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Abstract
Echo State Networks (ESNs) are a special type of Recurrent Neural Networks (RNNs), in which the input and recurrent

connections are traditionally generated randomly, and only the output weights are trained. However, recent publications

have addressed the problem that a purely random initialization may not be ideal. Instead, a completely deterministic or

data-driven initialized ESN structure was proposed. In this work, an unsupervised training methodology for the hidden

components of an ESN is proposed. Motivated by traditional Hidden Markov Models (HMMs), which have been widely

used for speech recognition for decades, we present an unsupervised pre-training method for the recurrent weights and bias

weights of ESNs. This approach allows for using unlabeled data during the training procedure and shows superior results

for continuous spoken phoneme recognition, as well as for a large variety of time-series classification datasets.

Keywords ESN � RCN � Clustering � State machine

1 Introduction

Reservoir Computing (RC), particularly the Echo State

Network (ESN), describes an emerging research area of

randomly initialized Recurrent Neural Networks (RNNs),

in which traditionally only a very small amount of all the

weights are trained using linear regression [17]. ESNs have

achieved state-of-the-art results in various directions, such

as speech recognition [50, 51], image classification [19],

music analysis [42, 43], plasma control [20, 21], and time-

series forecasting [28, 30, 41, 52, 53, 57]. Furthermore,

several toolboxes have recently been developed with dif-

ferent use-cases [29, 45, 54], which help to pave the way

for applying ESNs and other RC structures for a broader

community.

In recent years, numerous approaches aimed to optimize

the typically un-trained and fixed random input and

recurrent weights, as there are rising arguments that a

purely random initialization might not be the ideal way of

setting up ESNs [27, 31, 38]. In fact, it was proposed in

Lukoševičius et al. [27] that a data-driven way of weight

initialization should lead to a superior behavior of such

customized ESNs. However, of course, the main idea of the

basic ESN with its simple training approach should not be

forgotten.

Jalalvand et al. [18, 19] analyzed the hyper-parameters

of an optimized ESN. Aceituno et al. [1] showed how the

eigenspectrum (ordered absolute eigenvalues) of the

recurrent weights influence the performance of an ESN. As

a consequence, various optimization strategies [15, 19, 43]

for ESNs were proposed to efficiently tune an ESN task-

dependently.

Another venue of research has been the deterministic

design of ESNs. Initially, in Rodan and Tino [36], very

simple ESNs with a fixed reservoir were analyzed. There-

fore, the authors proposed three types of ESNs, namely the

delay line reservoir (DLR) with optional feedback (DLRB)

and the simple cycle reservoir (SCR). The weight values

were zero for all but for one specific value that was

assigned to weights on the lower subdiagonal of the weight
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matrix and another value on the upper subdiagonal in case

of the DLRB. An entirely randomly initialized ESN was

compared with these three simplified deterministic models

for different tasks (time-series prediction and spoken digit

classification), and it turned out that the proposed simpli-

fications performed as well as the basic ESN model

regardless of the task. In Rodan and Tiňo [37] and in Sun

et al. [47, 48], the SCR architecture (previously the most

promising model) was expanded to include jump connec-

tions. In Strauss et al. [46], and in Griffith et al. [14], and in

Verzelli et al. [56], yet other families of deterministic ESNs

were designed. The results of these studies were similar —

deterministic ESNs performed equivalently to randomly

initialized ESNs and were better explainable, especially the

eigenspectrum of the recurrent weights. Recently, the

experiments from Rodan and Tino [36] were repeated for

the deep and graph ESNs [8, 9] with similar results.

Overall, all these approaches either try to tune the

reservoir parameters task-dependently or to initialize the

weight matrices of an ESN in a deterministic way, inde-

pendent of the task. Other approaches, such as

[2, 3, 25, 40], still aimed to randomly initialize the weight

matrices of an ESN but adapted the Self-Organizing Maps

(SOM) algorithm [24] and Hebbian learning [11] to

unsupervisedly adjust the weight matrices in an iterative

fashion that is biologically plausible.

In Steiner et al. [44], we proposed an unsupervised

method to pre-train the input weights of ESNs with the K-

Means algorithm [26]. We showed that passing a feature

vector to a neuron in the reservoir via the input weight

matrix is closely related to computing the cosine similarity

between the feature vector and the input weights that are

connected to a specific neuron. By replacing the randomly

initialized input weights by the K-Means centroids, we

maximized the activation of those neurons, whose input

weights are most similar to the current feature vector. This

approach not only outperformed randomly initialized ESNs

for many use-cases but also allows utilizing unlabeled data

to learn the input weights [42].

In this paper, we propose an extension of our work in

Steiner et al. [44]. Inspired by state machines from statis-

tical signal processing, we aim to pre-train the bias weights

and the recurrent weights of ESNs in an unsupervised

fashion. In addition to our work in Steiner et al. [44], we

not only consider the centroids of the K-means algorithm

and use them as the input weights. In particular, we con-

sider the clusters to which inputs were assigned, and pro-

pose to use their relative frequencies as the bias weights,

and the transition probabilities between subsequent clusters

as the reservoir weights. We show that this approach is

motivated by the way in which the current reservoir state is

computed from the current input and the previous reservoir

state. Our approach

1. performs equally well or better than baseline models

for the tasks of continuous phoneme recognition and

multivariate time-series classification of many time

series with different properties,

2. shows that the approach combines the two borderline

cases of purely randomly or deterministically initial-

ized ESNs,

3. proposes a way to interpret the learned weights given a

dataset.

The reason for focusing on the first application of continuous

phoneme recognition is that speech may follow phonotactic

rules that define which phonemes follow each other. As

illustrated in Sect. 3, the proposed training strategy tunes the

recurrent weights in a way such that they approximate

phonotactic rules. The reason for focusing on the second

application of multivariate time-series classification is that

this is a well-defined benchmark test for algorithms that deal

with temporal data, and the broad variety of considered time-

series covers many different use-cases and input data.

The remainder of this paper is organized as follows: In

Sect. 2, we briefly review the basic ESN, the K-Means

ESN and our proposed training strategy for the recurrent

weights. In Sect. 3, we experimentally introduce, analyze

and evaluate the method for phoneme recognition in speech

data, and in Sect. 4, we extend the study to a broad variety

of multivariate datasets with different characteristics. We

conclude with a summary of the most important results in

Sect. 5 and a possible outlook to future work in Sect. 6.

2 Methods

2.1 Basic echo state network

A basic ESN as depicted in Fig. 1 consists of three weight

matrices: The input weights Win, the reservoir weights

Wres and the output weights Wout.

Fig. 1 Main components of a basic ESN: The input features u½n� are
fed into the reservoir using the fixed input weight matrix Win. The

reservoir consists of unordered neurons, sparsely interconnected via

the fixed reservoir matrix Wres. The output y½n� is a linear

combination of the reservoir states r½n� based on the output weight

matrix Wout, which is trained using linear regression
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The input weight matrix Win has the dimension

Nres � N in, where Nres and N in are the size of the reservoir

and the input dimension, respectively. Win is responsible to

transfer a given input u½n� (time index n) to all reservoir

neurons. The weight values are typically drawn from a

uniform distribution between �1 and later scaled by the

hyper-parameter ‘‘input scaling’’ au. According to Jalal-

vand et al. [19], it is sufficient to have only a limited

number of connections from each input node to the reser-

voir neurons. In this paper, we define K in ¼ minðN in; 10Þ as
the number of connections from an input node to each

neuron. Especially for high-dimensional inputs, this leads

to a very sparse Win.

The reservoir weight matrix W res is a Nres � Nres square

matrix, where the values are initialized from a standard

normal distribution. Similar to the input weights, we con-

nect each reservoir neuron only to Krec ¼ 10 randomly

selected nodes in the reservoir and set the remaining

weights to zero. Afterwards, Wres is normalized by its

largest absolute eigenvalue to fulfill the echo state property

[17]. Finally, W res is scaled task-dependently by the hyper-

parameter ‘‘spectral radius’’ q.
Since the input scaling au and the spectral radius q

determine how strongly the network relies on the memo-

rized past inputs compared with the current input, these

hyper-parameters need to be tuned jointly in the opti-

mization process.

Since the ESN consists of ‘‘traditional’’ analogue neu-

rons, every neuron receives an additional constant bias

input. The bias weight vector wbi with Nres entries is ini-

tialized from a uniform distribution between �1, scaled by

the hyper-parameter abi.
With these three weight matrices, the reservoir state r½n�

can be computed with

r½n� ¼ ð1� kÞr½n� 1�

þ kfresðWinu½n� þWresr½n� 1� þ wbiÞ ,
ð1Þ

which is a leaky integration of the reservoir neurons. This

is equivalent to a first-order low-pass filter, where the

leakage k 2 ð0; 1� determines, which amount of the past

reservoir state is leaked over time. Together with q, the
leakage k determines the temporal memory of the

reservoir.

The reservoir activation function fresð�Þ determines the

nonlinearity of the ESN. In this paper, we use the tanh

nonlinearity.

The output weight matrix Wout with the dimensions

Nout � ðNres þ 1Þ connects the reservoir state r½n�, which is

expanded by a constant intercept term of 1 for regression,

to the output vector y½n� using
y½n� ¼ Woutr½n�. ð2Þ

The output weight matrix contains the only weights to be

trained and is typically computed using ridge regression.

Therefore, all reservoir states calculated for the training

data are collected into the reservoir state collection matrix

R; all desired outputs d½n� are collected into the output

collection matrix D.

With these matrices, ridge regression is solved as

Wout ¼ ðRRT þ �IÞ�1ðDRTÞ, ð3Þ

where � is the regularization parameter that needs to be

tuned on a validation set. Since Eq. (3) can be solved in

closed form, ESNs are quite efficient and fast to train

compared to typical deep-learning approaches. Further-

more, they are adaptive, since new training data can always

be used to update the output weights using incremental

regression [20].

2.2 K-Means Echo State Network

In Steiner et al. [44], we introduced a novel way to ini-

tialize or pre-train the input weight matrixWin based on the

K-Means algorithm.

The K-Means algorithm aims to group a set of feature

vectors with N in features in K clusters, and each observa-

tion is assigned to the cluster with the closest centroid

according to the Euclidean distance [26]. This is visualized

in the Voronoi diagram in Fig. 2, where a two-dimensional

feature space is partitioned into four distinct regions. Each

region is represented by the centroid lk of the kth cluster

Ck.

As we showed in Steiner et al. [44], passing a feature

vector u½n� to the kth reservoir neuron is equivalent to

computing the dot product between u½n� and the weights to

the kth neuron. The dot product is closely related to the

cosine similarity, and it gets large if u½n� and the weights

are showing in similar directions, close to zero if they are

orthogonal, and negative if u½n� and the weights are

showing in opposite directions.

By replacing the random values ofWin of a general ESN

with the cluster centroids, each neuron is tuned to respond

most strongly to a feature vector that lies within the area of

the respective cluster described by its centroid lk. This
resulted in a superior performance of the K-Means Echo

State Network compared to the basic ESN for different

kinds of data. In Steiner et al. [42], we showed that this

approach can be used to include unlabeled data for the pre-

training stage, because the K-Means algorithm does not

require labeled data.
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2.3 Unsupervised training of the reservoir
weights

Now we consider the reservoir weights Wres. From Eq. (1),

it is known that the current state r½n� of ESNs as well as

general RNNs only depend on the current input u½n� and
the previous hidden/reservoir state r½n� 1�. In this work,

we propose a novel pre-training strategy for the reservoir

weights. For this, we consider two neurons a and b that

represent the clusters C1 and C4 in Fig. 2. The proposed

pre-training scheme adjusts the weight between the two

neurons in such a way that it reflects the probability that an

input feature vector belonging to the cluster of b follows an

input feature vector belonging to the cluster of a in the

training data. We can approximate this probability by

counting, how often the sequence of inputs ðu½n� 1�; u½n�Þ
represents the transition between two neurons a and b.

Hence, we can compute each recurrent weight wij in gen-

eral using

wres
ij ¼ Pðu½n� 2 Cj; u½n� 1� 2 CiÞ �

#fCi;Cjg
#fCig

, ð4Þ

where i and j are the indices of the previously and the

currently selected clusters, respectively. The term

#fCi;Cjg denotes the absolute number of occurrences of

successive input vectors u½n� 1� and u½n� belonging to the

clusters Ci and Cj, respectively. The term #fCig denotes

the absolute number of input vectors that belong to the

cluster Ci. For the introductory example, this is visualized

in the state transition graph (Fig. 3). We can, for example,

observe that there are many transitions toward the cluster

C1 (i.e., more than 50 %), which has the highest absolute

frequency in this example. Furthermore, since the centroids

l1 and l4 are close together, in general more transitions are

happening between their clusters and there occur more self-

transitions. An important aspect of this weight initialization

scheme is that the weight values are always bounded

between [0, 1].

Overall, two factors determine the response of a reser-

voir neuron a at a given time:

1. The similarity of u½n� to the cluster centroid is

represented by neuron a in terms of the input weights.

2. The degree to which the sequence of inputs ðu½n�
1�; u½n�Þ represents a probable transition between two

neurons b and a.

This idea is loosely related to Hidden Markov models

(HMMs), which were widely used for various recognition

tasks with temporal dependencies, such as for speech

recognition [34], alignment of musical performances and

its scores [33] and for human activity recognition [32].

In this paper, we denote the models in which the input

and recurrent weights are pre-trained as KM-ESN 2-Gram.

2.4 Unsupervised training of the bias weights

In addition to the reservoir weights, we propose a related

strategy to initialize the bias weights wbi. From Eq. (1), it is

known that each neuron receives the current input u½n�
together with a constant 1, which is scaled by the bias

weights. We still consider the two neurons a and b that

represent the clusters C1 and C4. We now adjust the bias

Fig. 2 Voronoi diagram for a two-dimensional feature space with four

potential clusters

Fig. 3 State transition diagram for the clusters, where the numbers

indicate transition probabilities. Since the clusters C1 and C4 lie

closely together in the feature space, more transitions occur between

these, than between the other clusters
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weights in a way that neurons, which represent frequently

selected clusters, are emphasized more strongly than neu-

rons that represent rarely selected clusters. Similar as in

Sect. 2.3, this can be achieved in a probabilistic way.

Therefore, we count how often each cluster was selected in

the training data and divide it by the size of the training

dataset according to Eq. (5)

wbi
i ¼ Pðu½n� 2 CiÞ �

#fCig
PNres

j¼1 #fCjg
. ð5Þ

In Fig. 4, the relative frequencies of the different clusters

of our toy example are visualized. It can be noticed that the

clusters C1 and C4 occur more frequently than the other

clusters. Consequently, the underlying neurons a and b get

stronger bias weights (i.e., wbi
1 � 0:55, wbi

1 � 0:20) than the

other neurons. Note that the bias weight values are also

bounded between [0, 1], as the reservoir weights.

In this paper, we denote the models in which the input

and bias weights are initialized as KM-ESN PB. The term

‘‘PB’’ denotes ‘‘probabilistic bias’’. If we combine our two

newly proposed pre-training strategies, we refer to the

models as KM-ESN 2-Gram PB.

3 Phoneme recognition

In the first experiment, we aim to demonstrate the effec-

tiveness of our proposed pre-training strategy by applying

it to continuous phoneme recognition from audio record-

ings. This task is particularly interesting because it allows

us to analyze how the pre-trained weights capture the

phonotactic rules that dictate which phonemes can follow

others with specific probabilities in each language.

Although we do not anticipate that clusters will strictly

correspond to phonemes, we expect that similar phonemes

will be grouped together in a cluster. Moreover, we expect

the pre-trained reservoir weights to exhibit a structure that

shares similarities with the phonotactic rules. Specifically,

we hypothesize that the recurrent weights will resemble the

transition probabilities of a bigram language model.

3.1 Dataset

We use the DARPA TIMIT corpus [10], which consists of

a broad variety of sentences spoken by native English

speakers and is a common benchmark test in the area of

speech recognition. It is already divided in training and test

subsets. In total, 630 speakers (70 % male, 30 % female)

from eight dialect groups each recorded ten sentences. Two

of the sentences were equal for all speakers, and we did not

use them in this study to stay in line with Triefenbach et al.

[50] and Graves and Schmidhuber [13]. The training set

included 3640 recordings and the test set 1336 recordings

from 168 different speakers, which are not contained in the

training set.

3.2 Feature extraction

The starting point for the feature extraction were the audio

signals with a sampling frequency of 16 kHz. Each audio

signal was first filtered with a pre-emphasis filter with a

coefficient of 0.97 [58]. Afterwards, it was divided into

frames with a length of 25 ms and with a window shift of

10 ms. Short-term spectra were extracted by applying a

Hamming window to the frame and then computing the

FOURIER transform. To reduce the dimensions of the

resulting spectrograms, we used pycho-acoustic knowledge

and applied a Mel filterbank with 40 filters between 0 kHz

and 8 kHz. We use a logarithmic amplitude and finally add

the D and DD features. This leads to an input size

N in ¼ 120. It has been shown in Huzaifah [16] that the Mel

spectrograms as used here are a well-performing alterna-

tive to Mel-Frequency Cepstral Coefficients (MFCCs). An

example for a logarithmic Mel spectrogram is given in

Fig. 5. For the sake of simplicity, the D and DD features are

not visualized here.

We normalized the features channel-wise to zero mean

and unitary variance. Therefore, the constants for each Mel

channel, its first and second derivatives were computed on

the entire training dataset and then applied channel-wise on

each spectrogram in the training and test set.

Fig. 4 Relative frequencies of the clusters, i.e., the bias weights.

Since the clusters C1 and C4 occur more frequently than the other

clusters, their bias weights are higher than the weights of the other

clusters
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3.3 Target preparation and readout
postprocessing

Each audio file has a time-aligned phoneme annotation. We

followed [50] and used 39 phonemes. For each frame, the

target was prepared in a one-hot encoding so that the output

corresponding to the current active target phoneme is 1, all

other outputs are zero.

The ESN serves as an acoustic model in this context and

represents the relationship between acoustic features and

the phonemes. The only postprocessing that was applied in

this paper is to identify the output with the highest acti-

vation in each frame, which denotes the detected phoneme.

The approximation of the likelihoods could also be fed in a

subsequent language model, which, however, goes beyond

the scope of this paper.

3.4 Measurements

We follow [50] and report the frame error rate (FER),

which is the proportion of incorrect classifications to the

total number of frames. The FER was used to optimize the

hyper-parameters and for the final evaluation on the test

set.

3.5 Optimization of the hyper-parameters
of the ESNs

As discussed in our prior work [44] and in Hinaut and

Trouvain [15], there exist intrinsic relationships between

the most important hyper-parameters to be tuned in ESNs.

Consequently, we use the strategy defined in Steiner et al.

[44] and sequentially optimized the hyper-parameters using

randomized searches that are specified in Table 1.

We start with a random search across the input scaling

au and the spectral radius q, without using leaky integration
and without the bias for each neuron. In a second step, we

optimized the leakage value using a random search, while

the input scaling and spectral radius were fixed to the

determined values from the previous step. Finally, the bias

scaling was optimized using a random search.

For this optimization, the regression parameters were

solely trained on the training set and evaluated on the

validation set. The reservoir size was fixed to 50 neurons.

In preliminary experiments, we compared the impact of

different reservoir sizes for optimizing the hyper-parame-

ters, and it turned out that the parameters obtained with 50

and with 500 neurons were almost the same. Thus, we

chose 50 neurons, since this reduced the required opti-

mization time.

The resulting hyper-parameters for the different ESN

architectures are summarized in Table 2. There are sub-

stantial differences between the different models. Espe-

cially the input scaling and the spectral radius are different.

In the following, we give insight in what the different ESN

models learned from the audio data.

3.6 Reservoir analysis

In Fig. 6, the randomly initialized input weights are com-

pared to the K-Means centroids. As opposed to the ran-

domly initialized sparse input weights, the centroids are

dense and three sections can be recognized, which belong

to the Mel features and their first and second derivatives.

The input weights leading to every neuron now represent

mean values of specific feature vectors from the training

dataset that were grouped together.

Similarly, we observe substantial differences between

the random recurrent weights (Fig. 7a) and the normalized

neuron transition matrix (Fig. 7b). In the first case, the

weights are unordered, while in the neuron transition

matrix the main diagonal is pronounced. This suggests that

each neuron is more likely to be activated by itself than by

other neurons. This is an expected phenomenon in speech

data, where there is a high chance to see the same phoneme

than a different one when moving from one frame to

another, although we do not expect that the neurons strictly

correspond to phonemes here. Furthermore, the 2-Gram

transition matrix is sparse, because only a subset of

Even then, if she took one step forward he could catch her.

Fig. 5 Example for a raw audio signal and the extracted Mel

spectrogram with 40 channels from one sentence of the TIMIT corpus

Table 1 Setup of the hyper-parameter optimization. Each step was a

randomized step with the specified distribution and the specified

number of iterations

Parameter Distribution Range #Iterations

Input scaling Uniform 1� 10�2 to 1 200

Spectral radius Uniform 0 to 2 200

Leakage Log uniform 1� 10�3 to 1 50

Bias scaling Uniform 0 to 3 50
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phoneme transitions occur in typical speech data. This

subset, however, can have large non-zero values, which

still allows a complex information flow between different

neurons. Considering the complex eigenvalues of the

2-Gram transition weights, this means that a majority of the

eigenvalues of these transition weights have larger imagi-

nary parts.

Finally, we analyze the bias weights. Since the phoneme

set in the TIMIT corpus is not balanced, we expected that

the pre-trained bias weights are not uniformly distributed

as well. In fact, the pre-trained bias weights are similar as

in the introductory example in Fig. 4. A few neurons have

higher bias weights than most of the neurons. Interestingly,

Fig. 6 a Random input weights

and b normalized K-Means

centroids. While the random

input weights are sparse, the

centroids are dense and show

three groups, which belong to

the Mel features, to the D
features, and to the DD features,

respectively

(a) Random recurrent weights (b) 2-Gram transition weights

Fig. 7 a Random recurrent

weights and b normalized

neuron transition matrix. While

the random recurrent weights

are unordered, the main

diagonal of the 2-Gram

transition weights is

pronounced. This means that it

is likely that each neuron in the

reservoir is activated by itself

for multiple time steps

Table 2 Results of the hyper-

parameter optimization for the

different ESN architectures for

phoneme recognition

Basic ESN KM-ESN KM-ESN

2-Gram

KM-ESN

PB

KM-ESN 2-Gram

PB

Input scaling 0.11 0.04 0.06 0.04 0.02

Spectral radius 0.04 0.07 0.65 0.07 1.02

Leakage 0.35 0.21 0.35 0.21 0.55

Bias scaling 2.89 2.73 1.12 0.88 1.30
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regardless of the reservoir size, it turned out that particu-

larly one neuron had the overall highest weight value.

In Fig. 8, we visualized the centroids of the four clusters

with the highest bias weights. For the sake of this visual-

ization, we restricted the plot to the Mel space and disre-

garded the first and the second derivative for now.

Particularly for the cluster index 3, which denoted the

neuron with the largest bias weight (0.157), we can see that

the energy is rather low. This is exactly the description of a

feature vector that belongs to silence. The orange line that

belongs to cluster 5 denotes the most frequent phoneme

symbol ‘‘s’’ [12] in the TIMIT corpus. From the Mel

spectrum in Fig. 8, it can be observed that the high-fre-

quency content of these phonemes was learned very well,

because the energy toward high frequencies increased here.

The green line that belongs to cluster 14 denotes the phone

symbols ‘‘ix’’ and ‘‘ih’’ in the TIMIT corpus. These phones

were grouped together to one phoneme [50], and together,

they are the third most frequently occurring phoneme in the

TIMIT corpus. As shown in Fig. 8, the green line has two

maxima, which could approximately be the first and the

second formant frequencies (240 Hz and 2400 Hz,

respectively) of this phoneme group. The red line that

belongs to cluster 11 was not as straightforward to be

assigned to one phoneme. Since still two maxima might be

recognized here, this could probably belong to the same

phoneme as before, but with a lower energy.

In summary, we showed now that the proposed model is

not only trained in an unsupervised way but can be further

interpreted with prior knowledge about the data. From the

transition weights, we have shown that, since the task of

phoneme recognition needs to map from fast changing

input sequences to slowly changing target output sequen-

ces, it is effective that especially the main diagonal of the

learned transition weights is emphasized. Consequently, it

is likely to choose the same ‘‘winner neuron’’ for a longer

amount of time. Secondly, the proposed probabilistic bias

weights allow for an inspection of the model, since we can

study which neurons have learned which part of the data.

3.7 Results and discussion

For the final evaluation, it is a common step for ESNs to

report the model performance on the test set for different

reservoir sizes. Therefore, we started with 50 neurons and

increased the reservoir size up to 16 000.

For each reservoir size, we first of all tuned the regular-

ization parameter a using a randomized search with 50

iterations between 1� 10�5 and 10 in a logarithmic uniform

distribution, then re-trained the model on the entire training

set, and finally reported the performance on the test set.

In Fig. 10, we summarized the FER for different reser-

voir sizes and architectures. In general, the FER decreased

with larger reservoir sizes, and the basic ESN, particularly

for small and medium reservoir sizes, showed the worst

performances. The KM-ESN was one of the overall best

models which confirms the effectiveness of the clustering

approach proposed in Steiner et al. [44]. On the other hand,

the models, in which we used the probabilistic bias

weights, did not improve the KM-ESN performance. Only

in case of larger reservoirs, the KM-ESN seems to benefit

from the probabilistic bias weights. Overall, the model

‘‘KM-ESN 2-Gram’’ was the best performing model within

this study, especially for reservoir sizes with more than 400

neurons. Interestingly, the combination of the probabilistic

bias weights and the 2-Gram weight matrix decreased the

performance of the model. A possible reason for this effect

is that the neuron that represents silence is too strongly

emphasized by both, input, recurrent and bias weights.

To get a better insight into the performance of the dif-

ferent models, we now compare the confusion matrices of

the ‘‘KM-ESN’’ and of the ‘‘KM-ESN 2-Gram’’ models,

both with 16 000 neurons. Figure 9 shows the difference

between the confusion matrix obtained with the ‘‘KM-

ESN’’ model and the confusion matrix obtained with the

‘‘KM-ESN 2-Gram’’ model on the test set, with the main

diagonal set to zero for visualization purposes. The ‘‘KM-

ESN’’ model tended to incorrectly recognize many frica-

tives and plosives as silence, whereas the ‘‘KM-ESN

2-Gram’’ model showed a better performance in recog-

nizing these phonemes correctly. The ‘‘y’’ phoneme was

also more frequently recognized by the ‘‘KM-ESN

2-Gram’’ model. However, the ‘‘th’’ phoneme was more

frequently recognized as ‘‘f’’, and a few similar-sounding

vowels were more frequently confused. It is worth noting

that the plosives and the ‘‘y’’ are relatively rare phonemes

in the TIMIT corpus, and the plosives always occur after a

Fig. 8 Centroids of the strongest activated neurons. The first line with

the label ‘‘3’’ shows that most of the frames belonged to silence,

because it shows a low energy and derivatives that are approximately

zero. Furthermore, other centroids that have local maxima show a

formant structure, which is frequently represented in the dataset, as

well
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closure (‘‘cl’’). The transition matrix of the ‘‘KM-ESN

2-Gram’’ model allows for better modeling of these

dependencies compared to randomly initialized reservoir

weights, which leads to better recognition rates in these

rarely occurring classes.

We finally compare our results with Triefenbach et al.

[50], in which the same data was used for randomly ini-

tialized ESNs, and with Graves and Schmidhuber [13], in

which bidirectional LSTM networks were used. From

Table 3, can be recognized that the proposed ESN models

with pre-trained input and recurrent weights performed

better than the reference models, which both define the

state-of-the-art in frame-wise continuous phoneme recog-

nition. Of course, the training complexity increases in

particular when moving from the basic ESN to the cluster-

based ESN models. However, the pre-training is an

important step, because it allows for an efficient usage of

basically any recorded speech data that is suitable for a

specific task. Since both, the input and recurrent weights

are trained un- or self-supervisedly, not even labels are

(a) Absolute label frequencies

(b) Confusion matrix difference

Fig. 9 Absolute label

frequencies in the test set, and

the difference between the

confusion matrices of the ‘‘KM-

ESN 2-Gram’’ and the ‘‘KM-

ESN’’ models on the test set,

respectively. The main diagonal

was set to zero for the sake of

visualization
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required for the training. Furthermore, computing the

transition weights as well as the probabilistic bias weights

is computationally not complex anymore but the impact

could clearly be observed in this experiment. One more

important aspect is the interpretability of the models. As

discussed, it could easily be inspected, what happened

inside the pre-trained ESN models.

Since the performance was evaluated on five random

initializations and the results of some models are very

similar, we performed a variety of significance tests to

compare the effect of the different proposed models.

Considering the TIMIT corpus, we firstly conducted tests

for different mean values of the FER in case of the different

models. The null hypothesis for these tests was that there is

no significant difference in the results reported for the

different models. With this null hypothesis, we conducted a

one-way ANOVA, which revealed that there was a statis-

tically significant difference in the performance of at least

two models on the TIMIT corpus with an F-value of 141.73

and a p-value of 2:25� 10�14. We could also reject the

null hypothesis in case of the Kruskal–Wallis H-test for

independent samples (Kruskal–Wallis H statistic of 21.57

and p-value of 0.000 24) and in case of the Alexander–

Govern approximation test (A statistic of 40.14 and p value

of 4:04� 10�8).

Next, we used the Tukey’s honestly significant differ-

ence (HSD) test as a post hoc test to compare the means of

the FER values reported for each model. We set the sig-

nificance level to 0.05, and the null hypothesis was that

there is no significant difference in the results. The results

of this test are summarized in Fig. 11. As can be seen from

the p-values, all pre-trained models performed significantly

different to the basic ESN. Furthermore, the model ‘‘KM-

ESN 2-Gram’’ performed significantly different to the other

pre-trained models. However, in combination with the

probabilistic bias weights, there is no significant difference

between the KM-ESN and these variants. Hence, we

ensured that the model ‘‘KM-ESN 2-Gram’’ is performing

significantly better than the other models.

4 Multivariate time-series classification

The goal of this experiment is the evaluation of the dif-

ferent proposed ESN models on a broad variety of time-

series classification tasks with different characteristics. We

jointly evaluate the sequence classification error CER and

the frame error rate FER. We compare the performance of

the models with probabilistic bias weights and with 2-

Gram transition weights with the baseline models.

4.1 Datasets

We used the datasets from Toth and Oberhauser [49],

which differ in the number of samples, input dimension,

sequence length and data type. The main characteristics

about the different datasets are summarized in Table 4. We

used the default split into training and test sets in our

experiments and optimized the hyper-parameters based on

K-fold cross-validation on the training set. For most of the

datasets, we used fivefold cross-validation. Only for the

datasets with only a few training sequences, we used

threefold cross-validation. For details, we refer to the col-

umn ‘‘CV’’ in Table 4.

4.2 Readout postprocessing and measurements

For each dataset, the target outputs (classes) were one-hot

encoded across the sequence (0 for the inactive classes and

1 for the active class).

Table 3 Final recognition errors on the TIMIT corpus. Obviously, the

proposed ESN structure outperformed all reference results

Model FER

Basic ESN 20000 Triefenbach et al. [50] 30.6 %

Basic ESN 16000 32.5 % ± 0.3 %

KM-ESN 16000 30.4 % ± 0.2 %

KM-ESN 16000 2-Gram 28.7 % ± 0.2 %

BLSTM Graves and Schmidhuber [13] 29.8 %

The bold value marks the best results

Fig. 10 Results for different ESN models and reservoir sizes. The

KM-ESN outperformed the basic ESN as in prior work. The model

‘‘KM-ESN 2-Gram’’ with a transition matrix normalized between

zero and one performed best. The models with the probabilistic bias

performed equivalently well as the KM-ESN model

24234 Neural Computing and Applications (2023) 35:24225–24242

123



During inference, the class scores were obtained by

searching for the class with the highest score in the entire

sequence.

To optimize the hyper-parameters, the Frame Error Rate

FER, which is the proportion of incorrect classifications to

the total number of frames, was used as a measure.

To measure the overall classification results, the classi-

fication error rate CER was used:

CER ¼ Nerror

Nseq

, ð6Þ

where Nerror and Nseq were the number of incorrectly

classified sequences and the overall number of sequences,

respectively.

4.3 ESN hyper-parameters

The optimization of the ESN models followed the same

strategy as in Sec. 3.5 with one exception: Instead of

starting with a default leakage of 1.0, we chose 0.1,

because the target outputs were constant across the entire

sequence. Thus, we expected a lower leakage. The

subsequent optimization procedure was then the sequential

optimization of the hyper-parameters, during which we

minimized the cross-validation FER. During the opti-

mization, we fixed the reservoir size to 50 neurons.

As discussed for the previous experiments, the hyper-

parameters significantly influence the performance of the

ESN models and they need to be tuned task-dependently.

Thus, in contrast to Bianchi et al. [6], we used models with

optimized hyper-parameters to report our final results for

each dataset. As can be expected and without reporting all

the hyper-parameters for every task, we observed that these

parameters were significantly different across the datasets.

In Fig. 12, the FER of the different ESN models and

reservoir sizes are summarized for all of the analyzed

datasets.

In most of the cases, we observed that the FER

decreased with an increasing reservoir size. Exceptions

were the datasets ‘‘KICK’’ and ‘‘DS’’, in which the per-

formance of some models decreased with the reservoir size

or was unstable.

Overall, the pre-trained ESN models performed better

and more stable than the basic ESNs, except for the

Fig. 11 Tukey’s honestly

significant difference (HSD)

post hoc test to compare the

mean values of the results of the

analyzed models on the TIMIT

corpus
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datasets ‘‘AUS’’, ‘‘LIB’’ and ‘‘NET’’. Since the ‘‘AUS’’

dataset has a very large number of classes (95), it is likely

that more centroids would have been required to describe

this dataset better. The other datasets (‘‘LIB’’ and ‘‘NET’’)

are rather low-dimensional (4D and 2D, respectively) and

difficult to get clustered. For the movement datasets

(‘‘CMU’’, ‘‘KICK’’, ‘‘WALK’’), as well as ‘‘JPVOW’’ and

‘‘PEMS’’, the pre-trained models outperformed the basic

ESN. These are all rather high-dimensional datasets that

can be clustered well.

4.4 Results and discussion

For the final evaluation, we collected the best results for

each model and dataset and compared the error rates on

frame level and on sequence level. In Fig. 13, the FER is

summarized. The main conclusion was that no single

model performed best in all tasks:

• The Basic ESN performed particularly well on the

‘‘ARAB’’, ‘‘AUS’’, ‘‘LIB’’ and on the ‘‘NET’’ datasets.

With the exception of the ‘‘ARAB’’ and ‘‘AUS’’

datasets, these were mostly low-dimensional datasets

with uniformly distributed features. This hinders the

clustering; thus the pre-trained models do not have

much advantage against the basic ESN.

• The KM-ESN showed the best performance on the

datasets ‘‘CHAR’’, ‘‘CMU’’, ‘‘JPVOW’’, ‘‘KICK’’ and

on ‘‘PEN’’. The dimensions of the datasets range from

3D in case of ‘‘CHAR’’ and larger in the other cases.

All datasets are better linearly separable than the

datasets, in which the basic ESN showed the best

performance. Although the ‘‘CHAR’’ dataset is still

low-dimensional, the separation gets easier, because the

dataset contains fewer classes than most of the other

low-dimensional datasets. Although the movement

datasets ‘‘CMU’’ and ‘‘KICK’’ both have the same

features, the performance is quite different. The reason

therefore is that the features of the ‘‘KICK’’ dataset are

partially mixed if it is projected in lower dimensions

using PCA. This makes the two classes difficult to get

separated properly.

• Probabilistic bias weights (i.e., the KM-ESN PB) helped

to improve the results in case of the datasets ‘‘ECG’’,

‘‘UWAV’’ and ‘‘WAF’’. Particularly the first two

datasets have distinct temporal orders of the features.

The probabilistic bias weights here were useful to

identify the most important neurons, similar as we

observed for the phoneme recognition.

• The KM-ESN with 2-Gram transition weights showed

the best performance in the datasets ‘‘ARAB’’ and

‘‘CMU’’. These are all datasets with a medium number

of features. Here, the order of subsequent winner

neurons play an important role. This results in transition

weights similar as in the phoneme experiment in

Sect. 3, where the main diagonal was emphasized and

the complex eigenvalues mostly had a positive real part.

Table 4 Details about the datasets for the multi-dataset evaluation

with the number of input features (N in), number of outputs (Nout),

mean, minimum and maximum sequence duration (Tmean, Tmin and

Tmax), the entire number of feature vectors (observations) in the

training set and test set (Ntrain, Ntest), the number of sequences in the

training and test set (#Train, #Test), and the number of folds for the

cross-validation (CV)

Dataset Abbreviation N in #Train #Test CV Nout Tmean Tmin Tmax Ntrain Ntest

Arabian Digits ARAB 13 6600 2200 5 10 39.8 4 93 263,256 87,063

Auslan AUS 22 1140 1425 5 95 57.3 45 136 63,371 83,578

Character Trajectories CHAR 3 300 2558 5 20 170.5 109 205 51,465 435,812

CMU subject 16 CMU 62 29 29 3 2 305.0 127 580 8462 9229

Digit Shapes DS 2 24 16 3 4 66.5 30 98 1625 1035

ECG ECG 2 100 100 5 2 89.5 39 152 9020 8887

Japanese Vowels JPVOW 12 270 370 5 9 15.6 7 29 4274 5687

Kick vs. Punch KICK 62 16 10 5 2 426.7 274 841 6413 4682

Libras LIB 2 180 180 5 15 45 45 45 8100 8100

NetFlow NET 4 803 534 5 2 230.7 50 997 182,881 125,506

PEMS PEMS 963 267 173 5 7 144 144 144 38,448 24,912

Pen Digits PEN 2 300 10,692 5 10 8 8 8 2400 85,536

Shapes SHAPES 2 18 12 3 3 80.6 52 98 1442 977

uWave UWAV 3 896 3582 5 8 315 315 315 282,240 1,128,330

Wafer WAF 6 298 896 5 2 136.8 104 198 40,833 122,450

Walk vs. Run WALK 62 28 16 3 2 368.0 128 1918 10,930 5261
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Fig. 12 FER with respect to reservoir size and models for the

analyzed datasets. In general, we observed that increasing the

reservoir size improves the performance. ‘‘KICK’’ and ‘‘DS’’ are

exceptions, in which the performance of some models decreased with

the reservoir size or was unstable. Overall, the pre-trained ESN

models performed better than the basic ESNs in most of the cases and

lead to more stable results

Fig. 13 FER for different datasets and evaluated models. For high-

dimensional data, we can see that the models with probabilistic bias

weights and the 2-Gram models in many cases outperformed the basic

ESN and the KM-ESN as baseline models

Fig. 14 CER for different datasets and evaluated models. For high-

dimensional data, we can see that the models with probabilistic bias

weights and the 2-Gram models in many cases outperformed the basic

ESN and the KM-ESN as baseline models
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The equally good performances of all the models on the

remaining datasets do not provide enough room for dis-

cussion and comparison on those tasks.

In Fig. 14, the final CER is summarized.

• The basic ESN performed particularly well on the

‘‘ARAB’’, ‘‘AUS’’, ‘‘LIB’’ and on the ‘‘NET’’ datasets.

These results are in line with the previously reported

results using the FER.

• The KM-ESN performed better than the basic ESN in

various cases. Particularly on the ‘‘ECG’’ ‘‘JPVOW’’

datasets, the performance of the KM-ESN was superior

compared to the other pre-trained models. This supports

that the proposed pre-training strategies are beneficial

for the overall performance.

• Probabilistic bias weights (i.e., the KM-ESN PB) helped

to improve the results in case of the datasets ‘‘CHAR’’,

‘‘KICK’’, ‘‘PEMS’’ and ‘‘WAF’’. It again shows that,

for high-dimensional data, a few neurons are more

important than others to solve a given task.

• The KM-ESN 2-Gram showed a superior behavior on

the ‘‘ARAB’’ and ‘‘UWAV’’ datasets, which also have

the longest samples among all the studied datasets.

In Table 5, themean and standard deviation of the accuracies

on the test sets over five random initializations are computed

for the best performingmodels.We compare our results with

Toth and Oberhauser [49], where exactly the same evalua-

tion scheme was used and where various state-of-the-art

algorithms for time-series classification were benchmarked.

As expected, the ESN architectures mostly benefited

from utilizing the centroids of the K-Means algorithm.

Using pre-trained input weights in general led to better

results compared to the basic ESN. Using probabilistic bias

weights led to slightly more stable results, i.e., to a lower

standard deviation of the recognition rates. However, the

probabilistic transition weights even led to a decreased

performance of the KM-ESN REC and of the KM-ESN

REC PB architectures. The K-Means algorithm mostly

benefits from larger datasets, meaning that any of the

models KM-ESN, its deterministic or probabilistic variants

performed significantly better than the other considered

models for large datasets, such as the AUS, CHAR, and the

UWAV datasets. Additionally, if the inputs underlie a

multivariate distribution, as it is the case for, e.g., the

UWAV dataset or in the small LIB, PEN datasets with

many classes, the K-Means algorithm is able to extract a lot

of information from the data. The KM-ESN models with

2-Gram transition weights did not perform well on this task

of multivariate time-series classification. In fact, these

models only performed better than the KM-ESN in a few

cases. We noticed that the transition weights are mostly

dominated by self-transitions, which hinder a complex

information flow between the reservoir neurons.

If we compare the results with the state-of-the-art

methods from Toth and Oberhauser [49], it turns out that

the KM-ESN PB model can compete with most of the

models both in terms of accuracy and the standard devia-

tion. It is worth to emphasize that many of the reference

Table 5 Overall comparison of

the proposed models with state-

of-the-art algorithms for time-

series classification based on the

mean and standard deviation of

the accuracies on the test sets

over five random initializations

Model Accuracy Standard deviation

Basic ESN 0.932 0.083

KM-ESN 0.939 0.066

KM-ESN PB 0.940 0.066

KM-ESN 2-Gram 0.933 0.074

KM-ESN 2-Gram PB 0.935 0.074

GP-SIG-LSTM Toth and Oberhauser [49] 0.948 0.068

GP-SIG-GRU Toth and Oberhauser [49] 0.935 0.070

GP-SIG Toth and Oberhauser [49] 0.947 0.052

GP-LSTM Toth and Oberhauser [49] 0.853 0.193

GP-GRU Toth and Oberhauser [49] 0.824 0.218

GP-KConv1D Toth and Oberhauser [49] 0.898 0.107

SMTS Baydogan and Runger [4] 0.945 0.059

LPS Baydogan and Runger [5] 0.933 0.073

mv-ARF Tuncel and Baydogan [55] 0.949 0.055

DTW Rakthanmanon et al. [35] 0.899 0.111

ARKERNEL Cuturi and Doucet [7] 0.938 0.073

gRSF Karlsson et al. [23] 0.955 0.058

MLSTM-FCN Karim et al. [22] 0.970 0.039

MUSE Schäfer and Leser [39] 0.962 0.043

The bold values marks the best results
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methods included pre-processing steps that went out of the

scope of this paper. The generalized Random Shapelet

Forests (gRSF) [23], for instance, requires a complex fea-

ture extraction pipeline including shapelet features.

Autoregressive Random Forests for multivariate time-ser-

ies modeling (mv-ARF) [55] propose a tree ensemble

trained on autoregressive models with different lags of the

MTS. The reference model MLSTM-FCN [22] consists of

parallel Fully Convolutional Neural Network (FCN) and

LSTM layers and is thus more complex than the approach

proposed here. MUltivariate Symbolic Extension (MUSE)

[39] computes histograms from the time-series based on an

advanced feature extractor and then classifies the time

series based on the histograms.

Again, we used a variety of significance tests to deter-

mine significant differences between the models. Firstly,

we tested whether different models showed a globally

significant different performance irrespective of different

datasets. Therefore, we used a one-way ANOVA test, the

Kruskal–Wallis H-test for independent samples, and the

Alexander–Govern approximation test. Since none of these

tests allowed us to reject the null hypothesis, there is no

globally best performing model. As discussed earlier, the

performance of the models depends on the particular

dataset, and the accuracy values are distributed across a

long range, regardless of the individual models. In order to

identify datasets where the models show significant dif-

ferences, we repeated the tests for the models on the

individual datasets. If there was a significant difference

between different models in a dataset, we used the Tukey’s

honestly significant difference (HSD) test as a post hoc test

to compare the means of the Acc values reported for each

model. The test results suggest that significant differences

mostly occurred between the performance of the Basic

ESN and its pre-trained variants. Furthermore, many sig-

nificant differences occurred between the ‘‘KM-ESN PB’’

model and other derivatives of the KM-ESN. This is in line

with the performance comparison in Table 5, where the

results of the KM-ESN and the KM-ESN PB models are

similar and better than the other investigated ESN models.

5 General discussion

We introduced a variety of novel ESN models that are

derived from the KM-ESN [44]. These models are rela-

tively easy to interpret. We computed a transition matrix

that describes the transition probability between two neu-

rons, and we proposed to replace the randomly initialized

reservoir weights by these transition weights and obtained

the model KM-ESN 2-Gram. Under the assumption that

some neurons in the reservoir are generally more often

activated by the input data than others, we proposed to

weight the frequently activated neurons more strongly.

Therefore, we computed the absolute frequencies of the

‘‘winner neurons’’ that were most strongly activated by the

input data, divided it by the size of the dataset and used this

a-priori probability as a bias input for each neuron in the

model KM-ESN PB.

We evaluated the models based on two inherently dif-

ferent tasks, i.e., frame-wise phoneme recognition and

time-series classification.

For the first task (phoneme recognition), we deeply

investigated the impact of the different pre-training meth-

ods on the weight matrices of the ESN models. It turned

out that the values of all pre-trained weight matrices can be

interpreted with prior knowledge about the underlying task:

• The pre-trained input weights approximate different

phonemes that occur in the dataset.

• The pre-trained bias weights can be related to relative

phoneme frequencies in the dataset.

• The pre-trained recurrent weights approximately model

the transition probability in the dataset.

For all different proposed models, we optimized the hyper-

parameters and showed significant differences between the

hyper-parameters of the different models. It turned out that

the model ‘‘KM-ESN 2-Gram’’ was the best performing

model for this task, significantly outperforming the other

models. We compared the confusion matrices of the two

best performing models and showed that especially pho-

nemes that rarely occur in the training dataset were better

recognized with the best performing model than with the

baseline models, which frequently assigned these pho-

nemes to silence, i.e., the most frequently occurring

‘‘phoneme’’ in the training dataset.

In the second experiment, we optimized and evaluated

the proposed ESN models on an inherently different task,

i.e., multivariate time-series classification. We used a set of

16 datasets that were already used in Toth and Oberhauser

[49] to benchmark a broad variety of state-of-the-art

algorithms, with which we directly compared our results.

The results showed that the KM-ESN and its extension

with the probabilistic bias weights achieved the best results

that came close to the state of the art. We again tested the

significance of the results, and it turned out that there were

no significant differences in the performance of the dif-

ferent models. This is due to the long value range on which

the accuracy is distributed. On the one hand, some datasets

were classified entirely correctly, whereas the accuracy for

other datasets was below 80 %. Nevertheless, we identified

use-cases in which the pre-trained models should be con-

sidered, particularly for datasets with higher dimensions, in

which the features are not uniformly distributed. Overall,

the models ‘‘KM-ESN’’ and ‘‘KM-ESN PB’’ achieved

results comparable to most of the benchmarked state-of-
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the-art algorithms. This shows that the proposed models are

interesting candidates.

A key advantage of the proposed models is that all the

input, bias, and recurrent weights can be obtained from

unlabeled data. This makes these models interesting can-

didates for utilizing a large amount of available data that

cannot be used for supervised learning. Furthermore, it is

interesting to investigate unsupervised data augmentation

strategies for the typically un-trained ESN weights. This

could be interesting for very challenging problems, such as

fusion data [20, 21], where the amount of labeled data is

limited. Regarding the time-series classification, it would

be very interesting to use the proposed ESN models within

the approaches [22, 39, 49].

6 Future work

As explained in Sect. 1, various publications proposed

ESNs with deterministic recurrent weights that have

specific spectral properties. For example, the delay line

reservoir (DLR) do not have any nonzero eigenvalue, and

the complex eigenvalues of the simple cycle reservoir

(SCR) lie on a circle around the origin. The DLR with

feedback connections or with jumps [37] finally has com-

plex eigenvalues that allow for a more sophisticated

reservoir design, depending on the nonzero values in the

recurrent weights [36, 37]. However, in Rodan and Tiňo

[37] the question, to which extent the distribution of the

complex eigenvalues has an impact on the performance,

could not be answered. A detailed analysis of the complex

eigenvalues goes beyond the scope of this paper. However,

some observations point in a direction that the transition

matrix has interesting properties, such as an intrinsic sta-

bility (i.e., a default maximum eigenvalue of exactly 1), a

distinct distribution of the eigenvalues in the complex

plane, a more or less flat eigenspectrum or some eigen-

values that are exactly 0. In the future, this needs to be

deeply investigated, because this could be one way to

answer the question from Scardapane and Wang [38], to

which extent ESNs benefit from purely randomly or

deterministically initialized recurrent weights.

Furthermore, it would be interesting whether the pro-

posed method can be transferred toward deep-learning

methods, for example to fully-trained RNNs. It might lead

to a more stable training behavior or to a faster conver-

gence. Of course, one further point is to show that the

proposed method can be applied to different kinds of data.
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