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Abstract
The current development in deep learning is witnessing an exponential transition into automation applications. This

automation transition can provide a promising framework for higher performance and lower complexity. This ongoing

transition undergoes several rapid changes, resulting in the processing of the data by several studies, while it may lead to

time-consuming and costly models. Thus, to address these challenges, several studies have been conducted to investigate

deep learning techniques; however, they mostly focused on specific learning approaches, such as supervised deep learning.

In addition, these studies did not comprehensively investigate other deep learning techniques, such as deep unsupervised

and deep reinforcement learning techniques. Moreover, the majority of these studies neglect to discuss some main

methodologies in deep learning, such as transfer learning, federated learning, and online learning. Therefore, motivated by

the limitations of the existing studies, this study summarizes the deep learning techniques into supervised, unsupervised,

reinforcement, and hybrid learning-based models. In addition to address each category, a brief description of these

categories and their models is provided. Some of the critical topics in deep learning, namely, transfer, federated, and online

learning models, are explored and discussed in detail. Finally, challenges and future directions are outlined to provide

wider outlooks for future researchers.

Keywords Artificial intelligence � Neural networks � Deep learning � Supervised learning � Unsupervised learning �
Reinforcement learning � Online learning � Federated learning � Transfer learning

1 Introduction

The main concept of artificial neural networks (ANN) was

proposed and introduced as a mathematical model of an

artificial neuron in 1943 [1–3]. In 2006, the concept of deep

learning (DL) was proposed as an ANN model with several

layers, which has significant learning capacity. In recent

years, DL models have seen tremendous progress in

addressing and solving challenges, such as anomaly

detection, object detection, disease diagnosis, semantic

segmentation, social network analysis, and video

recommendations [4–7].

Several studies have been conducted to discuss and

investigate the importance of the DL models in different

applications, as illustrated in Table 1. For instance, the

authors of [8] reviewed supervised, unsupervised, and

reinforcement DL-based models. In [9], the authors out-

lined DL-based models, platforms, applications, and future

directions. Another survey [10] provided a comprehensive

review of the existing models in the literature in different

applications, such as natural processing, social network

analysis, and audio. In this study, the authors provided a

recent advancement in DL applications and elaborated on

some of the existing challenges faced by these applications.

In [11], the authors highlighted different DL-based models,

such as deep neural networks, convolutional neural net-

works, recurrent neural networks, and auto-encoders. They

also covered their frameworks, benchmarks, and software

development requirements. In [12], the authors discussed

the main concepts of deep learning and neural networks.

They also provided several applications of DL in a variety

of areas.
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Other studies covered particular challenges of DL

models. For instance, the authors of [13] explored the

importance of class imbalanced dataset on the performance

of the DL models as well as the strengths and weaknesses

of the methods proposed in the literature for solving class

imbalanced data. Another study [14] explored the chal-

lenges that DL faces in the case of data mining, big data,

and information processing due to huge volume of data,

velocity, and variety. In [15], the authors analyzed the

complexity of DL-based models and provided a review of

the existing studies on this topic. In [16], the authors

focused on the activation functions of DL. They introduced

these functions as a strategy in DL to transfer nonlinearly

separable input into the more linearly separable data by

applying a hierarchy of layers, whereas they provided the

most common activation functions and their characteristics.

In [17], the authors outlined the applications of DL in

cybersecurity. They provided a comprehensive literature

review of DL models in this field and discussed different

types of DL models, such as convolutional neural net-

works, auto-encoders, and generative adversarial networks.

They also covered the applications of different attack cat-

egories, such as malware, spam, insider threats, network

intrusions, false data injection, and malicious in DL. In

another study [18], the authors focused on detecting tiny

objects using DL. They analyzed the performance of dif-

ferent DL in detecting these objects. In [19], the authors

reviewed DL models in the building and construction

industry-based applications while they discussed several

important key factors of using DL models in manufacturing

and construction, such as progress monitoring and

automation systems. Another study [20] focused on using

different strategies in the domain of artificial intelligence

(AI), including DL in smart grids. In such a study, the

authors introduced the main AI applications in smart grids

while exploring different DL models in depth. In [7], the

authors discussed the current progress of DL in medical

areas and gave clear definitions of DL models and their

theoretical concepts and architectures. In [21], the authors

analyzed the DL applications in biology, medicine, and

engineering domains. They also provided an overview of

this field of study and major DL applications and illustrated

the main characteristics of several frameworks, including

molecular shuttles.

Despite the existing surveys in the field of DL focusing

on a comprehensive overview of these techniques in dif-

ferent domains, the increasing amount of these applications

and the existing limitations in the current studies motivated

us to investigate this topic in depth. In general, the recent

studies in the literature mostly discussed specific learning

strategies, such as supervised models, while they did not

cover different learning strategies and compare them with

each other. In addition, the majority of the existing surveys

excluded new strategies, such as online learning or feder-

ated learning, from their studies. Moreover, these surveys

mostly explored specific applications in DL, such as the

Internet of Things, smart grid, or constructions; however,

this field of study requires formulation and generalization

in different applications. In fact, limited information, dis-

cussions, and investigations in this domain may lead to

prevent any development and progress in DL-based

applications. To fill these gaps, this paper provides a

comprehensive survey on four types of DL models,

namely, supervised, unsupervised, reinforcement, and

hybrid learning. It also provides the major DL models in

each category and describes the main learning strategies,

such as online, transfer, and federated learning. Finally, a

detailed discussion of future direction and challenges is

provided to support future studies. In short, the main

contributions of this paper are as follows:

• Classifications and in-depth descriptions of supervised,

unsupervised, enforcement, and hybrid models.

Description and discussion of learning strategies, such

as online, federated, and transfer learning,

• Comparison of different classes of learning strategies,

their advantages, and disadvantages,

• Current challenges and future directions in the domain

of deep learning.

The remainder of this paper is organized as follows:

Sect. 2 provides descriptions of the supervised, unsuper-

vised, reinforcement, and hybrid learning models, along

with a brief description of the models in each category.

Section 3 highlights the main learning approaches that are

used in deep learning. Section 4 discusses the challenges

and future directions in the field of deep learning. The

conclusion is summarized in Sect. 5.

2 Categories of deep learning models

DL models can be classified into four categories, namely,

deep supervised, unsupervised, reinforcement learning, and

hybrid models. Figure 1 depicts the main categories of DL

along with examples of models in each category. In the

following, short descriptions of these categories are pro-

vided. In addition, Table 2 provides the most common

techniques in every category.

2.1 Deep supervised learning

Deep supervised learning-based models are one of the main

categories of deep learning models that use a labeled

training dataset to be trained. These models measure the

accuracy through a function, loss function, and adjust the

weights till the error has been minimized sufficiently.
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Table 1 Summary of related works

References Topics Concepts covered Concepts not covered

[8] General DL Studies different DL categories, namely, supervised, unsupervised, and
reinforcement learning

Different models in DL categories,

Applications of these DL models

[9] General DL Reviews of supervised, unsupervised, and reinforcement learning models,

Detailed discussions of DL applications and future directions

Lack of comprehensive analysis of
different DL models

[10] General DL Studies DL algorithms, applications, and relevant techniques Limited investigation on
unsupervised and reinforcement
models.

Lack of investigation on the
different architecture of DL
models

[11] General DL A short review of supervised, unsupervised, and reinforcement learning models,

Comprehensive analysis of current studies on DL architecture

Lack of discussion on analysis and
different DL models in different
categories

[12] General DL Compares the differences between DL, classical ML, and other conventional
learning approaches,

Discusses different applications of DL

No discussion on supervised,
unsupervised, and reinforcement
learning models

[13] Class balancing Investigates DL techniques in domain of class balancing Limited discussions in different DL
models,

Lack of discussions of DL in the
presence of class balancing

[14] Big data Analyzes the emerging research directions in the field of big data,

Discusses the challenges in big data and future directions

Limited discussions of different DL
models

[15] Model
complexity

Discusses the complexity of DL models No analysis of supervised,
unsupervised, and reinforcement
learning models,

No discussion of the future
directions of different DL models,

No investigations of different DL
applications

[16] Activation
function

Explores of different activation functions in DL models Lack of discussions of different DL
models,

No investigations into the DL
models’ architecture or different
applications

[17] Cybersecurity Investigates different DL techniques in the domain of cybersecurity No discussion of DL in other
domains,

No discussion of reinforcement or
unsupervised models,

No discussion of different features
in DL

[18] Tiny objects Investigates tiny object detection techniques in the field of DL,

Discusses the 12 popular datasets for tiny objects and evaluates the current
techniques

Limited discussion of other possible
DL techniques in aspects of tiny
objects

[19] Building and
construction

Presents a new perspective of ML/DL in the domain of building and construction,

Specifying different techniques in data cleaning, data storage, and existing
challenges

Not focusing only on DL
techniques,

Limited discussions of various DL
models,

Limited investigations on different
functions of DL techniques

[20] Smart grid Reviewing the existing research in different applications of smart grid, such as
forecasting, power grid stability, and fault detection.

Future direction in domain of smart grid applying AI techniques

Not detailed descriptions of DL
techniques in domain of smart
grid,

Limited focuses on DL models and
different architectures

[7] Medicine Investigating DL models along with the literature review in medicine,

In-depth analysis of DL models and their literature review

Lack of investigations of DL models
in other fields of study,

Limited descriptions of different DL
models
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Among the supervised deep learning category, three

important models are identified, namely, deep neural net-

works, convolutional neural networks, and recurrent neural

network-based models, as illustrated in Fig. 2. Artificial

neural networks (ANN), known as neural networks or

neural nets, are one of the computing systems, which are

inspired by biological neural networks. ANN models are a

collection of connected nodes (artificial neurons) that

model the neurons in a biological brain. One of the simple

ANN models is known as a deep neural network (DNN)

[22–29]. DNN models consist of a hierarchical architecture

with input, output, and hidden layers, each of which has a

nonlinear information processing unit, as illustrated in

Fig. 2A. DNN, using the architecture of neural networks,

consists of functions with higher complexity when the

number of layers and units in a layer is increased. Some

known instances of DNN models, as highlighted in

Table 2, are multi-layer perceptron, shallow neural net-

work, operational neural network, self-operational neural

network, and iterative residual blocks neural network.

The second type of deep supervised models is convo-

lutional neural networks (CNN), known as one of the

important DL models that are used to capture the semantic

correlations of underlying spatial features among slice-

wise representations by convolution operations in multi-

dimensional data [25]. A simple architecture of CNN-based

models is shown in Fig. 2B. In these models, the feature

mapping has k filters that are partitioned spatially into

several channels. In addition, the pooling function can

shrink the width and height of the feature map, while the

convolutional layer can apply a filter to an input to generate

a feature map that can summarize the identified features as

input. The convolutional layers are followed by one or

more fully connected layers connected to all the neurons of

the previous layer. CNN usually analyzes the hidden pat-

terns using pooling layers for scaling functions, sharing the

weights for reducing memories, and filtering the semantic

correlation captured by convolutional operations. There-

fore, CNN architecture provides a strong potential in spa-

tial features. However, CNN models suffer from their

disability in capturing particular features. Some known

examples of this network are presented in Table 2

[7, 20–47].

The other type of supervised DL is recurrent neural

network (RNN) models, which are designed for sequential

time-series data where the output is returned to the input, as

shown in Fig. 2C [27]. RNN-based models are widely used

to memorize the previous inputs and handle the sequential

data and existing inputs [42]. In RNN models, the recursive

process has hidden layers with loops that indicate effective

information about the previous states. In traditional neural

networks, the given inputs and outputs are totally inde-

pendent of one another, whereas the recurrent layers of

RNN have a memory that remembers the whole data about

what is exactly calculated [48]. In fact, in RNN, similar

parameters for every input are applied to construct the

neural network and estimate the outputs. The critical

principle of RNN-based models is to model time collection

samples; hence, specific patterns can be estimated to be

dependent on previous ones [48–64]. Table 2 provides the

instances of RNN-based models as simple recurrent neural

network, long short-term memory, gated recurrent unit

neural network, bidirectional gated recurrent unit neural

Table 1 (continued)

References Topics Concepts covered Concepts not covered

[21] Medicine Provides emerging technology in the field of DL models in medicine.

Presents literature review of DL techniques in medicine

Limited discussions of
reinforcement or unsupervised
learning.

Lack of descriptions of any DL
models

Fig. 1 Schematic review of the models in deep learning
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Table 2 Summary of deep learning models [22–74]

Learning methodology Category Model

Supervised learning Deep neural networks Multi-layer perceptron

Shallow neural network

Operational neural network

Self-operational neural network

Iterative residual blocks neural network

Convolutional neural networks Simple convolutional neural network

Faster R convolutional neural network

Alex neural network

Residual neural network

Densely connected neural network

Le neural network

Google neural network

Inception neural network

Visual geometry neural network

Efficient neural network

Recurrent neural networks Simple recurrent neural network

Long short-term memory

Gated recurrent unit neural network

Bidirectional gated recurrent unit neural network

Bidirectional long short-term memory

Residual gated recurrent neural network

Unsupervised learning Auto-encoders Stacked auto-encoder

Variational auto-encoder

Convolutional auto-encoder

Restricted Boltzmann machine Shallow restricted Boltzmann machine

Convolutional restricted Boltzmann machine

Deep belief neural networks Simple deep belief neural networks

Conditional deep belief neural networks

Generative adversarial networks Generative adversarial networks

Signal augmented self-taught learning

Wasserstein generative adversarial networks

Reinforcement learning Value-based Deep Q learning

Double deep Q learning

Duel deep Q learning

Policy gradient-based Deep deterministic policy gradient

Asynchronous advantage actor critic

Model-based Imagination-augmented agents

Model-based priors for model-free

Model-based value expansion

Hybrid learning DRL Convolutional neural network-deep Q-learning

Long short-term memory-deep reinforcement learning

Policy dynamics-based win

Deep Q-learning-PG

Unsupervised DL Auto-encoder-long short-term memory

Gated recurrent neural network-convolutional neural network

C Long short-term memory-auto-encoder

ACWGAN-GP
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network, bidirectional long short-term memory, and

residual gated recurrent neural network [64–66]. Table 3

shows the advantages and disadvantages of supervised DL

models.

3 Deep unsupervised learning

Deep unsupervised models have gained significant interest

as a mainstream of viable deep learning models. These

models are widely used to generate systems that can be

trained with few numbers of unlabeled samples [24]. The

models can be classified into auto-encoders, restricted

Boltzmann machine, deep belief neural networks, and

generative adversarial networks. An auto-encoder (AE) is a

type of auto-associative feed-forward neural network that

can learn effective representations from the given input in

an unsupervised manner [29]. Figure 3A provides a basic

architecture of AE. As it can be seen, there are three ele-

ments in AE, encoder, latent space, and decoder. Initially,

the corresponding input passes through the encoder. The

encoder is mostly a fully connected ANN that is able to

generate the code. In contrast, the decoder generates the

outputs using the codes and has an architecture similar to

ANN. The aim of having an encoder and decoder is to

present an identical output with the given input. It is

Table 2 (continued)

Learning methodology Category Model

C-hybrid-generative adversarial networks

Joint latent-variational auto-encoder

Supervised DL dLASSO-multi-layer perceptron

Convolutional neural network–deep neural network

Convolutional neural network-long short-term memory

Convolutional neural network-constrained naive

WaferSegClassNet

Spiking-auto-encoder

Deep belief neural networks-bidirectional-recurrent neural network

SES-convolutional neural network

Recurrent neural network-long short-term memory

Convolutional neural network-recurrent neural network

GoogleNet-AlexNet

Fig. 2 Inner architecture of

deep supervised models
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notable that the dimensionality of the input and output has

to be similar. Additionally, real-world data usually suffer

from redundancy and high dimensionality, resulting in

lower computational efficiency and hindering the modeling

of the representation. Thus, a latent space can address this

issue by representing compressed data and learning the

features of the data, and facilitating data representations to

find patterns. As shown in Table 2, AE consists of several

known models, namely, stacked, variational, and convo-

lutional AEs [30, 43]. The advantages and disadvantages of

these models are presented in Table 4.

The restricted Boltzmann machine (RBM) model,

known as Gibbs distribution, is a network of neurons that

are connected to each other, as shown in Fig. 3B. In RBM,

the network consists of two layers, namely, the input or

visible layer and the hidden layer. There is no output layer

in RBM, while the Boltzmann machines are random and

generative neural networks that can solve combinative

problems. Some common RBM are presented in Table 2 as

shallow restricted Boltzmann machines and convolutional

restricted Boltzmann machines. The deep belief network

(DBN) is another unsupervised deep neural network that

performs in a similar way as the deep feed-forward neural

network with inputs and multiple computational layers,

known as hidden layers, as illustrated in Fig. 3C. In DBM,

there are two main phases that are necessary to be per-

formed, pre-train and fine-tuning phases. The pre-train

phase consists of several hidden layers; however, fine-

Table 3 Advantages and disadvantages of deep supervised learning techniques

Learning

methodology

Category Advantage Disadvantage

Deep supervised

learning

Deep neural

networks

Tendency to high nonlinear relationships,

Easy to develop

Slow learning,

Hard for parameter tuning,

Insufficient for high-

dimensional input space

Convolutional neural

network

Ability to capture spatial correlations, high potentiality at

generalization

Difficult parameter tuning,

High computational cost

Recurrent neural

network

Sometimes fast converge with minimum parameters, improve the

vanishing gradient issues

Difficult parameter tuning,

Poor spatial feature

representations

Fig. 3 Inner architecture of deep unsupervised models
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tuning phase only is considered a feed-forward neural

network to train and classify the data. In addition, DBN has

multiple layers with values, while there is a relation

between layers but not with the values [31]. Table 2

reviews some of the known DBN models, namely, shallow

deep belief neural networks and conditional deep belief

neural networks [44, 45].

The generative adversarial network (GAN) is an another

type of unsupervised deep learning model that uses a

generator network (GN) and discriminator network (DN) to

generate synthetic data to follow similar distribution from

the original data, as presented in Fig. 3D. In this context,

the GN mimics the distribution of the given data using

noise vectors to exhaust the DN to classify between fake

and real samples. The DN can be trained to differentiate

between fake and real samples by the GN from the original

samples. In general, the GN learns to create plausible data,

whereas the DN can learn to identify the generator’s fake

data from the real ones. Additionally, the discriminator can

penalize the generator for generating implausible data

[32, 54]. The known types of GAN are presented in Table 2

as generative adversarial networks, signal augmented self-

taught learning, and Wasserstein generative adversarial

networks. As a result of this discussion, Table 4 provides

the main advantages and disadvantages of the unsupervised

DL categories [56].

3.1 Deep reinforcement learning

Reinforcement learning (RL) is the science of making

decisions with learning the optimal behavior in an envi-

ronment to achieve maximum reward. The optimal

behavior is achieved through interactions with the envi-

ronment. In RL, an agent can make decisions, monitor the

results, and adjust its technique to provide optimal policy

[75, 76]. In particular, RL is applied to assist an agent in

learning the optimal policy when the agent has no infor-

mation about the surrounding environments. Initially, the

agent monitors the current state, takes action, and receives

its reward with its new state. In this context, the immediate

reward and new state can adjust the agent’s policy; This

process is repeated till the agent’s policy is getting close to

the optimal policy. To be precise, RL does not need any

detailed mathematical model for the system to guarantee

optimal control [77]; however, the agent considers the

target system as the environment and optimizes the control

policy by communicating with it. The agent performs

specific steps. During every step, the agent selects an action

based on its existing policy, and the environment feeds

back a reward and goes to the next state [78–80]. This

process is learned by the agent to adjust its policy by ref-

erencing the relationships during the state, action, and

rewards. The RL agent also can determine an optimal

policy related to the maximum cumulative reward. In

addition, an RL agent can be modeled as Markov decision

process (MDP) [78]. In MDP, when the states and action

spaces are finite, the process is known as finite. As it is

clear, the RL learning approach may take a huge amount of

time to achieve the best policy and discover the knowledge

of a whole system; hence, RL is inappropriate for large-

scale networks [81].

In the past few years, deep reinforcement learning

(DRL) was proposed as an advanced model of RL in which

DL is applied as an effective tool to enhance the learning

rate for RL models. The achieved experiences are stored

during the real-time learning process, whereas the gener-

ated data for training and validating neural networks are

applied [82]. In this context, the trained neural network has

Table 4 Advantages and disadvantages of deep unsupervised learning techniques

Learning methodology Category Advantages Disadvantages

Deep unsupervised

learning

Auto-encoder Do not need unlabeled data for training

processes,

Good performance for feature abstractions

Difficult to tune parameters,

Long processing time,

Training can suffer from vanishing the

errors

Restricted Boltzmann

machine

Learn complicated probability distributions,

Strong representation capability

Low robustness for noisy data,

Limited applications due to binary units

Deep belief neural network High efficiency for feature extractions,

Unsupervised training

Unable to process multi-dimensional

data,

Slow and inefficient training

Generative adversarial

network

Trains only using backpropagations,

Operates with small supervisions,

Computational efficiency

Density estimation,

Unstable training process,

Non-convergence
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to be used to assist the agent in making optimal decisions in

real-time scenarios. DRL overcomes the main shortcom-

ings of RL, such as long processing time to achieve optimal

policy, thus opening a new horizon to embrace the DRL

[83]. In general, as shown in Fig. 4, DRL uses the deep

neural networks’ characteristics to train the learning pro-

cess, resulting in increasing the speed and improving the

algorithms’ performance. In DRL, within the environment

or agent interactions, the deep neural networks keep the

internal policy of the agent, which indicates the next action

according to the current state of the environment.

DRL can be divided into three methods, value-based,

policy-based, and model-based methods. Value-based DRL

mainly represents and finds the value functions and their

optimal ones. In such methods, the agent learns the state or

state-action value and behaves based on the best action in

the state. One necessary step of these methods is to explore

the environment. Some known instances of value-based

DRL are deep Q-learning, double deep Q-learning, and

duel deep Q-learning [83–85]. On the contrary, policy-

based DRL finds an optimal policy, stochastic or deter-

ministic, to better convergence on high-dimensional or

continuous action space. These methods are mainly opti-

mization techniques in which the maximum policy of

function can be found. Some examples of policy-based

DRL are deep deterministic policy gradient and asyn-

chronous advantage actor critic [86]. The third category of

DRL, model-based methods, aims at learning the func-

tionality of the environment and its dynamics from its

previous observations, while these methods attempt a

solution using the specific model. For these methods, in the

case of having a model, they find the best policy to be

efficient, while the process may fail when the state space is

huge. In model-based DRL, the model is often updated, and

the process is replanned. Instances of model-based DRL

are imagination-augmented agents, model-based priors for

model-free, and model-based value expansion. Table 5

illustrates the important advantages and disadvantages of

these categories [87–89].

3.2 Hybrid deep learning

Deep learning models have weaknesses and strengths in

terms of hyperparameter tuning settings and data explo-

rations [45]. Therefore, the highlighted weakness of these

models can hinder them from being strong techniques in

different applications. Every DL model also has charac-

teristics that make it efficient for specific applications;

hence, to overcome these shortcomings, hybrid DL models

have been proposed based on individual DL models to

tackle the shortcomings of specific applications [79–89].

Figure 5 indicates the popular hybrid DL models that are

used in the literature. It is observed that convolutional

neural networks and recurrent neural networks are widely

used in existing studies and have high applicability and

potentiality compared to other developed DL models.

4 Evaluation metrics

In any classification tasks, the metrics are required to

evaluate the DL models. It is worth mentioning that various

metrics can be used in different fields of studies. It means

that the metrics which are used in medical analysis are

Table 5 Advantage and disadvantages of deep reinforcement learning techniques

Category Used

models

Advantage Disadvantage

Deep reinforcement

learning

Value-

based

Less computational cost

Relatively fast

Learns directly the optimal policy

High variance per-sample

Not efficient for offline learning

Policy-

based

Able to find the best stochastic policy

Efficient for high-dimensional dataset

High variance

Slow convergence

Model-

based

Number of the interactions between the agent and the

environment

Model accuracy has a huge impact on

learning tasks

High dependence on the transitional models

Fig. 4 Inner architecture of deep reinforcement learning
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mostly different with other domains, such as cybersecurity

or computer visions. For this reason, we provide a short

descriptions and a mathematical equations of the most

common metrics in different domains, as following:

• Accuracy: It is mainly used in classification problems to

indicate the correct predictions made by a DL model.

This metric is calculated, as shown in Eq. (1), where TP

is the true positive, TN is true negative, FP is the false

positive, and FN is the false negative.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

� 100 ð1Þ

• Precision: It refers to the number of the true positives

divided by the total number of the positive predictions,

including true positive and false positive. This metric

can be measured as following:

Precision ¼ TP
TP þ FP

� 100 ð2Þ

• Recall (detection rate): It measures the number of the

positive samples that are classified correctly to the total

number of the positive samples. This metric, as

measuring in Eq. (3), can indicate the model’s ability

to classify positive samples among other samples.

Recall ¼ TP
TP þ FN

� 100 ð3Þ

• F1-Score: It is calculated from the precision and recall

of the test, where the precision is defined as Eq. (2), and

recall is presented in Eq. (3). This metric is calculated

as shown in Eq. (4):

F1 - Score ¼ 2TP
2TP þ Fp þ FN

� 100 ð4Þ

• Area under the receiver operating characteristics curve

(AUC): AUC is one of the important metrics in

classification problems. Receiver operating characteris-

tic (ROC) helps to visualize the tradeoff between

sensitivity and specificity in DL models. The AUC

curve is a plot of true-positive rate (TPR) to false-

positive rate (FPR). A good DL model has an AUC

value near to 1. This metric is measured, as shown in

Eq. (5), where x is the varying AUC parameter.

Area Under Curve ¼
Z1

x¼0

TP
TP þ FN

FP

FP þ TN

� ��1

xð Þ
 !

dx

ð5Þ

• False Alarm Rate: This metric is also known as false-

positive rate, which is the probability of a false alarm

Fig. 5 Review of popular hybrid

models
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will be raised. It means, a positive result will be given

when a true value is negative. This metric can be

measured as shown in Eq. (6):

False Alarm Rate ¼ Fp

TN þ FP

� 100 ð6Þ

• Misdetection Rate: It is a metric that shows the

percentage of misclassified samples. This metric can

be defined as the percentage of the samples that are not

detected. It is also measured, as shown in Eq. (7):

Misdetection Rate ¼ FN

TP þ FN

� 100 ð7Þ

5 Learning classification in deep learning
models

Learning strategies, as shown in Fig. 6, include online

learning, transfer learning, and federated learning. In this

section, these learning strategies are discussed in brief.

5.1 Online learning

Conventional machine learning models mostly employ

batch learning methods, in which a collection of training

data is provided in advance to the model. This learning

method requires the whole training dataset to be made

accessible ahead to the training, which lead to high mem-

ory usage and poor scalability. On the other hand, online

learning is a machine learning category where data are

processed in sequential order, and the model is updated

accordingly [90]. The purpose of online learning is to

maximize the accuracy of the prediction model using the

ground truth of previous predictions [91]. Unlike batch or

offline machine learning approaches, which require the

complete training dataset to be available to be trained on

[92], online learning models use sequential stream of data

to update their parameters after each data instance. Online

learning is mainly optimal when the entire dataset is

unavailable or the environment is dynamically changing

[92–96]. On the other hand, batch learning is easier to

maintain and less complex; it requires all the data to be

available to be trained on it and does not update its model.

Table 6 shows the advantages and disadvantages of batch

learning and online learning.

An online model aims to learn a hypothesis H : X ! Y

Where X is the input space, and Y is the output space. At

each time stept, a new data instance xt 2 X is received, and

an output or prediction ŷt is generated using the mapping

function H xt;wtð Þ ¼ ŷt, where wt is the weights’ vector of

the online model at the time stept. The true class label yt is

then utilized to calculate the loss and update the weights of

the model wtþ1, which is illustrated in Fig. 7 [97].

Fig. 6 Review of learning

classification in deep learning

models
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The number of mistakes committed by the online model

across T time steps is defined as MT for ŷt 6¼ yt [55]. The

goal of an online learning model is to minimize the total

loss of the online model performance compared to the best

model in hindsight, which is defined as [35]

RT ¼
XT
t¼1

lt wtð Þ �min
w

XT
t¼1

lt wð Þ ð8Þ

where the first term is the sum of the loss function at time

step t, and the second term is the loss function of the best

model after seeing all the instances [98, 99]. While training

the online model, different approaches can be adopted

regarding data that the model has already trained on; full

memory, in which the model preserves all training data

instances; partial memory, where the model retains only

some of the training data instances; and no memory, in

which it remembers none. Two main techniques are uti-

lized to remove training data instances: passive forgetting

and active forgetting [107–109]

– Passive forgetting only considers the amount of time

that has passed since the training data instances were

received by the model, which implies that the signif-

icance of data diminishes over time.

– Active forgetting, on the other hand, requires additional

information from the utilized training data in order to

determine which objects to remove. The density-based

forgetting and error-based forgetting are two active

forgetting techniques.

Online learning techniques can be classified into three

categories: online learning with full feedback, online

learning with partial feedback, and online learning with no

feedback. Online learning with full feedback is when all

training data instances x have a corresponding true label y

which is always disclosed to the model at the end of each

online learning round. Online learning with partial feed-

back is when only partial feedback information is received

that shows if the prediction is correct or not, rather than the

corresponding true label explicitly. In this category, the

online learning model is required to make online updates

by seeking to maintain a balance between the exploitation

of revealed knowledge and the exploration of unknown

information with the environment [2]. On the other hand,

online learning with no feedback is when only the training

data are fed to the model without the ground truth or

feedback. This category includes online clustering and

dimension reduction [99–111].

5.2 Deep transfer learning

Training deep learning models from scratch needs exten-

sive computational and memory resources and large

amounts of labeled datasets. However, for some types of

scenarios, huge, annotated datasets are not always avail-

able. Additionally, developing such datasets requires a

great deal of time and is a costly operation. Transfer

learning (TL) has been proposed as an alternative for

training deep learning models [112]. In TL, the obtained

knowledge from another domain can be easily transferred

to target another classification problem. TL saves com-

puting resources and increases efficiency in training new

deep learning models. TL can also help train deep learning

models on available annotated datasets before validating

them on unlabeled data [113, 114]. Figure 8 illustrates a

simple visualization of the deep transfer learning, which

Table 6 Advantages and

disadvantages of batch learning

and online learning

Learning technique Advantage Disadvantage

Batch learning Low-cost learning,

Easier to maintain,

Less complex

Requires data availability,

High memory,

Poor scalability

Online learning More efficient.

Better scalability.

Adapts to data changes,

High training cost,

Previously acquired knowledge can be forgotten

Difficult to maintain,

More complex

Fig. 7 Online machine learning process
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can transfer valuable knowledge by further using the

learning ability of neural networks.

In this survey, the deep transfer learning techniques are

classified based on the generalization viewpoints between

deep learning models and domains into four categories,

namely, instance, feature representation, model parameter,

and relational knowledge-based techniques. In the

following, we briefly discuss these categories with their

categorizations, as illustrated in Fig. 9.

5.2.1 Instance-based

Instance-based TL techniques are performed based on the

selected instance or on selecting different weights for

instances. In such techniques, the TL aims at training a

Fig. 8 Visualization of deep transfer learning

Fig. 9 Categories of deep

transfer learning
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more accurate model under a transfer scenario, in which

the difference between a source and a target comes from

the different marginal probability distributions or condi-

tional probability distributions [62]. Instance-based TL

presents the labeled samples that are only limited to

training a classification model in the target domain. This

technique can directly margin the source data into the

target data, resulting in decreasing the target model per-

formance and a negative transfer during training

[109–111]. The main goal of instance-based TL is to single

out the instances in the source domains. Such a process can

have positive impact on the training of the models in target

as well as augmenting the target data through particular

weighting techniques. In this context, a viable solution is to

learn the weights of the source domains’ instances auto-

matically in an objective function. The objective function

is given by:

# ¼ 1

Cs

XNS

i¼1

WiR
sðf ðxsi ; ysi Þ þ #� f Xð Þ; Yð Þ ð9Þ

where Wi is the weighting coefficient of the given source

instance, Cs represents the risks function of the selected

source instance, and #� is the second risk function related

to the target task or the parameter regularization.

The weighting coefficient of the given source instance

can be computed as the ratio of the marginal probability

distribution between source and target domains. Instance-

based TL can be categorized into two subcategories, weight

estimation and heuristic re-weighting-based techniques

[63]. A weight estimation method can focus on scenarios in

which there are limited labeled instances in the target

domain, converting the instance transfer problem into the

weight estimation problem using kernel embedding tech-

niques. In contrast, a heuristic re-weighting technique is

more effective for developing deep TL tasks that have

labeled instances and are available in the target domains

[64]. This technique aims at detecting negative source

instances by applying instance re-weighting approaches in

a heuristic manner. One of the known instance re-weight-

ing approaches is the transfer adaptive boosting algorithm,

in which the weights of the source and target instances are

updated via several iterations [116].

5.2.2 Feature representation-based

Feature representation-based TL models can share or learn

a common feature representation between a target and a

source domain. This category uses models with the ability

to transfer knowledge by learning similar representations at

the feature space level. Its main aim is to learn the mapping

function as a bridge to transfer raw data in source and

target domains from various feature spaces to a latent

feature space [109]. From a general perspective, feature

representation-based TL covers two transfer styles with or

without adapting to the target domain [110]. Techniques

without adapting to the target domain can extract repre-

sentations as inputs for the target models; however, the

techniques with adapting to the target domain can extract

feature representations across various domains via domain

adaption techniques [112]. In general, techniques of

adapting to the target domain are hard to implement, and

their assumptions are weak to be justified in most of cases.

On the contrary, techniques of adapting to the target

domain are easy to implement, and their assumptions can

be strong in different scenarios [111].

One important challenge in feature representation TL

with domain adaptation is the estimation of representing

invariance between source and target domains. There are

three techniques to build representation invariance, lever-

aging discrepancy-based, adversarial-based, and recon-

struction-based. Leveraging discrepancy-based can

improve the learning transferable ability representations

and decrease the discrepancy based on distance metrics

between a given source and target, while the adversarial-

based is inspired by GANs and provides the neural network

with the ability to learn domain-invariant representations.

In construction-based, the auto-encoder neural networks

with specific task classifiers are combined to optimize the

encoder architecture, which takes domain-specific repre-

sentations and shares an encoder that learns representations

between different domains [113].

5.2.3 Model parameter-based

Model parameter-based TL can share the neural network

architecture and parameters between target and source

domains. This category can convey the assumptions that

can share in common between the source and target

domains. In such a technique, transferable knowledge is

embedded into the pre-trained source model. This pre-

trained source model has a particular architecture with

some parameters in the target model [99]. The aim of this

process is to use a section of the pre-trained model in the

source domain, which can improve the learning process in

the target domain. These techniques are performed based

on the assumption that labeled instances in the target

domain are available during the training of the target model

[99–103]. Model parameter-based TL is divided into two

categories, sequential and joint training. In sequential

training, the target deep model can be established by pre-

training a model on an auxiliary domain. However, joint

training focuses on developing the source and target tasks

at the same time. There are two methods to perform joint

training [104]. The first method is hard parameter sharing,

which shares the hidden layers directly while maintaining
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the task-specific layers independently [99–118]. The sec-

ond method is soft parameter sharing which changes the

weight coefficient of the source and target tasks and adds

regularization to the risk function. Table 7 shows the

advantages and disadvantages of the three categories,

instance-based, future representation-based, and model

parameter-based.

5.3 Deep federated learning

In traditional centralized DL, the collected data have to be

stored on local devices, such as personal computers

[74–87]. In general, traditional centralized DL can store the

user data on the central server and apply it for training and

testing purposes, as illustrated in Fig. 10A, while this

process may deal with several shortcomings, such as high

computational power, low security, and privacy. In such

models, the efficiency and accuracy of the models heavily

depend on the computational power and training process of

the given data on a centralized server. As a result, cen-

tralized DL models not only provide low privacy and high

risks of data leakage but also indicate the high demands on

storage and computing capacities of the several machines

which train the models in parallel. Therefore, federated

learning (FL) was proposed as an emerging technology to

address such challenges [104–119].

FL provides solutions to keep the users’ privacy by

decentralizing data from the corresponding central server

to devices and enabling artificial intelligence (AI) methods

to discipline the data. Figure 10B summarizes the main

process in an FL model. In particular, the unavailability of

sufficient data, high computational power, and a limited

level of privacy using local data are three major benefits of

FL AI over centralized AI [115–119]. For this purpose, FL

models aim at training a global model which can be trained

on data distributed on several devices while they can pro-

tect the data. In this context, FL finds an optimal global

model, known as h, can minimize the aggregated local loss

function, f k(h
k), as shown in Eq. (10).

fðkÞðhkÞ ¼
1

nk

Xnk
i

l xi; yi; h
k

� �
ð10Þ

Table 7 Advantage and disadvantage of instance-, feature representation-, and model parameter-based techniques

Category Advantage Disadvantage

Instance-based Works based on the selection of instances or re-weight techniques, applications using this

technique are found in probabilistic forecasting, which increases the accuracy in the target

domain

Selection of instances may

not be proper

Feature

representation-

based

Shares or even learns the common feature representation between the target and source

domains

Common feature

representation must be

chosen correctly

Model parameter-

based

Shares the neural network architecture and parameters between target and source domains Sharing neural network

architecture can be tricky

Fig. 10 Centralized and federated learning process flow
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min
h

f ðhÞ ¼
XC�k
k¼1

nk
n
fk hk
� �

ð11Þ

where X denotes the data feature, y is the data label, nk is

the local data size, C is the ratio in which the local clients

do not participate in every round of the models’ updates, l

is the loss function, k is the client index, and
PC�k

k¼1 nk
shows the total number of sample pairs. FL can be classi-

fied based on the characteristics of the data distribution

among the clients into two types, namely, vertical and

horizontal FL models, as discussed in the following:

5.3.1 Horizontal federated learning

Horizontal FL, homogeneous FL, shows the cases in which

the given training data of the participating clients share a

similar feature space; however, these corresponding data

have various sample spaces [76]. Client one and Client two

have several data rows with similar features, whereas each

row shows specific data for a unique client. A typical

common algorithm, namely, federated averaging

(FedAvg), is usually used as a horizontal FL algorithm.

FedAvg is one of the most efficient algorithms for dis-

tributing training data with multiple clients. In such an

algorithm, clients keep the data local for protecting their

privacy, while central parameters are applied to commu-

nicate between different clients [69–122].

In addition, horizontal FL provides efficient solutions to

avoid leaking private local data. This can happen since the

global and local model parameters are only permitted to

communicate between the servers and clients, whereas all

the given training data are stored on the client devices

without being accessed by any other parties [14, 119–133].

Despite such advantages, constant downloading and

uploading in horizontal FL may consume huge amounts of

communication resources. In deep learning models, the

situation is getting worse due to the needing huge amounts

of computation and memory resources. To address such

issues, several studies have been performed to decrease the

computational efficiency of horizontal FL models [134].

These studies proposed methods to reduce communication

costs using multi-objective evolutionary algorithms, model

quantization, and sub-sampling techniques. In these stud-

ies, however, no private data can be accessed directly by

any third party, the uploaded model parameters or gradients

may still leak the data for every client [135].

5.3.2 Vertical federated learning

Vertical FL, heterogeneous FL, is one of the types of FL in

which users’ training data can share the same sample space

while they have multiple different feature spaces. Client

one and Client two have similar data samples with different

feature spaces, and all clients have their own local data that

are mostly assumed to one client keeps all the data classes.

Such clients with data labels are known as guest parties or

active parties, and clients without labels are known as host

parties [136]. In particular, in vertical FL, the common data

between unrelated domains are mainly applied to train

global DL models [137]. In this context, participants may

use intermediate third-party resources to indicate encryp-

tion logic to guarantee the data stats are kept. Although it is

not necessary to use third parties in this process, studies

have demonstrated that vertical FL models with third par-

ties using encryption techniques provide more accept-

able results [14, 89–138].

In contrast with horizontal FL, training parametric

models in vertical FL has two benefits. Firstly, trained

models in vertical FL have a similar performance as cen-

tralized models. As a matter of fact, the computed loss

function in vertical FL is the same as the loss function in

centralized models. Secondly, vertical FL often consumes

fewer communication resources compared to horizontal FL

[138]. Vertical FL only consumes more communication

resources than horizontal FL if and only if the data size is

huge. In vertical FL, privacy preservation is the main

challenge. For this purpose, several studies have been

conducted to investigate privacy preservation in vertical

FL, using identity resolution schemes, protocols, and ver-

tical decision learning schemes. Although these approaches

improve the vertical FL models, there are still some main

slight differences between horizontal and vertical FL

[100–143].

Horizontal FL includes a server for aggregation of the

global models. In contrast, the vertical FL does not have a

central server and global model [14, 122–130]. As a result,

the output of the local model’s aggregation is done based

on the guest client to build a proper loss function. Another

difference is the model parameters or gradients between

servers and clients in horizontal FL. Local model param-

eters in vertical FL depend on the local data feature spaces,

while the guest client receives model outputs from the

connected host clients [143]. In this process, the interme-

diate gradient values are sent back for updating local

models [105]. Ultimately, the server and the clients com-

municate with one another once in a communication round

in horizontal FL; however, the guest and host clients have

to send and receive data several times in a communication

round in vertical FL [14, 106–128]. Table 8 summarizes

the main advantages and disadvantages of vertical and

horizontal FL and compares these FL learning categories

with central learning.

23118 Neural Computing and Applications (2023) 35:23103–23124

123



6 Challenges and future directions

Deep learning models, while powerful and versatile, face

several significant challenges. Addressing these challenges

requires a multidisciplinary approach involving data col-

lection and preprocessing techniques, algorithmic

enhancements, fairness-aware model training, inter-

pretability methods, safe learning, robust models to

adversarial attacks, and collaboration with domain experts

and affected communities to push the boundaries of deep

learning and realize its full potential. A brief description of

each of these challenges is given below.

6.1 Data availability and quality

Deep learning models require large amounts of labeled

training data to learn effectively. However, obtaining suf-

ficient and high-quality labeled data can be expensive,

time-consuming, or challenging, particularly in specialized

domains or when dealing with sensitive data such cyber-

security. Although there are several approaches, such as

data augmentation, to generate high amounts of data, it can

sometimes be cumbersome to generate enough training

data and satisfy the requirements of DL models. In addi-

tion, having a small dataset may lead to overfitting issues

where DL models perform well on the training data but fail

to generalize to unseen data. Balancing model complexity

and regularization techniques to avoid overfitting while

achieving good generalization is a challenge in deep

learning. In addition, exploring techniques to improve data

efficiency, such as few-shot learning, active learning, or

semi-supervised learning, remains an active area of

research.

6.2 Ethics and fairness

The challenge of ethics and fairness in deep learning

underscores the critical need to address biases, discrimi-

nation, and social implications embedded within these

models. Deep learning systems learn patterns from vast and

potentially biased datasets, which can perpetuate and

amplify societal prejudices, leading to unfair or unjust

outcomes. The ethical dilemma lies in the potential for

these models to unintentionally marginalize certain groups

or reinforce systemic disparities. As deep learning is

increasingly integrated into decision-making processes

across domains such as hiring, lending, and criminal jus-

tice, ensuring fairness and transparency becomes para-

mount. Striving for ethical deep learning involves not only

detecting and mitigating biases but also establishing

guidelines and standards that prioritize equitable treatment,

encompassing a multidisciplinary effort to foster respon-

sible AI innovation for the betterment of society.

6.3 Interpretability and explainability

Interpretability and explainability of deep learning pose

significant challenges in understanding the inner workings

of complex models. As deep neural networks become more

intricate, with numerous layers and parameters, their

decision-making processes often resemble ‘‘black boxes,’’

making it difficult to discern how and why specific pre-

dictions are made. This lack of transparency hinders the

trust and adoption of these models, especially in high-

stakes applications like health care and finance. Striking a

balance between model performance and comprehensibil-

ity is crucial to ensure that stakeholders, including

researchers, regulators, and end-users, can gain meaningful

insights into the model’s reasoning, enabling informed

decisions and accountability while navigating the intricate

landscape of modern deep learning.

6.4 Robustness to adversarial attacks

Deep learning models are susceptible to adversarial attacks,

a concerning vulnerability that highlights the fragility of

their decision boundaries. Adversarial attacks involve

making small, carefully crafted perturbations to input data,

often imperceptible to humans, which can lead to mis-

classification or erroneous outputs from the model. These

attacks exploit the model’s sensitivity to subtle changes in

its input space, revealing a lack of robustness in real-world

Table 8 Advantages and disadvantages of vertical and horizontal federated and centralized learning [77–143]

Learning technique Advantage Disadvantage

Central learning High accuracy Data leakage

Federated

learning

Horizontal Avoiding data leakage Consume a huge amount of

communication and memory

resources

Vertical High performance, like centralized learning, consuming less communication

resources compared to horizontal federated learning

No server or global model
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scenarios. Adversarial attacks not only challenge the reli-

ability of deep learning systems in critical applications

such as autonomous vehicles and security systems but also

underscore the need for developing advanced defense

mechanisms and more resilient models that can withstand

these intentional manipulations. Therefore, developing

robust models that can withstand such attacks and main-

taining model security and data is of high importance.

6.5 Catastrophic forgetting

Catastrophic forgetting, or catastrophic interference, is a

phenomenon that can occur in online deep learning, where

a model forgets or loses previously learned information

when it learns new information. This can lead to a degra-

dation in performance on tasks that were previously well-

learned as the model adjusts to new data. This catastrophic

forgetting is particularly problematic because deep neural

networks often have a large number of parameters and

complex representations. When a neural network is trained

on new data, the optimization process may adjust the

weights and connections in a way that erases the knowl-

edge the network had about previous tasks. Therefore,

there is a need for models that address this phenomenon.

6.6 Safe learning

Safe deep learning models are designed and trained with a

focus on ensuring safety, reliability, and robustness. These

models are built to minimize risks associated with uncer-

tainty, hazards, errors, and other potential failures that can

arise in the deployment and operation of artificial intelli-

gence systems. DL models without safety and risks con-

siderations in ground or aerial robots can lead to unsafe

outcomes, serious damage, and even casualties. The safety

properties include estimating risks, dealing with uncer-

tainty in data, and detecting abnormal system behaviors

and unforeseen events to ensure safety and avoid catas-

trophic failures and hazards. The research in this area is

still at a very early stage.

6.7 Transfer learning and adaptation

Transfer learning and adaptation present complex chal-

lenges in the realm of deep learning. While pretraining

models on large datasets can capture valuable features and

representations, effectively transferring this knowledge to

new tasks or domains requires overcoming hurdles related

to differences in data distributions, semantic gaps, and

contextual variations. Adapting pre-trained models to

specific target tasks demands careful fine-tuning, domain

adaptation, or designing novel architectures that can

accommodate varying input modalities and semantics. The

challenge lies in striking a balance between leveraging the

knowledge gained from pretraining and tailoring the model

to extract meaningful insights from the new data, ensuring

that the transferred representations are both relevant and

accurate. Successfully addressing the intricacies of transfer

learning and adaptation in deep learning holds the key to

unlocking the full potential of AI across diverse applica-

tions and domains.

7 Conclusions

In recent years, deep learning has emerged as a prominent

data-driven approach across diverse fields. Its significance

lies in its capacity to reshape entire industries and tackle

complex problems that were once challenging or insur-

mountable. While numerous surveys have been published

on deep learning, its models, and applications, a

notable proportion of these surveys has predominantly

focused on supervised techniques and their potential use

cases. In contrast, there has been a relative lack of

emphasis on deep unsupervised and deep reinforcement

learning methods. Motivated by these gaps, this survey

offers a comprehensive exploration of key learning para-

digms, encompassing supervised, unsupervised, reinforce-

ment, and hybrid learning, while also describing prominent

models within each category. Furthermore, it delves into

cutting-edge facets of deep learning, including transfer

learning, online learning, and federated learning. The sur-

vey finishes by outlining critical challenges and charting

prospective pathways, thereby illuminating forthcoming

research trends across diverse domains.
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