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Abstract
As an essential part of music, main melody is the cornerstone of music information retrieval. In the MIR’s sub-field of main

melody extraction, the mainstream methods assume that the main melody is unique. However, the assumption cannot be

established, especially for music with multiple main melodies such as symphony or music with many harmonies. Hence,

the conventional methods ignore some main melodies in the music. To solve this problem, we propose a deep learning-

based Multiple Main Melodies Generator (Multi-MMLG) framework that can automatically predict potential main

melodies from a MIDI file. This framework consists of two stages: (1) main melody classification using a proposed

MIDIXLNet model and (2) conditional prediction using a modified MuseBERT model. Experiment results suggest that the

proposed MIDIXLNet model increases the accuracy of main melody classification from 89.62 to 97.37%. In addition, this

model requires fewer parameters (71.8 million) than the previous state-of-art approaches. We also conduct ablation

experiments on the Multi-MMLG framework. In the best-case scenario, predicting meaningful multiple main melodies for

the music are achieved.
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1 Introduction

Main melody is essential information of a piece of music.

Main melody can be applied in various applications,

including music retrieval [1, 2], accompaniment generation

[3, 4], melody plagiarism identification [5, 6], cover song

recognition [7, 8], and new melody generation [9–11].

Consequently, automatic extraction of the main melody

becomes more important [12, 13], and it has captivated the

attention of many researchers. Humans possess different

cognitive attributes, including auditory perception and

deliberate attention [14] which in turn enables us to sub-

jectively identify the main melody through loudness

transformation, pitch combination, and so forth. However,

computers lack perceptual capacity and subjective judg-

ment. Therefore, it would be arduous for a computing

system to automatically extract the main melody

[1, 13, 15].

Music is usually recorded in audio and symbolic files

[2, 16], which are completely different. On the one hand,

the audio files (e.g., WAV) encode the signal information

of music, and they are realistic recordings of natural

sounds, including noise and perceptual information such as
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loudness and intensity. On the other hand, a symbolic file

(e.g., MIDI—Musical Instrument Digital Interface) is

essentially a sequence of note’s messages, including

velocity, pitch, and duration, track [2, 17, 18]. The sym-

bolic file can better reflect the content of music in com-

parison to the audio file [16]. Hence, the focus of this work

is on extracting melody representations from a symbolic

file, namely MIDI.

Conventional methods use the most distinctive feature

of MIDI files (track message) to obtain the main melody

[12, 16, 19–22]. These methods assume that the main

melody notes are located on a single track, and therefore,

they directly identify the main melody track using some

statistical characteristics of the track of interest. However,

such assumptions cannot be made in real-world application

because this approach represents an ideal condition, which

rarely occurs.

Aside from obtaining the track feature of a MIDI file,

data-driven approaches using deep learning techniques

could be used to extract the main melody notes. Such

techniques include both the classification and prediction

approaches. Specifically, classification approaches such as

MIDIBERT [24], CNN [13] and LStoM [25] could only

output one main melody. In other words, they assume that

the main melody of a piece of music is unique by default.

Under this assumption, these methods classify all notes as

either main melody or accompaniment. These classification

methods can give better results than algorithmic methods

such as Skyline [15] or methods that filter out accompa-

niment notes using thresholds of pitch interval [26]. Unlike

the classification approaches, prediction approaches are

more flexible and could predict multiple melodies, such as

MusicFrameworks [10]. Specifically, Dai et al.’s method

[10] uses basic melody and other music information to

generate new melodies. The basic melody could be

understood as the main melody. Although MusicFrame-

works [10] can actually predict multiple basic melodies,

the predicted results have low similarity with the corre-

sponding music, or in other words, the results are not the

main melodies. Hence, there are no existing methods that

can successfully extract multiple main melodies.

Although most conventional methods assume the

uniqueness of the main melody, this assumption is not

reasonable. To be specific, music often contains multiple

main melodies that are equally important [27], and hence,

it is challenging to determine the single or the essential

main melody [19]. For example, in Fig. 1, the choral music

in the Bach10 dataset [23] contains at least two melodies,

i.e., Melody 1 and Melody 2, where both of them could be

used to identify the music. If using the MIDIBERT [24]

method that defaults to the main melody uniqueness for

extracting the choral music’s main melody, the extracted

result is highly similar to Melody 1 according to the

experiment results. In this case, if the main melody of other

music is similar to choral music’s Melody 1, other music

and the choral music will be matched using the main

melodies. However, the main melody of Music A in Fig. 1

is similar to choral music’s Melody 2, so Music A and the

choral music could not be matched if the main melody of

the choral music is only Melody 1. Consequently, assum-

ing music only has a unique main melody has limitations

and contradicts the complexity of the main melody. For

this problem, if both Melody 1 and Melody 2 of the choral

music could be identified as the main melodies, the

matching in Fig. 1 would be successful. This problem is

usually found in applications where the main melodies are

used for retrieval, such as music retrieval [1, 2], melody

plagiarism identification [5, 6], and cover song recognition

[7, 8]. Hence, an approach that could identify multiple

main melodies within a piece of music is required.

If all main melodies are highly similar and highly rel-

evant to the corresponding music, it will be meaningless to

predict multiple main melodies. Conversely, if the extrac-

ted melodies are entirely different or irrelevant to the music

of interest, then, the prediction has failed because melodies

may actually correspond to different music. Therefore,

only melodies that are different but remain moderate

similarity with respect to the music of interest and viable

for identifying the music are the main melodies. As a

result, to extract multiple main melodies, we need to

address the following difficulties: (1) Finding an approach

to predict multiple main melodies and (2) Finding a strat-

egy to control the similarity of the final predicted results to

ensure that they are the main melodies.

According to the above analysis, the main melody

classification methods assume the uniqueness of main

melodies and only output one result, so they cannot

accommodate the complexity and diversity of main melo-

dies. The advantage of these methods is the classified main

melody with high accuracy. Furthermore, the advantage of

prediction approaches is that they can predict multiple

melodies, but they are usually used in new melody gen-

eration tasks rather than the main melody extraction task

because of their uncontrollable predicted results. In con-

clusion, neither the existing melody classification methods

nor the prediction methods can address the multiple main

melodies prediction problem independently. However, they

all have merits. Hence, we propose a novel framework

combining the merits of classification and prediction

approaches. We name our framework as Multi-MMLG

(Multiple Main Melodies Generator) framework, and

Fig. 4 shows the structure of the framework. Note that

Multi-MMLG is a 2-stage framework, where

• Stage 1: The classified main melody with high accuracy

is a good condition for predicting main melodies.
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Hence, we set the first stage of Multi-MMLG frame-

work to a note level classification stage thus providing a

high-accuracy classified main melody as the next

stage’s input. To obtain a higher accuracy than using

existing methods, we implement a MIDIXLNet model,

and we use it in the framework’s first stage.

• Stage 2: Since the prediction method is suitable to

output multiple melodies, the second stage of the Multi-

MMLG framework is a conditional prediction stage.

Considering that the predicted melody normally has low

similarity with the corresponding music, we use two

conditions, Stage 1’s classified main melody and a

notes’ relationship matrix from the original MuseBert

approach [28]. These two conditions will be used as the

input of a modified MuseBERT model, and they can

constrain the predictions to ensure that the predicted

melodies are the main melodies. Moreover, because the

main melodies should be similar and relevant to the

corresponding music at a moderate level, neither too

high nor too low, we implement a masking strategy on

the predicting conditions to control the predicted

results.

The evaluation results of the Multi-MMLG framework are

analyzed quantitatively and qualitatively. Our results

demonstrate that the framework could extract potential

main melodies, and the similarity of the predicted results

can be controlled within a reasonable range. In addition, we

also conduct ablation experiments and compare our

framework with other approaches. The ablation results

verify the framework’s effectiveness and rationality.

To the best of our knowledge, this is the first work that

details and clarifies the definition of multiple main melo-

dies. The contributions of this paper include:

1. Putting forward a new definition for the main melody,

which is a set of similar but non-identical melodies that

can be analyzed by entities (humans and computers) to

identify a piece of music. This definition of main

melody then serves as the backbone of this work;

2. Implementing a MIDIXLNet model which increases

the accuracy of the main melody classification task to

97.37% with relatively lower parameter numbers than

existing methods. Meanwhile, we verify the necessity

of designing a model specifically for the midi-based

main melody classification task;

3. Proposing a two stages Multi-MMLG framework that

could predict multiple main melodies. It combines

MIDIXLNet and a modified MuseBERT model. Fur-

thermore, the framework avoids the randomness of the

prediction melodies by modifying the prediction strat-

egy, notes’ representation, and implementing a mask-

ing strategy. Ablation experiments demonstrate that the

combination of MIDIXLNet and a modified Muse-

BERT model is optimal.

The structure of the paper is as follows: In Sect. 2, the

preliminary knowledge referenced in this article is pre-

sented, and this section reviews the conventional methods

designed for main melody extraction. Section 3 puts for-

ward the Multi-MMLG framework. Experiment results are

presented and discussed in Sect. 4. Finally, Sect. 5 con-

cludes this paper.

2 Preliminary and related work

This section will firstly introduce two types of digital music

files: audio and symbolic. Next, some existing works will

be discussed, including MIDI-based and audio-based.

Fig. 1 An example to illustrate a limitation of assuming that the main

melody is unique. The Choral music from the Bach10 dataset [23]

(06-DieSonne) contains at least two main melodies, namely Melody 1

and 2. If the main melody of other music (e.g., Music A) is similar to

Melody 2, the choral music and Music A should be similar from the

human perspective. However, if the only extracted main melody of

the choral music is Melody 1, matching these two pieces of music

using the main melody may fail
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Finally, a new main melody definition will be clarified.

This definition is the cornerstone of proposing our

framework.

2.1 Digital music files

Digital music files can be broadly divided into two cate-

gories, namely audio files and symbolic files. In the former

case, an audio file encodes the signal information of a piece

of music, namely the physical information [29]. The audio

files could present the sound of the natural world to the

greatest extent, including noise. Unlike the audio file,

symbolic files (e.g., MIDI file) directly store the music as a

sequence of messages rather than the signal information.

Hence, they usually exclude noise and can reflect the

content of music better than the audio file [16]. In this

work, we focus on symbolic file, in particular, the MIDI

file. Figure 2 shows a snippet of a MIDI file that describes

one bar/measure of music score with 4
4
time signature. In a

MIDI file, each note is represented as eight messages (viz.,

eight-tuple), which include Track, Channel, Pitch, Veloc-

ity, and so forth [2, 17, 18]. A MIDI file is usually visu-

alized using piano roll based on Track, Pitch, and Time

messages [30].

In an ideally structured MIDI file, the notes are grouped

by instruments or main/non-main melody, and each group

is located in separate MIDI tracks [15, 22]. However, a

common scenario is when the notes are located on the same

MIDI track. Hence, extracting the main melody from such

MIDI files is more complex than an ideally structured file,

to which this paper focuses on this complex scenario.

2.2 Related works

The existing methods of main melody extraction are

mainly based on audio files and MIDI files. For the pur-

poses of this work, we focus on MIDI-based methods,

which can be broadly categorized into 2 groups, namely:

the track/bar-level methods and the note level methods.

Subsequently, we briefly discuss the audio-based methods.

2.2.1 MIDI-based methods

Track and measure level methods The early MIDI-based

main melody extraction methods are essentially extracting

the MIDI track. Specifically, handcrafted (HC) features of

the notes’ attributes are adopted as the metrics to select a

track containing the main melody notes [12, 15, 16,

19–21, 31]. Traditional metrics utilized to filter out non-

main melody notes include the entropy and average of

pitch, the standard deviation of duration [32]. In addition to

setting the range or threshold value of the metrics directly

[32], the HC features could be used by some machine

learning classifiers, including random forest [19, 33] and

Naive Bayes classifier [22, 34]. Unlike the methods using

HC features, Li et al. [35] try to calculate the similarity

between tracks using different versions of a piece of music.

Furthermore, similarity neighborhood [36] could be uti-

lized to extract bars that contain main melody notes.

However, the aforementioned track level-based methods

require that the notes are located on separated MIDI tracks.

If all the notes appear on the same track or the main

melody notes are scattered on different tracks, these

methods will fail [37].

Fig. 2 Notes’ messages in MIDI file and the visualization of MIDI file (piano roll)
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Note level methods Instead of using the features of the

MIDI file, Uitdenbogerd et al. put forward a method named

Skyline [15], which assumes that all the notes with the

highest pitch at a time are the main melody notes. Subse-

quently, other researchers [13, 34] usually use the skyline

algorithm to preprocess MIDI files to filter out part of the

accompaniment, and they make improvements on the main

melody extraction based on the preprocessed MIDI file.

Later on, some non-machine learning methods identify the

main melody by extracting repeated segments [38] or

directly specifying a threshold of notes interval to filter out

accompaniment notes [26]. Such methods are both ineffi-

cient and error prone (e.g., extracting the accompaniment

part by mistake). Hence, researchers put forward intelligent

methods using the machine learning technique in recent

years, for example, the approach using LSTM [39], CNN

model [13, 40] or Markov Chain [31]. In recent years,

MIDIBert [24] and LSToM [25], which are large parameter

model and small parameter model, respectively, that have

obtained state-of-art results for main melody notes

classification.

However, all the aforementioned methods assume that

there is only one main melody. In many cases, it is difficult

to determine only one main melody from the music, for

example, see Fig. 3. Therefore, the aforementioned meth-

ods have significant limitations. Taking a different

approach, Dai et al. [10] propose a framework based on

Transformer-LSTM to generate new melody using basic

melody and other music information. The basic melody

could be understood as the main melody. Because Dai et al.

[10] regard the basic melody extraction as a prediction

task, this method could predict multiple melodies. How-

ever, the accuracy of the predicted main melody is around

39%, which means that the identified melody is not related

to the corresponding music, and hence, it is not the main

melody.

2.2.2 Audio-based methods

Some audio files are performance recordings. Others are

converted from MIDI files which are usually clean without

background noise. Audio-based main melody extraction

only focuses on the former. Many conventional approaches

estimate the pitch of main melody notes based on pitch

salience and spectrogram [41–45]. These conventional

methods are often complex and have many steps. For

example, to extract the main melody, [42] first uses short-

time Fourier transform (STFT) technology to obtain spec-

tral peaks and corrects the frequency and amplitude of the

music signal. Next, it obtains a group of melody candidates

via the computed salience function. Finally, it will select a

melody using some music features (e.g., pitch mean and

deviation). This complicated method could get relatively

good results, with 70% accuracy on average. In recent

years, some methods have started to use the machine

learning technique, like CNN [46, 47] or SVM [48]. Such

machine learning-based methods is more accurate than

traditional methods. However, the accuracy results are

erratic. The best performing method above [47] ranges

from an average of 75% to a maximum of 93%.

Table 1 tabulates the conventional methods designed for

main melody extraction for both MIDI-based and audio-

based approaches. Although most existing methods are

aware of the problem of ambiguity in the main melody

definition, they choose to simplify the problem, i.e.,

working under the existed dataset providing one main

melody label. In addition, no matter the audio-based or

midi-based approaches, machine learning techniques can

usually significantly improve the accuracy of main melody

extraction. Motivated by the aforementioned analysis, in

this paper, we put forward a new definition of main melody

and design a deep learning method for main melody

extraction.

Fig. 3 Two examples of the music contain multiple main melodies: a is a segment of choral music (the 10th file in the Bach10 dataset [23]). b is

a segment of pop music (the 874th file in POP909 dataset [4])
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3 Methodology

Firstly, we put forward a new definition of the main melody

for a music. Subsequently, we explore compound word as

the data representation for further analysis, and finally, we

detail the proposed Multi-MMLG (Multiple Main Melodies

Generator) framework.

3.1 Main melody

When referring to the main melody of a music, the defi-

nition agreed upon by most articles is that melody is a

unique sequence of notes used in identifying music

[15, 34, 49]. In addition, main melody has also been

defined as the part hummed and remembered by people,

and it is the most attractive part of the music [49]. How-

ever, the above definitions of main melody are vague

because different people have different perceptions and

judgments [50, 51]. Hence, current definitions of the main

melody are limited, and no single definition is adequate

[49, 52]. For this phenomenon, many studies will specifi-

cally clarify the definition of the main melody to apply to

their research field. Bittner et al. [52] use three main

melody definitions in its research, arguing that multiple

main melodies’ definition is the most complex but the most

general. Sequentially, we will discuss the complex case.

Main melodies in music are diverse, complex, and

variable. Specifically, music usually contains multiple

main melodies which are equally important [27]. For

example, Fig. 3a shows a segment of choral music with

two main melodies, namely Melody 1 and Melody 2.

These main melodies have similar pitch contour in differ-

ent keys, and Melody 1 contains more notes. It is a difficult

task to decide which melody line is not the main melody

because both two melodies could be used to identify the

music. Another example (pop music) is shown in Fig. 3b.

Here, the two main melodies in the music are similar but

have some different notes and number of notes. Therefore,

the assumption of uniqueness in main melody adopted by

existing research cannot be established, and it oversimpli-

fies the problem of main melody extraction [49, 51].

Therefore, in this work, we put forward a new definition

for main melody. For a piece of music, its main melodies

should be relevant to the music so that they can be used to

identify it. Furthermore, one music’s main melodies are not

entirely identical, such as in Fig. 3. In the event that the

main melodies are identical, they are treated as single main

melody, but not multiple main melodies. However, if the

main melodies are substantially different, they may belong

to different music. Hence, main melody could be defined as

a set of similar but non-identical melodies that can be

utilized to identify the music by entities (humans and

computers). Subsequently, we predict multiple main

melodies based on this new definition for main melody.

3.2 Data representation

We use Compound Word (CP) [53] to represent notes as

the input of MIDIXLNet used in the framework’s Stage 1.

Each compound word contains five tokens, including Sub-

Beat, Pitch, Duration, Chord, and Bar. Specifically, Sub-

Beat is equivalent to a note’s position in a bar, and the

Pitch events are the absolute pitch value. For a piece of

piano music, the corresponding MIDI number of absolute

pitch values range from 21 to 108. To represent the chord

events, we use a chord recognition method proposed by

Huang and Yang [54], which basically uses a sliding

window and proposes a rule of calculating chord

Table 1 Summary of existing

main melody extraction works,

including MIDI-based and

audio-based

First Author TL MeL NL Non-ML ML

MIDI-based methods

Uitdenbogerd [15], Wei [16] U – U U –

Ozcan [12], Friberg [32], Li [35] U – – U –

Martin [21], Chen [22], Rizo [19], Velusamy [20] U – – – U

Jiang [34], Adiloglu [36] – U – U –

Conklin [38], Wen [26] – – U U –

Dai [10], Li [40], Zhao [31], Chou [24],

Simonetta [13], Kosta [25]

– – U – U

Audio–based methods

Salamon [42], Choi [48], Wu [47], Lee [46] – – – – U

Zhang [41], Paiva [45], Frieler [43] – – – U –

Note The task of extracting the main melody from MIDI will be categorized into three levels, track level

(TL), measure level (MeL) and note level (NL). In addition, both MIDI–based and audio-based methods

will be categorized by using machine learning (ML) and non-machine learning (Non-ML)
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likelihood. After extracting the chords in a bar, we assign

the recognized chord’s name to the notes that make up the

chord. In addition, the Bar event is described as a binary

number, namely 0 for a new bar and 1 for a continuing bar.

By adopting the representation, each compound word has

exactly five tokens. An example of the MIDIXLNet input is

shown in Stage 1 of Fig. 4.

On the other hand, the original MuseBert [28] uses three

notes’ events, including Onset, Pitch, and Duration, to

describe melody. Onset event is equivalent to Sub-Beat,

and both are the note’s position in a bar. In the modified

MuseBERT model used in the framework’s Stage 1, we

additionally use the notes’ track label (0/1), which specifies

that the notes belong to the main/non-main melody track.

Interested reader may refer to [28] for detailed information

on MuseBert data representation.

3.3 Multi-MMLG framework

Our proposed Multi-MMLG (Multiple Main Melodies

Generator) framework consists of 2 stages, namely a

classification stage (Multi-MMLGs1) and a conditional

prediction stage (Multi-MMLGs2). Figure 4 shows the

structure of the Multi-MMLG framework. Both stages are

detailed in the following subsections.

3.3.1 Stage 1: Multi-MMLGs1 & MIDIXLNet

The first stage in the proposed Multi-MMLG framework is

the note level classification task. Using the classified results

with high accuracy as the Stage 2’s condition guarantees

that Stage 2 can learn suitable features from the condition,

thus generating potential main melodies. Hence, we

Fig. 4 Multi-MMLG Architecture: A pipeline architecture with two stages that could predict potential main melodies
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implement a MIDIXLNet model to improve the accuracy

of classifying main/non-main melody notes.

Figure 5 shows the pre-training structure of the MID-

IXLNet model. Here, we would not use the notes’ binary

labels (i.e., main melody note and accompaniment) pro-

vided in the dataset during pre-training, which is an

unsupervised learning task. After representing the notes,

the prepared compound words will be embedded in the

word embedding layers. Considering that each note is

represented by five tokens, the embedding layer is five

dimensions. All the embedded notes will be merged into

one dimension matrix via a linear layer. At the same time,

the words’ position will be embedded following the stan-

dard relative positional encoding strategy used in the

Transformer-XL model [55, 56].

Next, these embeddings will be fed to self-attention

layers. The XLNet-based model uses a particular self-at-

tention strategy, namely the Two-Stream self-attention

strategy, including the content stream attention and query

stream attention. This strategy could avoid the significant

weakness of prevailing Masked-Language Modeling,

namely directly corrupting input data so that some context

features of music will be lost. Due to the contextual

information of music being important [30, 57, 58], the

advantage of avoiding loss of information is essential and

is the reason behind why we implement an XLNet-based

model. In addition, the permutation of likelihood factor-

ization’s order will support the XLNet-based model to

capture bidirectional context. Hence, we adopt the per-

mutation mechanism and the two-stream self-attention

strategy.

Specifically, the permutation is used to change the fac-

torization order of likelihood rather than the sequence order

of the notes. Since the permutation generates many

possible results (i.e., n!), Eq. (1) will be used to sample a

permutation set z.

maxh : Ez � Zn

h Xn
p¼1

logphðNzp j Mz\pÞ
i
: ð1Þ

In Eq. (1), Zn represents all permutation results of the

likelihood factorization order for the melody sequence M

with length n. In addition, Nzp represents the word of the

note at position p in the sampling permutation z set, and

Mz\p refers to the notes before position p in z set. Subse-

quently, the likelihood ph of the sampling order will be

calculated.

On the other hand, the content stream attention (a.k.a.

standard self-attention) could provide information of the

current token and the preceding tokens. It is expressed as

follows:

hmzp ¼ Attention Q ¼ hm�1
zp ;KV ¼ hm�1

z� p

� �
; ð2Þ

where Q, K, and V are vectors for Query, Key, Value,

respectively, and zp is the target token’s position following

z set’s likelihood factorization order. In layer m� 1, Q

knows the target’s content and position (hm�1
zp ). KV will

know the content and position information of the target

token and the tokens before position p ðhz� pÞ in z. Note

that the query stream attention uses the binary number to

encode whether the target’s position could be queried or

not. Meanwhile, it also encodes that the position and

content of tokens before the target could be queried or not

[55]. This mechanism is used to avoid accessing the tar-

get’s content during querying. The expression is written as

follows:

gmzp ¼ AttentionðQ ¼ gm�1
zp ;KV ¼ hm�1

z\p Þ ð3Þ

Fig. 5 Pre-training procedure of MIDIXLNet
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Equation (3) is similar to Eq. (2), but the difference is that

query stream attention will access the token before the

target (hz\p). Furthermore, Q will only know the target

token’s position (gzp) rather than both position and content

(hzp).

Figure 6a shows a melody segment, and Fig. 6b shows

the melody’s corresponding matrices of Two-Stream self-

attention before permutating the likelihood factorization

order. The melody sequence could be written as

M ¼ ðN1; . . .;NnÞ, where N1 refers to the first note and the

length n ¼ 5. In order to predict N2 following the original

factorization order, only N1 could be accessed before the

permutation, i.e., is PðN2 j N1Þ, which is uni-directional

learning.

Figure 7 shows the Two-Stream self-attention matrices

after sampling permutation order. Under this case, when

predicting N2, hz� 4 includes the position and content of

N5;N4, and N1 rather than only N1.

Furthermore, our architecture contains 6 self-attention

layers. After mapping the hidden vector from the attention

layers to fully connection layers, the prediction results are

calculated using a standard softmax function on its nor-

malized value.

When using the MIDIXLNet model for fine-tuning, the

standard self-attention will be used rather than Two-Stream

self-attention. The fine-tuning framework is shown in Stage

1 in Fig. 4. In addition, the binary classifier used to classify

main/non-main melody notes is similar to the classifier in

the MIDIBERT method using ReLU as the activation

function [24].

3.3.2 Stage 2: Multi-MMLGs2

The second stage of the Multi-MMLG framework will

predict multiple main melodies. Recall that the potential

main melodies of a piece of music are similar but non-

identical (see Sect. 3.1). The MuseBERT model proposed

by Wang and Xia [28] aims to predict new melodies which

do not conform to our main melody definition. Hence, we

modified the model to make it more suitable for main

melody extraction.

The structure of the modified MuseBERT model is

shown (enclosed in a box with dotted lines) in Fig. 4. First,

we make a replica of the classification results from Stage 1.

Next, all notes in the replica will be masked and will be

finally predicted. Under this case, there are two conditions

for predicting, Stage 1’s output and the notes relationship

matrices. In other words, the masked notes will be pre-

dicted based on these two conditions. This prediction

strategy is different from the original MuseBert [28] that

directly masks all music notes and only uses one condition

(i.e., the relationship among notes) to predict masked notes.

After preparing the data, all input is mapped to twelve

linear embedding layers with eight attention heads. Finally,

the last hidden vector will be normalized to generate the

results via the softmax layer.

The pre-training stage of the modified MuseBERT

model is similar to the prediction stage. The only differ-

ence is that we do not make a replica of the input, and we

mask part of the notes for training. Hence, in the pre-

training stage, our conditions are the relationship among

the notes and the unmasked notes.

Before producing the predicted results, there is still a

problem with the original MuseBert [28] model. It is a

BERT-based model, and it cannot predict the next notes

freely, meaning that it can only predict the masked notes.

However, the predicted masked notes may not belong to

the main melody. Hence, as mentioned in Sect. 3.2, we add

the track label of every note. Under this setting, the mod-

ified MuseBERT model could extract the note whose track

label is predicted as 0 (0: main melody notes), thus filtering

out the non-main melody notes.

In summary, Multi-MMLGs2 adopts the modified

MuseBERT model, which uses a different prediction

strategy and improve the flexibility of predicting the main

melody by adding the track label of the notes.

4 Experiments

4.1 Experiment settings

For evaluation purposes, we use the Mixed POP909 data-

set, which includes POP909m (MELODY track’s notes are

the main melody) and POP909mb (MELODY track and

BRIDGE track’s notes are the main melody). An example

that illustrates the Mixed POP909 dataset is shown in

Fig. 8.

In the Stage 1 (i.e., Multi-MMLGs1) using the MID-

IXLNet model to classify main melody notes, we split the

Mixed POP909 dataset into 8:1:1 for training:valida-

tion:testing purposes. Our model is trained on an RTX3060

GPU with 6GB. Since this GPU has less memory, we set

the batch size to 1, and the maximum length is 512. We

train the model for 45 epochs, and each epoch takes about

10 min. During the fine-tuning process where only the

standard self-attention is used, each epoch takes about

5 min, and we also train for 45 epochs.

For the second stage (i.e., Multi-MMLGs2), using the

modified MuseBERT model to conduct conditional pre-

diction, we also split Mixed POP909 into 8:1:1 for train-

ing:validation:testing purposes. As discussed in Sect. 3.3.2,

the training stage does not need to make a replica of

Stage 1’s output as the condition, so the data pre-process-

ing strategy of the final prediction and the training stages
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have a few differences, as shown in Fig. 9. During training,

15% of the data will be corrupted following a specific

strategy in Fig. 9a. In the final prediction stage, we use a

random masking strategy (0%–45%) on Stage 1’s output.

As shown in Fig. 9b, 0% masking rate of the Stage 1’s

(Multi-MMLGs1) output means that the modified

MuseBERT model needs to learn the whole output to

predict the main melodies. Generally, using the conditions

with more notes (e.g., 0% masking rate) will generate

melodies that are highly similar to the corresponding

music. Conversely, as the masking rate increases, there are

fewer and fewer notes in condition. The similarity between

the predicted melody from the model that has fewer con-

ditions and the corresponding music will decrease. Hence,

the 0%–45% masking rate aims to ensure that the similarity

between the predicted main melodies and the correspond-

ing music will neither be too high nor too low, thus con-

forming to our new main melody definition. Essentially,

the masking rate is varied to manage the condition, thus

generating melody. This managing condition strategy is

similar to the method used by Hadjeres and Nielsen [59],

Fig. 6 A melody example (a) and its corresponding attention matrices (b)

Fig. 7 Two-Stream self-attention matrices after sampling permutation

order

Fig. 8 Main melody of 808th file in Mixed POP909 dataset (POP909m: regarding the MELODY track as the main melody. POP909mb: regarding

the MELODY and BRIDGE tracks’ notes as the main melody)
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which directly specifies notes as the condition, thus creat-

ing new melodies.

4.2 Results and analysis

This section conducts a comprehensive evaluation of the

proposed Multi-MMLG framework. We first evaluate the

effectiveness of the Multi-MMLG framework’s Stage 1

using the proposed MIDIXLNet model and compare its

performance with the other four models. Subsequently, we

perform an ablation experiment on MIDIXLNet to explore

the influence of the individual components in MIDIXLNet.

In addition, we also verify the necessity of designing a

model specifically for the midi-based main melody classi-

fication task. Next, we conduct an ablation experiment on

the Multi-MMLG framework. These experiments can jus-

tify the selected models within the framework, verifying

the influence on the final predicted results when using

different models in Stage 1 of the framework, and com-

paring the predicted model in Stage 2 with four models.

Finally, we evaluate the potential main melodies predicted

by the proposed Muti-MMLG framework under different

masking rates.

4.2.1 Stage 1: Multi-MMLGs1 & MIDIXLNet

Recall that the MIDIXLNet is the model; we proposed and

used in the Stage 1 in Multi-MMLG framework (i.e.,

Multi-MMLGs1). Firstly, we adopt Accuracy1 and Param-

eter Number (PN) to evaluate the effectiveness and effi-

ciency of MIDIXLNet based on the Mixed POP909 dataset

(POP909mix). Table 2 shows the results of comparing the

MIDIXLNet model with conventional models. For all

compared models, the RNN-based model with one classi-

fying layer (RNNcl) is set as the baseline model. In addi-

tion, we also compare the proposed MIDIXLNet model to

MIDIBert [24] and LSToM [25], which are large

parameter model and small parameter model, respectively,

that have obtained state-of-art results in recent years. Note

that the models in each group in Table 2 have the same

data description approach.

It can be seen from Table 2 that for the complex

POP909mix dataset, MIDIBert [24] and LStoM [25]

achieve no more than 90% accuracy, suggesting some

Fig. 9 Examples illustrate the different data pre-processing strategies

during the training and prediction. Corrupting strategy used in the

training stage is shown in (a), and the random masking strategy used

on the final prediction’s conditions of Multi-MMLGs2 is shown in (b).

The part covered by the twill-filled rectangle represents the randomly

selected masking notes

1 Accuracy is ‘‘the total number of predicted correct music notes’’

divided by ‘‘the total number of predicted incorrect music notes.’’
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room for improvement. Furthermore, the result of RNNcl,

which has the same data description method as MIDIBert

[24], is lower. However, based on our proposed 5-dimen-

sional data input (including Bar, Sub-Beat, Position,

Duration, and Chord), after restructuring MIDIBert [24]

(MIDIBert5), the result shows a significant improvement,

i.e., 96.84% accuracy. Under the same data description

method as MIDIBert5, the proposed MIDIXLNet can

achieve a higher accuracy of 97.37%, while its parameter

size is approximately 64% of that of MIDIBert5.

Next, we perform an ablation experiment to explore the

influence of the individual components within MIDIXLNet,

and the results are recorded in Table 3. Specifically, when

the masking strategy used in the XLNet model is similar to

that of the Bert model (rather than using the unique two-

stream self-attention mechanism of the XLNet model), the

performance of the main melody classification drops to

96.81%. In other words, under the premise of fewer

parameters than the MIDIBert5, the results obtained without

the two-stream self-attention mechanism are very close to

those of MIDIBert5 in Table 2. Also, the reduction in the

number of hidden layers appears to have the most apparently

negative impact on performance. The other contributing

factor to the performance deterioration is the change of the

attention type from bi-direction to uni-direction.

Comparison with non-main melody classification

approach

In this section, we conduct two experiments to justify

the necessity of designing a new model for the main mel-

ody classification task based on MIDI files.

First, recall from earlier that music is usually recorded

as the audio file (e.g., WAV) or the symbolic file (e.g.,

MIDI). To verify the importance of designing the main

melody classification method for MIDI files, we evaluated

the result of the main melody extraction method for audio.

To be more specific, we use the midi2audio package to

convert the MIDI files in the Mixed POP909 dataset to

audio files. The algorithm for extracting the main melody

from audio and output to MIDI files is based on the

Melodia algorithm2 [42]. To evaluate and compare the

results, we use edit_distance [36, 60, 60–62] and Dynamic

Time Warping (DTW) [1, 60]. The edit_distance can cal-

culate the similarity between sequences, and it is robust

against different lengths [60]. Hence, the edit_distance

metric is used to calculate pitch similarity (PS) and chord

similarity (CS) between the extracted main melody and

ground truth. On the other hand, DTW, also referred to as

melody distance (MD) by Tsai et al. [1] and Ju et al. [60], is

an indicator based on dynamic programming. It takes into

account the pitch value and duration value together.

Table 4 records the results of the aforementioned metrics

for both Melodia [42] and our proposed MIDI-based

method (i.e., MIDIXLNet). Results suggest that the melo-

dies extracted from the audio file by Melodia [42] are not

the main melody due to the low similarity and large MD

values. The main reason for the non-ideal results is that the

audio files converted from MIDI files lose an important

perceptual feature, namely loudness. In other words, the

feature that the main melody is usually louder than other

melodies in music is the key feature used to extract the

main melody from the audio file, but that is not the main

feature in the MIDI file. As a result, the main melody from

a MIDI file cannot be extracted accurately using the audio-

based method due to the differences between a MIDI file

and an audio file. In short, when considering the results

collected for MIDIXLNet, it is apparent that MIDIXLNet

outperforms Melodia [42] for the task of classification of

main melodies for all metrics considered in this work.

Therefore, it is necessary to design the MIDI-based

approach.

Secondly, Table 5 records the performances achieved by

cross-domain transfer learning, which further justifies the

need to design a model specifically for the main melody

classification task. This experiment is inspired by Bukhsh

et al. [63]’s promising results via cross-domain transfer

learning strategy. Specifically, considering that, in recent

years, Wu et al. [64] obtained better results in the field of

Few-shot object detection, and we refer to their base

detector model to conduct the cross-domain transfer

learning, namely the Faster R-CNN model [65]. In addi-

tion, the backbone of Faster R-CNN is Resnet-101 [66],

which is a popular architecture used with Faster R-CNN

[64, 67]. In fact, Faster R-CNN [65] aims to detect objects

Table 2 Comparison of

using different main melody

classification models

RNNcl MIDIBert [24] MIDIXLNet MIDIBert5 LStoM [25]

Accuracy 86.73% 89.62% 97.37% 96.84% 88.20%

PN ð�106Þ 6.1 111.2 71.8 111.4 2.5

The best results are highlighted in boldface

RNNcl and MIDIBert [24] adopt MIDIBert [24]’s four dimensions description approach, while MID-

IXLNet and MIDIBert5 adopt the five dimensions description approach described in Sect. 3.2. LStoM [25]

uses its six dimensions description approach. Additionally, RNNcl is RNN with a single classifying layer

2 An approach that extracts main melody from audio and outputting

to MIDI file https://github.com/justinsalamon/audio_to_midi_

melodia.
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in an image. Hence, in our input matrix, we set the ground

truth of the object region as 1 (width) � 5 (height), which

means there are 512 regions in total in the input 512 � 5

matrix. Based on the results recorded in Table 5, cross-

domain transfer learning, in its current form, has not

achieved promising results. Specifically, the accuracy is

low (around 44%), which is significantly lower than the

accuracy obtained by our method designed for the extrac-

tion of main melodies.

Overall, neither cross-domain transfer learning nor

audio-based melody extraction can achieve good results in

the field of midi-based main melody classification. There-

fore, it is necessary to design a model specifically for the

main melody classification task based on the midi file.

4.2.2 Stage 2: Multi-MMLGs2

As per our newly proposed definition for main melody, it

should be relevant to the corresponding music and similar

at a moderate level. Considering that the Mixed POP909

dataset contains the main melody ground truth, the melo-

dies similar to the ground truth at a moderate level are the

potential main melodies. Therefore, we use three metrics

described in section 4.2.1, namely PS, CS and MD, to

evaluate the similarity between the final predicted results

and the main melody’s ground truth of the music.

Table 6 shows the evaluation results of ablation experi-

ments of the Multi-MMLG framework. In this experiment,

we do not evaluate Stage 1 or Stage 2 of our framework

separately because these two stages cannot work indepen-

dently to predict potential main melodies. In other words,

the classification stage (i.e., Stage 1 in Multi-MMLG

framework) can only classify one main melody rather than

multiple main melodies, and the prediction stage (i.e.,

Stage 2 in Multi-MMLG framework) can only predict new

melodies rather than main melodies. Hence, none of the

stages can predict multiple main melodies independently as

we have anticipated. Hence, we use different models to

replace the two stages of the Multi-MMLG framework,

thus justifying the selected models within the framework,

including verifying the influence on the final predicted

results when using different models in Stage 1 of the

framework and comparing the predicted model in Stage 2

with four models.

For one of the control groups in Table 6, we use

MuseBert [28], XLNet, RNNpre and MusicTransfomer

[68] to replace the modified MuseBERT model used in

Multi-MMLGs2, i.e., MMs1 ? MuseBert/XLNet/RNNpre/

MusicTransfomer. These experiments compare the pre-

dicted results from the modified MuseBert with four other

music-predicted methods, thus demonstrating the necessity

of using the two predicting conditions (i.e., MIDIXLNet’s

classified results from Multi-MMLGs1 and music notes’

relationship). Specifically, MMs1 ? XLNet/RNNpre/

MusicTransfomer [68] control groups use one condition,

i.e., classified results from Multi-MMLGs1. These three

methods directly predict the next notes. Table 6 suggests

that their predicted results show considerably low simi-

larity (i.e., Both PS and CS are below 30%, and MD is

larger than our proposed Multi-MMLG framework using

MIDIXLNet and the modified MuseBERT models) with

reference to the corresponding music. Hence, these three

methods cannot predict the potential main melodies. Sim-

ilarly, although MMs1 ? MuseBert [28] uses another

condition, i.e., notes’ relationship, and its predicted results

are still not ideal. Overall, the proposed Multi-MMLG

framework, which uses MIDIXLNet and a modified

MuseBERT model in sequence and combines the above

two conditions, could significantly improve all three-sim-

ilarity metrics, i.e., PS, CS and MD.

Table 3 Ablation experiment for the proposed MIDIXLNet model

using the POP909mix dataset

Ablation Accuracy (%)

MIDIXLNet 97.37

—Without Two-Stream Self-Attention mechanism 96.81

–Attention type (attn_type = ‘uni’) 95.44

–Attention head (n_head = 2) 96.53

–Hidden layers (n_layer = 2) 93.87

The best results are highlighted in boldface

Table 4 Comparison of the proposed MIDI-based main melody

classification method (i.e., MIDIXLNet) with the audio-based method

(i.e., Melodia)

POP909m POP909mb

Models PS CS MD PS CS MD

Melodia

[42]

26.9% 27.0% 3.21 30.1% 21.6% 3.79

MIDIXLNet 98.2% 94.2% 0.82 98.6% 95.8% 0.36

The best results are highlighted in boldface

The Pitch Similarity (PS), Chord Similarity (CS), and Melody Dis-

tance (MD) are recorded

Table 5 Performances attained by Transfer learning based on ResNet-

101 using Faster R-CNN model

POP909mb POP909m POP909mix

Faster R-CNN [65] 43.67% 45.07% 43.69%

MIDIXLNet 98.34% 96.45% 97.37%

The best results are highlighted in boldface
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For another control group, we use RNNcl and MIDIBert

[24] to replace MIDIXLNet used in the Multi-MMLGs1,

i.e., RNNcl/MIDIBert [24] ? MMs2. In comparison with

Multi-MMLG framework, this control group can justify

using the MIDIXLNet model in Multi-MMLGs1 and can

prove the importance of classified main melody’s high

accuracy. This control group also uses two conditions, i.e.,

classified melody and music notes’ relationship. However,

the predicted results are still worse than that of Multi-

MMLG. From these results, we confirm that, in addition to

using the above two conditions, the accuracy of one con-

dition, namely classified melody, is the second factor that

affects the final predicted results. Therefore, Multi-MMLG

simultaneously responds to these two factors, thus

achieving improved results.

In addition, as introduced in Sect. 4.1, we use the ran-

dom masking rate to control the prediction’s condition,

thus controlling the predicted main melodies. Therefore,

we also evaluate the results of the Multi-MMLG frame-

work under different masking rates.

To be more specific, the potential main melody should

be similar to the ground truth in a suitable range, neither

too high nor too low. To control the final results, we per-

form a masking strategy (0%–45%) on Stage 1’s output, as

introduced in Sect. 4.1. The results are shown in Table 7.

At a 0% masking rate, the results are closer to the ground

truth, while for a higher masking rate (e.g., 45%), the

results are less similar to the music. Hence, it is easy to

infer that, as the masking rate increases, the model will

predict main melodies with fewer notes in condition, and

the predicted melodies will become more irrelevant to the

corresponding music. However, Table 7 shows that the PS

of the prediction results under 30% masking rate using the

POP909mb dataset is significantly better than the 15%

masking rate. After a comprehensive observation of the

evaluation results, 15%–30% is a reasonable masking

range for predicting the potential main melodies. At the

same time, the results from using different masking rates

can also prove the robustness of Multi-MMLG. In other

words, even if the masking rate reaches 30% and the notes

in the condition become less, the similarity between the

main melodies predicted by the model, and the corre-

sponding music is still better than other methods in

Table 7.

In conclusion, the structure and the models selected in

Multi-MMLG framework are reasonable, and this frame-

work could output multiple main melodies.

4.2.3 Qualitative analysis

We perform a qualitative analysis for a more intuitive view

of the predicted melodies. Figure 11 presents the results of

embedding other models into our framework. Consistent

with the quantitative analysis results, the predicted results

are different from the Melody track or Bridge track. Hence,

using the methods shown in Fig. 11 could not work. Fig-

ure 10 shows some results achieved by the Multi-MMLG

framework when ranging the masking rate between 0% and

45%. In the Figs. 11 and 10, the musical scrolls containing

the ground truth main melody is derived from the POP909m

dataset. This dataset only regards the MELODY track as

the main melody. If the predicted results are similar and

non-identical to the MELODY track, these results are the

potential main melodies. In addition, the BRIDGE melody

is also the main melody following our new main melody

definition. Since POP909m ignores this potential main

melody, if the predicted results are similar to the BRIDGE

Table 6 Ablation experiments’

results of the Multi-MMLG

framework

POP909m POP909mb

Models PS CS MD PS CS MD

RNNcl ? MMs2 51.1% 30.2% 3.37 68.0% 34.8% 4.79

MIDIBert [24] ? MMs2 58.9% 41.9% 3.25 71.5% 38.5% 4.41

MMs1 ? RNNpre 13.7% 14.3% 7.53 14.1% 14.7% 6.91

MMs1 ? XLNet 18.0% 24.5% 4.72 19.7% 24.8% 4.40

MMs1 ? MusicTransfomer [68] 20.0% 26.3% 2.87 22.1% 30.2% 3.18

MMs1 ? MuseBert [28] 10.9% 18.9% 9.6 14.5% 25.3% 4.59

Multi-MMLG 81.8% 62.4% 1.77 83.8% 63.3% 2.77

The best results are highlighted in boldface

Note This table, respectively, evaluates the effectiveness of using different classification methods in Stage 1

of Multi-MMLG framework and that of using different prediction methods in Stage 2

MMs1—the first stage of Multi-MMLG framework, namely MIDIXLNet model.

MMs2—the second stage of Multi-MMLG framework, namely the modified MuseBERT model.

RNNpre—RNN model for prediction melody
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melody, it could better justify that our framework suc-

cessfully extracts the potential main melody.

According to the above analysis, in Fig. 10, the first

result in 15% masking rate is more similar to the BRIDGE

melody, which is a typical example that proves our

framework’s ability to predict the main melody. Consistent

with the results of quantitative analysis, the predicted

results for 0% masking rate contain less difference from the

ground truth, and 45% result is irrelevant to the corre-

sponding music. Therefore, when operating in the range

between 15% and 30% of masking rate, the Multi-MMLG

framework could predict the potential main melodies of a

piece of music.

5 Conclusion

This paper first puts forward a new definition for main

melody. It acknowledges the fact that the main melodies

are not unique but instead they are a set of similar and non-

identical melodies. This definition is complex but more

suitable for the applications such as music information

retrieval. We proposed a framework that addresses the

problem of automatically predicting multiple main melo-

dies, and it caters for the complexity and diversity of the

main melody. The two stages pipeline framework involves

the main melody classification stage and a conditional

prediction stage. Specifically, MIDIXLNet used in Stage 1

of the Multi-MMLG framework is proposed to provide

main melody classification results with high accuracy

efficiently. High accuracy classified results could preserve

more context features, which becomes the condition of

predicting at Stage 2. To predict potential main melodies

that are similar in a reasonable range, we conduct a

masking strategy on Stage 2’s condition. Experiment

results suggest that Multi-MMLG could efficiently obtain

high-accuracy classification results of the main melody and

automatically extract multiple potential main melodies

when the masking rate fall in the range between 15 and

30%.

Moreover, the experimental results show that the chord

feature significantly impacts the melody classification

results, increasing the accuracy by around 6%. In addition,

we observe that when the masking rate of the predicting

condition varied, PS, CS, and MD do not completely

decrease. In other words, as the conditions for predicting

the main melody become more relaxed, the similarity

between the predicted main melody and the corresponding

music may be likely to be improved. This characteristic

Table 7 Similarity between the

generated and ground truth

melodies under different

masking rates (MR)

POP909m POP909mb

MR (%) PS (%) CS (%) MD PS (%) CS (%) MD

Multi-MMLG 0 81.1 62.4 1.77 83.8 63.3 2.77

15 71.1 42.8 2.63 55.6 43.9 2.67

30 66.6 44.5 3.02 72.0 40.2 5.08

45 62.9 39.3 3.13 53.5 39.7 2.98

Fig. 10 Results of using the Multi-MMLG framework to predict the

potential main melodies of the 874th file (in POP909m dataset). Under

15%-30% masking rate of the condition, the predicted results are

potential main melodies. Especially for the first result under 15%

masking rate, it is similar to the BRIDGE melody that is one typical

potential main melody ignored by POP909m

Fig. 11 Results of the control group using other models to replace the

two stages of the Multi-MMLG framework to predict the potential

main melodies of the 874th file (in the POP909m dataset), including

MIDIBert [24], XLNet and MuseBerto
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benefits the application of the framework in the field of

main melody completion.

Currently, this framework controls the predicted results

by randomly masking the prediction conditions. However,

random masking causes the prediction results not to adapt

precisely to the application environment. In other words,

the predicted results may randomly and irregularly gener-

ate the main melody with different music keys, similar

strong beats, or similar weak beats. In this case, when

people expect the predicted main melodies to have a par-

ticular structure, they need to predict them multiple times.

Therefore, in the future, we will consider adjusting the

framework’s Stage 2. We would use multiple relationship

matrices, such as the strong and weak beat relationship

matrix, the chord relationship matrix, as the input of the

modified MuseBERT model replacing random masking.

After specifying the required relationship matrix, our

framework will be able to predict the main melody that

meets human requirements more directly. This adjustment

involves two parts, designing the representation of different

relationship matrices and embedding methods dealing with

different inputs.
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