is the depth of the CNN network. Nl�1 and Nl are

the number of input and output feature maps. Dk is the

spatial size of the convolutional kernel and Dw, Dh are the

spatial size of the output feature map.

Fig. 3 Comparison of 2D (top)

and 3D (bottom) convolution

Table 1 Configuration of

different models
Model Depth Width Strides Complexity

A 6 (32, 64, 96, 128) (1, 1, 1, 2) 1

B 7 (16, 32, 64, 96, 128) (1, 1, 1, 1, 1) 1.02

C 8 (16, 16, 32, 64, 96, 128) (1, 1, 1, 1, 1, 1) 1.04

D 7 (16, 32, 64, 128, 196) (1, 1, 1, 1, 1) 1.75

E 7 (16, 32, 64, 128, 256) (1, 1, 1, 1, 1) 2.12
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Figure 4 shows the training accuracy of the different

models. The results illustrate that increasing the depth can

improve accuracy, the accuracy of models B and C is

higher than that of A. But after reaching a critical value, the

accuracy becomes saturated and stagnant, model C seems

not significantly more accurate than model B. The effect of

width is not as significant as that of depth. Compared to B,

the accuracy of models D and E is slightly improved, and

their complexity is also higher. It can be seen that for our

type of data, overly increasing the depth and width cannot

further improve accuracy, but increases the complexity,

which is unaffordable and unnecessary. To strike a good

balance between cost and accuracy, based on Table 1 and

Fig. 4, we ultimately chose model D as the feature

extraction network.

In the LSTM layer, there are two hyperparameters that

affect accuracy and computational cost, the number of the

LSTM layers, and the number of features in the hidden

units. The comparison of the best validation accuracy for

different configurations is shown in Table 2. The accuracy

reaches 95:56% with two LSTM layers and 128 hidden

nodes, which cannot be significantly improved with higher

configurations.

For 3D-CNN, its structure is consistent with the con-

volutional layers of CNN-LSTM, but it inflates the model

from 2D to 3D. The configurations of CNN-LSTM and 3D-

CNN are listed in Table 3. The input size is T � 64� 128,

which represents the number of input images as well as

their height and width. The selection of T is discussed in

Sect. 5.2. The size of the feature map will be reduced by

half after the pooling layer. When the input data passes

through each layer, at L5, the size is reduced to 2� 4.

Then, the feature maps are flattened to vectors and input

into the LSTM module in the CNN-LSTM model or into

two fully connected layers in the 3D-CNN model. Finally,

the softmax function is applied to scale the probability

distribution into the range [0, 1]. The maximum probability

is predicted as the final classification. The other hyperpa-

rameters are as follows: kernel size ¼ 3, number of

epochs¼ 20; batch size ¼ 64, learning rate ¼ 1e� 4,

dropout ¼ 0:5, the adaptive moment estimation (Adam)

optimizer is used as well as the cross-entropy loss function,

which are standard settings.

3.3 Complexity analysis

Finally, we will calculate the time complexity of the pro-

posed models. The complexity of the convolutional layer

has been given in the previous section. The trainable

parameters of LSTM are from Equation. (1), which are

Wxf ;Wxi;Wxc;Wxo; all matrices of size m� n, m and n are

the dimensions of the hidden state and the input;

Whf ;Whi;Whc;Who which are matrices of size m� m and

bias vectors bf ; bi; bc; bo of size m� 1. The total number of

parameters in a LSTM block is

W ¼ 4m� mþ nþ 1ð Þ[32], and the computational com-

plexity is OðWÞ ¼ O m2 þ mnð Þ. Therefore, the CNN-

LSTM complexity can be calculated as the sum of the

complexity of convolutional layers and LSTM layers

(Eq. 3).

(a) Training accuracy with different depths (b) Training accuracy with different widths

Fig. 4 Effects of network depth and width

Table 2 Maximum validation accuracy for different LSTM

configurations

Model Layers Hidden units Parameters Accuracy (%)

F 2 64 0.7M 92.36

G 2 128 1.3M 95.56

H 2 256 2.7M 95.39

I 3 128 1.5M 95.62
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The 3D-CNN complexity is modified to Eq. (4) as its

output feature map size is Dw � Dh � Dd. It can be seen

that the complexity of the CNN-LSTM model increases

linearly with input length T, while in the 3D-CNN, when

l ¼ 1, Nl�1 ¼ T , T only affects the complexity of the first

convolutional layer. Compared to CNN-LSTM, its com-

putational cost changes more slowly with the increase in T.

In Sec.t 5.3, we will measure and compare their time

complexity through the number of floating point operations

(FLOPs) according to the model implementation.

O T �
X
L

l¼1

D2
k � Nl�1 � Nl � Dw � Dh þ m2 þ mn

� �

 ! !

ð3Þ

O
X
L

l¼1

D3
k � Nl�1 � Nl � Dw � Dh � Dd

 !

ð4Þ

4 Data generation

In this section, we describe the data collected in laboratory

experiments which we have performed in the welding

laboratory at BAM.

4.1 Material and welding parameter

The welding experiments were carried out with the Tru-

Disk 16002 disc laser from TRUMPF, with a maximum

output power of 16 kW, a wavelength of 1030 nm and a

beam parameter product of 8 mm x mrad. The welding

experiments were carried out on sheets of austenitic steel

grades 1.4301 (AISI 304) and H400 (EN 1.4376) with a

thickness of 1.5 mm. The welding parameters applied were

2 kW laser power and a constant welding speed of 1.2

m/min at a focus position of ?5 mm. Argon with a flow

rate of 20 l/min was used as shielding gas.

4.2 Solidification Crack Generation

The solidification cracks were generated during laser beam

welding using the externally restrained hot cracking test.

This type of hot cracking tests were developed to force the

cracking in the specimen by external stress or stain. In

these experiments, the controlled tensile weldability test

(CTW test) was employed, in which the weld specimen is

subjected to predefined strain and strain rate perpendicular

Table 3 Configuration of the

models
Layer Operator Channels Kernel size Output size

CNN-LSTM 3D-CNN

L1 Conv1 16 3 16� 64� 128 16� T � 64� 128

Pool1 2 16� 32� 64 16� T � 32� 64

L2 Conv2 32 3 32� 32� 64 32� T � 32� 64

Pool2 2 32� 16� 32 32� T=2� 16� 32

L3 Conv3 64 3 64� 16� 32 64� T=2� 16� 32

Pool3 2 64� 8� 16 64� T=4� 8� 16

L4 Conv4 128 3 128� 8� 16 128� T=4� 8� 16

Pool4 2 128� 4� 8 128� T=8� 4� 8

L5 Conv5 196 3 196� 4� 8 196� T=8� 4� 8

Pool5 2 196� 2� 4 196� T=16� 2� 4

L6 FC1 – – 1� 64 1� 784

L7 FC2 – – 1� 2 1� 2

Fig. 5 Schematic representation for the experimental procedure
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to the welding direction during welding, as shown

schematically in Fig. 5. The externally applied strain

contributes to increasing local strains in the hot crack

critical region (mushy zone) and generating cracks during

welding. During the CTW test, a strain of 5% and 7% was

applied for steel grade 304 and 5% for steel grade H400

while welding. Those strain parameters of the CTW test

cause cracks of a length between 12 mm and 18 mm in the

weld. The strain variation affects only the generated crack

length. Figure 6 shows the experimental setup in combi-

nation with the CTW test.

4.3 Data Acquisition

The welding process was recorded using an sCMOS cam-

era installed co-axially to the laser path. In order to obtain a

valid recording of the welding process and the re-solidified

material, an external laser illumination with a wavelength

of 808 nm and an interference filter of the same wavelength

and with a bandwidth of 20 nm were required, as shown in

Fig. 5 schematically. The filter was placed in front of the

camera, allowing only the wavelengths from the illumi-

nation to pass through and suppressing all other spectral

ranges, thus eliminating all optical disturbances during

recording. Figure 7 shows two frames before and after the

crack initiation. The camera recordings were carried out for

15 cracked welded joints. The recording rate used was 800

fps. The images were stored in tif format with a resolution

of 640� 240 pixels.

The experiments are carried out on two different steel

plates applying different strains. Table 4 lists the experi-

mental settings. The data sets with a strain of 5% and strain

rate 6 s�1 are used as training data. To estimate the models

and tune parameters during training, 20% of the frame

sequences in the training data are randomly divided into

validation set. To verify the performance of the models, the

test set is generated by setting the strain differently to 7%

or to different strain rates of 4 s�1 and 8 s�1. Finally, 14

different sets of welding data with over 50000 frames are

obtained.

4.4 Data labelling

The welded specimen were examined by X-ray after

welding to determine the location of the crack in the

welded specimen. The X-ray images were the ground truth,

used to precisely label the area of the image in the videos

where the crack started and propagated. The X-ray images

allow the precise identification of the frames in which

crack formation, propagation, and termination are visible.

Figure 8 shows an example of an X-ray image of a cracked

weld specimen made of steel grade 304.

4.5 Data pre-processing

The data need to be pre-processed before training. First, a

region of interest (ROI) area near the weld pool is selected

to reduce the calculation cost. The resolution of 64� 128

pixels is sufficient, as further increasing the area no longer

improves the accuracy, but increases the latency. Figure 9

shows the clipped images at different stages, (a) is the

normal state, (b) is the stage when the crack begins to

initiate, which is difficult to distinguish from the normal

state at this time. (c) is the stage of crack propagation, and

(d) is interference data that looks like a crack and may

trigger a false alarm.

To expand the training samples, and increase the

diversity in the data set, data augmentation methods are

Fig. 6 Experimental setup for laser beam welding in combination

with the hot cracking test (CTW test) and the applied coaxial digital

camera

Fig. 7 Two images show the weld seam during welding, (top) before

crack formation, (bottom) after crack formation
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utilized. The images will be randomly transformed with a

50% probability in the following ways. First, the cracks in

the data set are horizontal with an inclination of no more

than �15�, and all frames in the sequence can be rotated by

a certain degree, as shown in (b). (c) simulates brightness

variations, and (d) shows the image processed with Gaus-

sian blur.

Table 4 Experimental settings

Material CTW Strain in % CTW Strain Rate in s�1 Quantity (Videos/Images) Name

Training set AISI 304 5 6 4/14745 AISI304_5_6s

H400 5 6 2/7215 h400_5_6s

Test set AISI 304 5 8 2/6600 AISI304_5_8s

7 6 2/9606 AISI304_7_6s

H400 5 4 2/6600 h400_5_4s

5 8 2/6360 h400_5_8s

Fig. 8 X-ray image of cracked

weld specimen

Fig. 9 Frames in different states
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5 Results analysis

In this section, the performance of the two models is

evaluated and compared. Both networks are implemented

using Python and the Pytorch package [33]. They are

trained on the graphical processing unit (GPU) NVIDIA

Tesla P100 with 25 GB RAM. The accuracy and loss in the

training process is presented first. Then, the accuracy and

calculation cost are compared on test sets and, finally, the

visualization of the optimal model is given.

5.1 Training results

Figure 11 shows the results of training and validation with

respect to accuracy and loss.

To train the temporal model, the input is a video clip

composed of consecutive frames; thus, a T frame wide

window is slid over the videos to construct the input. In

order to find the influence of sequence lengths, models with

different window size T are built. The accuracy and loss in

Fig. 11 show that the model converges faster with

increasing window size T because longer motion and

temporal information can be captured. For the CNN-

(a) CNN-LSTM

(b) 3D-CNN

Fig. 11 Comparison of accuracy and loss on training and validation sets

Fig. 10 Types of data augmentation
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LSTM, when T is 16, the maximum accuracy on the vali-

dation set is 95:56% at the 11th epoch. The models with

T ¼ 32 and 48 can achieve the same accuracy already at

the 9th and 7th epochs, respectively. For the 3D-CNN, the

maximum accuracy is 97:13%ðT ¼ 16Þ; 99:12%; ðT ¼ 32Þ
and 99:52%ðT ¼ 48Þ at the 16th, 18th and 19th epochs,

respectively. Overall, as the window size T increases, the

3D-CNN can achieve higher accuracy on the validation set.

Also in comparison with the CNN-LSTM, accuracy and

loss are both better for the 3D-CNN.

5.2 Evaluation results

Next, we will evaluate the performance of the trained

models through the test sets introduced in Table 4.

We note that accuracy is not a robust measure when

dealing with unbalanced classes, as we find them in the

welding data sets. To improve the model evaluation and

better compare the performance of the models, in addition

to model accuracy, some application-driven metrics such as

sensitivity and specificity are introduced. The metrics can

be calculated as defined in Eq. (5). True positives (TP)

denotes the cracks correctly predicted, false positives (FP)

denotes the normal frames that are mispredicted as show-

ing cracks, and true negatives (TN) and false negatives

(FN) denote the normal frames that are correctly and

incorrectly predicted. Sensitivity indicates the proportion

of true positives in real labelled samples, and specificity

indicates that of negative cases. They both denote the

ability of the model to correctly identify the positive and

negative samples. In our crack formation detection appli-

cation, early detection of cracks is very important, which

some false alarms can be accepted. Therefore, sensitivity is

the most important metric.

Accuracy ¼ ðTPþ TNÞ=ðTNþ FPþ TPþ FNÞ

Sensitivity ¼ TP=ðTPþ FNÞ

Specificity ¼ TN=ðTNþ FPÞ

ð5Þ

As mentioned in Sect. 3.2, the use of very deep and

complex networks may result in degraded performance, as

welding videos only involve simple features. Therefore,

ResNet-18 is used as a model for comparison, and the

maximum number of channels is reduced to 196, which

improves accuracy and inference time, and is consistent

with our proposed networks. Figure 12 shows the overall

accuracy, sensitivity, and specificity of ResNet-18 on four

test sets. The sensitivity is not very high because the frames

at the beginning of crack formation cannot be detected

successfully.

Figures 13 and 14 show the results in three aspects of

CNN-LSTM and 3D-CNN. It can be seen that compared to

ResNet-18, the sensitivity of CNN-LSTM and 3D-CNN is

significantly improved. Consistent with the results in the

training process, the accuracy gradually improves with the

increase in T. On the test set h400_5_4s, although the

accuracy of 3D-CNN decreases, the sensitivity is greatly

improved to values well above 90%.

The precision–recall curve (PR curve) shows the ability

to detect positive samples and is more sensitive to imbal-

anced data. Precision represents the proportion of true

positives in the positive samples predicted by the classifier.

It reflects whether the model can detect more positive

samples with fewer FP results. Recall is equal to sensitivity

(Eq. 6). The PR curve is produced by calculating the pre-

cision and recall using a different threshold (prediction

probability). The value of the average precision (AP) is

equal to the area under the PR curve. The model with

higher AP is better because precision and recall are both

high. From Fig. 15, it can be seen that when T is set to 16

Fig. 12 Results of ResNet-18 on

test sets
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(a) Accuracy

(b) Sensitivity

(c) Specificity

Fig. 13 Results of CNN-LSTM

on test sets
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(a) Accuracy

(b) Sensitivity

(c) Specificity

Fig. 14 Results of 3D-CNN on

test sets
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and 32, the APs of the two models are basically equal.

When T is 48, the result of 3D-CNN is slightly better than

that of CNN-LSTM.

Precision ¼ TP=ðTPþ FPÞ

Recall ¼ TP=ðTPþ FNÞ
ð6Þ

Figure 16 displays the prediction result of the test set

AISI304_5_8s, the ordinate in the figure is the predicted

probability, and the number of frames at which cracks

appear and end is given. After frame 1005, a crack starts to

appear. ResNet-18 issues an alarm at frame 1041, when the

crack has formed and propagated. The frames before and

after the crack formation are very similar to the start and

end of the crack region. Accurately predicting the number

of frames is challenging, and raising an alarm before cracks

occur is actually better. When the input length is 16, the

CNN-LSTM and 3D-CNN models give predictions at

frames 1000 and 1001. When the input window length

increases to 48, they make predictions 5 and 21 frames in

advance as marked in the figure. The frames at the end of a

crack until it disappears are not detected. This is because

the motion features are not obvious and cannot be distin-

guished from interference data. In our scenario, it is more

important to detect the occurrence moment of the crack

formation than its end, and therefore, missing the end of the

crack does not define an error for us. Taking more images

as input can predict the formation of cracks earlier, but it

also requires more memory and processing time. The next

section will discuss the computational efficiency of dif-

ferent input lengths.

5.3 Computation cost

In this section, the models are evaluated with respect to

their computational cost, which is particularly important

for real-time detection. Table 5 lists the processing time of

the two algorithms at different sequence lengths on the test

set AISI304_5_8s, which contains over 3000 frames, as

well as that of ResNet-18 per frame. We find that the

processing time of CNN-LSTM and 3D-CNN is very

similar. It increases linearly with the sequence length.

The processing time of ResNet-18 is 0.39 ms, which is

much faster than the processing time of both our models. It

must be mentioned that the processing times are not

comparable because ResNet-18 processes only one image

at the time, while the temporal models need to process

multiple images in each step.

However, we have considered possibilities to speed up

the processing time of a larger sequence of frames. It is

computationally very inefficient if the sliding window only

moves by one frame at a time, because more than 90% of

the frames will be processed repeatedly. The displacement

between two consecutive frames is very small, thus

increasing the distance in a sliding step can improve effi-

ciency while maintaining accuracy. Figure 17 shows the

prediction results when T is 48, and the sliding step size is

1, 12, 24, and 36 frames, which means the overlap of the

sequences is 98%; 75%; 50% and 25%: From the small

image in Fig. 17a, one can see that increasing the sliding

step size will greatly reduce the inference time. When

overlapping only 25%; the detected crack initiation frame

is delayed by more than 20 frames. But when the over-

lapping is 50% or 75%; there is only a few frames differ-

ence. In terms of efficiency, a 75% overlap can achieve the

same processing time as ResNet-18, while 50% overlap is

twice as fast. In summary, when a quick alarm is required

so that the welding process can be reset or adjusted

promptly, T can be set to 48 and the sliding step is one

quarter or half of T, which can meet both accuracy and

efficiency requirements.

5.4 Visualization

Since deep learning is treated as a black box, in order to

give an interpretation to its output, two visualization

methods are applied to the 3D-CNN model, guided back-

propagation [34] and gradient-weighted class activation

mapping (Grad-CAM) [35]. Figure 18 illustrates the visu-

alization results. Figure 18a shows the original frames

input to the network, including the normal, crack

(a) T=16 (b) T=32 (c) T=48

Fig. 15 Precision–recall curves of different input length
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formation, propagation, and end stages. Figure 18b shows

the reconstructed images obtained by inverting the feature

map at the last layer through guided backpropagation.

From the figure one can see that a crack is the most dis-

criminative region. Figure 18c shows heat maps generated

by Grad-CAM. It reflects the importance of spatial loca-

tions calculated by the feature map of the last convolu-

tional layer and the predicted class. The crack regions are

highlighted as they are considered important for the final

crack prediction.

Fig. 16 Prediction results of the

three models
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6 Conclusions

In this paper, we have developed and studied two machine

learning models based on CNN-LSTM and 3D-CNN to

predict a common defect in welding processes, the solidi-

fication crack. To the best of our knowledge, we are the

first to analyse welding videos instead of static images of

welded specimen. While the method in this paper is used

for laser welding, it is surely also applicable to other

welding industrial applications monitored by weld pool

videos. The evaluation on high-quality images collected by

a high-speed camera shows that both methods can learn

temporal features from image sequences and detect the

range of crack formation accurately. The model 3D-CNN is

slightly better than CNN-LSTM. The results are very

promising and encourage us to explore this field further.

The accuracy can be improved by stacking more images as

input, but this will also linearly increase the processing

time. This problem can be solved by increasing the moving

step size of the sliding window.

In real-time monitoring systems, time efficiency is very

important. In the future, we plan to further optimize the

model with respect to its speed while maintaining high

accuracy. We will study some lightweight networks, such

as depthwise separable convolution in MobileNet [36] and

pointwise group convolution in ShuffleNet [37]. On the

other hand, a new kind of welding experiments will be

conducted to generate a challenging data set completely

different from the one used in this paper. The new data set

will contain cracks that are inside the material and invisible

from the surface, so they can only be located through the

strain fields. In order to solve the problem of high com-

putational overhead in the strain calculation, we will

Table 5 Calculation cost

Model Parameter Length FLOPs Time (ms)

ResNet-18 3.2M – 0.2G 0.39

CNN-LSTM 1.3M 16 0.6G 2.01

32 1.2G 4.16

48 1.8G 5.88

3D-CNN 2.2M 16 0.9G 2.13

32 1.0G 4.11

48 1.4G 5.51

Fig. 17 Prediction results of

different overlapping sequences
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explore predicting strain fields with a machine learning

algorithm, and then detecting cracks based on the predicted

strain value.
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