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Abstract
The contribution of our work is two-fold. First, we propose a novel feature selection technique, sparsity-promoted centroid-

encoder (SCE). The model uses the nonlinear mapping of artificial neural networks to reconstruct a sample as its class

centroid and, at the same time, apply a ‘1-penalty to the weights of a sparsity promoting layer, placed between the input and

first hidden layer, to select discriminative features from input data. Using the proposed method, we designed a feature

selection framework that first ranks each feature and then, compiles the optimal set using validation samples. The second

part of our study investigates the role of stochastic optimization, such as Adam, in minimizing ‘1-norm. The empirical

analysis shows that the hyper-parameters of Adam (mini-batch size, learning rate, etc.) play a crucial role in promoting

feature sparsity by SCE. We apply our technique to numerous real-world data sets and find that it significantly outperforms

other state-of-the-art methods, including LassoNet, stochastic gates (STG), feature selection networks (FsNet), supervised

concrete autoencoder (CAE), deep feature selection (DFS), and random forest (RF).

Keywords Feature selection � Nonlinear feature selection � Sparsity-promoted centroid-encoder � Centroid-encoder �
‘1-norm � Sparse optimization � Feature sparsity � Neural networks

1 Introduction

High-dimensional data sets are now ubiquitous in Machine

Learning workflows for data driven knowledge discovery.

For example, in bioinformatics, the researchers seek to

understand the gene expression level with microarray or

next-generation sequencing techniques where each point

consists of over 50,000 measurements [1–4]. The abun-

dance of features demands the development of feature

selection algorithms to improve Machine Learning

explainability in classification problems. For high-dimen-

sional data samples, it is often typical that good classifi-

cation rates may be due to a small fraction of the measured

features. Hence, selecting the discriminatory features from

large feature sets are essential to understanding the

underlying data as well as explaining, interpreting and

trusting predictive models. For example, the discovery of

drug therapies revolves around the identification of

biomarkers that characterize the biological processes

associated with the host immune response to infection by

respiratory viruses such as influenza [5]. Additional bene-

fits of feature selection include improved visualization and

understanding of data, reducing storage requirements, and

faster algorithm training times.

Feature selection can be accomplished in various ways

that can be broadly categorized into the filter, wrapper, and

embedded methods. In a filter method, each variable is

ordered based on a score. After that, a threshold is used to

select the relevant features [6]. Variables are usually

ranked using correlation [7, 8] and mutual information

[9, 10]. In contrast, a wrapper method uses a model and

determines the importance of a feature or a group of fea-

tures by the generalization performance of the predeter-

mined model [11, 12]. Since evaluating every possible

combination of features becomes an NP-hard problem,

heuristics are used to find a subset of features. Wrapper

methods are computationally intensive for larger data sets,
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in which case search techniques like Genetic Algorithm

(GA) [13] or Particle Swarm Optimization (PSO) [14] are

used. In embedded methods, feature selection criteria are

incorporated within the model, i.e., the variables are picked

during the training process [15]. Iterative Feature Removal

(IFR) uses the absolute weight ratios of a Sparse SVM

model as a criterion to extract features from the high

dimensional biological data set [5].

Mathematically feature selection problem can be posed

as an optimization problem on ‘0-norm, i.e., how many

predictors are required for a machine learning task. As the

minimization of ‘0 is intractable (non-convex and non-

differentiable), ‘1-norm is used instead, which is a convex

proxy of ‘0 [16]. Note ‘1 is not differentiable at 0, but the

problem can be tackled by leveraging on sub-gradient

methods [17, 18]. Since the introduction of these seminal

papers [19, 20], the use of 1-norm is now widespread. For

example, the ‘1 has been used for the feature selection task

in linear [5, 21–24] as well as in nonlinear regime [25–27].

Popularity notwithstanding, note that it is only a proxy for

sparsity, and can generate small weights (the shrinkage

problem) [28, 29], and has the potential non-unique solu-

tions [30].

This paper proposes a new embedded variable selection

approach called Sparsity-promoted Centroid-Encoder

(SCE) to extract features when class labels are available.

Our method extends the Centroid-Encoder model [31, 32],

where we applied a ‘1-penalty to a sparsity promoting layer

between the input and the first hidden layer. We evaluate

this proposed model SCE on diverse data sets and show

that the selected features produce better generalization than

other state-of-the-art techniques. As a feature selection

tool, SCE uses a single model for the multi-class problem

without the need to create multiple one-against-one binary

models typical of linear methods, e.g., Lasso [16], or

Sparse SVM [24]. The work of [25] also uses a similar

sparse layer between the input and the first hidden with an

Elastic net penalty while minimizing the classification error

with a softmax layer. The authors used Theano’s symbolic

differentiation [33] to impose sparsity. In contrast, our

approach minimizes the Centroid-Encoder loss with an

explicit differentiation of the ‘1 function using the sub-

gradient. Unlike DFS, our model can capture the intra-class

variability by using multiple centroids per class. This

property is beneficial for multi-modal data sets.

1.1 Summary of novelty

Here, we summarize the novel aspects of our work. The

performance implications of these innovations will be

explored via direct comparison with many of state-of-the-

art algorithms in the context of benchmark data sets from

the literature.

• We propose a novel nonlinear feature selection tech-

nique, called Sparsity-promoted Centroid-Encoder

(SCE).

• SCE minimizes the distortion error of each class in the

ambient space and, at the same time, uses a ‘1-penalty

on the sparse layer to discard features from input not

essential to reconstruct the class centroids.

• One key attribute of SCE is that it can extract

informative features by capturing the intra-class vari-

ance using multiple centroids per class. This property of

SCE distinguishes itself from other neural network-

based feature selection techniques, such as LassoNet

[34], Concrete Autoencoders [35], FsNet [36], Stochas-

tic Gate [37], which do not model the multi-modal

nature of data (data sets whose classes appear to have

multiple clusters) during feature selection.

• SCE requires the solution of a non-convex optimization

problem. Training such models has the potential to

produce a non-unique set of selected features as a

consequence of local minima. We propose a framework

to select the most robust features to address this

limitation of all non-convex feature selection

algorithms.

• We also address the challenges of minimizing ‘1-norm

using stochastic optimization. We empirically show that

the hyper-parameters associated with stochastic opti-

mization, such as learning rate and mini-batch size, play

a critical role in promoting sparsity using SCE.

The article is organized as follows: In Sect. 2, we review

related work, for both linear and nonlinear feature selection

techniques. In Sect. 3, we present the formulation of

Sparsity-promoted Centroid-Encoder (SCE) with analysis

to understand the model. In Sect. 4, we present a robust

feature selection workflow. Section 5 offers an array of

experiments to show the challenges of minimizing ‘1-norm

using stochastic optimization. In Sect. 6, we apply SCE to

a range of bench-marking data sets taken from the literature

and compare it with other state-of-the-art methods. Finally,

we present a discussion and possible extension of our

model in Sect. 7.

2 Related work

Feature selection has a long history spread across many

fields, including bioinformatics, document classification,

data mining, hyperspectral band selection, computer vision.

It is an active research area, and numerous techniques exist

to accomplish the task. We describe the literature related to

the embedded methods where the selection criteria are part

of a model. The model can be either linear or nonlinear.
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2.1 Feature selection using linear models

Linear models are widely used in Machine Learning for

classification and regression. These models approximate

the output as a linear combination of input variables (fea-

tures), i.e., y � f ðxÞ ¼ wTxþ b where w and b are the

model parameters. From the optimization perspective, a

linear model takes the following form:

minimize
h

lðy; f ðx; hÞÞ where l is a loss function and h is the
parameter set. Adding a ‘1 penalty on the parameter set h
gives a feature selector, least absolute shrinkage and

selection operator or Lasso [16], which takes the form:

minimize
h

lðy; f ðx; hÞÞ þ kkhk1 ð1Þ

where k is a hyper parameter which controls the sparsity of

the model. Since its inception, the model has been used

extensively for feature selection on various data sets

[21–23]. Elastic net, proposed by Zou et al. [29], combined

the Lasso penalty with the Ridge Regression penalty [38]

to overcome some limitations of Lasso. The Elastic net is

defined as following:

minimize
h

lðy; f ðx; hÞÞ þ ð1� aÞkhk1 þ akhk22 ð2Þ

where a 2 ½0; 1Þ and the term ð1� aÞkhk1 þ akhk22 known
as elastic net penalty. Elastic net has been widely applied,

e.g., [39–41]. Note both Lasso and Elastic net are convex in

the parameter space. Also see the following works which

address the issues with Lasso [42–46].

Support Vector Machines (SVM) [47] is a state-of-the-

art model for classification, regression and feature selec-

tion. SVM-RFE is a linear feature selection model which

iteratively removes the least discriminative features until a

parsimonious set of predictive features are selected [48].

Arbitrary p-norm separating hyperplanes were proposed by

[49]. IFR [5], on the other hand, selects a group of dis-

criminatory features at each iteration and eliminates them

from the data set. The process repeats until the accuracy of

the model starts to drop significantly. Note IFR uses Sparse

SVM (SSVM), which minimizes the l1 norm of the model

parameters. Lasso, Elastic Net, and SVM-based techniques

are primarily suitable for binary problems, i.e., a single

model cannot handle multiple classes. These models are

extended to the multi-class regime by combining several

binary one-against-one (OAO) or one-against-all (OAA)

models. For example, [24] used 120 Sparse SVM models to

select discriminative bands from the Indian Pine data set,

which has 16 classes.

On the other hand, Random forest (RF) [50], a decision

tree-based technique, finds features from multi-class data

using a single model. The model does not use Lasso or

Elastic net penalty for feature selection. Instead, the model

weighs the importance of each feature by measuring the

out-of-bag error. Warda et al. proposed a hybrid feature

selection technique (HBAPSO) for breast cancer prediction

[51]. The algorithm uses a combination of particle swarm

optimization (PSO) [14] and bat algorithm (BA) [52] for

feature pruning. The work of Dai et al. uses label corre-

lation and instance correlation with the ‘2;1-norm to extract

features from multi-label data (CMFSS) [53]. More infor-

mation on feature selection on high dimensional microar-

ray data can be found [54].

2.2 Feature selection using deep neural
networks

While the linear models are fast and convex, they do not

capture the nonlinear relationship among the input features

(unless a kernel trick is applied). Because of the shallow

architecture, these models do not learn a high-level repre-

sentation of input features. Moreover, there is no natural

way to incorporate multi-class data in a single model.

Nonlinear models based on deep neural networks overcome

these limitations. In this section, we will briefly discuss a

handful of such models.

Group Lasso [55] was modified to impose sparsity on a

group of variables instead of a single variable [26]. They

applied the group sparsity simultaneously on the input and

the hidden layers to remove features from the input data

and the hidden activation. On MNIST, their algorithm

discarded more than 200 features from the input vector

with an accuracy of 97% on the test data. Although on the

Forest Cover data set, the algorithm used most of the input

variables, 52.7 on average out of 54. Deep feature selection

(DFS), a multilayer neural network-based feature selection

technique, was proposed by [25]. As a sparse regulariza-

tion, the authors used elastic-net [29] on the variables of

the feature selection layer to induce sparsity. The standard

soft-max function is used in the output layer for classifi-

cation. With this setup, the network is trained in an end-to-

end fashion by error backpropagation. Despite the deep

architecture, its accuracy is not competitive, and experi-

mental results have shown that the method did not out-

perform the random forest (RF) method. Kim et al.

proposed a heuristics-based technique [56], EP-DNN, to

assign importance to each feature. Unlike [25, 26], EP-

DNN does not use sparsity or group sparsity during train-

ing; instead, the importance of a feature is calculated using

a backpropagation-like technique after the training step is

done, making it a multi-step process. The authors evaluated

the model with only one biological data set. On the other

hand, Roy et al. proposed to use ReLU activation to

measure the contribution of an input feature toward hidden

activation of the next layer [57]. The approach makes the
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feature selection and training of the deep network in a

single step. Unlike the supervised methods [25, 26, 56, 57],

Han et al. developed an unsupervised feature selection

technique based on the autoencoder architecture [58].

Applying a l2;1-penalty to the weights coming out from

each input node, the authors measure the contribution of

each feature while reconstructing the input. The model

removes the input features with a minimum contribution to

sample reconstruction. Similar to the previous work,

Taherkhani et al. proposed [59] an RBM[60]-based feature

selection model which discards a feature if the recon-

struction error does not increase after setting the corre-

sponding input to zero.

Recently, Balin et al. proposed an end-to-end unsuper-

vised feature selection technique, namely Concrete

Autoencoders (CAE) [35]. The authors utilize the concrete

random variable, a continuous approximation of a one-hot

vector in the feature selection layer. One of the attractive

features of CAE is that its cost function is differentiable,

and the model picks a subset of original features by grad-

ually minimizing the temperature of the concrete feature

selector layer using an annealing scheme. Note CAE

requires the user to specify the number of features to be

selected from the data. Stochastic Gates, proposed by [37]

incorporates continuous relaxation of the Bernoulli distri-

bution to approximate ‘0-norm. Like CAE, the cost of the

Stochastic Gate is also differentiable, and the model

assumes the input features follow a Gaussian distribution.

The FsNet, proposed by Singh et al. [36], designed for

high-dimensional biological data sets, also uses a Concrete

feature selection layer along with Diet Networks [61] to

reduce the model size. LassoNet [34], on the other hand,

uses a skip connection to measure the contribution of a

feature using the Lasso penalty and only allows a feature to

participate in hidden units if it is still active. Uzma et al.

proposed Gene encoder [62] which is an unsupervised

feature selection technique based on deep architecture. We

left the brief description of these models in (Table 1).

3 Sparsity-promoted centroid-encoder

Centroid-Encoder (CE) neural networks are the starting

point of our approach [31, 32, 63]. We present a brief

overview of CEs and demonstrate how they can be

extended to perform nonlinear feature selection.

3.1 Centroid-encoder

The CE neural network is a variation of an autoencoder and

can be used for both visualization and classification tasks.

Consider a data set with N samples and M classes. The

classes denoted Cj; j ¼ 1; . . .;M where the indices of the

data associated with class Cj are denoted Ij. We define

centroid of each class as cj ¼ 1
jCjj

P
i2Ij x

i where jCjj is the
cardinality of class Cj. Unlike autoencoder, which maps

each point xi to itself, the CE maps each point xi to its class

centroid cj by minimizing the following cost function over

the parameter set h:

LceðhÞ ¼
1

2N

XM

j¼1

X

i2Ij
kcj � f ðxi; hÞÞk22 ð3Þ

The mapping f is composed of a dimension reducing

mapping g (encoder) followed by a dimension increasing

reconstruction mapping h (decoder). The output of the

encoder is used as a supervised visualization tool [31, 32]

and attaching another layer to map to the one-hot encoded

labels performs robust classification [63].

3.2 Sparsity-promoted centroid-encoder
for feature selection

The Sparsity-promoted Centroid-Encoder (SCE) is a

modification to the centroid-encoder architecture as shown

in Fig. 1. Unlike centroid-encoder, we have not used a

bottleneck architecture as visualization is not our aim here.

The input layer is connected to the first hidden layer via the

sparsity promoting layer (SPL). Each node of the input

layer has a weighted one-to-one connection to each node of

the SPL. The number of nodes in these two layers is the

same. The nodes in SPL do not have any bias or nonlin-

earity. The SPL is fully connected to the first hidden layer;

therefore, the weighted input from the SPL will be passed

to the hidden layer in the same way that of a standard feed

forward network. During training, a ‘1 penalty will be

applied to the weights connecting the input layer and SPL

layer. The sparsity promoting ‘1 penalty will drive most of

the weights to near zero, and the corresponding input

nodes/features can be discarded. Therefore, the purpose of

the SPL is to select important features from the original

input. Note we only apply the ‘1 penalty to the parameters

of the SPL.

Denote hspl to be the parameters (weights) of the SPL

and h to be the parameters of the rest of the network. The

cost function of SCE is given by

LsceðhÞ ¼
1

2N

XM

j¼1

X

i2Ij
kcj � f ðxi; hÞÞk22 þ kkhsplk1 ð4Þ

where k is the hyperparameter which controls the sparsity.

A larger value of k will promote higher sparsity resulting

more near-zero weights in SPL. In other words, k is a knob

that controls the number of features selected from the input

data.
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Like centroid-encoder, we trained sparsity-promoted

centroid-encoder using error backpropagation, which

requires the gradient of the cost function of Eq. 4. As ‘1
function is not differentiable at 0, we implement this term

using the sub-gradient [17]. We trained SCE using Scaled

Conjugate Gradient Descent [64] on the full training set.

Like any neural network-based model, the hyperparameters

of SCE need to be tuned for optimum performance. Table 2

contains the list with the range of values we used in this

research. We used validation set to choose the optimal

Table 1 Brief description of the feature selection techniques

Model Description

LASSO [16] A linear regression/classification model that uses ‘1-penalty for variable selection

ElasticNet [29] A linear regression/classification model that applies both ‘1 and ‘2-penalty for variable selection

SSVM [5] A SVM-based linear model which minimizes the ‘1-norm for feature sparsity

RF [50] A decision tree-based model which calculate importance of each feature by measuring the out-of-bag error

HBAPSO [51] A hybrid feature selection technique using particle swarm (PSO) [14] and bat algorithm (BA) [52]

CMFSS [53] Using ‘2;1-norm, the model picks informative features using the label correlation and instance correlation in a collaborative

manner

DFS [25] A neural network-based model which uses elastic net penalty for feature selection

SG-ANN [26] This ANN-based feature selection technique use group-sparsity for feature selection

EP-DNN [56] A multi-step ANN-based model which calculates feature importance using a backpropagation like algorithm

Roy et al. [57] This ANN-based technique uses ReLU unit for feature selection

Han et al. [58] An autoencoder-based unsupervised technique. Uses l2;1-penalty to calculate each feature’s contribution in reconstruction

Taherkhani et al.

[59]

An RBM [60]-based unsupervised technique which discards a feature if setting it to 0 doesn’t increase reconstruction loss

CAE [35] A differentiable technique which uses concrete random variable to select an input feature. The feature selection layer is

attached to an Autoencoder model, making it unsupervised

STG [37] A differentiable technique which approximates ‘0-norm by continuous relaxation of the Bernoulli distribution

FsNet [36] The model uses Diet Network [61] along with CAE [35] to select features from high-dimensional biological data

LassoNet [34] Uses a skip connection to measure the contribution of a feature using the Lasso penalty [16]

Gene encoder [62] An unsupervised model based on deep neural networks

Fig. 1 Architecture of Centroid-Encoder and Sparsity-promoted

Centroid-Encoder. Notice the Centroid-Encoder uses a bottleneck

architecture which is helpful for visualization. In contrast, the

Sparsity-promoted Centroid-Encoder does not use any bottleneck

architecture; instead, it employs a sparse layer between the input and

the first hidden layer to promote feature sparsity
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value. For a small sample size data set (high-dimensional

biological data), we ran a five-fold cross validation on the

training set to pick the optimum value. The Python

implementation of Sparsity-promoted Centroid-Encoder is

available in Github repository https://github.com/Tomojit1/

SparseCentroid-Encoder.git.

3.2.1 Feature cut-off

The 1-norm of the sparse layer (SPL) drives a lot of weight

to near zero. Often hard thresholding or a ratio of two

consecutive weights is used to pick the nonzero weight [5].

We take a different approach. After training SCE, we

create a sparsity curve from the weights of the sparse layer

by arranging the absolute value of the weights in

descending order, then find the elbow of the curve. We

measure the distance of each point on the curve to the

straight line formed by joining the first and last points of

the curve. The point with the largest distance is the position

(P) of the elbow. We pick all the features whose absolute

weight is greater than that of P. We demonstrate the feature

cut-off in Fig. 2 with high-dimensional SMK_CAN data,

which has 19,993 genes per sample. The two panels display

the absolute weight of the sparsity promoting layer in

descending order for two runs. The red dot indicates the

exact position of P determined by the cut-off algorithm.

3.3 Empirical analysis of SCE

In this section, we present an empirical analysis of our

model. The results of feature selection for the digits 5 and 6

from the MNIST set are displayed in Fig. 3. In panel (a),

we compare the two terms that contribute to Eq. 4, i.e., the

centroid-encoder and ‘1 costs, weighted with different

values of k. As expected, we observe that the CE cost

monotonically decreases with k, while the ‘1 cost increases
as k decreases. For larger values of k, the model focuses

more on minimizing the ‘1-norm of the sparse layer, which

results in smaller values. In contrast, the model pays more

attention to minimizing the CE cost for small ks; hence, we
notice smaller CE cost and higher ‘1 cost.

Panel (b) of Fig. 3 shows the accuracy on a validation

set as a function nine different values of k; the validation

accuracy reached its peak for k ¼ 0:001. In panels (c) and

(d), we plotted the magnitude of the feature weights of the

sparse layer in descending order. The sharp decrease in the

Table 2 Hyperparameters for

sparsity-promoted centroid-

encoder

Hyper parameter Range of values

#SCG iteration {25, 50, 75, 100}

#Hidden layers (L) {1, 2}

#Hidden nodes (H) {50, 100, 200, 250, 500}

Activation function Hyperbolic tangent (tanh)

k {0.01, 0.001, 0.0001, 0.0002, 0.0004, 0.0006, 0.0008}

#Center/Class {1, 2, 3, 4, 5}

Fig. 2 Figure to display the absolute weight SPL layer in descending order over two run on high dimensional SMK_CAN data. The experiment is

done with k ¼ 0:0002
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magnitude of the weights demonstrates the promotion of

sparsity by SCE. The model effectively ignores features by

setting their weight to approximately zero. Notice the

model produced a sparser solution for k ¼ 0:1, selecting

only 32 features compared to 122 chosen variables for

k ¼ 0:001. Figure 4 shows the position of the selected

features, i.e., pixels, on the digits 5 and 6. The intensity of

the color represents the feature’s importance. Dark blue

signifies a higher absolute value of the weight, whereas

light blue means a smaller absolute weight.

Our next analysis shows how SCE extracts informative

features from a multi-modal data set, i.e., data sets whose

classes appear to have multiple clusters. In this case, one

center per class may not be optimal, e.g., ISOLET data. To

this end, we trained SCE using a different number of

centers per class where the centers were determined using

standard k-Means algorithm [65, 66]. After the feature

selection, we calculated the validation accuracy and plotted

it against the number of centers per class in Fig. 5. The

validation accuracy jumped significantly from one center to

two centers per class. The increased accuracy indicates that

the speech classes are multi-modal, further validated by the

two-dimensional PCA plot of the three classes shown in

panel (b)–(d).

4 Feature selection workflow using SCE

By design, sparse methods identify a small number of

features that accomplish a classification task. If one is

interested in all the discriminatory features that can be used

to separate multiple classes, then, one can repeat the pro-

cess of removing good features. This section describes how

SCE can be used iteratively to extract all discriminatory

features from a data set; see [5] for an application of this

approach to sparse support vector machines.

Fig. 3 Analysis of SCE. a Change of the two costs over k. b Change of validation accuracy over k. c Sparsity plot of the weight of WSPL for

k ¼ 0:001. d Same as c but k ¼ 0:1
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SCE is a model based on neural network architecture;

hence, it is a non-convex optimization. As a result, multiple

runs will produce different solutions, i.e., different feature

sets on the same training set. These features may not be

optimal given an unseen test set. To find out the robust

features from a training set, we resort to frequency-based

feature pruning. In this strategy, first, we divide the entire

training set into k folds. On each of these folds, we ran the

SCE and picked the top N (user select) number of features.

We repeat the process T times to get k � T feature sets.

Then, we count the number of occurrences of each feature

and call this number the frequency of a feature. We ordered

the features based on the frequency and picked the opti-

mum number from a validation set. We present the feature

selection workflow in Fig. 6.

5 Minimizing 1-norm using stochastic
optimization

In this section, we investigate the challenges of minimizing

‘1-norm using stochastic optimization, such as stochastic

gradient descent [SGD; 67], adaptive moment estimation

[Adam; 68]. These techniques are beneficial for large-scale

machine learning, see [69]. The authors of Group Sparse

ANN [26] and DFS [25] used stochastic optimization with

‘1-norm on neural network architecture to promote feature

sparsity. In recent work, Yamada et al. [37] reported that

DFS and Group Sparse ANN failed to induce sparsity on

several bench-marking feature selection data sets. How-

ever, the authors did not investigate the root cause. Note

that stochastic optimizations like SGD, Adam require

hyper-parameters, e.g., learning rate, mini-batch size,

momentum. Calculating the gradient on a random sub-

sample (mini-batches) of a training set might add noise that

may affect ‘1-norm minimization. We did an array of

experiments to evaluate the dependencies of the hyper-

parameters on ‘1-norm minimization.

All the experiments in this section use Sparsity-pro-

moted Centroid-Encoder on MNIST data set. This time we

use Adam to optimize the network parameters over mini-

batches. We used one hidden layer with 500 hyperbolic

tangent (‘tanh’) activation units with a learning rate and k
set to 0.01 and 0.0001, respectively. In Fig. 7, we present

the result of the first experiment, where we show the effect

of the size of the mini-batch. The three columns (A, B, and

C) show results for a specific choice of mini-batch, i.e.,

512, 1024, and 5000. For each column, the upper panel

Fig. 4 Demonstration of the

sparsity of the proposed model

on MNIST digits 5 and 6. The

digits are shown in white, and

the selected pixels are marked

using blue-the darkness of blue

indicates the relative importance

of the pixel to distinguish the

two digits. We showed the

selected pixels for two choices

of k. Notice that for k ¼ 0:1, the
model chose the lesser number

of features, whereas it picked

more pixels for k ¼ 0:001. k is

the nob which controls the

sparsity of the model
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shows the position of the top 200 selected pixel, and the

lower panel shows the absolute weight of the sparse layer

in descending order.

Minimizing the ‘1-norm with smaller mini-batches (512)

does not induce sparsity. Surprisingly, the ‘1-norm of the

sparse layer put higher weight on the pixels around the

border, ignoring the pixels in the center of the image. The

model selects only 8 pixels (colored in teal) for mini bath

1024; among them, four pixels reside at the image’s border.

The position of the pixels and the sparsity plot improves

significantly for mini-batch size 5000, selecting around 300

pixels from the center of the picture. Also, notice that the

scale of the absolute weight increases with the size of the

min-batch. We saw similar observations while working

with a ReLU activation function, i.e., the relation between

the mini-batch size and the sparsity does not change if we

switch from tanh to ReLU.

Next, we show the effect of the learning rate/step size on

the model’s sparsity for k ¼ 0:0001 and mini-batch size of

5000. Figure 8 shows the results. For a relatively larger

step size (0.1), the model did not induce sparsity, and a lot

of selected pixels (top 200) lie on the border of the image,

Fig. 5 Sparsity-promoted Centroid-Encoder for multi-modal data set. Panel a shows the increase in validation accuracy over the number of

centroids per class. Panel b–d shows the two-dimensional PCA plot of the three speech classes
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suggesting the presence of noise. In contrast, the model

produces sparse solutions for learning rates of 0.01 and

0.001. In both cases, the selected pixels also reside in the

middle of the image.

Figure 9 shows the result of the second experiment

where we study the effect of penalty term k for three dif-

ferent values 0.01 (panel A), 0.001 (panel B), and 0.0001

(panel C) for a fixed mini-batch size of 5000 and learning

rate of 0.01. Notice that the model did not promote sparsity

for k ¼ 0:01; 0:001. The ‘1-norm of the sparse layer selects

pixels from all over the image when k ¼ 0:01; in contrast,

k ¼ 0:001 ignores the middle of the images and picks

pixels from the boundary. Interestingly, the selected pixels

form a circle. Clearly, these two values of k would not pick

the most informative features from an MNIST image. On

the other hand, we see a sparser solution for k ¼ 0:0001,

selecting around 325 features from the middle of the 28 9

28 grid. The position of the selected pixels also makes

sense as the digits lie in the center of the grid.

The in-depth analysis of this Section reveals an essential

aspect of stochastic optimization when minimizing the ‘1-

norm. We have observed that the hyper-parameters play a

crucial role. Smaller mini-batches and higher ks do not

promote feature sparsity, and the selected features perhaps

contain noise. The learning rate also dictates the sparsity

when other hyper-parameters are kept constant. These

challenges can be overcome by carefully tuning the hyper-

parameters using a validation set. So, in summary, mini-

mizing ‘1-norm using stochastic optimization is challeng-

ing and requires a careful selection of hyper-parameters to

induce feature sparsity. Consequently, we didn’t use

stochastic optimization while training SCE; instead, we

used Scaled Conjugate Gradient (SCG) descent [64].

Unlike Adam or SGD, SCG calculates the step size/learn-

ing rate at each iteration, thus reducing the effort of tuning

one hyperparameter. We also used the entire training set to

calculate the gradient, which reduces the step of adjusting

Fig. 6 Feature selection workflow using Sparsity-promoted Centroid-

encoder: a First, the data set has been partitioned into training and

validation. b We further partitioned the training set into n splits. c On
each of the training splits, we ran Sparsity-promoted Centroid-

encoder to get n feature sets. d We calculated the occurrence of each

feature among the n sets and called it the frequency of the feature. We

ranked features from high to a low frequency to get an ordered set.

e At last, we picked the optimum number of features using a

validation set
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the mini-batch size apart from the fact that the model

parameters were updated on the actual gradient.

6 Experimental results

We present the comparative evaluation of our model on

various data sets using several feature selection techniques.

6.1 Experimental details

We used twelve data sets from a variety of domains (im-

age, biology, speech, and sensor; see Table 3) and five

neural network-based models to run three benchmarking

experiments. To this end, we picked the published results

from four papers [25, 34, 36, 37] for benchmarking. We

followed the same experimental methodology described in

those papers for an apples-to-apples comparison. This

approach permitted a direct comparison of LassoNet,

FsNet, Supervised CAE, DFS, and Stochastic Gates using

the authors’ best results. All three experiments follow the

standard workflow.

• Split each data sets into training and test partition.

• Run SCE on the training set to extract top K 2
f10; 16; 50g features.

• Using the top K features train a one hidden layer ANN

classifier with H ReLU units to predict the test samples.

The H is picked using a validation set.

• Repeat the classification 20 times and report average

accuracy.

Now, we describe the details of the three experiments.

6.1.1 Experiment 1

The first bench-marking experiment is conducted on five

real-world high dimensional biological data sets:

ALLAML, GLIOMA, SMK_CAN, Prostate_GE, GLI_85,

and CLL_SUB1 to compare SCE with FsNet and Super-

vised CAE (SCAE). Following the experimental protocol

of Singh et al. [36], we randomly partitioned each data into

a 50:50 ratio of train and test and ran SCE on the training

set. After that, we calculated the test accuracy using the top

K ¼ f10; 50g SCE features. We repeated the experiment

20 times and reported the mean accuracy. We ran a 5-fold

Fig. 7 Effect of the size of mini-batch on ‘1-norm minimization using

SCE for three choices of mini-batches- 512 in (A), 1024 in (B), and
5000 in (C). For each case, the upper panel shows the position of the

selected pixels in a 28 9 28 grid, and the lower panel presents the

absolute weight of the sparse layer in descending order

1 Available at https://jundongl.github.io/scikit-feature/.
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cross-validation on the training set to tune the

hyperparameters.

6.1.2 Experiment 2

In the second bench-marking experiment, we compared

SCE with LassoNet [34] and Stochastic Gate [37] on six

data sets: Mice Protein,2 COIL20, Isolet, Human Activity,

MNIST, and FMNIST.3 Following the experimental set of

Lemhadri et al. we split each data set into 70:10:20 ratio of

training, validation, and test sets. We ran SCE on the

training set to pick the top K ¼ 50 features to predict the

class labels of the sequester test set. We extensively used

the validation set to tune the hyperparameters.

6.1.3 Experiment 3

In the last benchmark, we used the single cell GM12878

data4 which has separate training, validation, and test sets.

The SCE is run to select the top K ¼ 16 features to com-

pare the prediction performance with Deep/Shallow DFS

[25], and Lasso. Again, we used the validation set for

hyperparameters tuning.

6.2 Results

Now, we discuss the results of the three benchmarking

experiments. In Table 4, we present the results of the first

experiment where we compare SCE, SCAE, and FsNet on

five high-dimensional biological data sets. Apart from the

results using a subset (10 and 50) of features, we also

provide the prediction using all the features. In most cases,

feature selection helps improve classification performance.

Generally, SCE features perform better than SCAE and

FsNet; out of the twelve classification tasks, SCE produces

the best result on eight. Notice that the top fifty SCE fea-

tures give a better prediction rate than the top ten in all the

cases. Interestingly, the accuracy of SCAE and FsNet drop

significantly on SMK_CAN, GLI_85, and CLL_SUB using

the top fifty features.

Now, we turn our attention to the results of the second

experiment, as shown in Table 5. The features of the

Fig. 8 Effect of learning rate on ‘1-norm minimization using SCE for

three values 0.1 in (A), 0.01 in (B), and 0.001 in (C). For each case,

the upper panel shows the position of the selected pixels in a 28 9 28

grid, and the lower panel presents the absolute weight of the sparse

layer in descending order

2 There are some missing entries that are imputed by mean feature

values.
3 Available at UCI Machine Learning repository.
4 The authors of [25] shared the data with us.
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Sparsity-promoted Centroid-Encoder produce better clas-

sification accuracy than LassoNet and STG in all the cases.

Especially for Mice Protein, Activity, Isolet, FMNIST, and

MNIST, our model has better accuracy by 2.5–4.5%. The

results for Stochastic Gates (STG) in [37] are not in a

table form, but our eyeball comparison of classification

accuracy with the top 50 features on ISOLET, COIL20,

and MNIST suggests that stochastic gate is not more

accurate than SCE. For example, using the top 50 features,

STG obtains approximately 85% accuracy on ISOLET,

Fig. 9 Effect of k on ‘1-norm minimization using SCE for three

values 0.01 in (A), 0.001 in (B), and 0.0001 in (C). For each case, the

upper panel shows the position of the selected pixels in a 28 9 28

grid, and the lower panel presents the absolute weight of the sparse

layer in descending order

Table 3 Descriptions of the data

sets used for benchmarking

experiments

Data set #Features #Classes #Samples Domain

ALLAML 7129 2 72 Biology

GLIOMA 4434 4 50 Biology

SMK_CAN 19,993 2 187 Biology

Prostate_GE 5966 2 102 Biology

GLI_85 22,283 2 85 Biology

CLL_SUB 11,340 3 111 Biology

GM12878 93 3 6468 Biology

Mice protein 77 8 975 Biology

COIL20 1024 20 1440 Image

Isolet 617 26 7797 Speech

Human activity 561 6 5744 Accelerometer sensor

MNIST 784 10 70,000 Image

FMNIST 784 10 70,000 Image

The source of the data sets is mentioned in the specific experiment below
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while SCE obtains 91.1%; STG obtains about 97% on

COIL20, while SCE obtains 99.3%; on the data set,

MNIST STG achieves approximately 91%, while SCE

93.8%. In this experiment, we ran SCE with multiple

centroids per class and observed an improved prediction

rate than one center per class on Isolet, Activity, MNIST,

and FMNIST. The observation suggests that the classes are

multi-modal, providing a piece of valuable information.

The optimum number of centers was picked using the

validation set.

In Table 6, we present the results of our last experiment

on the single cell data GM12878. We use the published

results for deep feature selection (DFS), shallow feature

selection, and Lasso from the work of Li et al. to evaluate

SCE. To compare with Li et al. we used the top 16 features

to report the mean accuracy of the test samples. We see that

the SCE features outperform all the other models. Among

all the models, Lasso exhibits the worst performance with

an accuracy of 81:86%. This relatively low accuracy is not

surprising, given Lasso is a linear model.

6.3 Experiment with feature selection workflow

This Section presents the results using the feature selection

workflow mentioned in Sect. 4. To this end, we used a

high-dimensional biological data set, GSE73072, that has

proven to be very valuable for understanding the human

immune response to respiratory infection. The framework

is applied to SCE and Random Forest (RF), a widely used

feature selection tool in Computational Biology. The

details of the data set and the experimental results are given

below.

GSE73072 is a microarray data set which is a collection

of gene expressions taken from human blood samples as

part of multiple clinical challenge studies [70] where

individuals were infected with the following respiratory

viruses HRV, RSV, H1N1, and H3N2. In our experiment,

we excluded the RSV study. Blood samples were taken

from the individuals before and after the inoculation. RMA

normalization [71] is applied to the entire data set, and the

LIMMA [72] is used to remove the subject-specific batch

effect. Each sample is represented by 22,277 probes asso-

ciated with gene expression. The data are publically

available on the NCBI GeneExpression Omnibus (GEO)

with identifier GSE73072.

We conducted an experiment on this data where the goal

is to predict the classes control, shedders, and non-shedders

at the very early phase of the infection, i.e., at time bin

spanning hours 1–8. Controls are the pre-infection samples,

whereas shedders and non-shedders are post-infection

samples picked from the time bin 1–8 hr. Shedders actually

disseminate virus, while non-shedders do not. We consid-

ered six studies, including two H1N1 (DEE3, DEE4), two

H3N2 (DEE2, DEE5), and two HRV (Duke, UVA) studies.

We used 10% training samples as a validation set-the

training set comprised all the studies except for the DEE5,

which was kept out for testing. We did a leave-one-subject-

out (LOSO) cross-validation on the test set using the

selected features from the training set. The validation set is

Table 4 Comparison of mean

classification accuracy of FsNet,

SCAE, and SCE features on five

real-world high-dimensional

biological data sets

Data set Top 10 features Top 50 features All features

FsNet SCAE SCE FsNet SCAE SCE ANN

ALLAML 91.1 83.3 92:5 92.2 93.6 95:9 89.9

Prostate_GE 87.1 83.5 89:5 87.8 88.4 89:9 75.9

GLIOMA 62.4 58.4 63:2 62.4 60.4 69:0 70.3

SMK_CAN 69:5 68.0 68.6 64.1 66.7 69:4 65.7

GLI_85 87.4 88:4 84.1 79.5 82.2 85:5 79.5

CLL_SUB 64:0 57.5 53.1 58:2 55.6 55.6 56.9

The prediction rates are averaged over twenty runs on the test set. Numbers for FsNet and SCAE are being

reported from [36]. On these data sets, SCE is run using one centroid per class. The best results are

highlighted in bold

Table 5 Classification results using LassoNet, STG, and SCE features

on six publicly available data sets

Data set Top 50 features #Centers All features

LassoNet STG SCE for SCE ANN

Mice Protein 95.8 NA 98:4 1 100.00

MNIST 87.3 91.0 93:8 3 97.60

FMNIST 80.0 NA 84:7 3 90.16

ISOLET 88.5 85.0 91:1 5 96.96

COIL-20 99.1 97.0 99:3 1 98.87

Activity 84.9 NA 89:4 4 92.81

The column ’#Centers for SCE’ denotes how many centroids per class

are used to train SCE. Numbers for LassoNet and STG are reported

from [34] and [37], respectively. All the reported accuracies are

measured on the test set. NA means the result has not been reported.

We highlighted the best results in bold
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used to find the optimum number of features and to tune

model-specific hyper-parameters. As our primary goal is to

determine the utility of the proposed feature selection

framework, we compared the results with two sets of fea-

tures for each model. The first set is computed with the

framework, and the send set is derived without the

framework.

The results of this data set are shown in Table 7. Notice

that features computed with the framework generalize the

test samples better for both SCE and RF. The framework

improved the classification of the DEE5 study by a margin

of 17 and 10% for SCE and RF, respectively. Not only that,

the variance of the balanced accuracy decreases for both

models. It is pretty fascinating that with the framework, the

models picked a relatively small number of features, 35 for

SCE and 30 for RF, out of 22,277 genes to achieve rela-

tively high accuracy. Note that the optimal number of

features is picked using the validation set. Finally, we point

out that SCE features with the framework have a perfor-

mance benefit over RF.

6.4 Analysis of results

The experimental results in Sects. 6.2 and 6.3 show that

Sparsity-promoted Centroid-Encoder features often per-

form better than other state-of-the-art methods on diverse

sets. Here, we analyze the features in more detail to explain

the improved performance of our model. We visualize the

selected features directly or indirectly to explain and

interpret their discriminative quality. To start with, we

show the position of the selected pixels from the MNIST

images in Fig. 10 over two runs using the whole training

set.

The model picks almost the same number of pixels (194

and 198) across two runs, with 167 overlapping ones. Most

of the selected pixels reside in the middle of the image,

making sense as the MNIST digits lie in the center of a 28

9 28 grid. Notice that the non-overlapping pixels of the

two runs are neighbors, making sense as the neighboring

pixels perhaps contain similar information about the digits.

Now, we turn our attention to a high-dimensional bio-

logical data set, ALLAML, which has 7129 genes per

sample. The top 10 and 50 SCE features predicted the test

samples with an accuracy of more than 92%, better than the

accuracy of using all the genes. Unlike MNIST, we cannot

visualize the selected features directly on a grid, so we use

an indirect method to interpret the discriminative power of

the features. Here, we use PCA, a widely used unsuper-

vised linear projection technique, to visualize the data

using all features vs. the SCE features. Figure 11 presents

the three-dimensional visualization of ALLAML data

using all genes and the top 50 SCE genes. The projection

with all 7129 genes in panel (a) does not separate the

classes entirely. On the other hand, the projection using the

top 50 SCE genes does separate the two classes better.

Notice that the test cases are mapped close to the corre-

sponding training class, which explains why SCE features

to produce high test accuracy. These examples not only

demonstrate the discriminative quality of the SCE features

but also help us to interpret the features.

The classification performance gives a quantitative

measure that does not reveal the biological significance of

the selected genes. We did a literature survey of the top

genes selected by sparsity-promoted centroid-encoder on

GM12878 single cell data and provided a detailed

description in the appendix. Some of these genes play an

essential role in transcriptional activation, e.g.,

H4K20ME1 [73], TAF1 [74], H3K27ME3 [75]. Gene

H3K27AC [76] plays a vital role in separating active

enhances from inactive ones. Besides that, many of these

genes are related to the proliferation of the lymphoblastoid

cancer cells, e.g., POL2 [77], NRSF/REST [78], GCN5

[79], PML [80]. This survey indicates the possible bio-

logical significance of the selected genes.

7 Discussion and conclusion

In this paper, we proposed a novel feature selection tech-

nique Sparsity-promoted Centroid-Encoder. Using the

basic multi-layer perceptron neural network architecture,

the model backpropagates the Centroid-Encoder cost to a

feature selection layer which filters out non-discriminating

Table 6 Classification accuracies using the top 16 features by various

techniques

Data set Top 16 features

SCE Deep DFS Shallow DFS Lasso

GM12878 87.51 85.67 85.34 81.86

Results of Deep DFS, Shallow DFS, Lasso, and Random Forest are

reported from [25]. The best classification result is highlighted in

bold

Table 7 Balanced success rate (BSR) of LOSO cross-validation on

the DEE5 test set. The selected features from training set are used to

predict the classes of control, shedder, and non-shedder. The best

classification result is highlighted in bold

Time bin Model No. of features BSR

1–8 SCE with workflow 35 88.59 ± 2.12

SCE without workflow 35 71.15 ± 5.39

RF with workflow 30 82.65 ± 2.51

RF without workflow 30 72.78 ± 6.36
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features by ‘1-regularization. The setting allows the feature

selection to be data-driven without the need for any prior

knowledge, such as the number of features to be selected

and the underlying distribution of the input features. One

key attribute of our method is the ability to model intra-

class variance with multiple centroids per class. This

approach improves the discriminative power of the selected

Fig. 10 Pixels selected by

Sparsity-promoted Centroid-

Encoder on MNIST with all the

ten classes. The figure shows the

position of the selected pixels

over two runs (k ¼ 0:0002) on a

28 9 28 grid. SCE ignores the

boundary of the image and picks

most of the pixels from the

middle, making sense as the

MNIST digits lie in the center of

a 28 9 28 grid. Notice that there

is a significant number of

common pixels across the two

runs and the non-overlapping

pixels reside in neighboring

space

Fig. 11 Three-dimensional embedding using PCA on ALLAML data.

a The entire data set is projected on the first three principal

components. b First, the data set is partitioned into training and test

sets by a 50:50 ratio. After that, the training and test samples are

restricted to the top 50 SCE features, which are computed from the

training set. The training set is used to calculate the principal

components, and then, the training and the test samples are projected

on the first three principal components
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features and offers new information about the data set, i.e.,

whether the classes are unimodal or multi-modal.

The in-depth empirical analysis of the SCE provides the

interpretability of our model. For example, the interplay

between the CE cost and the ‘1 cost of SPL explains how

the model should behave over different choices of the

weighting parameter k. A higher value of k forces the

model to minimize the 1-norm allowing the CE cost to

increase. On the other hand, a lower k decreases the CE

cost allowing the 1-norm to grow. As an effect, the model

selects fewer features for relatively large values of the

parameter k, and vice versa, demonstrated by the MNIST

digits. We chose the optimal k from a wide range of values

using the validation set and observed that smaller values

work better for our model. We noted that the variability in

the loss function varied smoothly with k making selection

of an optimal parameter more robust. The ‘1 penalty on the

SPL layer induces sharp sparsity on the high-dimensional

SMK_CAN data without shrinking all the variables. Our

feature cut-off technique correctly demarcates the crucial

features from the rest.

We established the utility of our feature selection model

using several benchmarking experiments involving seven

methods. The results span fourteen data sets from various

domains, such as image, speech, accelerometer sensors,

and biology, providing evidence that the features of SCE

produce better generalization performance than previously

state-of-the-art models. We compared SCE with FsNet,

primarily designed for high-dimensional biological data

and found that our proposed method outperformed it in

most cases. SCE also compares favorably with a supervised

version of the Concrete Autoencoder (SCAE). Note that

FsNet and SCAE use differentiable techniques, i.e, employ

smooth cost functions. In data sets with more samples than

the number of variables, SCE produces better classification

results than LassoNet, Stochastic Gate, and DFS.

SCE may employ multiple centroids to capture the

variability within a class, improving the prediction rate of

unknown test samples. In particular, the prediction rate on

the ISOLET improved significantly from one centroid to

multiple centroids, suggesting that the speech classes are

multi-modal. The two-dimensional PCA of ISOLET clas-

ses further confirms the multi-modality of the classes. We

also observed an enhanced classification rate on MNIST,

FMNIST and Activity data with multiple centroids. In

contrast, using a single-center per class performed better

for other data sets (e.g., COIL-20, Mice Protein,

GM12878). Hence, apart from producing an improved

prediction rate, our model can provide extra information

about whether the data is unimodal or multi-modal. This

aspect of sparsity-promoted centroid-encoder distinguishes

it from the STG, CAE LassoNet, and DFS, which do not

model the multi-modal nature of the data.

We demonstrated the interpretability of the selected

features using several examples. The visualization of the

MNIST pixels and the PCA projection of ALLAML data

provided a qualitative explanation for a high prediction

rate. On MNIST digits, SCE selected most of the pixels

from the central part of the image, ignoring the border,

making sense as the digits lie in the center of a 28 9 28

grid. On the high-dimensional ALLAML data, the top 50

SCE features showed better class separability on three-di-

mensional PCA space. Besides the visual explanation, the

survey of the sixteen SCE genes of GM12878 data indi-

cates plausible biological significance.

We also presented a feature selection workflow to

determine the optimal number of robust features. Our

experimental results showed that the prediction rate using

the workflow improves the generalization performance for

Random Forest and SCE. We think the workflow will

benefit other nonconvex methods. We have presented a

detailed empirical analysis to point out the challenges of

inducing feature sparsity using stochastic optimization.

Although the study is done using Sparsity-promoted Cen-

troid-Encoder, it is plausible that other neural network-

based models may exhibit similar behavior, an area of

research we hope to explore in the future.

The Sparsity-promoted Centroid-Encoder presented here

produced state-of-the-art results on many benchmarking

data sets. Nonetheless, we think the performance of the

model can potentially be improved further by exploring

additional extensions. Currently, the model maps a sample

to its class centroid while applying sparsity. The features

may not be discriminatory if two class centroids are close

in the ambient space. Adopting a cost that also caters to

separating the classes may be beneficial. Our model may be

extended to a semi-supervised feature selection regime by

combining the centroid-encoder cost with the autoencoder

loss. In the future, we will explore these ideas.

Appendix 1 Data set specific SCE
configuration

In the following Table, we present the SCE architecture

used for each data sets.

See Table 8.
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Appendix 2 Biological significance
of the selected genes of GM12878

• POL2 (POLR2A): It is a subunit of RNA polymerase II,

which interacts with nuclear CD26 using a chromatin

immunoprecipitation assay. This interaction led to

transcriptional repression of the POLR2A gene, result-

ing in a proliferation of cancer cells [77].

• H4K20ME1 This gene has been implicated in tran-

scriptional activation. Recent studies showed a strong

correlation between H4K20me1 and gene activation in

the regions downstream of the transcription start site

[73].

• NRSF (REST) NRSF/REST is highly expressed in non-

neuronal tissues like the lung. The findings of Kreisler

et at. [78] support that NRSF/REST may act as an

essential modulator of malignant progression in small-

cell lung cancer.

• TAF1 It is the largest integral subunit of TFIID, initiates

RNA polymerase II-mediated transcription. Wang et al.

discovered a critical promoter-binding function of

TAF1 in transcription regulation [74].

• H3K27AC This gene distinguishes active enhancers

from inactive/poised enhancer elements containing

H3K4me1 alone [76].

• GCN5 GCN5 functions as a transcriptional coactivator

of E2f1 target genes. In small-cell lung cancer, E2F1

recruits GCN5 to acetylate H3K9, facilitating transcrip-

tion of E2F1, CYCLIN E, and CYCLIN D1 (39) all of

which promote cellular proliferation and tumor growth

[79].

• PML The PML gene provides instructions for a protein

that acts as a tumor suppressor, which means it prevents

cells from growing and dividing too rapidly or in an

uncontrolled way [80].

• RUNX3 This gene binds to the core DNA sequence 50-
PYGPYGGT-30 found in several enhancers and pro-

moters. It also interacts with other transcription factors.

It functions as a tumor suppressor, and the gene is

frequently deleted or transcriptionally silenced in

cancer [83].

• ZZZ3 It’s protein binding gene which often promotes

gene activation [84].

• H3K27ME3 This gene can function as silencers to

regulate gene expression [75].
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Table 8 Details of network

topology and hyperparameters

for SCE

Data set Network topology Activation k SCG iteration

ALLAML d ! 100 ! d tanh 0.0002 50

GLIOMA d ! 100 ! d tanh 0.0006 60

SMK_CAN d ! 500 ! d tanh 0.0002 50

Prostate_GE d ! 100 ! d tanh 0.0008 50

GLI_85 d ! 250 ! d tanh 0.0008 75

Mice protein d ! 100 ! d tanh 0.001 25

GM12878 d ! 50 ! 50 ! d tanh 0.01 50

COIL20 d ! 100 ! d tanh 0.001 50

Isolet d ! 100 ! d tanh 0.001 50

Human activity d ! 100 ! d tanh 0.001 50

MNIST d ! 250 ! d tanh 0.0002 50

FMNIST d ! 250 ! d tanh 0.0004 50

The number d is the input dimension of the network and is data set dependent
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55. Meier L, Van De Geer S, Bühlmann P (2008) The group lasso for

logistic regression. J R Stat Soc Ser B Stat Methodol 70(1):53–71

56. Kim SG, Theera-Ampornpunt N, Fang C-H, Harwani M, Grama

A, Chaterji S (2016) Opening up the blackbox: an inter-

pretable deep neural network-based classifier for cell-type

specific enhancer predictions. BMC Syst Biol 10(2):243–258

57. Roy D, Murty KSR, Mohan CK (2015) Feature selection using

deep neural networks. In: 2015 international joint conference on

neural networks (IJCNN), pp 1–6. IEEE

58. Han K, Wang Y, Zhang C, Li C, Xu C (2018) Autoencoder

inspired unsupervised feature selection. In: 2018 IEEE interna-

tional conference on acoustics, speech and signal processing

(ICASSP), pp 2941–2945. IEEE

59. Taherkhani A, Cosma G, McGinnity TM (2018) Deep-fs: a fea-

ture selection algorithm for deep Boltzmann machines. Neuro-

computing 322:22–37

60. Hinton GE, Salakhutdinov RR (2006) Reducing the dimension-

ality of data with neural networks. Science 313(5786):504–507

61. Romero A, Carrier PL, Erraqabi A, Sylvain T, Auvolat A, Dejoie
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