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Abstract
Human activity recognition (HAR) using inertial motion data has gained a lot of momentum in recent years both in

research and industrial applications. From the abstract perspective, this has been driven by the rapid dynamics for building

intelligent, smart environments, and ubiquitous systems that cover all aspects of human life including healthcare, sports,

manufacturing, commerce, etc., which necessitate and subsume activity recognition aiming at recognizing the actions,

characteristics, and goals of one or more agent(s) from a temporal series of observations streamed from one or more

sensors. From a more concrete and seemingly orthogonal perspective, such momentum has been driven by the ubiquity of

inertial motion sensors on-board mobile and wearable devices including smartphones, smartwatches, etc. In this paper we

give an introductory and a comprehensive survey to the subject from a given perspective. We focus on a subset of topics,

that we think are major, that will have significant and influential impacts on the future research and industrial-scale

deployment of HAR systems. These include: (1) a comprehensive and detailed description of the inertial motion bench-

mark datasets that are publicly available and/or accessible, (2) feature selection and extraction techniques and the cor-

responding learning methods used to build workable HAR systems; we survey classical handcrafted datasets as well as

data-oriented automatic representation learning approach to the subject, (3) transfer learning as a way to overcome many

hurdles in actual deployments of HAR systems on a large scale, (4) embedded implementations of HAR systems on mobile

and/or wearable devices, and finally (5) we touch on adversarial attacks, a topic that is essentially related to the security and

privacy of HAR systems. As the field is very huge and diverse, this article is by no means comprehensive; it is though

meant to provide a logically and conceptually rather complete picture to advanced practitioners, as well as to present a

readable guided introduction to newcomers. Our logical and conceptual perspectives mimic the typical data science

pipeline for state-of-the-art AI-based systems.
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1 Introduction

Human-centered computing is an emerging research and

application area that aims at understanding the human

behavior (and psychology) and integrating users and the

social context with the digital technology. This necessitates

and subsumes human activity recognition (HAR) which

aims at recognizing the actions, characteristics, and goals

of one or more individual(s) from a temporal series of

observations streamed from one or more sensors. Auto-

matic recognition of behavioral context can serve in many

domains including health monitoring, elderly care, indoor

and outdoor sporting, virtual coaching, surveillance sys-

tems, robotics learning and cooperation, smart homes,

Industry 4.0, predictive maintenance, human–robot

Walid Gomaa, Mohamed A. Khamis have contributed

equally to this work.

& Mohamed A. Khamis

mohamed.khamis@ejust.edu.eg; maomar@ejada.com

Walid Gomaa

walid.gomaa@ejust.edu.eg

1 Cyber-Physical Systems Lab, Egypt-Japan University of

Science and Technology (E-JUST), New Borg El-Arab City,

Alexandria 21934, Egypt

2 Faculty of Engineering, Alexandria University,

Alexandria 21544, Egypt

3 AI Unit, Ejada Systems Ltd., Alexandria, Egypt

123

Neural Computing and Applications (2023) 35:20463–20568
https://doi.org/10.1007/s00521-023-08863-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-5152-593X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08863-9&amp;domain=pdf
https://doi.org/10.1007/s00521-023-08863-9


interaction, the military, etc. A comprehensive survey of

applications can be found in [1].

Generally, the objectives of HAR systems can be sum-

marized as follows: (1) determining (both in real-time and

offline) the ongoing actions/activities of a person, a group

of persons, or even the crowd based on sensory observation

data, (2) assessment of the ongoing action, for example, if

the action is an indoor squat exercise, what is the perfor-

mance level of the player and what mistakes done during

exercising, (3) determining certain characteristics of the

subject(s) such as the identity of people in the given space,

biometrics such gender, age, weight, etc., (4) knowledge

about the context within which the observed activities have

been taking place, and (5) estimating the body weight.

For our purposes in this article, we consider an action or

activity as an ordered intelligible sequence of bodily

movements.

HAR systems can be classified based on the modality of

sensory information used, as the kind of sensory data

greatly affects the types of features, algorithms, architec-

tures, and techniques used for analysis. Generally, we can

identify the following streams of research and develop-

ments in HAR systems: (1) HAR systems based on visual

data (such as images and video streams), (2) HAR systems

based on inertial motion streaming from sensors such as

IMUs (Inertial Measurement Units), (3) HAR systems

based on the received signal strength (RSS) from com-

modity routers installed in the surrounding environment

[2, 3], (4) HAR systems based on infrared signals, and (5)

HAR systems based on audio signals.

To the best of our knowledge, there is not much work

fusing several of these modalities together. In the current

study, we focus exclusively on the second modality,

namely, inertial motion timeseries data. This type of data

has the advantage of being more intrinsic in capturing the

motion dynamics of the activity, and is not affected by any

irregularities in the surrounding environment such as the

absence of light for visual capturing. However, this is also

its weakness as it has lower capability, in contrast to the

other modalities, in capturing the contextual environment,

and interactions with other objects and/or persons in that

environment.

The idea of an automatic HAR system depends on col-

lecting measurements from some appropriate sensors

which are affected by motion attributes and characteristics

of different body joints. Then, depending on these mea-

surements, some features are extracted to be used in the

process of training activity models, which in turn will be

used to do inference later about these activities and per-

formers. A typical example of a class of activities is those

Activities of Daily Living (ADL) that people have the

ability and custom for doing on a daily basis like eating,

moving, hygiene, dressing, etc. [4].

There are many methods and data acquisition systems

which are based on different sensory readings for recog-

nizing these actions. Historically, heavy devices were used

to collect accelerometer data such as data acquisition cards

(DAQs) [5]. Later, smaller integrated circuits connected to

PDAs were used for this aim, for instance, camera-based

computer vision systems and inertial sensor-based systems.

In computer vision, activities are recorded by cameras [6].

However, the drawback of the camera-based approach is

that it may not work due to the absence of full camera

coverage of all person’s activities. In addition, for privacy

issues, cameras are meddlesome as people do not feel free

and comfortable being observed constantly.

Based on the data acquisition paradigm, HAR systems

can be divided into two general categories: ambient/sur-

rounding fixed-sensor systems and wearable mobile sensor

systems. In the fixed setting, data are collected from dis-

tributed sensors attached to fixed locations in the activity’s

surrounding environment (where users’ activities are

monitored) such as surveillance cameras, microphones,

motion sensors, etc; see [7] for applications in smart

homes. Alternatively, the sensors are attached to interactive

objects in order to detect the type of interaction with them,

such as a motion sensors attached to the cupboard doors or

microwave ovens (to detect opening/closing), or on water

tap to feel turning it on or off, and so on. Although this

method can detect some actions efficiently, it has many

limitations due to its fixed nature. Another limitation is that

if the user wants to leave the place, she will not be

observed from the fixed sensors and her activities won’t be

detectable. Privacy is also another issue, especially when

considering video surveillance cameras and/or auditory

sensors.

Figure 1 shows the evolution of gathering inertial

motion data; a National Instruments DAQ card-1200 with

analog input, a USB-based wearable programmable chip,

the more advanced devices, e.g., smart phones and smart

watches.

In the wearable-based systems, the measurements are

taken from mobile sensors mounted to (or embedded on

commodity devices mounted to) human body parts like

wrists, legs, waist, and chest. Many sensors can be used to

measure selected features of human body motion, such as

accelerometers, gyroscopes, compasses, and GPSs. They

can also be used to measure phenomena around the user,

such as barometers, magnetometers, light sensors, tem-

perature sensors, humidity sensors, microphones, and

mobile cameras. These kinds of sensors are essentially

embedded on wearable devices. Consumer inertial MEMS

IMU sensors are tiny devices with typical package size of

2.5 mm � 3 mm which contain three axial accelerometers

and gyroscopes. They can be found in many commodity

products we use almost every day as smartphones, fitness

20464 Neural Computing and Applications (2023) 35:20463–20568

123



trackers, smartwatches, gaming controllers, etc. Two of

those high tech IMU devices named BMI160 are inside the

NASA helicopter Ingenuity which did fly many times on

Mars surface in 2021.

On the contrary to the fixed-sensor-based systems,

wearables are more intrinsic and able to continuously

measure data from the user everywhere, while sleeping,

working, or even traveling anywhere since it is not boun-

ded by a specific place where the sensors are installed.

Also, it is very easy to concentrate on directly measuring

data of particular body parts efficiently without a lot of

preprocessing that is needed, for example, in fixed depth

cameras. So, as opposed to ambient sensors, a wearable

sensor is intimately related to the body part to which it is

mounted. So, in some sense it is directly expressive of this

part (such as its motion dynamics, vital signs, etc.), without

the need of much or any preprocessing at all. Examples of

wearables include smartwatches, smart shoes, sensory

gloves, hand straps, and clothing [8, 9]. Recent statistics

show that the total number of smartphone subscribers

reached about 6.5 billion in 2022 and is expected to reach

7.7 billion by 2022 [10]. According to an IDTechEx report

[11] the wearable sensor industry is worth $2:5 billion in

2020, having tripled in size since 2014, and is expected to

reach more than $4:5 billion in 2024. Therefore, the dis-

advantages of wearable mobile sensors of being intrusive,

uncomfortable, and annoying have vanished to a great

extent, making this method of on-board sensing from smart

mobile and wearable devices very suitable for HAR data

acquisition.

As the current trends have been greatly shifted towards

systems that are data oriented with statistical machine

learning analysis and synthesis, feature extraction and

representation learning play essential roles in the effec-

tiveness and efficiency of HAR systems. Feature engi-

neering in timeseries inertial data has proven as effective as

automatic feature extraction/selection using representation

learning through the deep learning paradigm. From one

perspective this is due to the limited datasets available and

the small sizes of these datasets. From another perspective

inertial timeseries data is low on explicit semantics com-

pared, for example, with visual, auditory, and textual data;

so it is not very much amenable to the high level convo-

lutional operation dominant in deep neural networks.

However, the power of deep learning emerged exclusively

in transfer learning which is of great benefit in deploying

practical solutions based on wearable and mobiles devices.

Transfer learning is the transfer of knowledge gained in

one domain and/or task to another domain and/or task, so

we needn’t start over on the latter. Transfer learning is

essential in HAR systems, not only for saving computa-

tional resources [by avoiding end-to-end training on the

new task(s)], but more importantly for handling the

tremendous heterogeneities induced by the huge configu-

ration space incurred by the data collection and streaming

processes in IMU-based HAR systems. These include

among others the following:

1. Hardware heterogeneity:

• Different kinds of devices (with embedded IMUs)

such as smartphones, smartwatches, wrist bands,

specialized IMU sensors that can be placed on

different body parts, etc.

• Different brands of the same kind of device. For

example, varieties of smartphones such as iPhone,

Galaxy, Huawei, etc.

• Different models of the same brand of the same

device. For example, iPhone 10, iPhone 11, etc.

• All the above lead to different characteristics of the

IMU sensing technology, sampling rates, dynamic

ranges, sampling rate instabilities, etc.

2. Software heterogeneity:

• Different operating systems; for example, iOS vs.

Android.

• Different versions of the same operating system.

• Different filters embedded in the IMU sensors or

sensors logs.

3. Data collection heterogeneity:

• Variations in location(s) of the device(s) mounted

to the body part(s). Given a fixed type of device,

say smartwatch, it can be worn on the left or right

wrist. Smartphones have more wider range of

Fig. 1 Acceleration sensing

hardware evolution
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locations. These lead to variations in the signals

corresponding to the same activity.

• All other factors fixed, gender and age greatly affect

the signals of the same activity.

Figure 2 gives a general framework of modern approaches

to HAR that are data-oriented. The first process in the

pipeline is, of course, the data collection which can be done

through ambient devices such as surveillance cameras,

microphones, etc., or through wearable devices such as

smartwatches, smart clothing, etc. The data then are

cleaned, curated, denoised, etc. Then, data go through

higher-level preprocessing steps including, for example,

the separation of body and gravitational acceleration. Data

are then segmented, for example, into time spans based on

gait cycle, or transitions between different consecutive

activities, etc.

The data go through a crucial step for feature extraction/

selection to capture and produce the main characteristics

and representations of the given data. This process can be

done in three main ways: (1) purely classical hand-crafted

features, (2) purely automatic feature generation through

deep neural methods, and (3) a hybrid of the two, where a

preliminary simple feature extraction/transformation step is

performed (for example, transforming the original time-

series into a new series induced by calculating the auto-

correlation function of the original signal), followed by

representation learning through deep neural methods. The

produced feature vectors/feature maps are then fed to a

learning model which can be classical such as support

vector machines or more recent deep neural networks. In

the latter the last layer(s) are concerned with the applica-

tion domain which can greatly vary between recognizing

the type of the particular action performed, predicting and

estimating the biometrics of the person performing the

action such as the gender, age, weight, etc., the type of

surrounding environment such as the type of ground on

which walking occurs such as asphalt, grass, sand, etc.

To the best of our knowledge, we present the most

recent research works related to the use of transfer learning

in IMU-based HAR systems. The overall aim of this paper

is to give an introduction and survey of human activity

recognition systems using inertial motion data streamed

from IMU sensors embedded on-board smart mobile and

wearable devices. The survey is more oriented towards

technical aspects with some hints to application areas.

More specifically, we focus on the following:

1. We investigate the data collection process for HAR

systems. In addition, we provide an elaborate detailed

survey of all publicly available benchmark HAR

datasets. To the best of our knowledge, this is the

most comprehensive compiled list of available HAR

datasets done so far.

2. A major preprocessing step for any HAR system is how

to present the raw inertial data to the subsequent

machinery of either a machine learning model or more

traditional deterministic non-adaptive systems. Here

we survey traditional handcrafted feature engineering

techniques (extraction/selection) in addition to the

more recent representation learning based on deep

Fig. 2 General framework of HAR systems
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neural computing. It is apparent that for the sole

purpose of end-to-end classification models, more

traditional techniques based on feature engineering

are effective enough, however, for transfer learning for

the purposes of cross-domain and/or cross-datasets

and/or cross-environmental configurations and setups,

deep learning is a necessity.

3. Transfer learning is a very powerful tool in machine

learning in general (and a major path to artificial

general intelligence), and in particular, for inertial-

based HAR systems. This is due to the tremendous

heterogeneity and the inherent gap between the data

collection and streaming process during the system

training and the corresponding process during deploy-

ment. This is further complicated by the low seman-

tical content of timeseries inertial motion data, as

compared, for example, with visual data. Here, we

survey the work done in cross-domain HAR systems

and how effective they are.

4. The following subject we address is based on a

categorization of HAR systems depending on whether

they are developed for online real-time prediction or

for offline batch analysis.

5. Deep neural networks are highly parameterized com-

plex models and they can be highly sensitive to small

perturbations (chaotic systems), caused by, what is

called, adversarial attacks. (‘‘Chaotic’’ in the sense that

the process of training deep neural networks can be

viewed as the evolution of a dynamical system. This

dynamical system is not robust, that is, it is sensitive to

small perturbations. For example, small perturbations

in the weights initialization, the round-off errors caused

by floating point operations can lead to dramatically

different results such as divergence of the training

process instead of convergence, or convergence to

better or worse solutions over the loss function, etc.)

There are hardly few works addressing adversarial

attacks against timeseries data. The hardest challenge

is to qualify and quantify such attacks in this context.

In visual data, adversarial attacks can be mainly

characterized by the perturbed image being impercep-

tible to the human eye, a quality basically stemmed

from the high semantical content of visual data. Such

quality is absent from timeseries data. Here, we survey

the few works addressing adversarial attacks against

timeseries signals and further point to research chal-

lenges in this area.

6. We briefly discuss embedded implementation of HAR

systems.

7. Finally, we discuss and survey some major applications

domains of HAR systems based on inertial motion

data.

As the HAR research area is very huge, we had to focus on

particular aspects and give our own perspectives on what is

going on. Of course, it is by no means comprehensive.

However, it gives, at least, useful entry points for deeper

investigation into the particular aspect of interest for the

reader, in addition, to some tutorial and pedagogical merits.

All the materials are presented with rather assessment and

critical eyes.

The paper is organized as follows. Section 1 is an

introduction. Section 2 discusses the data collection

aspects and processes for human activity recognition tasks

based on the inertial motion modality. In addition, we

present, in a tabular form, a comprehensive survey of

publicly available benchmark datasets in the literature

related to that domain. This table is listed in ‘‘Appen-

dix A’’. Section 3 introduces the feature extraction and

selection techniques for timeseries data that are used in

learning systems for activity analysis and inference. In

Sect. 4 we discuss offline systems that are based on one-

shot task, such as the recognition of a single isolated action,

versus real-time continuous operation over the online

streaming timeseries data. Section 5 surveys and assesses

the state-of-the-art techniques for transfer learning of

activity tasks based on inertial motion signals. Section 6

gives some typical application domains of activity recog-

nition from wearable IMUs; this spans biometrics (e.g.,

age, gender, gait), virtual coaching, healthcare, and ergo-

nomics. In Sect. 7, we discuss some implementations of

HAR systems on embedded devices. Finally, Sect. 8 con-

cludes the paper with an overall analysis of inertial-based

HAR systems and their future potential.

2 Data collection

There is a wide variety of activity datasets that are based on

inertial motion data. These are typically used as benchmarks

to test new techniques for activity analysis and inference

systems. A comprehensive survey and a rather elaborate

description of publicly available benchmark datasets are

given in Table 15 in ‘‘Appendix A’’. Figure 3 shows some

configurations of different HAR datasets; (a) a motion-node

that recorded data in USC-HAD dataset [12], (b) the sensor

placement used for the REALDISP dataset [13].

Figure 4 shows sample images while performing dif-

ferent ADL activities (EJUST-ADL-2 [14]).

Figure 5 shows the activities and data collection of

EJUST-ADL-1 dataset [24] using Apple smartwatch.

At designing any sensor-based activity recognition sys-

tem, the number of sensors and their locations are very

critical parameters. Regarding the locations, different body

parts have been chosen from feet to chest. The selected

locations are chosen according to the relevant activities. For
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example, ambulation activities (such as walking, jumping,

running, etc.) are typically detected using waist or a chest

sensor [15]. On the other hand, non-ambulation activities

(such as brushing teeth, combing hair, eating, etc.) can be

naturally classified more effectively using a wrist-worn, or

in general upper body, mounted sensors [16].

Many kinds of physical features can be measured using

wearable sensors [17]. These include: (1) environmental

data such as barometric pressure, temperature, humidity,

light intensity, magnetic fields, and noise level, (2) vital

health signs such as pulse, body temperature, blood pres-

sure, blood sugar (glucose) and respiratory rate, (3) loca-

tion data which are typically identified by longitudes and

latitudes using GPS sensors, and (4) body limbs motion

such as acceleration and rotation of body parts like arms,

legs, and torso using accelerometers and gyroscopes. Note

that all of these can be considered as timeseries data. There

are other different kinds of data that can be produced by

wearable devices including textual data from social media.

However, in this article we focus exclusively on time-

series motion data. For the purpose of activity recognition,

the inertial motion measurements have proven to represent

human motion accurately, where some methods depending

only on acceleration measurements have achieved very

high accuracy [15, 16]. However, it is very difficult to

extract the pattern of motion from acceleration raw data

directly because of the high frequency oscillation and

noise. So, preprocessing in addition to feature extraction

and selection techniques should be applied on the raw data

before modeling, or alternatively use deep learning meth-

ods for automatic feature extraction and selection (repre-

sentation learning). The latter might not be a good choice

over raw noisy data taking into consideration adversarial

attacks, their qualitative and quantitative nature over

timeseries data.

A line of work aims at automatically determining the

on-body sensor location given the inertial motion signal of

a given fixed activity. For example, Madcor et al. [18]

study the particular action of ‘walking’ and how the

induced signal can be used to determine the sensor’s

location. They do not do any feature extraction, instead,

they use the raw signal data as a direct input to a random

forest classifier. They validate their work on four datasets:

EJUST-GINR-1 [19, 20], RealDisp [13, 21], HuGaDB

[22], and MMUSID [23]. All of these datasets are either

exclusively gait or including gait among other activities;

however, only the gait is used in the study.

Figure 6 shows a silhouette diagram with sensors’

locations in all the considered datasets. The signals used

for recognition are the tri-axial linear acceleration in

addition to the tri-axial angular velocity. These two

Fig. 3 Configurations of different HAR datasets. Permission is taken

from the authors at [12] and [13] to use this figure

Fig. 4 Sample images while

performing different ADL

activities (EJUST-ADL-2 [14])
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modalities have proven effective enough to detect the

sensor’s location as evidenced by the performance metrics.

Accuracy reached above 90% and most of the recall and

F1-score results are above 80%. As expected most of the

confusion in location determination occurs between sym-

metric sensors across the body such as between left and

right calf, left and right wrist, etc. Such line of research can

be applied in data augmentation of timeseries inertial data

as well as in developing healthcare applications, for

example, in treatment assessment for people with motion

disabilities. Figure 7 shows a data sample of 3D acceler-

ation, 3D rotation, and 3D angular velocity signals of the

activity ’walk’ (dataset EJUST-ADL-1 [24]).

A similar line of research is conducted by Abdu-Aguye

in [25]. The output of this work can be used to create

‘virtual IMU sensors’. In [25] the authors explore the

feasibility of transforming/mapping inertial timeseries data

streamed from a ‘source’ body location, whilst performing

a given activity, to a different ‘target’ body location. They

use a bidirectional long-short-term memory (Bi-LSTM) to

learn such mapping. An LSTM is a rather stable form of

recurrent neural networks (RNNs) that can capture long-

term correlation between the current time sample with

historical samples of the input timeseries. The bidirectional

version takes as well the future into account when pre-

dicting the current moment, hence, it smooths the predicted

Fig. 5 The activities and data

collection of EJUST-ADL-1

dataset using Apple smartwatch

Fig. 6 Schematic diagram of on-body sensors locations in some activity datasets
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signal, and hence, generates more accurate timeseries.

However, apparently it can only be used in offline mode (or

online mode with limited future input). The model is rather

simple and is shown in Fig. 8. Figure 9 shows the IMU

sensors placements on the human body (EJUST-GINR-1

dataset [19, 20]).

One of the most difficult and challenging problems in

the collection of inertial motion data is synchronization.

One reason that this process is more difficult in such data

modality is that timeseries data has much lower semantics

content, than, for example, visual or auditory data. In the

latter modalities synchronization and/or segmentation can

be done offline in a manual fashion, though it is a laborious

process. Such offline manual process is not feasible in the

case of timeseries data. Synchronization can involve

determining the start and end of unit actions, the transition/

switching between consecutive actions, synchronization

and alignment among different IMUs used simultaneously

in data collection, and in the case of multiple modalities the

alignment among such modalities.

Fayez et al. [26] collect the VaIS dataset. It is a bimodal

dataset of squats: visual and inertial motion timeseries. The

authors use 9 different IMU devices mounted on different

parts of the subject’s body in addition to 2 RGB cameras

one positioned in front of the subject and the other at half

frontal/lateral. For the IMU devices that data are collected

from the devices and then sent in the form of CSV files to a

mobile app on an iPhone. Through this applications all of

the IMU sensors are readily synchronized. Each record in

the CSV files has a timestamp with a resolution in the order

of milliseconds. Hence, this is used to synchronize among

the 9 IMU devices. For the visual data they used the

camera of a smartphone. They used a timestamp app in

order to annotate the video capturing with a time format

that is closest to that produced by the IMU devices. The

readings obtained from the IMU units have the global

timing in the following format \YYYY-MMM-

DDTHH:MM:SS.S[.

Figure 12 shows a snapshot the video capturing with

time annotation. Optical character recognition is then used

on that section of the frames depicting the time annotation

in order to extract the time. The time formats of both the

Fig. 7 A data sample of 3D

acceleration, 3D rotation, and

3D angular velocity signals of

the activity ‘walk’ (dataset

EJUST-ADL-1 [24])

Fig. 8 Model for mapping inertial motion data across different body

locations [25]

20470 Neural Computing and Applications (2023) 35:20463–20568

123



IMUs and that extracted from the frames are matched

together. They finally matched the time instances in both

modalities taking into consideration the difference in IMUs

sampling rate and the video streaming frame rate. This

caused a delay error between the two modalities that does

not exceed 200 ms. During the data collection process, the

authors used a whistle to indicate exactly when the subject

started the activity. This would generate a high frequency

peak in the sound wave used to cut the video indicating the

execution of the given activity. The first extracted frame is

then matched with the corresponding IMUs frame given

the aligned time steps. Similar procedure employed to

indicate the last video and IMUs frames.

The same authors have recently collected a new workout

activity dataset [27]. The dataset is called MMDOS; it is a

multi-modal dataset and is unique in the sense that it

combines many data modalities and sensors including:

RGB, inertial motion, depth, and thermal. Accordingly, the

synchronization here is much more challenging than in the

previous work. The data are collected from 50 participants

performing four types of workout exercises. As in the

previous work all the IMU sensors are already synchro-

nized through a mobile app running on an iPhone. All

IMUs have the same sampling rate. The depth imaging is

obtained using a Kinect camera, and the timestamp is

extracted from the Kinect metadata using MATLAB with

the same format as the IMUs. RGB video are captured

using mobile phones and a mobile app is used to annotate

each frame of the video capture with the timestamp.

See Fig. 10 for an illustration of time annotation of RGB

video frames. Optical character recognition is used to

extract this annotation and convert into proper time format.

The timestamp of the frontal camera is used as a frame of

reference for all other devices, taking into account the

different sampling rates of the involved sensors. In addi-

tion, the authors used a beep sound to indicate exactly

when the subject starts the activity so that it makes a peak

in the audio signal. This sound is used to align the start of

the RGB video, and all timestamps are then synchronized

taking into consideration the different sampling rates

across all devices. As for the thermal imaging they per-

formed the synchronization completely manually due to the

inability to receive any metadata, including timestamp,

from the video streaming. The whole synchronization

process is depicted in Fig. 11. Figure 12 shows a video

recording with timestamp annotation [26].

3 Feature extraction/selection

For inertial-based HAR systems, many approaches to fea-

ture extraction and selection have been developed focusing

on the structural and/or statistical properties of the input

timeseries. In this section, we survey the main feature

extraction and selection techniques. There are different

kinds of features used to represent timeseries data. Some

typical examples of features are shown in Table 1, which

are essentially based on handling the timeseries either in

the time domain or in the frequency domain.

Huynh et al. [29] have suggested that selecting individual

tailored features for each activity can improve both the

computational efficiency and the recognition accuracy. But,

designing a specific descriptor for each activity is not flexible

Fig. 9 IMU sensors placements on the human body (EJUST-GINR-1

dataset [19, 20])

Fig. 10 Frontal camera view of a shoulder press exercise with the

timestamp on the lower right [27]

Neural Computing and Applications (2023) 35:20463–20568 20471

123



for adding new activities to the system. For example, if the

system has fifty activities, fifty different descriptors are

needed to design in the worst case, which can be impractical.

In the following sub-sections, we survey research works

using different types of features, e.g., autocorrelation

function, Fourier analysis/spectra, autoregression, raw data,

embedding, etc. These types of features can be used stan-

dalone or combined with other types of features, e.g., time

domain features (standard deviation, variance, kurtosis,

root mean square, mean, skewness, etc.) and/or frequency

domain features (discrete cosine transforms, wavelet

transform, entropy, quantiles, etc.).

3.1 Autocorrelation function

One of the most effective and simple feature extraction

techniques is based on the use of autocorrelation function

[30] taking lag values starting from 0 up to a certain

maximum value. The autocorrelation function computes

the correlation/similarity between a given timeseries and a

lagged version of it. The empirical estimation of the

autocorrelation function can be computed as follows:

^acfð‘Þ ¼ ĉð‘Þ
^cð0Þ

ĉð‘Þ ¼ 1

T

XT�‘

t¼1

ðxtþ‘ � �xÞðxt � �xÞ
ð1Þ

where �x is the sample mean of the timeseries and ‘ is the

lag value (the amount by which the original signal is

shifted). The autocorrelation function captures the linear

correlation between the timeseries and the shifted versions

of it. In some way it can be viewed as a feature reduction

technique that reduces the original signal into a smaller

signal of length depending on the maximum lag value ‘.

From another perspective, it can be as well considered as

length normalization, that is, different timeseries may have

different lengths, however, if we fixed a certain lag, then

the acf of all of them up to this lag will produce timeseries

with the same length. This might be necessary for many

analytical techniques, such as when required to find the

similarity/dissimilarity between two timeseries.

Fig. 11 Synchronization among all modalities in the MM-DOS dataset [27]

Fig. 12 Video recording with timestamp annotation [26]

Table 1 Different types of timeseries features

Technique Feature

Time domain features Standard deviation, variance, kurtosis, root mean square, mean, skewness, total energy, range (maximum–minimum)

[28]

Frequency domain

features

Fourier transform, discrete cosine transforms, wavelet transform, entropy, quantile 0.25, quantile 0.50, quantile 0.75

[16]
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For example, Gomaa et al. [24] used a smartwatch to

collect sensory data for 14 activities of daily living

(ADLs), creating a dataset called EJUST-ADL-1 (see

Table 15 for full description). They compute the autocor-

relation function for each of the tri-axial timeseries of the

acceleration, angular velocity, and rotation displacement,

up to a certain lag (empirically choosing 10 as suitable).

These are vectorized and fed to a random forest (RF)

classifier that recognizes the performed activity. They

achieved 80% accuracy over the 14 activities.

The autocorrelation function has also been effectively

used for identifying periodic peaks [31] through segment-

ing repetitive actions. In a different context Mostafa et al.

[32] extracted the autocorrelation function from a tri-axial

accelerometer (linear motion) and a tri-axial gyroscope

(angular motion) to produce a multi-channel feature vector

consisting of 6 channels each of length 11 (10 is the

maximum lag of the acf). The signals are streamed from

IMU sensors during walking activity. The authors experi-

mented with multiple gait datasets including: EJUST-

GINR-1 [19, 20], OU-ISIR [33], Gait Events DataSet

(GEDS) [34], and Human Gait Database (HuGaDB) [22].

The acf features are then fed into two models for bio-

metrics predictions: a classical random forest for gender

classification and a convolutional neural networks (CNN)

for age estimation. Figure 13 shows the CNN architecture

used. In comparison with other works in the literature, their

CNN regressor performs better over almost all the datasets

considered with age mean-absolute-error ranging from

0.9 years up to 2.4 years. For gender recognition both the

random forest and CNN have comparable results above

90% (except for the OU-ISIR dataset). This indicates the

effectiveness of the autocorrelation function as timeseries

representation which is rather simple to compute and

interpret.

Adel et al. [20] use the autocorrelation function as a

feature extractor for person identification using inertial

streaming from wearable IMUs during walking activity.

Again the acf is computed for the 6-axial inertial signal (3-

axial accelerometer and 3-axial gyroscope). They experi-

ment with the EJUST-GINR-1 gait dataset [19, 20]. It is

apparent from Fig. 14 the inherent periodicity of the gait

signal, specially in the y-direction, and hence, the acf is

well suited to capture the gait characteristics of the given

timeseries, specially capturing the corresponding unique

gait fingerprint of each individual. The authors feed the

induced feature vectors to three classifiers: a SVM, a RF,

and a CNN. The number of subjects are rather limited (20),

however, the authors study the best on-body sensor loca-

tion for person identification and how fusion of several

IMU sensors mounted on different body parts would affect

the results. Even though the case for gait is obvious (lower

body locations), the proposed methodology open new

directions for similar kinds of research with more complex

types of activities.

A hidden assumption in the use of autocorrelation is that

the activity signals are statistically stationary. It means that

the statistical behavior of the timeseries does not change

over time. To the best of our knowledge this has empiri-

cally shown to be the case where the performance of pre-

dictive models is rather satisfactory. However, much work

still needs to be done to verify that assumption and for

which classes of activities. And more importantly to

explicitly state this assumption and put it in perspective.

Another assumption, or maybe rather simplification, is that

each inertial modality (whether linear or angular), and each

axis of the same modality is assumed to be completely

independent of the others. Maybe a better descriptor would

be obtained by considering the cross-correlation among the

different axes of the same modality and even across dif-

ferent modalities.

Nourani [35] presented a comprehensive comparison of

HAR activities using IMU sensors; Nourani selected five

state-of-the-art feature-sets as case studies; statistical fea-

tures, self-similar features, histogram bins features, physi-

cal features, orientation invariant features. The self-similar

features includes the number of autocorrelation peaks,

prominent autocorrelation peaks, weak autocorrelation

peaks, maximum autocorrelation value, first autocorrela-

tion peak height, etc.

Wang [36] presented a data fusion-based hybrid sensory

system for elderly ADL recognition; one of the proposed

features is the autocorrelation of the data collected from the

accelerometer, gyroscope, magnetometer, barometer, and

temperature sensors. Janidarmian et al. [37] presented a

comprehensive analysis on wearable acceleration sensors

in HAR; one of the features used is the autocorrelation; the

height of the first and second peaks and the position of the

second peak.

Morris et al. [38] proposed RecoFit a system that uses a

wearable sensor to find, recognize, and count repetitive

exercises. Data was acquired by a wearable armband worn

on the subject right forearm; it contains a SparkFun IMU

sensor (3-axial accelerometer and 3-axial gyroscope). The

authors used the autocorrelation function to find patterns of

self-similar repetitive exercise. Each 5-s window is trans-

formed into 224 features. For instance, the authors compute

the following five features; number of autocorrelation

peaks, prominent peaks, weak peaks, maximum autocor-

relation value, height of the first autocorrelation peak after

a zero-crossing.

Muehlbauer et al. [39] proposed a HAR system based on

segmentation, recognition, and counting. They achieved

85% segmentation accuracy and 94% recognition accuracy

on ten classes based on user-independent training. The

proposed approach for segmentation utilizes features based
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on an autocorrelation function. For each window, the

authors calculated the median crossings and peaks of the

signal autocorrelation function. The high values of these

two features indicated clearly that an exercise was

performed.

Zebin et al. [40] proposed a HAR system based on

multichannel time series signals collected by five wearable

sensor units each with an integrated MPU-9150 IMU (ac-

celerometer and gyroscope). Six activities were recog-

nized; walking, walking upstairs, walking downstairs,

sitting, standing, lying down. The authors applied four

machine learning algorithms; k-NN, NB, SVM, and MLP.

Several feature extraction methods were adopted; average

value for all three acceleration components, RMS value for

all three acceleration components, autocorrelation features

(height of main peak, height and position of second peak),

spectral peak features (height and position of first six

peaks), spectral power features (total power in five adjacent

and pre-defined frequency bands).

Fig. 13 The BioDeep CNN

architecture [32]
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Jain et al. [41] proposed a stride segmentation method

from 3-axial accelerometer data for three walking activities

(level walking, walking upstairs, and walking downstairs).

The autocorrelation function is used for stride boundaries

estimation. The segmentation and extraction of stride rel-

evant data were achieved using a tuning parameter based

on the minimum standard deviation among the segmented

strides. The method evaluation is performed on the HAPT

[42] and OU-ISIR gait [43] inertial sensor datasets.

Bota et al. [44] proposed a Semi-Supervised Active

Learning (SSAL) based on Self-Training (ST) approach for

HAR to automate partially the annotation process in order

to reduce the required number of annotated samples by an

expert. The proposed approach selects the most relevant

samples for annotation and propagate their annotation to

the most confident samples. The authors compared super-

vised and unsupervised models with the proposed approach

on two ADL datasets; (1) the UCI dataset [45] with the

following activities; standing, sitting, downstairs, upstairs.

The considered features are statistical domain features

(e.g., skewness, max, mean, histogram), temporal domain

features (e.g., zero crossing rate), spectral domain features

(e.g., median frequency, max power spectrum). (2) the

CADL dataset (collected by the authors) with the following

activities; standing, sitting, downstairs, upstairs. The con-

sidered features are statistical domain features (e.g., mean,

histogram, root mean square), temporal domain features

(e.g., autocorrelation, temp centroid), spectral domain

features (e.g., max power spectrum). The proposed method

reduced the required annotated samples by more than 89%
while maintaining an accurate model.

Altun and Barshan [46] compared various techniques for

HAR using inertial and magnetic sensors; Bayesian deci-

sion making (BDM), least-squares method (LSM), k-NN,

DTW, SVM, ANN. Daily and sports activities are recog-

nized using five sensor units. The sensor units are worn by

eight users on chest, arms, and legs. Each sensor unit

comprises 3-axial gyroscope, 3-axial accelerometer, 3-ax-

ial magnetometer; 26 features were calculated for each

signal: minimum and maximum values, mean value, vari-

ance, skewness, kurtosis, 10 equally spaced samples from

the autocorrelation sequence, first five peaks of the discrete

Fourier transform and the corresponding frequencies.

Yu [47] presented CNN and RNN models to classify fall

and non-fall activities. A publicly available dataset was

used [48]; 6 MTx sensor units were worn; each sensor unit

comprises 3-axial accelerometer, 3-axial gyroscope, 3-ax-

ial magnetometer and atmosphere pressure; this dataset

includes 20 fall activities and 16 ADL activities. CNN

achieved an accuracy of over 95% for classifying fall and

non-fall activities. RNN achieved an accuracy of over 97%

in classifying fall, non-fall, and a third category (defined as

‘‘pre/postcondition’’). The following features were extrac-

ted for each time window: minimum and maximum values,

mean value, variance, skewness, kurtosis, first 11 values of

autocorrelation sequence, and the first five peaks of discrete

Fourier transform.

Pereira et al. [49] presented a biofeedback system based

on sEMG and IMU sensors for home-based physiotherapy

exercises evaluation. sEMG signal was used to identify

temporal intervals in which muscular activity was occur-

ring. Exercise repetitions were segmented into time win-

dows where features related to subject posture were

extracted. The extracted features include; statistical fea-

tures (e.g., skewness, kurtosis, histogram, etc.), temporal

features (e.g., mean, median, maximum, minimum, vari-

ance, temporal centroid, standard deviation, root mean

square, autocorrelation, etc.). These features were input to

DT, k-NN, RF, and SVM methods to classify proper/im-

proper exercise execution and achieved an accuracy of

� 92%.

Rosati et al. [50] compared two feature sets for HAR;

the first includes time, frequency, time-frequency domain

features, while the second feature set includes time domain

Fig. 14 A sample of gait signal (EJUST-GINR-1 gait dataset [19, 20])
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features considering the signals physical context. The

comparison of the 2 feature sets were based on 4 machine

learning classifiers performance. 61 healthy subjects per-

formed 7 ADL (activities of daily living) activities while

wearing an IMU-based device. A 5 s window was used to

segment each signal; for each window 222 and 221 features

were extracted for each feature set, respectively. The first

feature set includes 222 features from different domains;

20 time-domain features (mean value, variance, standard

deviation, skewness, kurtosis, minimum value, maximum

value, 25th percentile, 75th percentile, interquartile range,

10 samples from the autocorrelation sequence), 3 fre-

quency-domain features (mean and median frequency of

the power spectrum, Shannon spectral entropy), 14 time-

frequency domain features (norms of approximation and

detail coefficients of 7 levels of decomposition of discrete

wavelet transform). Each feature set had simultaneous

feature selection and classifier parameter optimization

performed using a Genetic Algorithm (GA). The results

showed that the SVM has the best performance on both

feature sets (97:1% and 96:7%). The second feature set al-

lowed for easier understanding of changes in the biome-

chanical behavior in complex cases, e.g., the application on

pathological subjects.

Muaaz [51] proposed a HAR system called WiWeHAR

using Wi-Fi and wearable IMU sensors. The standard Wi-

Fi network interface cards collected the Channel State

Information (CSI) and the wearable IMU (accelerometer,

gyroscope, magnetometer) collected the subject’s local

body movements. The authors computed the time-variant

Mean Doppler Shift (MDS) from the processed CSI data

and the magnitude from each IMU sensor. Then, they

extracted 23 time-domain and frequency-domain features

from the MDS and the magnitude data: mean, variance,

standard deviation, skewness, mean absolute value, wave-

form length, enhanced mean absolute value, enhanced

waveform length, weighted mean absolute value (window

function step-wise or continuous), maximum fractal length,

mean amplitude change, root mean square, difference

absolute standard deviation, simple squared integral, Wil-

lison amplitude, zero crossing, slope sign change, max of

the absolute value, slope, peaks of the autocorrelation,

spectral peaks, spectral energy. The authors evaluated the

performance of WiWeHAR by using a multimodal human

activity dataset that was collected by 9 subjects. Every

subject performed four activities: walking, falling, sitting,

picking-up object from floor. The results indicated that the

proposed multimodal system outperformed the unimodal

individual CSI, accelerometer, gyroscope, and magne-

tometer HAR systems achieving overall recognition accu-

racy of 99.6–100%.

3.2 Fourier analysis

Another major, and very classical descriptor, of the time-

series is based on Fourier transform and its variants.

Generally, Fourier transform can be considered as the

projections of the given timeseries over an infinite basis of

complex exponentials ei2pnt. As these complex exponen-

tials are orthonormal they can be considered to form a basis

of an infinite dimensional space. So, the Fourier coefficient

is a projection. In other words the nth Fourier coefficient is

a projection of the function f(t) over the axis of nth com-

plex exponential ei2pnt. The numerical/computational real-

ization of the Fourier transform is the Discrete Fourier

transform, and its most prominent implementation is called

the Fast Fourier transform. The coefficients of the trans-

form can be taken as a descriptor/feature vector of the input

timeseries. As the transform is infinite in nature, we con-

sider only the dominant components which correspond to

the dominant frequencies (in magnitude) in the original

timeseries.

Of particular interest is the wavelet transform. Wavelet

transform is an improvement over the classical Fourier

transform where the signal now can be decomposed in

terms of both time and frequency localized basis functions.

This helps capture the irregularities and non-stationarities

in the input timeseries as it is a localized Fourier transform.

Given a continuous-time signal x(t), its idealized Fourier

transform can be computed as follows:

cðs; sÞ ¼ 1ffiffi
s

p
Z

xðtÞ � w t � s
s

� �
dt ð2Þ

The function w represents the wavelet basis function

(called the Mother wavelet). Its wavelet is characterized by

two parameters: its translation value s and its scaling value

s. These parameters determine both the time-localization

and the frequency-localization of the mother wavelet. By

continually changing the parameter s, the mother wavelet

is translated and accordingly temporal resolution is

achieved. On the other hand, by continually changing the

parameter s resolution in the frequency ranges is gained.

By convolving the given timeseries with the scaled and

translated version of the mother wavelet, a similarity value

between the signal and the mother wavelet at that trans-

lation and scale is obtained. This similarity defines the

wavelet coefficient cðs; sÞ. Abdu-Aguye et al. [52] did

investigate the effectiveness of two feature extraction

techniques. One of them is based on decomposing the

signal applying wavelet transform using the Haar mother

wavelet.

The autocorrelation of the resulting coefficients are

computed up to a certain lag (they experimented with 5, 10,

and 15). The resulting feature vectors are then fed to 4
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different classifiers: random forests [53], canonical corre-

lation forests (a variation of random forests) [54], ProtoNN

[55], and Deep Forests (gcForest) [56].

The problem explored is direct activity recognition,

specifically, recognizing activities of daily living over three

datasets: HAPT [42], Sports and Daily Activities [57], and

EJUST-ADL-1 [24]. Their results show the effectiveness of

the developed descriptor based on the wavelet transform,

specially with comparison with the other descriptor, pro-

posed by the authors, based on autoregressive modeling.

Across all classifiers and datasets the wavelet-based

descriptor achieves at least in the range of 80%’s.

Motivated by the strong need of monitoring human

activities for healthcare, Preece et al. [58] have done a

rather extensive comparison of different types of feature

descriptors extracted from accelerometer signals. They

compare 14 feature extraction methods derived from

wavelet transform, time-domain, and frequency-domain

characteristics of the inertial signals. The comparison was

done using two activity datasets collected from 20 subjects.

One dataset contains the common daily activities of

walking, ascending stairs, and descending stairs. The sec-

ond dataset is more encompassing and contains 8 activities

including hopping, running, jogging, and jumping. To test

the sensitivity of the feature descriptors with respect to the

sensor’s location, the authors compared the activity clas-

sification accuracy over inertial signals streamed from

three different lower limb locations: waist, thigh, and

ankle, and combinations of these. The lower limb was

chosen exclusively as all the activities mainly involve the

lower body joints. Nearest neighbor classifier was used to

test the performance of different configurations of feature

descriptor/sensor placement/activity set. Cross-subject

validation is used to assess and compare amongst the dif-

ferent configurations. Their empirical study indicated that

the wavelet transform can best be used to characterize non-

stationary inertial signals, however, it does not perform as

well for classifying stationary activities performed by

healthy subjects. In the latter case frequency-based features

perform supreme with respect to others. Their best

descriptor performed about 95% cross-subject classifica-

tion accuracy.

Foerster and Fahrenberg [59] proposed motion and

posture recognition model based on accelerometers data.

The considered activities include posture, motion, stairs,

lying, supine, sitting, walking, and bicycling. The activities

were recorded by 31 subjects comprising 13 motions and

postures that were repeated for three times. Five uni-axial

sensors and three placement locations (sternum with three

axes and right and left thighs). The authors proposed a

hierarchical classification method that recognizes sub-cat-

egories of motion and posture activities with only 3:2%
mis-classifications. The raw DC values and rectified AC

values were averaged for each activity and monitoring

segment. The walking frequency was calculated using

short-time Fourier transform within a frequency band of

0.5–4 Hz from the sternum sensor z-axis.

Preece et al. [58] compared different feature descriptors

extracted from accelerometer signals. They compared 14

feature extraction methods derived from wavelet transform,

time-domain (e.g., mean, standard deviation, median, etc.),

and frequency-domain (e.g., principal frequency, spectral

energy, magnitude of first five components of FFT analysis,

etc.) of the IMU signals. In order to extract the frequency-

domain features, an FFT was applied on each 2-s window

(128-sample) with 50% overlap between consecutive

windows. The final frequency-domain feature set com-

prises of the magnitudes of the first five components of the

FFT power spectrum.

Janidarmian et al. [37] proposed a HAR system based on

wearable accelerometers. The proposed features include

the Power Spectral Density (PSD), the Fourier coefficients

in the frequency domain, the positions and power levels of

the highest 6 peaks of PSD computed over a sliding win-

dow, and the total power in 5 adjacent and pre-defined

frequency bands.

Bao and Intille [60] proposed a HAR system based on

subject annotated acceleration data. Features like mean,

energy, frequency-domain entropy, and correlation are

extracted from 512 sample sliding windows of acceleration

data with 50% overlapping between consecutive windows.

Each window duration is 6.7 s. A several seconds window

is sufficient to cover cycles in activities like walking,

window scrubbing, and vacuuming. The window size of

512 samples allows for quick computation of FFTs.

Huynh and Schiele [29] studied the impact of features

and window length on HAR accuracy. To study the effect

of various windows lengths, acceleration features were

extracted from windows of 128, 256, 512, 1024, and 2048

samples. For each window, the authors computed the

magnitude of the mean, variance, energy, spectral entropy,

and the discrete FFT coefficients. The results showed that

there is neither a single feature nor a single window length

that achieved best accuracy for all activities. The FFT

features were always among the features with the highest

cluster precision. However, the FFT coefficients that

achieved the highest precision differ for each activity, and

the recognition can be enhanced by selecting features for

each activity individually. In general, the highest peaks for

the FFT coefficients were laid between the first and the

tenth coefficient. The recognition results indicated as well

that integrating different FFT coefficients to bands of

exponentially increasing size can be a trade-off for using

individual or paired coefficients. For the non-FFT features,

the variance has continuously high precision values, how-

ever, the spectral entropy has the highest values for the
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activity ‘standing’. On average, the features with window

lengths of 1 and 2 s achieved slightly higher precision

values than those with other window lengths. However,

there are big differences across the various activities, and

selecting different window lengths for various activities

resulted in higher recognition rates.

Eyobu and Han [61] presented a spectrogram-based

feature representation and data augmentation technique for

HAR based on wearable IMU sensor data. The Hanning

window was utilized and 512 samples were used in each

FFT vector with a sampling frequency of 50 Hz. The

Hanning window can be defined as in Eq. (3) and was

named for Julius von Hann, an Austrian meteorologist. It is

also known as the Cosine Bell.

wðnÞ ¼ cos2 n

N
p

� �
; n ¼ �N � 1

2
;

. . .;�1; 0; 1; . . .;
N � 1

2

ð3Þ

An ensemble of data augmentations in feature space is

proposed to tackle the data scarcity problem. Performance

evaluation was done on an LSTM architecture to assess the

impact of the proposed feature representation and data

augmentations on HAR accuracy. In addition to evaluating

on a newly proposed dataset, the data augmentation tech-

nique is evaluated on the UCI HAR dataset [62]. Using few

spectral features, the authors achieved state-of-the-art

recognition performance. Fewer spectral features exhibit a

lesser training time of about 1 h and 45 min compared to

about 2 h and 30 min for the large feature set utilized in

this work. The proposed extraction approach achieved the

best performance enhancement in accuracy of 52:77%

compared to the UCI online dataset. The proposed OR

(Original spectral features) ? LA1 (1st Local Averaging)

achieved the best performance enhancement in accuracy of

32:6% compared to the UCI online dataset.

Garcı́a [63] proposed human activity recognition and

segmentation using Hidden Markov Models. The recogni-

tion is based on IMU signals collected by two smartphone

sensors: accelerometer and gyroscope. Six different activ-

ities are considered: walking, walking-upstairs, walking-

downstairs, sitting, standing, and lying. These activities

were performed by 30 users. The feature vector included:

mean, standard deviation, median, absolute value (for each

axis), minimum and maximum values, Signal Magnitude

Area (SMA), energy average sum of squares, interquartile

range, entropy, autoregression coefficients, correlation

coefficient between two signals, maximum frequency

component, frequency signal weighted average, skewness,

kurtosis, frequency interval energy within FFT 64 bins of

each window, angle between two vectors. The author

concluded that using Cepstral techniques were suitable for

HAR and segmentation. Despite inertial analysis being

similar with speech recognition, some transformations (like

pre-emphasis) are useless for inertial signals analysis. The

RASTA filtering and delta coefficients were found to be

only suitable for activity segmentation. Thus, their use is

not recommended when the subject/activity recognition is

the main goal. The use of Activity Sequence Modelling is

highly suggested since it reduced all error rates for

recognition and segmentation. The subject recognition

error rate was reduced from 26.8 to 16.5% and the vector

size from 561 to 180 features. The activity segmentation

error rate was reduced from 5.2 to 0.4% and the vector size

from 561 to 405 features. The activity recognition error

rate was increased slightly from 3.5 to 3.6% using the

Cepstral techniques, however the vector size was lower

(only 180 features).

3.2.1 Spectra

Machado et al. [64] proposed a HAR system based on a

3-axial accelerometer sensor; the proposed system is based

on unsupervised learning approach. The considered fea-

tures are statistical domain features (kurtosis, skewness,

mean, standard deviation, interquartile range, histogram,

root mean square, median absolute deviation), temporal

domain features (zero crossing rate, pairwise correlation,

autocorrelation), spectral domain features (maximum fre-

quency, median frequency, cepstral coefficients, power

spectrum, Mel-frequency cepstral coefficients, fundamental

frequency, power bandwidth).

Krause et al. [65] proposed a wearable system to specify

online the user context and context transition probabilities.

The authors tried various sampling frequencies and dif-

ferent feature engineering methods were applied. For low

sampling rates (1 and 10 samples per minute), the onboard

averages and absolute differences were calculated. For high

sampling rate (8 samples per second), the Fast Fourier

Transform (FFT) oscillatory spectra of the recorded

accelerometer values were calculated. A 64 point FFT (i.e.,

spectra of 8 s windows with different spectrum for each

axis) is a good choice to discriminate various fine-grained

movement patterns. The resulting spectra were log-trans-

formed. In the low sampling rate cases, all 8 data channels

of the BodyMedia device were recorded forming an 8-dim

feature-space. For the high sampling rate, the spectra of the

two accelerometers were recorded forming a 128-dim

feature-space.

Abreu et al. [66] proposed a HAR system where the

signals were collected from four sensors: accelerometer,

gyroscope, magnetometer, and microphone. A new dataset

was proposed comprising 10 activities; e.g., opening door,

brushing teeth, typing on keyboard, etc. The proposed

HAR classifier is based on multiple HMMs one per

activity. The authors extracted all the three axes (x, y, z) of
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the 3-axial sensors (accelerometer, gyroscope, and mag-

netometer) and the overall magnitude of eachffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. To address similar activities classification

conflict (e.g., opening door and opening faucet), the sound

was considered in the classification process; the authors

combined the IMU sensors with the microphone. Each

signal is segmented in time windows of length 250 ms

without overlap. For each 250 ms window, over 30 dif-

ferent features were extracted. The features came from

temporal, spectral, and statistical domains that were cal-

culated for all sensors and axes. The final output is a fea-

ture vector with 265 features for each 250 ms time

window. The authors achieved an overall accuracy of 84 �
4:8% utilizing 27 features selected by Forward Selection

coming from different domains (statistical, temporal and

spectral). In online recognition, the proposed solution

experienced preliminary tests by 3 of the 8 initial subjects.

The classifier detected activities within a continuous stream

with an F1-score of 74 � 26%.

Shoaib et al. [67] present a fusion-based HAR system

using smartphone motion sensors. Ten male subjects per-

form seven activities; walking, running, sitting, standing,

jogging, biking, walking upstairs, walking downstairs. Five

smartphones (Samsung Galaxy SII i9100) are used with the

following sensors: accelerometer (with and without grav-

ity), gyroscope, magnetometer. The authors adopted vari-

ous machine learning techniques: Bayesian networks,

SVM, logistic regression, k-NN, decision trees, and ran-

dom forest. Three feature sets were proposed of time

domain features and one set of frequency domain features

(the sum of the first 5 FFT coefficients and spectral

energy). The authors showed that the utilized sensors,

except the magnetometer, were individually able of

recognition based on the activity type, the body locations,

the feature set, and the classification method (personalized

or generalized). The authors also showed that the sensors

fusion only enhances the overall recognition accuracy

when their individual performances are not high enough.

Tahir et al. [68] presented a HAR model based on IMU

sensors, i.e., gyroscopes and accelerometers. The IMU data

is processed using multiple filters such as Savitzky–Golay,

median, and Hampel filters for examining the lower/upper

cutoff frequency patterns. Statistical features (average,

middle, squared deviation, and max/min values), frequency

features (chirp z-transform (CZT), spectral entropy, the

Helbert transform), and wavelet transform features (the

Walsh–Hadamard transform) were extracted. The Adam

[69] and AdaDelta [70] methods were utilized in the fea-

ture optimization phase. The proposed model was evalu-

ated on the USC-HAD dataset [12] and the Intelligent

Media-sporting Behavior (IMSB) dataset [71] that is a new

subject-annotated sports dataset. The ‘‘leave-one-out’’

cross validation is utilized and the proposed model

achieved recognition accuracy of 91:25%, 93:66% and

90:91% when compared with the USC-HAD [12], IMSB

[71], and Mhealth [72] datasets, respectively.

Figueira et al. [73] proposed a HAR system where two

sensors were used (accelerometer and barometer) with

sampling frequency of 30 and 5 Hz, respectively. The

signals obtained were divided into 5-s windows. The

dataset used is composed of 25 subjects. ADLs were per-

formed with smartphone worn in 12 different positions.

Three sets of features were extracted from each window;

spectral domain (maximum/median/fundamental frequen-

cies, max power spectrum, total energy, spectral centroid/

spread/skewness/kurtosis/slope/decrease/roll-on/roll-off,

curve distance, spectral variation), statistical domain

(skewness, kurtosis, histogram, mean, standard deviation,

interquartile range, variance, root mean square, median

absolute deviation), temporal domain (correlation, tempo-

ral centroid, autocorrelation, zero crossing rate, linear

regression).

Attal et al. [74] presented various classification methods

for HAR. Three accelerometers were placed at the subject

chest, right shank, and left ankle. Four supervised classi-

fiers k-NN, SVM, GMM, RF and three unsupervised

classifiers k-means, GMM, HMM were compared. Sensors

raw data and extracted features are used independently as

inputs for each classification method. Nine accelerometer

signals were collected from three MTx IMUs. For each

signal, the following time and frequency-domain features

are calculated: eleven time-domain features (mean, vari-

ance, median, interquartile range, skewness, kurtosis, root

mean square, zero crossing, peak-to-peak, crest factor, and

range) and six frequency-domain features (DC component

in FFT spectrum, energy spectrum, entropy spectrum, sum

of wavelet coefficients, squared sum of wavelet coeffi-

cients, and energy of wavelet coefficients). The k-NN gave

the best results between the supervised classification

algorithms, while the HMM provided the best results

between the unsupervised classification algorithms.

Suto et al. [75] presented various feature extraction

methods applied in the HAR domain. The quality of the

selected features was assessed using feed-forward artificial

neural network, k-Nearest Neighbor, and decision tree. The

authors applied a time sliding window of 32 samples with

50% overlap between the consecutive windows. This

window length spans 1.6 s time interval as the authors used

the WARD database [76] that has a sampling frequency of

about 20 Hz. The extracted time-domain features are the

mean, variance, mean absolute deviation, root mean

square, zero crossing rate, interquartile range, 75th per-

centile, kurtosis, signal magnitude area (SMA), and the

min–max values. The extracted frequency domain features

include the spectral energy, spectral entropy, spectral
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centroid, and the principal frequency. Other kinds of

extracted features are the correlation between axes,

autoregressive coefficients, and the tilt angle. The results

showed that the proposed machine learning and feature

selection approach outperformed other classification

methods (up to approximately 100% recognition rates).

The authors also showed that a few number of sensors

(compared to other works) can be sufficient for good

classification performance.

3.3 Autoregression

Vector autoregression is an extension of the ordinary least

squares (OLS) regression to the multivariate case. A k-

dimensional timeseries (k can be the number of inertial

sensors times the number of degrees of freedoms of each

sensor) can be linearly regressed in time. In other words,

the vector value at time t is linearly dependent on the

vector values at previous time steps (up to a certain order)

plus a Gaussian noise. Formally, this can be written as

follows:

yt ¼ A1yt�1 þ A2yt�2 þ � � � þ Apyt�p þ bþ �t ð4Þ

The fAig matrices represent the linear transformations, b is

a bias/intercept term, and �t is a white Gaussian noise. This

kind of regressions are called autoregressive (AR) models

in the terminology of timeseries analysis. A key to the

validity of these models is that the given timeseries is

stationary [30], which roughly means that the statistical

properties (such as the moments) of the signal remains

fixed over time. Even though this might arguably be not the

case for many human actions, features based on autore-

gressive models have been used with reasonable success.

The model’s unknowns are these matrices, the bias vector,

and the covariance matrix of the noise term. These can be

estimated using a variant of the ordinary least squares

technique. Once these parameters are estimated, they can

be taken as the feature vector or the descriptor of the given

timeseries.

Abdu-Aguye et al. [77] investigated the effectiveness of

this kind of features for activity recognition using four

different classifiers, namely, random forests, canonical

correlation forests, ProtoNN, and deep forests. They tested

their work over three benchmarks: EJUST-ADL-1 [24],

HAPT [42], and Daily and Sports Activities [57]. The

dimensionality of the timeseries in each dataset depends on

the multitude of the inertial modalities used. The empirical

study shows the general efficacy of using the autoregres-

sive coefficients as a feature descriptor of the timeseries,

even though the statistical stationarities across all the

activities given in the datasets are questionable in several

kinds of actions. The results though differ widely based on

the dataset used as well as the classifier applied. However,

random forests can be considered the best economical

choice in terms of the achieved predictive performance and

their demand of computational resources.

Hassan et al. [78] presented a HAR system using the

smartphone IMU sensors and deep learning. Firstly, the

relevant features are extracted from the raw sensor data,

e.g., mean, median, autoregressive coefficients, etc. Sec-

ondly, the features are processed by a Kernel Principal

Component Analysis (KPCA) and a Linear Discriminant

Analysis (LDA). Finally, the features are trained using a

Deep Belief Network (DBN) for accurate activity recog-

nition. The proposed approach outperformed the traditional

recognition methods such as multiclass Support Vector

Machine (SVM) and Artificial Neural Network (ANN).

The system had been examined for 12 different physical

activities where the mean recognition rate was 89:61% and

the overall accuracy was 95:85%. The other traditional

methods achieved at best a mean recognition rate of

82:02% and an overall accuracy of 94:12%.

Khan et al. [15] presented a HAR system based on a 3-

axial accelerometer via augmented feature vector and a

hierarchical recognizer. At the last level, the activity state

(static, transition, dynamic) is classified using statistical

features and ANNs. The upper recognition level utilizes the

autoregressive modeling of the acceleration signals. The

augmented feature vector consists of autoregressive coef-

ficients, signal magnitude area, and the title angle. The

resulting feature vector is further processed by linear-dis-

criminant analysis and ANNs to recognize a particular

human activity. The proposed activity-recognition method

recognizes 3 states and 15 activities with an average

accuracy of 97:9% using a single 3-axial accelerometer

placed at the user’s chest.

San-Segundo et al. [79] adopted the well-known meth-

ods successfully applied in the speech processing domain:

Mel Frequency Cepstral Coefficients (MFCCs) and Per-

ceptual Linear Prediction (PLP) coefficients. In addition,

Relative Spectra (RASTA) filtering [80] and delta coeffi-

cients were also evaluated for IMU processing. The pro-

posed HAR system is based on Hidden Markov Models

(HMMs) and recognizes 6 activities: walking, walking

upstairs/downstairs, sitting, standing, and lying. A publicly

available dataset was used, UCI Human Activity Recog-

nition Using Smartphones [81, 82]. This dataset includes

several sessions of physical activity sequences from 30

subjects. The dataset had been divided randomly into 6

subsets to apply a sixfold cross validation procedure. The

baseline method for feature extraction performed several

calculations in the time and frequency domains. For the

time domain, the features included the mean, correlation,

signal magnitude area (SMA), and autoregressive coeffi-

cients. For the frequency domain, the features included the

energy of different frequency bands and frequency
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skewness. Other features included the angle between vec-

tors. A total of 561 features were extracted to represent

each window (i.e., every 2.56 s). The results presented in

this paper enhances significantly the error rates of the

baseline method. The adapted MFCC and PLP coefficients

enhanced HAR and segmentation accuracies while

decreasing the size of the feature vector. RASTA-filtering

and delta coefficients reduced the segmentation error rate

significantly giving the best results: an activity segmenta-

tion error rate lower than 0:5%.

3.4 Raw data

Most of the work done in HAR systems are based on

supervised learning over derived features, manually or

automatically extracted from the sample timeseries. In the

following we survey some of the techniques that are

deviated from this direction.

Some research work have treated the streamed signals as

direct input without any prior preprocessing and/or feature

engineering. Most of that work can be considered as

automatic feature engineering (representation learning)

through the use of the recent advances in deep neural

networks. However, some of that work just directly models

the temporal aspects of the incoming signal without

explicitly learn any feature representation. In other words,

the dynamics of the model itself encode the input signal

without explicitly transforming (whether manually or

automatically) the signal into some feature space. The most

prominent example in that direction is the use of Hidden

Markov Models (HMMs). An HMM is a latent variable

model where there is a sequential relationship amongst the

latent variables. It is theoretically founded on the theory of

Markov stochastic processes, where, such process satisfies

the Markovian property that the current state of the system

depends exclusively on the previous state, and hence,

independent of earlier history.

The introduction of latent states, forming the HMM,

actually extends this model beyond such Markovian

assumption. More specifically, the latent variables repre-

sent discrete states that transit among themselves according

to some stochastic law. The transition behavior follows the

Markovian property, that is, the next transition depends

only on the current state. Along side transiting to a new

state, a sampled output is observed, through which these

hidden states are inferred. The parameters of the model to

be learned or estimated are: the transition probabilities, the

parameters of the observables distributions, and the dis-

tribution of the initial state. By its inherent nature, HMMs

are very suitable for modeling sequential data, and in

particular, in our context timeseries data. They can be used

as inferential engine as well as generative engine. The main

advantage is that HMMs are very well mathematically

established and hence, can provide explanation to its

induced inferences and outputs. They require relatively

modest computational resources during training (specially

when training using frequentist approaches such as

expectation maximization) when compared to deep neural

networks.

In the context of timeseries HAR signals, an HMM

model can be viewed as encoding the given activity. For

example, assume that we have only an HMM H with only

two states, that is used to model the timeseries given in

Fig. 15a. Figure 15b shows the corresponding states pro-

duced by an HMM that models the timeseries and consists

of two states. As can be seen from the figure we can per-

ceive the HMM model as encoding the timeseries using a

binary string. So, for example, if the timeseries is the z-

acceleration of a pushup exercise, then the modeling HMM

just encodes this exercise using two levels, they could be

the up position and the down position.

Ashry et al. [83] have used HMM for activity classifi-

cation. Their main contribution is the novel application of

such models, along with devising dissimilarity measures

between different HMMs in the domain of activity recog-

nition. Each activity sample, a multi-axial timeseries, is

modeled using HMMs for the different axes; the HMM

itself is taken to represent the signal (a descriptor of the

signal). The training phase consists entirely of deriving the

HMM models for all the activity samples in the given

dataset. These are considered templates/prototypes to be

used in the subsequent testing phase. In a 1-Nearest

Neighbor fashion, a new test multi-dimensional timeseries

is used to induce its characterizing HMM. This HMM is

compared against those of the templates using a dissimi-

larity measure developed by the authors to deduce the

closest one whose class of activity is then taken as the

decision for the new sample.

Figure 16 shows the architecture of the proposed model

in [83]. The authors validated their work on two publicly

available datasets, namely, the EJUST-ADL-1 [24] and

USC-HAD [12]; and compared the performance against an

extant approach utilizing feature extraction and another

technique utilizing a deep Long Short-Term Memory

(LSTM) classifier. Table 2 shows a snapshot of the results.

On the EJUST-ADL-1 they achieved performance metrics

(accuracy, sensitivity, specificity, precision, and F-mea-

sure) in the order of 90% and on the order of 85% over the

USC-HAD dataset.

A crucial notice about this work is that there is no

preprocessing step for feature extraction is done, the raw

timeseries data streamed from the sensors are fed directly

to the HMM. Hence, in some sense, HMM can provide the

same advantage as deep neural networks for automatic

feature extraction. However, the type of extracted features

here are encoded in the form of dynamics. This is very
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appropriate for low semantical content data such as time-

series. However, this may not be feasible for more com-

plicated data modalities such as visual or audio data. It is

also of noticeable interest whether HMMs can be used for

transfer learning which is a basic advantage of deep neural

networks. In principle it seems plausible that HMMs can be

used for that purpose, however, to the best of our knowl-

edge, we have not found any work addressing the feasi-

bility and/or effectivity of HMMs for transfer learning.

On a different track Gomaa et al. [84] apply two well-

known statistical and measure-theoretic approaches in the

context of human activity recognition. The first approach is

time-neglectful in the sense that the temporal order among

the sampled points of the timeseries is dropped. It is based

on using statistical methods, particularly, goodness-of-fit

tests, where the timeseries is treated as a collection of

unordered points that are generated from some unknown

probability distribution. A goodness-of-fit test is a statisti-

cal tool used to test the hypothesis that a specific sample (in

our case the collection of timeseries points) is generated

from a given distribution.

In [84] the authors apply one of the best known good-

ness-of-fit tests, namely, the Kolmogorov–Smirnov (KS)

test. This test was developed in the 1930s by two Russian

mathematicians Kolmogorov and Smirnov [85, 86]. The

second approach is more time-aware considering the

ordered nature of the timeseries as a sequential stream of

measurements. Their approach is based on direct analysis

of the timeseries sample points by using two distance

metrics that can measure the dissimilarity between two

timeseries even if they have different lengths which is

typical in HAR applications. The first dissimilarity metric

is based on the estimated autocorrelation coefficients of the

given signals. The second is the infamous dynamic-time

warping (DTW). The latter is much more accurate, though

it is more computationally demanding. Their approach is

essentially a 1-NN (1-Nearest Neighbor), where the dis-

tance function is taken to be one of these two dissimilarity

Fig. 15 An example signal and its corresponding HMM abstraction with two states

Fig. 16 Framework of the proposed HMM model for HAR [83]
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measures in an infinite dimensional timeseries space. Their

experimentation is very limited to one dataset of signals

from a wrist-worn accelerometer collected for ADL

activity recognition; the dataset is called ‘‘Dataset for ADL

Recognition with Wrist-Worn Accelerometer’’ [7, 87],

which has 14 activities of daily living. The DTW-based

method is more stable reaching an accuracy of about 84%

which is better of by more than 25% that of the other

autocorrelation dissimilarity measure. The results based on

the KS-test are much less promising.

On a similar track, where the sequential nature of the

timeseries signal is ignored, Gomaa et al. [88] treat a

timeseries as an unordered set of measurements sampled

from an unknown probability distribution. They choose

some random timeseries samples from each activity and fit

them using probability distributions. These templates are

then used as prototypes against which a new inertial motion

sample is tested to determine the corresponding action. The

authors used two probabilistic modeling techniques: his-

tograms and kernel density estimates. For histograms,

Manhattan distance is used as a measure of dissimilarity,

whereas Manhattan distance and KL-divergence are used

as measures of dissimilarity for kernel density estimates.

Again, the validation of the approach is very limited by

experimenting only on one dataset, which is the ‘‘Dataset

for ADL Recognition with Wrist-Worn Accelerometer’’

[7, 87]. This dataset has 14 ADLs. For some configurations

they managed to reach above 80% accuracy.

3.5 Embedding

All of the previous discussion have focused on either

handcrafted feature engineering or using the timeseries

data directly. A third alternative has gained much attention

recently with the emergence of deep learning, in particular,

deep neural networks, which is representation learning, or

more concretely automatic feature extraction. Generally,

automatic feature extraction through deep neural comput-

ing has achieved tremendous success in recent years and

allowed for technological applications, and concerns as

well, that had been unimaginable before. As the burden of

engineering effective features is now alleviated, it came

with a price: we don’t understand the generated embed-

ding/representation, and generally the inferred decisions. In

some cases, specially with the visual modality, some work

has been done to visualize and interpret the resulting

hierarchical representations. Generally, the ability to gen-

erate informative embedding is crucial for effective trans-

fer learning. In addition, the data manifold in the

embedding space is generally easier to manipulate than the

original input space.

Deep neural networks entered the mainstream with the

seminal work of Hinton and Salakhutdinov [89]. Since

then, the general trend in machine learning research has

been directed towards the adoption and analysis of deep

methods as applied in different domains. Abdu-Aguye

et al. [90] train a convolutional neural network (CNN)

essentially for representation learning to generate embed-

dings for inertial timeseries data that are then used for

transfer learning across different datasets. They train a

CNN and use its convolutional filters as a feature extractor,

then subsequently they train a feedforward neural network

as a classifier (or for that matter any classifier can be used

instead) over the extracted features/embeddings for other

datasets. The overall architecture of their system is shown

in Fig. 17.

The authors use a spatial pyramid pooling layer in order

to generate a fixed-size embedding regardless of the length

of the input timeseries, hence, alleviating the need to fix the

input length of the timeseries. They validate the effec-

tiveness of their embedding model on five different activity

recognition datasets: EJUST-ADL-1 (aka Gomaa-1) [24],

HAPT [42, 91], EJUST-ADL-2 (aka HAD-AW) [14],

Daily and Sports Activities [57], and REALDISP [13].

Tables 3 and 4 show example results from the transfer

learning, the first table shows the performance metric in

terms of the overall accuracy, and the second shows the

computational resources in physical time (seconds). The

diagonal is the baseline (self-testing), whereas cross-testing

are the off-diagonal entries.

Table 2 A comparison between an HMM-based method [83], LSTM using raw data, and RF [24] over two different public datasets

Dataset Method (%) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure (%)

USC-HAD RF 78.5 70.45 98.2 60.5 65.1

LSTM 78.57 72.8 85.71 71 71.88

HMM 83.95 83.8 98.54 84.36 83.49

EJUST-ADL-1 RF 81.64 82.47 98.67 84.6 83.53

LSTM 87.19 78.5 93.1 77 77.74

HMM 91.9 91.4 99.37 92.54 91.64

The highest values are highlighted in bold
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The machine used to obtain these timings utilized an

8-core Intel Xeon Platinum 8168 CPU with 16 GB of

RAM. During the training cycles, CPU-only training was

used to give a fair estimate of performance and eliminate

any extraneous advantages due to the use of graphics

processing units (GPUs). The authors thereafter report the

mean and standard deviation of the obtained times mea-

sured in seconds.

In the latter, a model is pre-trained on each source

dataset mentioned in the first column, and then fine-tuned

and tested on a target dataset in each corresponding row in

the table. It is apparent that transfer learning, and hence,

the generated embeddings, are effective where the maxi-

mum reduction in accuracy is about 6%, and in most cases

it is about 3%. On the other hand, the bottom table shows

tremendous saving in computational resources as a result of

transfer learning. The only computation here is required for

fine-tuning. In the worst case (i.e., on the Daily Sports

dataset) about 24� speedup is achieved compared to the

self-testing scenario; and about 52� speedup in the best

case (i.e., on the REALDISP dataset). It is also apparent

that when the authors used the datasets, Daily Sports and

EJUST-ADL-2, the best results have been achieved

regarding transfer learning. This means that their pre-

trained model is the most powerful when transferring the

gained knowledge from these datasets to another dataset.

This can be attributed to the wide spectrum of activities

contained in these two datasets (19 actions in the former

and 31 in the latter); see Table 15 for full description of

these datasets.

Another work based on proper embedding representa-

tion learning of timeseries inertial signals is done by Abdu-

Aguye et al. [92]. In particular, they employed such

embedding representation in a deep metric learning (aka

similarity learning) framework for activity recognition. A

deep Triplet Network is used to generate fixed-length

embeddings/descriptors from activity samples. Such

embeddings are located in a classical Euclidean space and

are to be used for activity classification. The overall system

architecture is similar to that shown in Fig. 17, except for

the use of triplet network with the corresponding loss

function and the replacement of the fully connected layers

towards the end of the information flow by a 1-Nearest

Neighbor classifier with the Euclidean distance as the

dissimilarity metric. The triplet loss can be defined as

follows:

LðhÞ ¼
X

max kEa � Epk2
2 � kEa � Enk2

2 þ a; 0
� �

ð5Þ

where Ea is the embedding of the anchor sample, Ep is the

embedding of the positive sample, and finally, En is the

embedding of the negative sample. The summation of the

loss function is taken over all the triplets in the training set.

a represents a margin parameter that describes the mini-

mum desired spacing between entities of different classes.

The authors evaluate their work using the same 5

datasets used in [90]. Transfer learning (cross-testing) is

also performed across different datasets: a model is built by

pretraining in some source dataset, then fine-tuned and

tested on a target dataset. Table 5 shows a sample of the

results, both self-testing and cross-testing, of the proposed

deep metric architecture of the five mentioned datasets.

Comparing these results with those of the previously

mentioned work, Table 3, we observe the following; (1)

the results of self-testing are comparable, both methods are

in close proximity to each other, however, (2) the method

proposed in [90] is much more capable to transfer to new

datasets, that is, the induced embeddings from this

scheme is much more abstract representation of the time-

series inertial signals that can transcend the source dataset.

As the two lines of work do their evaluation over the same

list of datasets, it is worth to investigate what factors affect

the transferability power of the underlying model.

The work done in [90] learns the embeddings within an

end-to-end training pipeline for the overall final purpose of

activity recognition, whereas the work in [92] learns the

Fig. 17 CNN for feature extraction ? classification [90]
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embeddings in a more abstract setting, where the task of

activity recognition appears more implicit in the choice of

the three examples for the triplet loss: the anchor, the

positive example, and the negative example. It may as well

be the technique used for action classification may play a

role in effecting the transfer learning; in the former work a

fully connected neural network is used, whereas in the

latter a 1-Nearest Neighbor is used. Maybe the choice of 1

neighbor leads to overfitting and more smoothing are

needed as a regularization. All of these need to be inves-

tigated, as transfer learning in general, and its particular use

in inertial timeseries data are so crucial in the success of

such systems and the practical widespread effective use of

wearable devices.

Khaertdinov et al. [93] use a variant of deep metric

learning equipped with attention for HAR. The main focus

of the paper is to design a system that is robust against two

problems in wearables-based HAR systems: (1) inter-class

similarities (different activities have similar inertial motion

patterns) and (2) subject heterogeneity, where different

subjects perform the same activity quite differently. The

authors show the detrimental effect of these two factors on

the recognition performance by using t-SNE visualization

over 2-dimensional Euclidean space. The crux of the

argument of the plotted graphs is that different actions have

quite overlapping clusters and the same action may spread

over different clusters in that 2-dimensional space. These

motivate the whole work, however, it can be criticized that

visualization is a quite poor evidence as it projects from the

rich high dimensional space of the timeseries into very low

2-dimensional space, with much less degrees of freedom.

More evidence is needed, for example, plotting 3-di-

mensional visualizations, plotting multiple 2-dimensional

visualizations over varying features, or any other means.

The main technical contributions of the paper behind that

motivation of well-class separability are: (1) developing a

hierarchical triplet loss function and (2) developing a smart

triplet mining algorithm. The hierarchical triplet loss is

based on a data structure called the ‘‘hierarchical tree’’ that

stores information about the inter-class and intra-class

Table 3 Classification accuracy

using 4-2-1 pooling [90]
Training dataset Testing dataset

Gomaa-1 HAPT D_Sports HAD-AW REALDISP

Gomaa-1 96.99 ± 1.28 94.53 ± 1.55 92.19 ± 0.64 82.66 ± 1.01 71.94 ± 2.64

HAPT 95.09 ± 1.90 96.00 ± 1.18 91.06 ± 0.76 83.10 ± 1.12 68.85 ± 1.77

D_Sports 95.98 ± 1.48 95.24 ± 1.09 95.31 ± 0.36 83.20 ± 1.15 71.14 ± 3.70

HAD-AW 95.93 ± 1.55 95.61 ± 1.18 92.38 ± 0.50 88.36 ± 1.18 71.63 ± 2.15

REALDISP 95.58 ± 1.18 94.82 ± 1.55 92.59 ± 0.41 83.60 ± 1.02 76.60 ± 1.88

The highest values are highlighted in bold

Table 4 Training times (in seconds) for self-testing and cross-testing scenarios (4-2-1 pooling) [90]

Training dataset Testing dataset

Gomaa-1 HAPT D_Sports HAD-AW REALDISP

Gomaa-1 426.10 ± 5.95 16.44 ± 0.50 62.30 ± 1.37 49.70 ± 1.18 27.07 ± 0.95

HAPT 9.91 ± 0.29 513.33 ± 4.50 62.02 ± 0.94 49.44 ± 0.90 27.02 ± 0.65

D_Sports 9.98 ± 0.40 16.30 ± 0.40 1503.26 ± 13.38 50.20 ± 1.35 27.08 ± 0.75

HAD-AW 9.92 ± 0.35 16.32 ± 0.54 63.12 ± 1.63 1952.15 ± 16.19 27.16 ± 0.63

REALDISP 9.98 ± 0.31 16.33 ± 0.45 62.57 ± 1.42 49.84 ± 1.26 1413.45 ± 16.13

The highest values are highlighted in bold

Table 5 Classification accuracy

of embeddings using deep

metric learning [92]

Training dataset Testing dataset

Gomaa-1 HAPT D_Sports HAD-AW REALDISP

Gomaa-1 96.69 ± 1.23 89.60 ± 1.72 91.34 ± 0.41 68.67 ± 1.09 59.48 ± 2.77

HAPT 83.27 ± 2.16 96.25 ± 1.09 89.98 ± 0.74 64.46 ± 1.46 50.61 ± 2.19

D_Sports 86.16 ± 2.69 88.67 ± 1.17 96.59 ± 0.39 68.62 ± 1.14 56.59 ± 2.27

HAD-AW 90.75 ± 1.42 89.10 ± 1.41 91.35 ± 0.56 85.28 ± 1.19 60.60 ± 2.00

REALDISP 91.16 ± 2.14 91.40 ± 1.38 91.63 ± 0.47 70.10 ± 1.65 75.01 ± 1.92

The highest values are highlighted in bold
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distances of all activity classes in the dataset. Given two

activity classes a1 and a2, their inter-class distance can be

computed as follows:

dinterða1; a2Þ ¼
1

ka1k � ka2k
X

i2a1;j2a2

kEi � Ejk2
2 ð6Þ

where Ek is the embedding of sample k. So, it is the average

of all distances between pairwise samples from the two

classes. On the other hand, the intra-class distance for

activity b can be computed as follows:

dintraðbÞ ¼
1

kbk kbk � 1ð Þ
X

i;j2b
kEi � Ejk2 ð7Þ

Each leaf node corresponds to a certain class label. Classes

are merged at different levels of the tree based on some

merging threshold. Now the hierarchical loss function can

be computed as follows:

LðhÞ ¼ 1

2N

XN

i¼1

max kEa
i � Ep

i k
2
2 � kEa

i � En
i k

2
2 þ a0; 0

n o

ð8Þ

where N is the number of triplets, Ea
i ;E

p
i ;E

n
i are the

embeddings of the anchor, positive, and negative samples

in the triplet i. a0 is the dynamic margin that depends on the

intra-class distance of the anchor activity as well as the

level ‘ in the hierarchical tree at which the anchor and

negative classes are merged. So, adapting the margin to the

particular activities involved in the triplet makes the

training more robust and resilient to the two opposing

effects of inter-class similarities and subject heterogeneity.

The second main technical contribution of this work is the

technique for mining triplets for a mini-batch. They call

their method ‘‘anchor-neighbor sampling’’.

It is essentially a smarter guided selection of the triplets

to make proper use of the constructed hierarchical tree to

improve the training process and well separate the classes.

The authors evaluate their work over three public bench-

mark datasets: PAMAP2 [94], USC-HAD [12], and

MHEALTH [95]. Their embedding model is based on

LSTM with two types of attention, attention based on the

temporal sequence of timeseries points and spatial attention

scanning multiple channels (different inertial types and

axes) at the same time. They report results over all three

datasets and multiple configurations of their model (for

example, use one or both types of attention) and compare

with other state-of-the-art methods.

Strömbäck et al. [31] create an iconic dataset, called

‘‘MM-Fit’’ for workout exercises. This dataset is multi-

modal collected from varying devices streaming the fol-

lowing types of data: (1) inertial motion data collected

from multiple devices including smartphones,

smartwatches, and earbuds, (2) multi-view RGB-Depth

video streaming, and (3) 2D and 3D pose estimates. The

task is to do activity recognition, particularly in this case,

recognition of the workout exercise. The authors compare

the power of different deep recognition models based on

unimodal vs. multimodal data types.

Each modality is trained separately using a stacked

convolution autoencoder to produce an embedding repre-

sentation of the crucial features from the given modality.

For the inertial motion timeseries the autoencoder archi-

tecture consists of 1D convolution filters. As for the visual

streaming, they use the 3D pose estimates from [96] and

the relative joint positions are encoded using cylindrical

coordinates as such coordinate system is more robust

against background and illumination variation. Such 3D

poses are arranged into 3D images that are fed to an

autoencoder that is based on 2D convolution filters.

Each unimodal type of sensory data is trained inde-

pendently to generate an embedding that is output from the

later layer of the autoencoder (the last layer of the encoder

part). These induced embeddings representations of the

different modalities are then fused and fed to a multi-modal

fully connected autoencoder. Lastly, the fused embeddings

of this latter network are used to train a fully connected

classification network to recognize 10 different workout

exercises. Their multi-model framework achieves 96%

accuracy on unseen subjects in their dataset MM-Fit. This

is in contrast with 94% using data from the smartwatch

only, 85% from the smartphone only, and 82% on data

from the earbud device. A general critic to this work is that

their proposed model architecture maybe overly

complicated.

Mahmud et al. [97] proposed a self-attention model that

utilizes different types of attention mechanisms to generate

higher dimensional feature representation. The authors

evaluate on four publicly available HAR datasets:

PAMAP2 [94], Opportunity [98], Skoda [99], and USC-

HAD [12]. The sensor attention maps can capture the

importance of sensors modalities and location in predicting

the activity classes. The authors adopted the self-attention

architecture from the Neural Machine Translation (NMT)

task [100] into the HAR problem and proposed a model

incorporating self-attention with sensor and temporal

attention.

The authors proposed that the data samples are equiv-

alent to words and the time windows are analogous to

sentences. They introduced the first attention layer on the

raw input. Secondly, the authors adopted the self-attention

and positional encoding from the transformer architecture

into the HAR problem in order to capture the spatio-tem-

poral dependencies of sensor signals and their modalities.

After a number of self-attention blocks, the authors added

another layer of attention to learn the global attention from
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the context. Finally, a fully connected layer was placed to

classify the activity. The proposed model achieved

remarkable performance enhancement over the existing

state-of-the-art models on both benchmark test users and

Leave-one-user-out evaluation. The authors also observed

that the sensor attention maps was able to focus on the

impact of the sensors modality and placement in predicting

the various activity classes.

Tao et al. [101] proposed an attention-based model for

HAR using multiple IMUs worn at various body locations.

A feature extraction module extracts the most discrimi-

nating features from every sensor with CNNs. An atten-

tion-based fusion method learns the sensors importance at

various body locations and generates an attention-based

feature representation. A feature extraction module learns

the inter-sensor correlations that are connected to a clas-

sifier predicting classes of activities. The proposed method

was evaluated using 5 public datasets: Daily [102], Skoda

[103], PAMAP2 [94], Sensors [67], DaphNet [104]) and

outperformed the state-of-the-art approaches on various

activity categories.

Li and Wang [105] proposed a deep learning method

that is based on residual blocks and bi-directional LSTM

(BiLSTM). The model extracts spatial features of multi-

dimensional signals from IMUs using the residual block.

The model then gets the forward and backward depen-

dencies of the features sequence using BiLSTM. The

resulting features were input to a Softmax layer to perform

the HAR task. The optimal parameters of the model were

acquired experimentally. A new dataset was proposed

containing six activities: sitting, standing, walking, run-

ning, going upstairs, going downstairs. The proposed

model was evaluated on the newly proposed dataset and

two other public datasets namely WISDM [106] and

PAMAP2 [94]. The accuracies achieved are 96:95%,

97:32% and 97:15% on the newly proposed dataset,

WISDM and PAMAP2, respectively.

In [107], the authors proposed a graph neural network

(GNN) that is end-to-end. This system captures the sample

information with an efficient way and also captures the

relation with the other samples as an undirected graph

form. This is probably the first contribution where time

series are represented as a graph-based structural repre-

sentation aiming at HAR utilizing sensor data. The pro-

posed approach was experimented on six publicly available

datasets. The proposed method achieves for all the datasets

approximately 100% recognition accuracy. The GNN

classification was done at two steps. First, the node clas-

sification was done for each node v 2 V of G that is labeled

as yv to predict the labels of every node v by calculating an

embedding vector hv where yv ¼ f ðhvÞ and f is a differen-

tiable function for approximation. f was utilized in order to

make mapping for the similarity between the nodes in an

embedding dimension with the real graph nodes that are

existing in the real graph. In the embedding dimension,

some information was saved in a compressed approach

withing hv. Second, the graph structure is considered as

well for the graph classification beside using the node

information.

3.6 Input tensor structure

In the analysis of inertial motion data, a diverse set of

tensor structures have been used as inputs to the learning

architectures (whether classical or variants of deep neural

networks). The input tensor structure essentially depends

on several factors, notably, the number of IMU sensors to

be used for analysis, the number of axes of the sen-

sor(s) used, whether vectorization (concatenating into a

single vector) is used, whether raw sensor data or some sort

of extracted features are used, etc.

For example, one may use only the accelerometer data

in one dimension (or take the magnitude of several direc-

tions into one resultant vector). In this case 1D tensors are

used. It may be the case of taking the three axes of an

accelerometer and concatenate them together into a single

vector (vectorization), making also for a 1D input tensor.

One may take the three axes of the accelerometer making

each in a separate channel, making 2D tensor input, or

making them in one channel, however, stacked vertically,

making again a 2D tensor. One may use several sensors:

accelerometer, gyroscope angular velocity, and magne-

tometer. Each has three axes that can be stacked vertically

in a single channel. Thus, having three channels, each is a

2D array of three axial readings, so in this case, we have

3D input tensor. So, in conclusion the input tensor structure

depends on the particular work and the authors’ choice.

An example of such variations can be found in the work

of Mubarak et. al. [90], where the authors used six 1D

channels: accelerometer-x, accelerometer-y, accelerometer-

z, gyroscope-x, gyroscope-y, and gyroscope-z. Each of

these is a 1D timeseries, so the whole tensor can be con-

sidered a 2D tensor input. Similar strategy was applied in

the work of Abeer et. al. [32]. In [83] the authors use

hidden Markov models (HMMs) to model inertial motion

data. For each axis of each sensor a dedicated HMM is used

to model the dynamics of motion along this axis. So, the

input to each HMM is a univariate timeseries motion data,

in other words, it is a 1D tensor. On the other hand, Madcor

et. al. [18] have used two sensors, the accelerometer and

gyroscope, each sampled in three axes. The timeseries of

the six axes are, after some preprocessing, concatenated

into one big vector (vectorization) to be input to the

learning architecture. So, here the input is a 1D tensor.
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3.7 Transformers

In this subsection, we survey the use of the transformer

model in Human Activity Recognition from IMUs time

series data. The transformer model is a deep learning NN

model that was developed primarily for the NLP and

computer vision tasks.

In [108], the authors proposed a one-patch lightweight

transformer that combines RNNs and CNNs advantages. In

addition, the authors proposed TransFed that considers

more the privacy concerns. TransFed is a federated learn-

ing classifier that utilized the proposed lightweight trans-

former. The authors designed a test framework to acquire a

new HAR dataset gathered from 5 subjects, and then uti-

lized the novel dataset in order to assess the performance of

the HAR classifier in the two settings of federated and

centralized environments. In addition, the authors used a

public dataset to assess the performance of the HAR

classifier in centralized environment for comparison with

other HAR classifiers. The results showed that the pro-

posed approach outperformed the state-of-the-art HAR

classifiers which are based on CNNs and RNNs and in the

same time was more efficient computational-wise. Table 6

presents the hyper-parameters adopted during the training

phase.

Table 7 presents a comparison of 2 main features

between the proposed transformers in [108] with the RNNs

and CNNs. The RNN models have no parallelization dur-

ing training due to the sequential nature, thus the model is

slow and computationally expensive. The CNN models can

have parallel computation, however, computationally

extensive due to the convolution function. The proposed

transformer approach removes the recurrence and convo-

lution. That are replaced with a self-attention approach to

perform input/output dependencies. The method relies

completely on an attention mechanism to calculate input/

output representations. Moreover, the transformers allow

for computations parallelization. Also, RNNs and CNNs

utilize a huge number of parameters (hundreds of thou-

sands or more), while the proposed transformer in [108]

has only 14,697 parameters. In addition, the proposed

transformer utilizes a single patch not multiple-patches,

thus, it is computationally efficient.

Table 8 presents the comparison of the proposed trans-

former in [108] with state-of-the-art approaches. The pro-

posed approaches achieved a big enhancement in accuracy:

(1) trained and tested on the proposed new dataset (labelled

with b) and (2) the WISDM dataset (labelled with a). The

proposed approach has an accuracy of 98.74% (federated

setting) and 99.14% (centralized setting) on the newly

gathered dataset. The proposed approach has an overall

accuracy of 98.89% on the WISDM dataset (centralized

setting).

In [112], the authors proposed Human Activity Recog-

nition Transformer (HART) a transformer framework

based on sensors adapted to the IMUs inside the mobile

devices. The results on HAR activities on many public

datasets revealed that HART has less Floating point

Operations Per Second (FLOPS) and fewer parameters

achieving better results than the state-of-the-art methods. In

addition, the authors provided performance assessments on

various architectures in heterogeneous environments. The

proposed models can generalize better either on various

sensor devices or on-body locations.

Table 9 shows the F-score for various models on four

datasets: RealWorld, HHAR, MotionSense, and SHL.

Moreover, the authors combine five datasets to form the

largest one with biggest diversity for assessment. The

combination had thirteen different activities predicting data

with high-class imbalance from various devices and

locations.

For the proposed configuration with MobileViT and

MobileHART, 2 network settings were developed: extra

small (XS) and extra extra small (XXS). The XS and XXS

are differently characterized by the filters number, the

expansion factors leading to filter growth after every MV2

layer, and the MobileViT / MobileHART blocks embed-

ding size. The layers number and attention heads are the

same in the 2 network settings.

Table 6 Hyper-parameters of each subject for federated learning

[108]

Hyper-parameter Value

Learning rate 0.01

Number of epochs 100

Batch size 30

Weight decay 0.001

Transformer layers 2

Multi-attention heads 5

Input shape 140 � 9

Table 7 Comparison of the transformer method with the RNNs and

CNNs methods based on the computational costs [108]

Method Parallelization Computationally expensive

RNNs No Yes

CNNs Yes Yes

Transformers Yes No
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In [116], the authors proposed a self-attention Trans-

former model for ADLs classification. The authors com-

pared the proposed method with a recurrent Long-Short

Term Memory (LSTM) model. The proposed approach is a

two-level hierarchical model where atomic activities are

detected in the first step then in the second step the prob-

ability scores are calculated and used by the Transformer-

based to classify 7 more complex ADLs. The experiments

showed that the Transformer model was on bar with and

sometimes outperforms LSTM in the subject-dependent

setting (73.36% and 69.09%) only depending on the

attention-approach to present global dependencies between

input and output without using any recurrence. The pro-

posed model was evaluated on 2 different segment lengths

proving its effectiveness to learn long-range dependencies

of actions of short lengths occurring in complex activities.

In [117], the authors presented a Two-stream Convolu-

tion Augmented Human Activity Transformer (THAT)

model. The proposed approach utilized a two-stream

architecture to extract both time-over-channel and channel-

over-time features, then use the augmented multi-scale

convolution transformer to extract the range-based pat-

terns. Results on four evaluation datasets showed that the

proposed approach is more effective and efficient com-

pared to the state-of-the-art models. Table 10 presents the

THAT model recognition accuracy in comparison with five

state-of-the-arts models on four evaluation datasets.

In [121] the transformer model was utilized for Human

Activity Recognition from time-series signals. The self-

attention approach in the transformer model present the

individual dependencies between time-series values. The

attention mechanism has a comparable performance to the

state-of-the-art CNN-LSTM (e.g., [122]). The transformer

model was evaluated on the KU-HAR dataset spanning a

wide range of activities [123] achieving an average

recognition accuracy of 99:2% compared to 89:67% of the

Random Forest with FFT [123].

4 Confined versus streamed actions

Most of the work done in HAR target offline applications

and hence, focusing on recognizing confined actions, that

is, the timeseries sample is assumed to represent exclu-

sively one action/activity of interest. A line of research

though has been targeting online real-time applications,

and hence, focusing on recognizing a continuous stream of

actions in real-time. Most of this work, though, use vision-

based models [124], in which actions in a video stream are

detected and recognized in both offline and online modes

[125]. In other approaches, data are collected from dis-

tributed ambient sensors such as microphones, cameras,

and motion sensors that are attached to fixed locations in

the surrounding environment (e.g., walls, cupboards doors,

microwave ovens, and water taps). Examples of these

system include the Aruba and Tulum datasets [126]. These

are created within the CASAS smart-home project [127].

Studies on these datasets are done by Yala et al. [128].

Table 8 Comparison of the

transformer method with state-

of-the-art approaches for HAR

classification [108]

Scheme Centralized or federated Number of activities Accuracy (%)

[109]a Federated 6 89.00

[110]a Centralized 6 97.63

[111]a Centralized 6 96.70

Proposeda Centralized 6 98.89

Proposedb Federated 15 98.74

Proposedb Centralized 15 99.14

Table 9 The F-scores on five

datasets [112]
Architecture UCI MotionSense HHAR RealWorld SHL Combined

CNN [110] 94.53 96.91 96.99 91.71 87.08 86.87

CNN-LSTM [113] 92.79 97.80 96.97 92.33 88.92 88.03

ViT [114] 93.66 98.09 97.39 94.57 93.11 93.52

HART [112] 94.49 98.13 98.31 95.49 94.39 94.59

HARTOneMSA [112] 94.37 98.29 98.28 95.74 94.88 94.07

MobileViT (XS) [115] 96.89 98.19 98.65 95.07 94.14 93.19

MobileHART (XS) [112] 97.20 98.49 98.72 95.81 94.86 94.24

MobileViT (XXS) [115] 96.55 98.42 98.30 93.72 91.46 91.07

MobileHART (XXS) [112] 97.67 98.32 98.19 94.32 92.60 91.91

The highest values are highlighted in bold
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These sensors, however, have many restrictions owing, in

particular, to their fixed nature, and user activities are not

detectable, let alone recognizable, if the user goes outside

the spatial area where these sensors are installed. Addi-

tionally, from the perspective of privacy, it is neither

acceptable nor convenient to monitor people continuously

using cameras in private rooms. And even for less private

places, monitoring is susceptible to security breaks.

For detecting activities in a continuous stream of inertial

motion signals from wearable devices, some segmentation

approaches such as activity-based windowing, time-based

windowing, and sensor-based windowing [128] have been

proposed. However, each one of them admits some kind of

drawback. In activity-based windowing, the activities are

in general not well distinguished resulting in largely

imprecise activity boundaries. In time-based widowing,

streaming data are divided into fixed-time intervals/win-

dows. However, it is faced with the problem of determining

the proper window length. If it is too small, the window

may contain insufficient information for decision making;

if it is too large information of multiple activities may be

included in the allotted window. Generally, this parameter

is problematic as it may differ according to the activity, the

gender of the subject performing the activity, the age of the

subject performing the activity, the sampling rate of the

IMU device, etc. So, smarter techniques should be used to

determine an adaptive window size, for example, detecting

the change in the stochastic properties of the signals, as

generally is done in Markov regime switching-based

methods. In sensor-based windowing, each window con-

tains the same number of sensor events [128]. A major

drawback of this method is that the window may contain

sensor events that are widely separated in time, and it may

contain sensor events of more than one subject as in the

Tulum dataset.

One recent work that addresses the continuous recog-

nition of streaming of actions is done by Ashry et al. [129].

They process inertial motion signals streamed from IMU

sensors on-board a smartwatch. They collect their own

dataset, called ‘‘CHAR-SW’’, which consists of different

streams of activities of daily living, see Fig. 18a. See

Table 15 for a full description of the dataset. They used

cascading bidirectional long short-term memory (Bi-

LSTM) for their analysis. Bi-LSTM has better and more

stable performance than the uni-directional LSTM as the

former can perform smoothing as at any point in time the

past and future motion samples are available for the current

prediction. From another perspective this architecture may

not be feasible for real-time systems where only past

samples (and possibly a small window of future samples)

can only be available. In this work the input to the Bi-

LSTM is not the raw timeseries data, however, it is a

descriptor which composed of a continuous stream of the

following extracted windowed features: autocorrelation,

median, entropy, and instantaneous frequency. So their

approach is a mixture of classical feature engineering, as

manifested by the handcrafted descriptor of the input

timeseries, and deep automatic feature extraction, as

manifested by the Bi-LSTM which automatically captures

the sequential dependency of the streaming actions. So, the

technique can be viewed as converting the original time-

series into a coarser more abstract timeseries. The system

architecture is shown in Fig. 18b. The evaluation of the

system showed that it can recognize activities in (almost)

real-time with an accuracy up to 91%. Figure 19 shows a

framework for gait-based person identification [20].

Khannouz and Glatard [130] proposed data stream

classifiers on the HAR use case. The authors measured the

classification accuracy and resource consumption (in terms

of runtime, memory, and power) of five stream classifiers

on two real human activity datasets [13, 38] and three

synthetic datasets. The results showed that the Hoeffding

Tree, the Mondrian forest, and the Naive Bayes classifiers

were overall better than the Feedforward Neural Network

and the Micro Cluster Nearest Neighbor classifiers on four

datasets including the real ones. The three best classifiers

overall performed much worse than an offline classifier on

the real datasets. The Hoeffding Tree and the Mondrian

forest are the most memory draining with longest runtime

but no difference in the power consumption between

classifiers was reported. The stream learning for HAR on

connected devices had two main challenges: high memory

consumption and low F1 scores.

Krishnan and Cook [131] proposed a sliding window

technique for HAR in an online streaming behavior which

means classifying activities whenever new sensor events

came in. Since different activities can be best classified by

different window lengths of sensor events, the authors

incorporated the time decay and mutual information-based

weighting of sensor events within a sensor window. More

contextual information like the previous activity and the

previous window activity were also added to the feature

characterizing a sensor window. The experiments

Table 10 The THAT model recognition accuracy in comparison with

five state-of-the-arts models on four evaluation datasets [117]

Methods Office Activity Meeting Activity ? meeting

S-RF [118] 75.3 80 84.7 82.6

S-HMM [119] 79.7 75 83.4 80.5

LSTM [118] 91.4 89.7 90.6 90.1

CNN [118] 96.4 94.3 96.2 95.4

ABLSTM [120] 97.1 95.6 96.8 95.9

THAT [117] 98.2 98.4 99.0 98.6
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evaluating these methods on real-world datasets concluded

that combining mutual information weighting of sensor

events and the past contextual information into the feature

leads to the best performing streaming activity recognition.

Abdallah et al. [132] proposed a dynamic human

activity recognition framework with growing data streams.

This framework was called STAR standing for STream

learning for mobile Activity Recognition. This framework

comprised of incremental and active learning methods for

real-time recognition and adaptation in streaming situa-

tions. While the data stream grows, the authors refine,

improve, and personalize the model to handle the drift in

the given data stream. To detect the concurrent activities,

the authors applied an online clustering for each data

chunk. The prediction and adaptation methods were

deployed on each cluster. The experimental results using

three real activity datasets, OPPORTUNITY [98], WISDM

[106], Smart Phone Accelerometer Data (SPAD) [133],

showed that the proposed approach enhanced the perfor-

mance of the activity recognition specifically across dif-

ferent subjects.

Abdallah et al. [134] proposed and evaluated a method

for concept evolution (e.g., new action or activity) that was

applied to emerging data streams. This method continu-

ously screens the streaming data movement in order to

detect any evolving updates. This method was able to

detect the arrival of any new concepts either they were

normal or abnormal. This approach has also applied con-

tinuous and active learning to adapt with the observed

concepts in real-time. The authors evaluated the proposed

approach on the HAR datasets OPPORTUNITY [135] and

WISDM [106] as benchmarks for the emerging data

streaming application. The proposed approach proved its

Fig. 18 Online analysis of a streaming sequence of actions using IMU sensory data from a wearable device [129]
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effectiveness on these datasets in observing new concepts

and adapted continuously with low computational cost.

Yala et al. [136] proposed an approach of HAR using

online sensor data. The authors presented four techniques

for extracting features from sensor events sequence. They

proposed a sensor window approach to perform HAR

online by recognizing activities when new sensor event

occurs. As different activities can be better identified by

various window lengths, the authors proposed a mutual

information-based weighting of sensor events within a

window. As some activities do not necessitate many

movements, the authors proposed a ‘‘last-state’’ of sensor

feature set within a window to identify activities. These

techniques are evaluated on first 6 weeks of Aruba dataset

and on 3 months of Tulum dataset [126]. These methods

showed an enhancement in classification accuracy over the

baseline approach when removing events with missing

labels. In the baseline case, the authors construct a feature

vector with fixed dimension that contains the first and last

sensor events time, the window duration, and the different

sensor events count within the window.

Zhang and Ramachandran [137] adopted an online

method called Very Fast Decision Tree (VFDT) to simulate

the real HAR scenario. The two main contributions are (1)

the authors trained the model online using the data samples

only once for training and (2) the model can be updated to

recognize new activities after building the VFDT by adding

small number of labeled samples. The proposed method

achieves an average accuracy of 85:9% for all subjects and

the accuracy rates of single subject are between 60:5% and

99:3%. The average accuracy of learning new activity from

another data is 84% and the accuracy rate of a single

subject reached up to 100%.

Kwon et al. [138] proposed IMUTube integrating

computer vision and signal processing techniques to con-

vert human activity videos into virtual IMU data streams.

These virtual IMU data streams are equivalent to

accelerometer signals collected from various human body

locations. The virtually generated IMU data can enhance

the performance of different models on public HAR data-

sets. This work represents an integrated system that utilizes

computer vision and signal processing for sensor-based on-

body HAR that opens the door to further enhance the

recognition accuracy based on a large dataset.

5 Transfer learning

Transfer learning refers to the learning paradigm where

what has been learned in one setting and/or task is

exploited to initiate and/or improve generalization in

another setting and/or task [139]. It is the improvement of

learning in a new task through the transfer of knowledge

from a related task that has already been learned [140].

Transfer learning has been boosted by the recent revolution

in deep learning, though it is not particularized to the latter.

Deep neural computing has revolutionized representation

learning which has made transfer learning readily

available.

5.1 Fine tuning

The key motivation, especially in the context of deep

learning, is the fact that most models which solve complex

problems need much data, and getting vast amounts of

labeled data for supervised models can be really difficult,

considering the time and effort it takes to label data points.

Hence, foundational models (i.e., models that have already

been learned on massive amounts of data in capable entities

such as big corporations) can be downloaded and fine-tuned

for specific tasks with only limited amount of data with

noticeable degree of success.

A rather recent survey on the progress of transfer

learning for classification, regression, and clustering

problems can be found in [141]. Lisa Torrey and Jude

Shavlik in their book [140] described three possible

Fig. 19 Framework for gait-based person identification [20]
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advantages to consider when employing transfer learning

on a target task using a model pre-trained on a source task.

These benefits are illustrated in Fig. 20, where two per-

formance curves are shown: the green curve is the training

performance using trained-from-scratch (end-to-end train-

ing) model on the target task whereas the red curve shows

the performance of fine-tuning pre-trained source model to

work on the target task.

1. Higher start The target skill starts higher than it

otherwise would be. In some cases this can be

considered as a satisfactory performance where fine-

tuning may be unnecessary anymore.

2. Higher slope The rate of improvement of the target

task during training (fine-tuning) of the source model is

steeper than it otherwise would be. This means the

convergence rate is higher.

3. Higher asymptote The convergence of the pretrained

source model on the target task is better than it

otherwise would be. This means it converges to a

higher performance point.

On a more foundational level, the work done in [142]

empirically investigates and quantifies the generality vs.

specificity of neurons in each layer of a deep CNN. Their

results indicate that transferability is negatively affected by

two factors: (1) the specialization of higher layer neurons

to their original source task at the expense of performance

on the target task and (2) optimization difficulties related to

splitting networks between co-adapted neurons (different

hidden neurons having correlated behavior). They did an

example network trained on ImageNet and demonstrated

that either of these two issues may dominate, depending on

whether the features are transferred from the bottom,

middle, or top of the network. It is also derived, rather

naturally, that transferability of features decreases as the

distance between the base/source task and target task

increases, but in any case transferability is better than

random initialization (training-from-scratch). A final result

is that initializing a network with transferred features from

almost any level of layers can produce a boost to gener-

alization, though depending on the layer the degree of

effective transferability varies. Most of the research on

transfer learning have been exclusively focused on visual

data. Some recent work are directed towards timeseries

specially inertial motion data for the purposes of activity

recognition and gait analysis.

In the following, we survey some of the transfer learning

work on timeseries data. Through the above-mentioned

discussion we have already talked about several research

works that in principle represent effective applications of

transfer learning in the context of timeseries analysis. For

example, Abdu-Aguye et al. [90] developed an approach to

transfer learning for fixed and variable-length activity

recognition inertial motion timeseries data. They do an end-

to-end training using a CNN, see Fig. 17, then the convo-

lutional filters are used as an unsupervised feature extractor.

This portion of the network is then used to generate features

for any dataset and activities; where such features can

subsequently be fed to any classifier (in the paper, the

classifier is a classical feedforward neural network).

Fig. 20 Different ways of

learning improvement through

transfer learning
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The authors used a mini-batch of size 128 for all the

pooling parameters evaluations. The learning-rate number

of training epochs in both self-testing and transfer learning

was 35 epochs. The training and testing phases were

repeated 15 times with different data samples were used

each time for training and testing. In self-testing and

transfer learning; training with 75% of data and testing

with 25% of data.

The authors validated their approach on five different

heterogeneous activity datasets, and a snapshot of their

results is shown in Table 3. The classification accuracies

obtained are shown together with their standard errors.

(i.e., accuracy� std:err). The baseline are the diagonal

elements indicating the self-testing scenarios (train and test

on the same dataset). Whereas the off-diagonals show the

transfer learning results (cross-testing): train on a dataset,

fine-tune and test on another. Relative to the baseline

diagonal accuracies, transfer learning shows very promis-

ing results, specially considering that the given datasets are

very diverse regarding the devices used to collect the

streaming data, the sampling rates, the subjects performing

the activities, the locations of the sensors on the subject’s

body, etc. The results also indicate the stability and

robustness of the transfer learning scenarios where the

standard errors of the results are generally low, remaining

below 3% in all the scenarios considered, and implying that

transfer learning across the timeseries activity datasets is

effective and comparable to training from scratch.

It can be observed that the HAD-AW and REALDISP

datasets consistently have the best transfer learning (cross-

testing) results. This can be attributed to the fact that they

consist of a large and diverse range of activities, causing

the convolutional filters to be relatively more discrimina-

tive than when trained on other smaller datasets. So, wider

range of activities may play more crucial role in the

effectiveness of transfer learning than having many and

longer samples of a smaller set of activities. This conclu-

sion is as well supported by observing that the HAPT

dataset, having the smallest number of activities shows the

poorest transfer learning results in all scenarios. This makes

a stronger case for the use of class-diverse datasets as

source datasets for transfer learning.

Now we look at the second important benefit of transfer

learning, namely, computational feasibility. As transfer

learning should save huge amount of computational

resources as the target task requires just fine-tuning rather

than training-from-scratch. The average times required for

self-testing and transfer learning scenarios are shown in

Table 4. The self-training scenarios take much longer

times, due to the multitude of operations inherent in

training the feature extraction part, namely the convolu-

tional layers.

In transfer learning, the training is done on some dataset,

then the classifier is fine-tuned on some other dataset. In

this paper specifically, the authors train a CNN and used its

convolutional filters as a feature extractor then trained a

feedforward neural network classifier on the extracted

features for other datasets. The transfer learning (cross-

testing) scenarios take significantly less time (only for fine-

tuning), yielding a 24.17� speedup compared to the

diagonal baseline (end-to-end training) in the worst case

(i.e., on the Daily Sports dataset) and a 52.31� speedup in

the best case (i.e., on the REALDISP dataset). We can as

well observe that the timings for the transfer-learning

scenarios are fairly steady, regardless of the source dataset.

This implies that the transfer learning testing times are

purely dependent on the size of the target dataset.

The same authors have done another work in the same

direction [92], where instead of using CNN as a feature

extractor, they apply deep metric learning. Metric learning

is based on representation learning of the input samples

inside some embedding Euclidean space, such that, similar

inputs (e.g., inertial timeseries from the same activity) are

mapped to proximal representations in the embedding

Euclidean space, and different inputs (e.g., inertial time-

series corresponding to different activities) are mapped to

faraway representation vectors in the embedding space. Of

course, the distance here is essentially the Euclidean dis-

tance. The ‘‘deep’’ qualifier in deep metric learning just

refers to the use of the deep learning technology to generate

such representations. The authors used a deep Triplet net-

work to generate fixed-length descriptors for inertial

timeseries samples for the purpose of activity classification.

The triplet network consists of 2 convolutional and 3

feed-forward layers. The authors involved between the

convolutional and feedforward layers a 1-D Spatial Pyra-

mid Pooling layer. Batch Normalization is used in between

successive feedforward layers. The triplet loss function has

a margin a parameter equals to 1. The triplet selection

strategy was set to be the Random Negative Triplet

Selection. The optimizer was the Stochastic Gradient

Descent with a Nesterov Momentum value of 0.90. A 128-

feature embedding vector was used as a feature vector for

classification. For training, 75% of the selected datasets

were utilized. After training, the training samples embed-

dings were used as exemplars for a 1-Nearest Neighbor

classifier. This classifier is then used to obtain the

embeddings classification accuracy of the unseen 25% of

the dataset. Experimentation is carried out on the same five

datasets as in Tables 3 and 4. Activity classification

accuracies reached up to about 96% in the self-testing

scenarios and up to about 91% in cross-testing without

retraining.

Similar approach was taken up by Khaertdinov et al.

[93] where they use deep metric learning equipped with
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attention for HAR. Their goal is to develop a robust

wearable-based HAR system that overcomes two difficul-

ties: (1) inter-class similarities (different activities have

similar inertial motion patterns) and (2) subject hetero-

geneity, where different subjects perform the same activity

quite differently. The hyperparameter tuning was done on

the datasets validation sections. The models parameters

were optimized by the Stochastic Gradient Descent with

Adaptive Moment Estimation (ADAM) using the default

parameters (� ¼ 10�8, b1 ¼ 0:9, b2 ¼ 0:999). The models

were trained for period of 100 epochs. The learning rate

was doubly decreased after every 10 epochs without per-

formance improvement. Training with Hierarchical Triplet

Loss (HTL) needs pre-training with the original triplet loss.

Thus, the best models on the validation sets were fine-tuned

using HTL for 10 extra epochs. For all models (including

the LSTM model trained with the original triplet loss), the

authors made of the LSTM hidden state vectors size equals

to 512. For all the triplet networks, the authors fixed the

mini-batch size near to 128.

Hu et al. [143] did work aiming at re-purposing activity

instances collected in some activity domain for training a

classifier in some other activity domain. The authors call

these samples ‘‘pseudo training data’’ in the target domain.

Contrasted with the previous work, which is feature-based,

this kind of transfer learning is instance-based. They

achieve their goal by developing an algorithm that utilizes

pre-existing web data describing the two activity sets.

Using such descriptions a similarity framework is built

within which activity samples in the source domain are

mapped to activity samples in the target domain with some

confidence value.

The authors are omitting sequential information in the

dataset, Thus, the evaluation criteria is just to calculate the

accuracy on the test dataset; that is the correctly predicted

activities over the total activities number in all time peri-

ods. Using the activity names (e.g., preparing breakfast,

cleaning, etc.) as queries submitted to Google and

retrieving the top K results; K is a parameter tuned to

clarify the relationship between the algorithm accuracy and

the Web pages number retrieved for each query. Using that

approach the authors managed to get significant perfor-

mance increase in activity recognition in the target domain

as compared to the baseline case where no knowledge

transfer is done. In experimentation over real world data-

sets, their algorithm achieved about 60% accuracy with no

or very few training data in the target domain.

Khan et al. [144] proposed an instance-based transfer

learning framework. The work is quite motivated as they

emphasize the need for transfer learning. Their justification

can be articulated in the following points:

1. HAR systems are typically based on a limited number

of activities that are present in the training and testing

splits of the underlying dataset. However, in practical

scenarios these limited set of activities need to be

extended (concept drift).

2. In practical scenarios the data distributions can be

radically different from the distributions inferred

during the training phase of the HAR system (data

drift).

3. There is shortage in labeled data samples, and abun-

dance of unlabeled samples. Transfer learning can help

in that direction of self-supervised learning.

4. Training and testing environment and setup are typi-

cally quite different from the corresponding

deployments.

Many more can be said about the challenges in inertial

motion-based HAR systems. Some detailed discussion is

given regarding the heterogeneities in HAR systems in

Sect. 1. See as well Fig. 20 and the associated discussion at

the beginning of Sect. 5 about the learning benefits gained

from transfer learning.

In the face of such challenges, Khan et al. [144] pro-

posed a framework, called TransAct, by augmenting the

Instance-based Transfer Boost algorithm. They apply their

method on three publicly available datasets: MHealth [95],

Daily and Sports Activities [57], and SBHAR [42] (de-

tailed description of these datasets can be found in

Table 15). The authors experimented with these datasets in

such a way to ascertain their transfer learning agenda. They

do cross-testing spanning different environments, and

accommodating new sets of activities and changes in the

data distribution by using a combination of clustering with

anomaly detection.

The accelerometer data was segmented by sliding win-

dow with frames of 128 samples with 50% overlap. The

frame length was the same across all the datasets. The

authors removed noise using low-pass filter. Using FFT on

the accelerometer data, most of the high-energy frequency

components were lying in-between 0 and 20 Hz. The

authors extracted both time domain and frequency domain

features. Time domain features (e.g., mean, standard

deviation, etc.) and frequency domain features (e.g.,

energy, entropy, etc.) are calculated using FFT on each

frame. The experimental results show that the TransAct

model achieves on average 81% activity detection

accuracy.

Khan et al. [145] proposed a framework, called UnTran

that aims at bridging the gap between a learned HAR

model in some source domain and its adaptability or

deployment in a different activity target domain (device

heterogeneities, sensing biasness, inherent variabilities in

subjects’ behaviors and actuations). UnTran is based on
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transferring two layers of an autoencoder pretrained on

samples from the source domain to the target domain,

where such two layers are used to generate common feature

space for the two domains. Specifically, the authors trained

a Deep Sparse Autoencoder (DSAE) on pre-extracted

feature vectors and subsequently use a part of the pre-

trained encoder as a generic feature extractor. Three SVM

classifiers are trained across three different configurations:

(1) training on features extracted by the DSAE over the

source domain samples, (2) training on features extracted

from DSAE over the target samples, and finally, (3)

training on low-level features extracted from the target

samples. The decisions from the three classifiers are then

fused to induce a final decision. The authors validated their

work on three datasets: Opportunity [146], Daily and

Sports Activities [57], and WISDM Actitracker [106]

(detailed description of these datasets can be found in

tab 15).

The authors segmented the accelerometer data into

frames of 128 samples with 50% overlap between frames.

Low-pass median filter was applied to cancel noise. Sta-

tistical time-domain and frequency-domain features were

extracted. These features were fed to the classifier in bat-

ches each with a batch size of 32. The frame length and

batch size were the same across all datasets and experi-

ments. Transfer learning baseline methods were imple-

mented; Transfer Component Analysis (TCA) [147] in

Python and Joint Distribution Adaptation (JDA) [148] in

MATLAB. The proposed Deep Sparse Autoencoder

(DSAE) is comprised of 4 layers. A softmax layer was used

to encode the classification labels in the source domain.

The first two layers of the source tuned network were used

to build the proposed classifier.

The experiments show that UnTran achieves about 75%
F1-score in recognizing unseen new activities using only

10% percent of the target samples. The system also

maintains an F1-score of %98 for recognition of seen

activities in presence of only 2–3% of labeled activity

samples.

Motivated by almost the same reasons, Chikhaoui et al.

[149] explored the development of a transfer learning

framework based on CNN. Learned feature representations

in one activity dataset are used to analyze activities in

another dataset that is characterized by different data col-

lection hardware and software setups, and even changes in

the sensing modalities. A CNN classifier is pretrained and

the learned weights are transferred to a new similarly

structured network in the target domain. The latter network

is fine-tuned using samples from the target dataset without

making any changes or updates to the transferred weights.

The authors validated their work over three benchmark

datasets: MobiAct [150], RealWorld Human Activity

Recognition (RWHAR) [151], and Mobile Sensing

Heterogeneities for Activity Recognition [152]. Hence,

they tested the effectiveness of their approach across dif-

ferent users, device placements, and sensors modalities.

The accelerometer data was segmented into non-over-

lapping 4 s segments. The authors trained the source

model using 100 epochs and the target models were fine-

tuned with 50 epochs. The CNN models were implemented

using the Tensorflow library. The authors obtained F1-

scores up to about 0.94 in some of the evaluated scenarios.

Another interesting work with a different spirit is that

done by Abdu-Aguye et al. [25]; we briefly discussed this

work above. The idea can be conceptualized as generating

‘‘virtual IMU sensors’’. Given inertial motion data

streamed from a real IMU sensor mounted on some source

body location, these timeseries are then mapped to their

correspondence on a target body location. So, these latter

samples can be considered as streaming inertial motion

data from a virtual IMU sensor mounted on the target body

location. Independent of the performed activity the authors

developed a learning architecture that maps an inertial

sample from the source body location to the target body

location. It is emphasized that this is done regardless of the

activity, it is meant to capture how dynamics in general are

transferred and correlated across different body locations.

In order to empirically test their work they developed a

rigorous evaluation strategy as shown in Fig. 21. Given a

source body location and a target body location the dataset

inertial samples are divided into 3 groups: 50%, 25%, and

25%. The mapping between the source and target locations

is called ‘‘roaming’’. Three sets of evaluations are per-

formed. The first kind of evaluation is aimed at establishing

a baseline as a lower bound for the predictive performance:

a classifier is trained on 25% of the target samples (1B in

Fig. 21), then testing on 25% of the source samples (0C)

using this classifier. The second evaluation is based on

training a roaming model on the 50% source and target

samples (denoted as 0A and 1A Fig. 21), the input to the

roaming model is a source sample and the output is a target

sample. Then, roam 25% of the source samples (0C) using

the trained model. The classifier developed in the first

evaluation is then used to evaluate the roamed samples,

that is, the roamed samples form the testing data. This

evaluation helps deriving the performance gains obtained

from using the roaming model. The third and final set of

evaluations is done to obtain an upper bound of the pre-

dictive performance, where the trained classifier, from the

first set of evaluations, is used to evaluate genuine target

samples (1C). As designed the predictive performance of

the roaming model (the second set of experiments) lies

between the lower and upper bounds obtained by the first

and third sets of evaluations. The authors used the

REALDISP [13] data set for their empirical study, where

multiple sensors stream from different body locations at the
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same time; see Table 15. A recurrent deep model, based on

Bi-directional LSTM is used for training the roaming map,

see Fig. 8.

Table 11 shows a sample of the results obtained through

roaming in terms of average accuracy and F1-score of

activity recognition. The left column shows the activities

categorized into four groups: activities involving the whole

body (z), trunk activities (k), the upper extremities (y), and

the lower extremities (^). The source location is the right

lower arm (RLA) and two target locations: the right upper

arm (RUA) and back (BACK). Except for activities

involving the lower extremities the RUA upper bound (the

UB column) shows good F1-metrics. This can be trivially

explained by the fact that such activities have more

dynamics captured by the RUA as compared to those

involving only the lower extremities. In addition, the lower

bounds (the LB column in the table) indicate that the upper

and lower parts of the arm generate similar dynamics; this

may be attributed to their proximity and connectedness.

The targeted proposed roaming (the ‘‘Proposed’’ column in

the table) then show significant improvement over the

lower bound indicating the effectiveness of the roaming

model. Turning into the back location we see the lower

bounds results are much worse. This means that the clas-

sifier is unable to detect the proper dynamics of the back

from the RLA. This emphasizes the need for transforma-

tion, ‘roaming’ using the authors’ terminology, of the

inertial motion signals of the RLA to the back before

making any useful inference. As shown in the table the

transformation is rather effective in many of the cases,

specially when comparing to the upper bounds.

5.2 Prompting

With the rise of pre-trained models, fine-tuning these

models to target domains is a crucial task. Thus, parameter

efficient transfer learning of large models is very important.

In [153], the authors proposed black-box visual prompting

(Black-VIP) that adapts the pre-trained models efficiently

without knowing the model architectures and parameters.

Black-VIP consists of two components; coordinator and

simultaneous perturbation stochastic approximation with

gradient correction (SPSA-GC). The coordinator designs

input-dependent image-shaped visual prompts that enhan-

ces the few-shot adapting on distribution and location shift.

SPSA-GC estimates efficiently the target model gradient to

update the coordinator. Experiments on 16 datasets showed

that BlackVIP allows robust adaptation to different

domains with no access to the pre-trained models param-

eters using lowest memory requirements. Such prompting

models can help in communicating with the feedback of a

virtual coach for human activity recognition and assess-

ment [154].

In [155], the authors proposed ‘‘inverse prompting’’ to

control better the generation of text. The main idea of

inverse prompting is using the generated text in order to

inversely predict the prompt that improves the relevance

between the prompt and the generated text. The authors

pre-trained a large-scale language model for a systematic

study using human evaluation on tasks of open-domain

poem generation and question answering. The results

showed that the proposed approach outperforms the base-

line models and the generation quality was near to the

human performance in some tasks.

In [156], the authors proposed a Prompt approach for

Text Generation (PTG) in a transferable setting. Initially,

PTG learns some source prompts for different source

generation tasks and then these prompts are transferred for

target generation tasks. The authors designed an adaptive

attention approach to calculate the target prompts that

includes task-level and instance-level information. For

each data instance, PTG learns a specific target prompt

attached to highly relevant source prompts. The results

showed that PTG achieved better results than fine-tuning

approaches. The authors released the proposed source

prompts as open source where researchers are able to reuse

in order to enhance new text generation tasks.

In [157], the authors presented Multitask Prompt Tuning

(MPT) that initially learns a single transferable prompt by

transferring knowledge from different task-specific source

prompts. The authors then learned multiplicative low rank

changes to this prompt to adapt efficiently to every

downstream target case. Results on 23 NLP datasets

showed that the proposed method outperforms the state-of-

Fig. 21 Data assignment for experimental and evaluation methodol-

ogy [25]
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the-art approaches including the full fine-tuning baseline

method in some tasks though tuning only 0.035% of task-

specific parameters.

6 Application domains

In this section we demonstrate some of the case studies for

which inertial motion sensors are effectively used for dif-

ferent kinds and tracks of human actions.

Table 11 F1-measures for

roaming experiments for right

lower arm (RLA) to right upper

arm (RUA) and back (BACK)

[25]

Source location RLA

Target location RUA BACK

Method LB Proposed UB LB Proposed UB

Average classification accuracy (%): 21.21 66.05 73.48 4.66 44.18 63.35

Walkingz 0.55 0.71 0.83 0.00 0.63 0.78

Joggingz 0.04 0.72 0.77 0.00 0.54 0.70

Runningz 0.02 0.70 0.79 0.01 0.63 0.85

Jump upz 0.28 0.52 0.59 0.02 0.38 0.40

Jump front and backz 0.36 0.56 0.64 0.16 0.41 0.68

Jump sidewaysz 0.11 0.41 0.50 0.11 0.44 0.65

Jump legs/arms open/closedz 0.21 0.86 0.92 0.04 0.35 0.54

Jump ropez 0.24 0.57 0.60 0.03 0.24 0.35

Rowingz 0.07 0.64 0.66 0.01 0.55 0.64

Elliptic bikez 0.00 0.71 0.63 0.00 0.46 0.56

Cyclingz 0.05 0.57 0.78 0.00 0.11 0.47

Trunk twist (arms out)k 0.41 0.83 0.85 0.02 0.55 0.59

Trunk Twist (elbows bent)k 0.00 0.94 0.94 0.04 0.51 0.63

Waist bent forwardk 0.16 0.56 0.75 0.01 0.69 0.92

Waist rotationk 0.02 0.65 0.76 0.05 0.45 0.77

Waist bends (reach foot w/ opposite hand)k 0.27 0.78 0.92 0.00 0.67 0.87

Reach heel backwardsk 0.46 0.52 0.67 0.20 0.29 0.56

Lateral bendk 0.14 0.51 0.54 0.11 0.42 0.62

Lateral bend arm upk 0.17 0.41 0.49 0.05 0.32 0.57

Repetitive forward stretchingk 0.15 0.68 0.79 0.00 0.63 0.90

Upper trunk and lower body opposite twistk 0.13 0.42 0.61 0.01 0.10 0.51

Arms lateral elevationy 0.12 0.70 0.59 0.00 0.10 0.23

Arms frontal elevationy 0.07 0.69 0.72 0.00 0.14 0.25

Frontal hand clapsy 0.38 0.68 0.78 0.00 0.25 0.40

Arms frontal crossingy 0.29 0.83 0.84 0.00 0.17 0.49

Shoulders high-amplitude rotationy 0.72 0.89 0.91 0.01 0.13 0.33

Shoulders low-amplitude rotationy 0.22 0.87 0.83 0.01 0.23 0.29

Arms inner rotationy 0.06 0.76 0.72 0.00 0.11 0.60

Knees (alternately) to breast^ 0.17 0.71 0.86 0.14 0.63 0.88

Heels (alternately) to backside^ 0.35 0.73 0.73 0.23 0.59 0.80

Knees bending (crouching)^ 0.31 0.31 0.35 0.24 0.32 0.60

Knees (alternately) bent forward^ 0.18 0.43 0.59 0.02 0.28 0.54

Rotation on knees^ 0.01 0.69 0.69 0.00 0.56 0.74
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6.1 Biometrics

Human biometrics are a set of measurements of bodily

characteristics that are to be used for authentication and/or

identification. The most common biometrics include: fin-

gerprints, facial, voice, iris, palm or finger vein patterns.

However, in our context the biometrics are based on the

execution pattern of an action or activity, through the use

of streaming IMU motion signals. Recognition of human

biometrics has been widely studied in the recent years due

to its significance and use in many applications such as

security and surveillance, speech analysis [158, 159], rec-

ommendation systems [160], and healthcare applications

[161].

The wide and varying types of biometrics dictate the use

of various kinds of data modalities streaming from differ-

ent kinds of sensors. The typical sensors used are the

visual, audio, and inertial motion data. Here, we naturally

focus on the latter, specially that its applicability is more

recent with the wide spread use of wearables with

embedded IMU units.

To the best of our knowledge IMU-based biometrics

systems have been exclusively directed towards three

characteristics: age, gender, and gait. The next subsection

is dedicated to gait analysis, and here we consider age and

gender. Mostafa et al. [19] proposed a method for gender

recognition from inertial data based on wavelet transform

(refer to Sect. 3.2 for details about feature extraction using

Fourier transforms and its variants). The motion data are

collected during walking activity (gait streaming data).

They co-collect data for that purpose, which is the EJUST-

GINR-1 [19, 20], which contain samples from smart-

watches in addition to specialized IMU units placed at 8

different parts of the human body; see Fig. 9. Random

forest and CNN are used for the binary classification: male/

female; with input features the wavelet transform of the 6-

axial timeseries: 3-axis accelerometer and 3-axis gyroscope

angular velocity. The authors studied which sensor loca-

tion(s) on the human body is(are) optimal in terms of

distinguishing males from females during the act of

walking. They found, rather expected, that sensors placed

on the legs and waist are best in recognizing the gender

during walking. They reached accuracy of about 97% using

the sensor placed on the left cube. The authors did exper-

iments as well with the OU-ISIR Gait dataset [33], how-

ever, the performance was rather modest about 75% (using

the CNN).

Using the OU-ISIR dataset [33] a competition for gen-

der recognition and age estimation was conducted [43]

based on IMU signals extracted during gait activity. Most

of the participated teams got relatively low accuracy in

gender classification. On the other hand, results on age

estimation were much better. The best results of this

competition are presented by Garofalo et al. [162], which

reached accuracy of about 76% for gender recognition and

a mean absolute error of about 5.39 for age regression by

using orientation independent AE-GDI representation

along with a CNN.

Riaz et al. [163] proposed a system for gender recog-

nition, age and height estimation based on IMU signals

streamed from on-body sensors during gait action. Age

estimation is formulated as a classification problem by

splitting the age into three ranges: (1) less than 40 years,

(2) between 40 and 50, and (3) older than 50 years. Height

estimation is formulated as a classification problem by

splitting the height into three ranges: (1) less than or equal

170 cm, (2) between 170 and 180, and (3) greater than or

equal 180 cm. The authors used random forest as a clas-

sifier with two kinds of validation strategy: tenfold cross

validation and the more difficult subject-wise cross-vali-

dation. They reached an accuracy about 93% for gender

recognition using the sensor on the chest, about 89% for

age classification using chest and lower back sensors, and

about 89% for height classification using the chest sensor.

Jain et al. [164] did gender recognition, from gait action,

using accelerometer and gyroscope signals streamed from

IMU sensors embedded onto a smartphone. The authors

used multi-level local pattern and local binary pattern as

feature extractors. The extracted features are then fed to an

SVM and aggregate bootstrapping (bagging). To evaluate

these models, 252 gait signals collected from 42 subjects

were used. They achieved an overall accuracy of about

77% using multi-level local pattern as the extracted fea-

tures along with bagging.

Mostafa et al. [32] proposed a system, called BioDeep,

for gender and age analysis. The author employ a simple,

yet effective as shown above in other works, feature

extraction technique which is based on the autocorrelation

function. This descriptor is then fed to two decoupled CNN

networks, one for gender recognition and the other for age

estimation. Age estimation here is formulated as a regres-

sion problem. As a baseline they also used random forest

justified by the fact that they test the effectivity of deep

neural networks. However, there is some confusion in the

paper as they claim to test the effectivity of deep learning,

rather, they test the effectivity of deep neural networks in

particular, as random forest is a deep learning strategy as

well [165]. The main contribution in the paper can be

considered as the extensive empirical studies they per-

formed on a varying list of datasets. To the best of our

knowledge, this might be the most comprehensive study

from that perspective. They perform self-testing as well as

cross-testing (transfer learning) across these datasets. The

proposed system architecture is shown in Fig. 13. The

authors validated their work using several datasets and
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different on-body sensors including: EJUST-GINR-1 (right

cube RC sensor), EJUST-GINR-1 (Waist sensor) [19, 20],

HuGaDB (Right Shin RS) [22], and GEDS (Tibialis ante-

rior Right TaR) [34].

Tables 12 and 13 show a sample of the results produced

in this paper both for gender recognition and age estima-

tion. The diagonal elements show the self-testing scenarios,

that is, train and test on the same dataset, which also play

the role of a baseline when considering the off-diagonal

elements which represent the cross-testing results, that is,

train on a dataset and testing on a completely different one.

The performance metric for gender recognition is the

overall accuracy, whereas it is the mean absolute error for

age estimation. The results indicate that the proposed

method seems very effective in both self-testing and cross-

testing as well, where the latter is more significant as it

represents a sort of transfer learning that can be used to

overcome the heterogeneity problem in inertial-based sys-

tems (see the discussion in Sect. 1 for the sources and

consequences of this problem). For gender recognition, the

results are transferable to within 1–2%; for age estimation

the results are transferable to within 2–3 times increase in

the mean absolute error. The authors claim that transfer

learning provided 20–30� speedup in the training time

compared to end-to-end training on the same dataset.

Riaz et al. [166] estimate the age based on the IMU

analysis of human walk. The authors recorded 6-dim

accelerations and angular velocities of 86 subjects when

they perform standard gait activities using IMUs mounted

on chest. The recorded signals were segmented into single

steps; for each step, a total of 50 spatio-spectral features

were computed from the 6 dimensional components. In

order to estimate the subject age, three ML classifiers were

trained: RFs, SVMs, and MLP. Two cross validation

techniques were utilized: tenfold and subject-wise cross-

validation. A random forest regressor trained and validated

on hybrid data achieved an average RMSE (root mean

squared error) of 3.32 years and a MAE (mean absolute

error) of 1.75 years with tenfold cross validation and

average RMSE of 8.22 years with subject-wise cross val-

idation. Since the subjects belong to two demographical

regions (Europe and South Asia), this gives broader

empirical confirmation that age can be estimated based on

human gait.

Khabir et al. [167] estimated gender and age from IMU-

based gait dataset that is part of the Osaka University-ISIR

Gait Database [43]. The authors showed that a SVM model

had the best accuracy for classifying gender while Decision

Trees had the highest variance score (R2 value) for age

prediction.

Rasnayaka et al. [168] studied the personal character-

istics collected from on-body IMU sensors and the sensor

location effect on the user’s privacy. By analyzing the

sensor locations with respect to privacy and service, the

authors recommended locations have maintained the

functionality (like the biometric authentication) while

reduced the privacy invasions. The authors collected multi-

stream dataset from 3 on-body IMU sensors consisting of 6

locations for 6 actions with different physical, personal,

and socio-economic characteristics from 53 subjects. An

opinion survey was conducted about the relative impor-

tance of each characteristic from 566 persons. Using these

datasets the authors showed that the gait data can tell much

personal information that may be considered a privacy

issue. The opinion survey gave a ranking of the physical

attributes based on the recognized importance. Using a

privacy vulnerability index, the sensors located in the front

pocket/wrist were more privacy invasive compared to the

back-pocket/bag sensors that were less privacy invasive

without a big loss of the functionality (e.g., the biometric

authentication).

6.1.1 Gait analysis

Gait is the manner of human walk, and it is a biometric

trait that is unique to each individual [169]. In the com-

putational domain, gait analysis has importance, particu-

larly, in person authentication and identification. Person

authentication is concerned with the problem of identifying

if a new gait instance belongs to a legitimate user or is an

imposter [170]. This is typically done by searching for the

new pattern in a list of patterns of the legitimate users

[171]. In contrast, for person identification/recognition, the

task is to classify a new gait instance to belong to one of a

set of predefined users [43]. The embedded inertial motion

sensors in the commodity wearable devices provide real-

time streaming of linear acceleration and angular velocity,

in addition to magnetometer readings, which together can

Table 12 Self- and cross-testing

results of gender recognition

(accuracy) [32]

Training dataset Testing dataset

EJUST-GINR-1(RC) HuGaDB(RS) GEDS(TaR) OU-ISIR(Waist)

EJUST-GINR-1(RC) 97.05% 98.13% 96.56% NA

HuGaDB(RS) 95.58% 99.37% 96.2% NA

GEDS(TaR) 95.9% 98.03% 97.47% NA

EJUST-GINR-1(Waist) NA NA NA 67.93%
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fully capture the motion dynamics of the owner’s motion,

or at least the motion dynamics of the body part (for

example, wrist) to which the device is attached. The main

advantage here is that such process occurs implicitly and

does not require the active participation of the human

subject [172–175]. This is in contrast to fingerprint

authentication where the person has to take an action for

authentication or even to face recognition which can be

easily fooled. Person identification using motion data

streaming from wearables turns out to be important in

applications, for example, when different people share the

same wearable device and it is desirable to identify who is

using the device at a given time while walking.

The work done in [20] tries to answer two questions

(though the answers seem obvious, but it is more of an

engineering verification): (1) what is(are) the body loca-

tion(s) that is(are) most effective for person identification

through streaming from an IMU device attached to such

part(s) and (2) if we have the freedom of mounting more

IMU devices to different body parts, then which combi-

nation is the most effective? The authors apply their work

on the EJUST-GINR-1 [19, 20] dataset. It is a gait dataset

with 20 subjects, 10 males and 10 females. See Table 15

for a full description of the dataset; and see Fig. 9 for a

depiction of the sensors locations over the different body

parts. Two of these sensors are smartwatches worn on both

wrists. The authors use all the 3 axes of the linear accel-

eration as well as the 3 axes of the angular motion as

streaming sources. Then, they use derivatives of these

timeseries, specifically, the autocorrelation function, to

derive 6-axial fixed size much smaller signals. These are

fed to 3 different classifiers, namely, random forest, sup-

port vector machine, and a convolution neural network.

The overall schema of the system is shown in Fig. 19.

Detailed performance metrics are given for every sensor on

the body and for paired combination of sensors for the

three classifiers. Generally, the results seem good, and, as

expected, the best results are obtained from sensors

mounted on the lower part of the body as they are closer to

the motion source. However, the sensor on the back of the

neck achieves next best performance to those IMUs

mounted on the lower body parts. The authors hypothesize

that the ‘‘gait patterns are transmitted almost intact through

the backbone up to this location’’, however, they do not

provide any further evidence of references to this claim.

The main drawback of this work is that the number of

subjects are small (total of 20), in addition to the lack of

diversity in their age (they are all early 20s), though they

are balanced regarding gender.

An extension of this work was done by Adel et al. [176],

by using a more advanced modeling technique, namely,

Siamese networks, and validating the work over multiple

richer datasets. In a sense, this work brings the long

standing work of visual-based gait recognition using Sia-

mese networks into the realm of inertial motion data. As

expected these networks are used for automatic feature

extraction. The proposed scheme is used for person

authentication, where the network is trained, using raw

inertial data, with only few samples per authorized subject.

Once trained, the network can then be used to authenticate

any given user using only one gait sample of that user. The

work is validated using three publicly available datasets:

OU-ISIR [33] (large-scale dataset with 744 subjects),

EJUST-GINR-1 [19, 20] (small scale dataset with 20

subjects only), and MMUISD [23] (medium scale dataset

with 120 subjects). The main performance metric adopted

in this paper is the equal error rate (EER). The EER is the

point on the ROC (receiver operating characteristic) curve

where the false acceptance/positive rate equals the false

rejection/negative rate. It is one of the typical metrics used

to measure the performance of person identification and

authentication systems. Accuracy is reported as well. The

overall framework is shown in Fig. 22. Their model

achieved 3:42% EER on OU-ISIR (it is the world’s largest

inertial gait dataset) after training on 592 subjects and

testing on other 78 subjects; on average each subject pro-

vided an average of 5.9 s of gait data. The best EER on the

MMUISD was 6:26%, and 5:13% on the EJUST-GINR-1.

The latter dataset has the fewest number of subjects (only

20), but the largest gait duration of each subject. So, we can

conclude from these results that larger number of subjects

is more effective than the gait longevity of the subjects. An

interesting work done by the authors is the use of transfer

learning to train on subjects from a particular dataset and

authenticate subjects from another. The hardware and

software setup across the different datasets are quite dif-

ferent (for example, the type of the sensor and its location

on the body); see Table 15. Hence, this task is quite

Table 13 Self- and cross-testing

results of age estimation (mean

absolute error) [32]

Training dataset Testing dataset

EJUST-GINR-1(RC) HuGaDB(RS) GEDS(TaR) OU-ISIR(Waist)

EJUST-GINR-1(RC) 0.883 2.0 2.5982 NA

HuGaDB(RS) 2.5685 0.835 3.6507 NA

GEDS(TaR) 2.232 2.19 1.963 NA

EJUST-GINR-1(Waist) NA NA NA 5.1209
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difficult. The base case of performance is, of course, when

the source and target datasets are the same. The trained

Siamese network is essentially used to generate embed-

dings and, then, difference vectors, for the target datasets.

Applying the same reasoning as above using the OU-ISIR

as the source dataset produces the best transfer results over

the other datasets.

6.2 Virtual coaching

In this section, we survey the activity recognition works

mainly focusing on indoor exercises (push-ups, squats,

etc.). In the context of athletics and sporting, inertial

motion sensors are typically made up of accelerometers to

measure force and acceleration, a gyroscope to give an

indication of rotation (angular velocity and angular dis-

placement), and a magnetometer to measure body orien-

tation. Each of these sensors collects data across three

perpendicular axes and can capture athlete’s movement in

minute detail. These are used to continuously stream data

that are typically processed by state-of-the-art machine

learning, data modeling, and inference techniques that

induce much higher level useful information from such

data for workout and exercising actions. For example, they

can be used to differentiate between a jump to the right or a

jump to the left, a walk or a run, a walk on sand, solid land,

or grass, etc. Other uses include measuring bowling in

cricket, jumping in basketball, or kicking a ball in soccer,

fencing, etc. One of the most popular uses of inertial sen-

sors is in trying to quantify athlete readiness and fatigue in

the field. For example, there are protocols that are often

included in athlete’s warm up while wearing sensors.

Wearables, especially IMUs, can be used to detect changes

in acceleration or direction of acceleration which may

change with injury and/or fatigue. Each person has an in-

dividual motion signature, so coaches, trainers, and sports

scientists can compare an athlete to her typical normal self.

IMUs can provide good insights into the exercising and/or

playing performance and can aid in providing assessment

and feedback to athletes recovering from injury.

Generally, IMUs can be placed anywhere on the human

body. However, depending on the exercise or workout,

some places are more proper to capture the dynamics of the

motion of that exercise. For example, IMUs can be placed

at the ankle for running sports, at the waist to detect

jumping, at the wrists for sports such as tennis and fencing,

and in between the scapula to approximate rough body

movements. Current IMU technologies have increased

dramatically, for example, sampling rates have exceeded

1 kHz, which allows for thorough and detailed analysis of

high speed movements. Also, dynamic ranges have

increased to about 200 g (for force and acceleration mea-

surements), so we can now measure movements such as

high velocity cutting, acceleration and deceleration, and

jumping.

Optimal human movement is an important goal for

coaches, trainers, therapists, and athletes in most sports.

Skeletal muscles generate the force needed for these

motions. Consequently, proper timing of skeletal muscle

activation is important to improve movement quality and

achieve better sports performance. However, injury, fati-

gue, and/or poor training can lead to sub-optimal timing

and coordination of skeletal muscle activations [177, 178].

Consequently, this can lead to severe decrease of exercis-

ing performance and increase the risk of injury. Therefore,

the assessment of muscle activation patterns provides a

picture of the overall health and effectiveness of the mus-

culoskeletal system [179]. It allows athletes to reduce

muscle injury or imbalance and increase the effectiveness

of training exercises.

Different feedback systems are used in the field of sports

and rehabilitation. The use of such systems has shown

some success by providing a positive effect on training

control [180, 181]. In addition, the feedback system has the

advantage of providing early warnings and precautions that

can help to reduce the risk of injury [182] and to improve

the performance during different movement tasks (e.g.,

Fig. 22 Framework based on Siamese networks for person authentication based on inertial gait streaming [176]
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balance) of elderly people [183]. Feedback can be given in

several ways including visual, auditory, haptic, textual, or

various combinations of these.

In [31], the authors present a multi-modal deep learning

method utilizing many data sources for activity segmen-

tation, exercise recognition, in addition to counting the

number of repetitions. The authors introduced the MM-Fit,

which is a multi-modal dataset containing a collection of

IMUs extracted from multiple devices: smartphones,

smartwatches, and earbuds. These devices were worn by

subjects performing full-body workouts and are time-syn-

chronized with multi-viewpoint RGB-D video, and pose

estimates in 2D and 3D. They have developed a very rig-

orous architecture that is hierarchical in nature, where at

the bottom level, autoencoders are used to learn represen-

tations of the individual modality signals. Then, at later

layers incremental fusing of the representations of different

modalities is done in order to learn more abstract repre-

sentations (embeddings) of the learned lower level repre-

sentations. Three main tasks are addressed by this work:

activity segmentation, exercise recognition, and counting

the number of repetitions of a given exercise. Totally, 21

full-body workout sessions are recorded; totalling 809 min

across 10 participants; workout lengths range 27–67 min

with average duration 39 min. Workout exercises moni-

tored in this dataset include: squats, lunges (with dumb-

bells), bicep curls (alternating arms), sit-ups, push-ups,

sitting overhead dumbbell triceps extensions, standing

dumbbell rows, jumping jacks, sitting dumbbell shoulder

press, and dumbbell lateral shoulder raises. Table 15 gives

more detailed description of the dataset. For exercise

recognition the authors did extensive evaluation using each

device separately and individual modalities within device,

in addition to different fusion of all these. For example,

taking IMUs, the authors experiment with accelerometer

only, gyroscope only, and a combination of both. The best

recognition accuracy is obtained from the fusion of all

sensors’ modalities reaching more than 99%. On the other

hand, the inertial sensors of the earbud and the smartphone

put in the right trouser pocket gave the lowest accuracy

around 80%. Similar fine extensive evaluation has been

done regarding the performance of counting repetitions of

each exercise across each device. The performance metrics

used were mean absolute repetition counting error and the

percentage of exercise sets for which the predicted repeti-

tion count is exact, within 1, or within 2 of the ground truth

repetition count. From the perspective of exercise type,

squats, lunges, and lateral raises gave the lowest mean

absolute error regarding their repetition counting. On the

other hand, biceps curls and push-ups gave the worst mean

absolute error. These results are consistent across all

devices, sensors, and modalities. From the device per-

spective, on average across all exercises, the smartwatch on

the left hand gave the lowest mean absolute repetition

counting error.

6.3 Healthcare

Accurate and reliable timely quantification of human psy-

chological, physical and physiological state using wearable

sensing devices is paramount in health monitoring and

safety surveillance. This in accordance necessitates the

measurement of relevant signals from various on-body

spots. A comprehensive review on the use of wearables in

the medical sector can be found in [184]. All the capabil-

ities of smartphones, including on-board embedded IMU

sensors, can be used to collect behavioral data unobtru-

sively (without any intervention or disturbance to the

subject), in situ, as it unfolds in the course of daily life

[185]. Harari et al. [185] investigate the use of continu-

ously streaming data of a person’s social interactions, daily

activities, and mobility patterns for psychological research

and profiling and for discussing the ongoing methodolog-

ical and ethical challenges associated with research in this

domain. The authors boldly claim that smartphone, and

generally wearables, sensing would lead the psychology on

the road to fully realizing its promise as a truly behavioral

science.

The work done by Baghdadi et al. [186] aims at

developing a general framework for a monitoring system

for the prediction of critical physical states prior to any

potential safety and health incident. They used Kalman

filter to estimate the hip acceleration and trunk posture

from a data streamed from a single IMU mounted at the

ankle. Such data is combined with apriori information from

Fourier series approximation to relate body kinematics

considering the periodic nature of gait. As a first applica-

tion they built an SVM classifier for the continuous mon-

itoring of fatigue by classifying the feature pattern of the

kinematic profile categorizing into ‘fatigue’ versus ‘non-

fatigue’ states. This provides for minimally intrusive,

inexpensive approach for fatigue detection in the work-

place. The authors examined a couple of research ques-

tions: (1) can a single IMU unit placed at the right ankle be

sufficient to capture the subtle changes in gait due to fati-

gue? and (2) can a computationally efficient classifier be

used to distinguish between fatigued and non-fatigued

states? The authors did experiments using SVM as a

classifier and the results affirmed positively these ques-

tions. They managed to reach an accuracy of 90% in pre-

dicting the fatigue states for the 20 recruited subjects. This

study found that the fatigue, due to a simulated manufac-

turing task of manual material handling, results in changes

in gait kinematics. So, in a more abstract sense, this is

saying that inertial motion data are able to distinguish and

capture the fatigue state. From the feature extraction/
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selection perspective, not all features of gait kinematics

have the same performance in fatigue prediction; foot

acceleration and position trajectories are among the high

performing ones. This line of research is crucial for studies

in ergonomics. The authors projected that their research

studies propose a framework for safety surveillance and

fatigue monitoring to prevent safety incidents utilizing a

minimal set of sensors and data that can be extended to

other movement monitoring applications in healthcare

through the ordinary smart wearable devices.

IMU devices typically have local storage that is large

enough, so data can be recorded directly to the device,

hence, sampling rates can be increased to capture minute

motion details and very fast speed like in sports [27]. IMUs

can easily be used indoors, across long distances, and even

underwater in some cases.

6.3.1 Vital signs

Vital signs can be defined as the measurements of the basic

functions of the human body [187]. The four major vital

signs that are always monitored by the medical doctors and

healthcare specialists include [187]: The human body

temperature, the pulse rate, the respiration/breathing rate,

and the blood pressure. The blood pressure cannot be

considered as a vital sign, however, it is often measured

with the other vital signs. Vital signs are indeed useful in

monitoring and detecting medical issues.

Epson sensing technology for vital signs monitoring is a

product that has a sensing device that measures the vital

signs indicating a biological activity in human bodies

[188]. The proposed vital sign solution utilizes the photo-

electric sensing. This measurement technology uses the

hemoglobin’s light absorbing properties. This technology

is based on shining light using a green LED to the blood

vessels lying under the skin. Epson has improved the

measurement accuracy by using a 3-axial accelerometer

and an algorithm to detect and eliminate the noise of the

body movement (e.g., caused by arm movement).

In [189], the authors reviewed the utilization of wear-

able devices in healthcare and workout monitoring based

on vital signals. This includes the electrocardiogram

(ECG), electroencephalogram (EEG), electromyography

(EMG), inertia, body movements, heart rate, blood, sweat,

etc.

In [190], the authors reviewed the utilization of wear-

able devices and detection algorithms utilizing the

piezoresistive/inertial sensors for monitoring the breathing

factors and respiratory parameters based on inertial sensors

(i.e., accelerometers and gyroscopes) and detecting dys-

functions or pathologies without surgery. Several tools

were utilized to gather the respiratory parameters from the

acceleration data.

In [191], the authors proposed an approach for detecting

sleep parameters. This is achieved by measuring the earth

magnetic field variation. The authors used a magnetometer

sensor that is laid on the body which detects the night-time

breathing movements (in millimeter). This is done by

measuring the magnetic vectors changes. A wearable sen-

sor that is soft and non-invasive is printed on a miniature

printed circuit board. This includes a wireless Bluetooth

low-energy (BLE) module and a low-power microcon-

troller. A minimum power consumption is achieved by

utilizing a smart processing algorithm. This algorithm

calculates respiration rate, apnea time, and time while

movement.

In [192], the authors reviewed the conventional

approaches for monitoring cardio-pulmonary rates and the

ability of replacing these methods with radar-based

approaches. The authors also studied the challenges that

need to be overcame by the radar-based vital signs moni-

toring approaches in order to be applied in the healthcare

domain. The authors presented a PoC for a radar-based

vital sign detection and showed good measurement results.

In [193], the authors highlighted the abilities of the IMU

sensors to detect the vital signs. The results presented were

promising in monitoring the soldiers’ vital signs.

6.4 Ergonomics

Kuschan et al. [194] studied 2 lifting movements utilizing

the acceleration and angular velocity signals. The ergo-

nomic movement was done by the test subjects bending at

hips and knees only generating the lifting power by

squatting down. The unergonomic movement was done by

the test subjects bending forward to lift the box with their

backs mainly. The signals were collected by a vest

equipped with 5 IMU sensors each with 9 dimensions. The

IMU data collected from both the ergonomic and uner-

gonomic movements were statistically analyzed and visu-

alized. A CareJack vest was used that provided the worker

with a real-time feedback about his ergonomic movement

decreasing the spinal and back diseases risk.

Mudiyanselage et al. [195] proposed surface elec-

tromyogram (EMG) system using machine learning to

recognize body movements that may harm muscles while

handling materials. This study utilized a lifting equation

developed by the U.S. National Institute for Occupational

Safety and Health (NIOSH). The equation specifies a

Recommended Weight Limit that recommends the maxi-

mum acceptable weight that a healthy worker can lift/carry

and a Lifting Index value to assess the risk threshold. Four

different ML models (Decision Trees, SVM, k-NN, RF)

were developed to classify the risk assessments based on

the NIOSH lifting equation. To find the best performance

of each algorithm, the models sensitivity to different
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parameters was also studied. The results showed that the

Decision Tree model was able to predict the risk level with

an accuracy near to 99:35%.

Humadi et al. [196] proposed a system based on IMUs

and Kinect V2 for Rapid Upper Limb Assessment (RULA)

risk assessment that was compared to a reference motion-

capture cameras. The activities here were the different

tasks of manual material handling. The calculated RULA

scores were compared to the reference system using the

proportion agreement index (Po) and Cohen’s Kappa

coefficient (j). The wearable-based approach showed a

‘‘substantial’’ agreement (j[ 0:6) with the motion-capture

cameras. The optical-based approach showed an ‘‘incon-

sistent’’ agreement with the motion-capture cameras rang-

ing from ‘‘fair’’ (j\0:4) to ‘‘moderate’’ (j[ 0:4)

agreements caused by self-occlusion and object-occlusion.

Thus, the wearable-based approach was more suitable for

in-field ergonomic risk assessment compared to the optical-

based approach.

Fauziah et al. [197] proposed a tool to feedback with

real-time assessment for workers ergonomic risks based on

workers’ postures. Direct visits to a manufacturing site in

Indonesia were performed to study various production

tasks to obtain complaints data of Work-Related Muscu-

loskeletal Disorders (WMSDs). Tasks with a higher risk of

injury were chosen to perform task analysis in order to

segment the task steps. Appropriate risk assessment

methods were chosen, e.g., Rapid Entire Body Assessment

(REBA), Rapid Upper Limb Assessment (RULA), Ovako

Working Posture Analysis System (OWAS), etc., based on

the tasks critical characteristics. The tasks being studied

included: cleaning up production residues, grinding pro-

cesses, manual bending, and welding. The appropriate

assessment method utilized was the OWAS. The measures

considered as the WMSDs risk factors were the posture of

back, arms, legs, and weight being handled. These mea-

sures were considered in the design of the sensor system

which integrated 7 IMUs placed on the mentioned body

locations. On a developed mobile application, a score

shows the risk value and a warning signal is prompted to

the worker.

Hsu and Lin [198] proposed a system of IMUs and

exoskeleton robot for work performance assessment and

assisting workers in performing different agricultural

activities. By locating 3 IMUs on the worker’s trunk and

legs, the system controls the exoskeleton robot to move the

workers’ legs while supporting their backs. For evaluating

the waist assistance system, ergonomic assessment tests

were applied, e.g., Rapid Upper Limb Assessment (RULA)

and electromyography (EMG). By using the exoskeleton

robot, the muscle activity of the Erector Spinae was

reduced by about 17:3% for lifting 10 kg objects during

stoop lifting and by 20:4% for lifting 10 kg during semi-

squat lifting. For the same tasks, the muscle activity of

Biceps Femoris was reduced by 18:2% and 15:2%,

respectively. This work is also applicable to rehabilitation

activity, construction work, and other related work

domains.

Humadi et al. [199] proposed an IMU system in order to

assess the manual material handling activities using in-field

RULA score. This was done using 3D Cardan angles and

2D projection angles relative to reference values recorded

by a camera system for motion-capture. The axes con-

ventions are generally used to establish the location/ori-

entation of coordinate axes as a frame-of-reference. For the

trunk and neck joint angles, the 2D convention had sig-

nificantly smaller RMSE (p\0:05). For the other upper-

body angles, the convention had significantly smaller

RMSE depending on the angle under analysis. The 3D

convention showed a ‘‘moderate’’ agreement with the

frame-of-reference, while the 2D convention showed a

‘‘substantial’’ agreement for two activities and a ‘‘moder-

ate’’ agreement for one activity. For the 3D convention, the

intra-class correlation coefficients ranged from 0.82 to

0.94. For the 2D convention, the coefficients ranged from

0.87 to 0.95 for repeated sessions performed by each

subject. Thus, the proposed wearable IMU system using the

2D convention was found to be an accurate ergonomic risk

assessment tool.

Jahanian et al. [200] proposed a system to study the risk

and recovery metrics of arm use to discriminate between

(1) Manual Wheel Chair (MWC) subjects having spinal

cord injury (SCI) and matched able-bodied subjects and (2)

MWC subjects with rotator cuff pathology progression for

1 year from users without pathology progression (longitu-

dinal study). 34 MWC subjects and 34 age- and gender-

matched able-bodied subjects were hired. Upper arm risk

(humeral elevation [ 60�) and recovery (static � 5 s and

humeral elevation \40�) measurements were calculated

from wireless IMUs placed on the upper arms and torso

while being in a free-living environment. Two independent

magnetic resonance imaging studies were evaluated for a

subset of 16 MWC subjects about 1 year apart. The risk

events frequency (p ¼ 0:019), recovery events summed

duration (p ¼ 0:025), and each recovery event duration

(p ¼ 0:003) were higher for MWC subjects than able-

bodied subjects. The risk events summed duration

(p ¼ 0:047), risk events frequency (p ¼ 0:027), and risk to

recovery ratio (p ¼ 0:02) were higher and the recovery

events summed duration (p ¼ 0:036) and recovery events

frequency (p ¼ 0:047) were lower for MWC subjects

having rotator cuff pathology progression (n ¼ 5) with

respect to the users without progression (n ¼ 11). The

IMU-derived measurements which quantified the arm use

postures [ 60� and risk to recovery ratios gave potential

risk factors insights for rotator cuff pathology progression.

Neural Computing and Applications (2023) 35:20463–20568 20505

123



Vignais et al. [201] performed a material handling task

ergonomic analysis by integrating a subtask video analysis

and a RULA computation using a motion capture system

combining IMUs and electrogoniometers. Five workers

participated in the experiment and seven IMUs were

located at the worker’s upper body (pelvis, thorax, head,

arms, forearms). An upper body biomechanical model

continuously provided trunk, neck, shoulder, and elbow

joint angles. Wrist joint angles were provided from elec-

trogoniometers synchronized with the IMU system and the

activity of the worker was video recorded at the same time.

Joint angles were input to an ergonomic evaluation model

during post-processing based on the RULA method. An

RULA score was computed at each time step to specify the

upper body exposure risk (right and left sides). Local risk

scores were also calculated to identify the exposure

anatomical origin. The video-recorded work activity was

studied in time to recognize all subtasks included in the

task. The mean RULA scores were for all subjects at high

risk (for right and left sides, 6 and 6.2, respectively). A

temporal analysis showed that workers spent at an RULA

score of 7 most part of work time. Mean local scores

showed that during the task most exposed joints were

elbows, lower arms, wrists, and hands. Elbows and lower

arms were during the work cycle total time at a high risk

level (for right and left sides; 100%). Wrist and hands were

exposed during most work period to a risky level (right:

82:13 � 7:46%; left: 77:85 � 12:46%). Subtasks called

‘snow thrower’, ‘opening vacuum sealer’, ‘cleaning’ and

‘storing’ were identified as the most unsuitable for right

and left sides where the mean RULA scores and time spent

percentages were at risky levels.

Villalobos and Mac Cawley [202] proposed an IMUs-

based system to recognize human activity using AI and ML

techniques to perform task classification and ergonomic

assessments in workplace location. The authors used low-

cost IMUs placed on slaughterhouse workers’ wrists to

gain information about their motions. The authors identi-

fied the wrists/hands risk factors leading to work-related

musculoskeletal disorders (WRMSDs). The authors

showed that by using low-cost IMU sensors on the

slaughterhouse workers’ wrists, the sharpness of the knife

can be accurately classified and the worker RULA score

can be predicted.

6.5 Human–computer interaction (HCI)

In [203], the authors proposed a wearable system that is

operating in real-time for recognizing finger air-writing in

3-D space using the Arduino Nano 33 BLE Sense. This

edge device runs TensorFlow Lite for action recognition on

the device. The proposed system allows users to write

characters (26 English lower-case letters and 10 digits) by

moving fingers in air. This system uses a DL algorithm to

recognize 36 characters from the motion data collected

from the IMUs. This data is then processed by a micro-

controller embedded in the Arduino Nano 33 BLE Sense.

The authors prepared 63,000 stroke data samples written in

air of 35 subjects (18 males and 17 females). This data was

used in CNN training. The proposed system had a high

recognition accuracy of 97.95%.

In [204], the authors proposed a hand gesture segmen-

tation method that is a mobility-aware. The proposed sys-

tem detects and segments hand gestures. The authors

utilized a CNN in order to classify hand gestures consid-

ering noises due to mobility. The proposed system is called

MobiGesture was used for healthcare. The authors used the

leave-one-subject-out cross-validation test. The experi-

ments with real subjects showed that the proposed

approach achieves 94.0% precision, and 91.2% recall when

the subject is moving. The proposed algorithm is 16.1%,

15.3%, and 14.4% more accurate than the state-of-the-art

when the subject is standing, walking, and jogging,

respectively.

In [205], the authors proposed two hand gesture recog-

nition methods based on RNN. The first method is based on

video signal and utilized a combined structure of CNN and

RNN. The second method uses accelerometer data and only

RNN. A fixed-point optimization is used to optimize the

memory size for storing the weights and minimizing the

power consumption in hardware and software processing.

This optimization quantizes most of the weights into two

bits.

In [206], the authors proposed FingerPing sensing

technique. FingerPing is able to recognize different fine-

grained hand poses. This is achieved by analyzing the

acoustic resonance features. A surface-transducer that is

fixed on a thumb ring is able to inject acoustic chirps

(20–6000 Hz) into the body. There are four receivers on

the wrist and thumb to gather the chirps. Various hand

poses create different paths in order to the acoustic chirps

to travel. This creates specific frequency responses at the

four receivers. FingerPing could discriminate till 22 hand

poses. This includes the thumb touching every phalange of

the twelve one on the hand, also the ten American sign

language poses. Experiments with 16 subjects had showed

that the proposed system was able to recognize the afore-

mentioned two poses sets achieving an accuracy of 93.77%

and 95.64%, respectively.

In [207], the authors proposed a transfer learning

approach to train target sensor systems from existing

source sensor systems. This method utilizes system iden-

tification methods in order to learn a mapping function

between the signals from the source sensor system to the

target sensor system, and vice versa. This is doable for

sensor signals that are of the same or cross modality. The
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authors proposed two transfer learning models in order to

translate recognition systems based on activity tem-

plates/models. This depends on the features of the source

and target sensor systems. The proposed transfer learning

approaches are evaluated in a HCI scenario; the transfer is

done between wearable sensors located at various body

locations, and between wearable sensors and ambient depth

camera. The results showed that a nice transfer is achiev-

able in just few seconds of data. This was done irrespective

of the transfer direction for similar/cross sensor modalities.

In [208], the authors proposed a Quantum Water Strider

Algorithm with Hybrid-Deep-Learning-based Activity

Recognition that is called QWSA-HDLAR model. The

proposed QWSA-HDLAR approach can recognize the

various types of HAR. The QWSA-HDLAR model utilized

a deep transfer learning approach. A neural-architectural-

search-network (NASNet)-based feature extractor was used

to generate feature vectors. The proposed QWSA-HDLAR

method utilizes a QWSA-based hyperparameter tuning

method in order to select the hyperparameters of the

NASNet model. The classification of human activities is

achieved using a hybrid CNN with a bidirectional RNN

model. The experiments were done using two testing

datasets, KTH and UCF Sports datasets. The results

showed that QWSA-HDLAR model outperformed the

state-of-the-art DL approaches.

7 Embedded HAR

In this section, we address HAR systems implemented on

embedded devices. Basterretxea et al. [209] aimed at an

FPGA-based autonomous single-chip HAR system without

needing external computing means or human intervention.

The system comprises all typical HAR process phases, i.e.,

signal segmentation, feature extraction through signal

processing, feature selection through dimensionality

reduction of input space, and activity recognition using a

neural network classifier. A physical activity recognition

application was utilized as a frame-of-reference to evaluate

the system performance and analyze FPGAs potential

benefits in prospective wearable HAR applications.

Czabke et al. [210] presented a microcontroller-based

algorithm for human activity classification based on a 3-

axial accelerometer. For long term activity patterns moni-

toring, the data amount is kept small with efficient data

processing. The authors classified in real-time the follow-

ing activities: resting, walking, running, and unknown

activity. The algorithm ran on the proposed device

Motionlogger with a key fob size and can be placed in a

pocket or a handbag. The algorithm testing with 10 users

locating the Motionlogger in their pockets showed an

average accuracy [ 90%.

Li et al. [211] presented an activity recognition system

from passive RFID data using a deep convolutional neural

network. For activity recognition, the RFID data are feed

directly into a deep convolutional neural network, instead

of selecting features. A cascade structure is used that first

detects from the RFID data the ‘‘object use’’ then pre-

dicting the activity. The ‘‘object use’’ of specific activities

means recognizing activities based on the used objects, i.e.,

detecting human–object interaction from the sensed data.

The proposed system solves activity recognition as a multi-

class classification problem, thus it is scalable for appli-

cations having big number of activity classes. Testing the

proposed system using RFID data obtained in a trauma

room comprising 14 h of RFID data from 16 actual trauma

resuscitation (restoration of acute illness or near death).

The proposed system outperformed state-of-the-art systems

implemented for activity recognition and had similar per-

formance with process-phase detection like systems based

on wearable sensors. The authors also studied the strengths

and challenges of the proposed deep learning architecture

for activity recognition using the RFID data.

Sundaramoorthy et al. [212] proposed HARNet that is

efficiently handling resources and computationally practi-

cal network for on-line Incremental Learning and User

Adaptability to be a mitigation technique used for

anomalous user behavior recognition. Heterogeneity

Activity Recognition Dataset [152] was utilized for eval-

uating HARNet and other proposed variants by using

acceleration data collected from different mobile plat-

forms. The authors utilized Decimation for down-sampling

in order to generalize sampling frequencies between

mobile devices. Discrete Wavelet Transform was utilized

for preserving information among frequency and time.

Typical evaluation of HARNet on the adaptability of users

resulted in an accuracy increase by 35% by utilizing the

model ability to extract differentiating features between

activities inside heterogeneous environments.

Saponas et al. [213] argued that researchers have

explored various approaches like services running in

mobile phone background, cameras in environment, RFID

readers, etc. The authors recommended that for HAR sys-

tem to transition from interesting research topic to main-

stream technology and for enhancing the day-to-day

activities, HAR must use many of the user’s computing

ecosystem components, e.g., low-power embedded hard-

ware running continuously and mounted on phone, cloud

services tracking the user’s activities on long-term and

recognizing current activity from all inputs, etc. The

authors provided a brief discussion of how this system can

be implemented and utilized.

Chen et al. [214] proposed a multi-level HAR modeling

workflow named Stage-Logits-Memory Distillation

(SMLDist) in order to construct deep convolutional HAR
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models using embedded hardware. SMLDist comprises

stage distillation, memory distillation, and logits distilla-

tion. Stage distillation limits the intermediate features

learning direction. The student models were taught by the

teacher model how to explain and save the inner relation-

ship between high-dimensional features depending on

Hopfield networks in memory distillation. Logits distilla-

tion constructs logits filtered by a smoothed conditional

rule to keep the probability distribution and improve the

accuracy of the softer target. The authors made a com-

parison of the accuracy, F1 macro score, and energy cost

on a MobileNet V3 model [215] embedded platforms built

by SMLDist with different state-of-the-art HAR systems.

The batch size of the training and validating samples was

set to 256 while the learning rate was set to 1 � 10�4. The

proposed model had a good balance to be robust and effi-

cient. SMLDist can as well compress the models given a

slight performance loss with an equal compression ratio

compared to other advanced knowledge distillation

approaches on 7 public datasets.

Bhat et al. [216] proposed the first HAR system per-

forming both tasks of online training and inference. The

proposed system first generates features using the FFT and

discrete wavelet transform of a stretch sensor that is textile-

based and accelerometer. Based on these features, the

authors developed an ANN classifier that is trained online

utilizing the policy gradient algorithm. The experiments on

an IoT device (TI-CC2650 MCU) that is low power with

nine subjects showed an accuracy of 97:7% in recognizing

6 activities and the transitions between these activities with

\ 12:5 mW consumption of power. Another line of work

by Bhat et al. [217] introduced an open source platform

called OpenHealth that allows for health monitoring using

wearable sensors. OpenHealth represents a hardware/soft-

ware set and wearable devices enabling autonomous inte-

gration of clinically related data. The OpenHealth platform

comprises a wearable device, standard software interfaces

and implementations of applications for activity and ges-

ture recognition.

Alessandrini et al. [218] solved the HAR problem

directly on embedded devices by developing an RNN on a

low cost, low power microcontroller, while checking the

targeted performance through accuracy and low complex-

ity. The authors first implemented an RNN which combines

Photoplethysmography (PPG) and 3-axial accelerometer

data in which these data is used to match motion artifacts in

PPG to recognize human activity accurately. The authors

then deployed the RNN to a Cloud-JAM L4 embedded

device that is based on an STM32 microcontroller. This

device is optimized to preserve an accuracy [ 95% whilst

requiring small computational power and memory resour-

ces. The experiments showed that this system can

efficiently be developed on a limited-resource system,

aiming at designing a wearable embedded system that is

fully autonomous for HAR and logging.

Choudhury et al. [219] presented a Mobile Sensing

Platform (MSP) that is a small wearable device. MSP is

designed for accurate activity recognition on embedded

devices to support ubiquitous computing applications that

are context-aware. The authors had performed many real-

world deployments and subject studies. The results are

utilized to enhance the hardware/software design and HAR

algorithms.

Ravi et al. [220] a HAR system based on a deep learning

for accurate and real-time classification on wearable

devices that have low power. In order to gain steadiness

against changes in the orientation, placement, and sampling

rates of sensor, a feature generation using the IMU data

spectral domain. The proposed method utilized the trans-

formed input temporal convolutions sums. the proposed

approach accuracy is assessed versus the current state-of-

the-art techniques on both laboratory and real world

activity datasets. The authors performed a systematic

analysis for the parameters used in feature generation. In

addition, the authors compared the activity recognition

computation times on mobile devices and sensor nodes.

The proposed system was deployed as an Android app and

as an embedded algorithm as well for the Intel Edison

Development Platform. Intel Edison was used to show

human activity classification on-node by using the trained

recognition model. Using a dual-core Intel Atom CPU with

rate of 500 MHz, wireless connectivity, and compact

physical with dimensions of 35:5 � 25:0 � 3:9 mm, the

Intel Edison is a small powerful platform that is suitable for

smart sensor networks applications.

Table 14 presents a comparison and summarize several

embedded HAR systems, including power consumption,

performance metrics and time consumption.

8 Discussion and conclusion

Human activity recognition (HAR) has gained tremendous

momentum in recent years along with the digitization of all

aspects of society in general and individual lives in par-

ticular. Of particular significance and potential are those

systems based on streaming of inertial data (such as linear

and rotational motion) from IMU devices. Such sensing

capabilities are currently embedded in almost all com-

modity mobile and wearable devices. As the field is very

huge and diverse, this article is by no means comprehen-

sive; it is though meant to provide a logically and con-

ceptually rather complete picture to advanced readers, as

well as to present a readable guided introduction to new-

comers. Our logical and conceptual perspectives mimic the
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typical data science pipeline for state-of-the-art AI-based

systems. Namely, starting with datasets, either publicly

available and/or collected, to feature engineering and/or

automatically extracted, developing learning models

including the transfer of pre-trained models to new datasets

and/or tasks, and finally validating the trained models. We

have as well touched on adversarial attacks as actual

deployment involves security/privacy issues. Adversarial

attacks against timeseries data is a pretty recent research

and only a handful of works are available.

There are huge opportunities both on the research and

industrial sides for IMU-based HAR. To the best of our

knowledge, there have been very few works addressing the

fusion of inertial and other data modality such as the visual.

Some recent work in empirical psychology aim at merging

IMU with social media texts trying to profile and under-

stand the mental status of the user and potential risks with

behavioral patterns and mood changes, for example. With

the COVID-19 outbreak, gyms among other public places

have been forced to close their doors in order to control the

spread of the global pandemic. Moreover, people were

advised to stay at home and in some places, were fined if

found outside. Hence, many people’s mental and physical

state started to deteriorate. As a result, more and more

workout mobile apps started to gain an increasing popu-

larity. Accordingly, there has been a growing interest in

Table 14 Comparison of several embedded HAR systems, including power consumption, performance metrics and time consumption

Reference Power consumption Performance metrics Time consumption

Basterretxea

et al. [209]

268 mW (system running at maximum

speed)

Overall accuracy: 84.9% (Minimal

ANN structure) and 89.7%

(Augmented structure)

2.5 s

Czabke et al.

[210]

– Average accuracy [ 90% 5.7 s

Li et al. [211] – Average accuracy 72.03% for 5

resuscitation phases detection,

80.40% for 11 activities recognition,

and 90.8% for 6 lab activities

recognition

–

Sundaramoorthy

et al. [212]

– Accuracy of HAR-LCNet (LSTM !
Conv-1D ! Conv-2D) is 96.79%

Time taken for Classification of a

single window of HAR-LCNet is

68.9 ms

Chen et al. [214] Energy cost of SMLDist (Stage-

Memory-Logits Distillation) ranges

from 0.0209 to 0.0385 (mW � h/

sample) on 7 public datasets

Accuracy of SMLDist ranges from

92.11 to 99.41% on 7 public datasets

Time cost of SMLDist ranges from

8.653 to 14.626 (ms/sample) on 7

public datasets

Bhat et al. [216] Computation power consumption is

11.24 mW. Sensing power

consumption is 1.13 mW. BLE

Communication power consumption

is 5 mW.

Accuracy of 97.7% in identifying 6

activities and their transitions

Processing time is 27.60 ms. Sensing

time is 1500 ms. Bluetooth Low

Energy (BLE) communication time is

8.6 ms.

Bhat et al. [217] Power consumption is about 12.5 mW

for single HAR activity recognition.

Power consumption is about 10 mW

for gestures recognition.

Accuracy is [ 90% for all HAR

activities. Accuracy is 98.6% for

gestures recognition.

–

Alessandrini

et al. [218]

– Accuracy is over 95% Average test time is 150.1 ms at the

highest test accuracy of 95.54% on

the micro-controller unit (MCU)

Choudhury et al.

[219]

Power consumption is about 43 mW

(with all sensors running

continuously)

Highest Accuracy is 93.8% (Inference

v2.0 with temporal information

included and supervised learning)

Activities classified every 0.25 s

Ravi et al. [220] – Accuracy is 95.1% on ActiveMiles

dataset, 98.2% on WISDM v1.1,

95.9% on Skoda (Node 16), about

95% on Daphnet FoG

Computation time is 5.4 ms/20 ms/

13–42 ms for Spectrogram

generation and 5.7 ms/8 ms/14.9 ms

for Deep Learning classification on

LG Nexus 5/Samsung Galaxy S5/

Intel Edison, respectively.
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performing exercising and sports indoors with the assis-

tance of smart digital technology for tracking and assess-

ment of such exercising. Such kinds of apps are based

essentially on measuring and tracking motions, and here

where inertial data are readily, naturally, and directly

helpful. Much more quality inertial datasets need to be

collected and made open, where the setup and data con-

figuration have to be well documented. We believe that for

closed HAR systems (deployment environment very much

resembles the training model construction environment),

deep neural methods may not be that effective, especially

with the limitation of datasets and their sizes. However, as

seen above, deep methods are very effective and useful in

transfer learning handling the deployment of HAR systems

in radically different situations and contexts from those

where the model was built.

Inertial data streaming through IMU devices are more

intrinsic than other data modalities, specially the visual, as

they are embedded into wearables and hence, mobile car-

ried on with the user wherever she is. It has as well the

advantage of complying more with the security and privacy

concerns of the users. Its main disadvantage is high sen-

sitivity to noise and low explicit semantic content, as

compared, for example, with visual, audio, or textual data.

Hence, they need smart algorithms to extract the most

feasible and valuable information from them.

Some research works have applied advanced 3D data

tensor models in medical images analysis, specifically the

Azheimer’s disease [221–224]. However, the modalities

used in these works are visual scans (such as magnetic

resonance and in general 3D visual data). To the best of our

knowledge, these models have not been used for analysis of

inertial motion data which is the main focus of the current

paper. However, it is worth investigating the use of such

architectures, and others like normalizing flows and GANs

(Generative Adversarial Networks), for the analysis of

timeseries inertial motion data.

Another crucial research point in the domain of HAR

based on IMU Data is the ‘‘adversarial attacks’’ on time

series data. Deep neural networks are highly parameterized

complex models and they can be highly sensitive, and

hence, ill-robust, to small perturbations, as observed by

[225]. This is most witnessed in visual data, where the

perturbations can be completely imperceptible to the

human eye, however, may lead to vastly and widely dif-

ferent classification outputs than expected or desired [225].

These perturbations may be explicitly engineered (target

adversarial attack) and added to inputs for malicious pur-

poses, which can potentially have devastating conse-

quences in critical production systems. Therefore, there is a

need to design methods that are robust to such attacks,

detecting and mitigating them, in order to maintain the

integrity and correct functionality of such systems [226].

Most of the work done in that direction have targeted

visual data, aiming at the detection and mitigation against

such attacks including techniques such as adversarial

learning and the proper development of adversarial

examples. Attacking timeseries streaming data can be of

detrimental consequences as well. For example, models

that are deployed to detect and monitor seismic waves can

be fooled into creating fear and panic in society; wearables

used for activity recognition from inertial signals can fool

the user into believing performing fake actions, or believ-

ing some performance level in a given activity [227].

Only recently there have been some emergent works

targeting adversarial attacks against timeseries data, among

which are the data streamed from IMU sensors. To the best

of our knowledge, Fawaz et al. [228] in 2019 were the first

to address adversarial attacks against deep learning models

trained on timeseries data. Such timeseries adversarial

examples can severely affect the predictive performance

and reliability of decisions taken by such models in real-

world applications specially those related to healthcare

applications, sports, and security. The crux of this work is

that timeseries data, similar to visual data, are also prone to

adversarial attacks. And even they developed adversarial

attacks (examples) by transferring and adapting adversarial

attacks that had been shown to work on images. More

specifically, the authors formulated attacks on timeseries

data based on two methods: (1) the Fast Gradient Sign

Method (FGSM) and (2) the Basic Iterative Method (BIM).

FGSM is based on one step update along the direction of

the gradient at each time step (this is the opposite to the

learning update).

Saponas et al. [213] highlighted the key challenges

which are facing the adoption of HAR in future systems in

industry. The authors mentioned that performing HAR

using ‘‘mobile devices’’ is the crucial factor and accord-

ingly the authors highlighted two important challenges: the

location independence and continuous operation/function.

The authors mentioned that no single device can figure all

the context needed for the required HAR use cases. The
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authors argued that the future HAR systems have a chal-

lenge to utilize all the computing ecosystem components

from embedded devices to the cloud.

In [229], the authors argue that one might have the false

perception that performing HAR using IMUs is already at a

perfect state and that no further actions need to be done. On

contrary, out of those who are not using their wearable

devices sensing: 36% cited that this is due to the mea-

surement accuracy and 34% cited that is because the

improper activity tracking [230]. The authors argue that

HAR is still far away from being solved due to the fol-

lowing reasons: (1) the difficulty in defining an activity, (2)

Heterogeneous benchmarks, (3) Collecting ground-truth

data for the HAR systems is expensive and not easy, (4)

Various characteristics causes diverse activity profiles, (5)

the lack of standardization in storing, processing, and

analyzing the data. These points highlight the open

research problems in this field and give some insights about

the future research works.

Appendix A. Public activity datasets

There is a wide variety of activity datasets that are based on

inertial motion data. These are typically used as bench-

marks to test new techniques for activity analysis and

inference systems. A brief description of these datasets are

given in Table 15.
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ó

n

et
al

[3
8

4
];

A
n

k
F

A
L

L

2
1

(5
F

,
1

6
M

)
1

1
ac

ti
v

it
ie

s;
w

al
k

in
g

,
si

tt
in

g
,

g
et

ti
n

g
u

p
,

cr
o

u
ch

in
g

d
o

w
n

,

tr
ip

p
in

g
o

v
er

w
it

h
le

ft
/r

ig
h

t

fo
o

t,
w

al
k

in
g

w
h

il
e

d
iz

zy
,

fa
ll

in
g

b
ac

k
w

ar
d

s
w

h
il

e
si

tt
in

g

o
n

v
o

id
,

tr
ip

p
in

g
o

v
er

an
d

fa
ll

in
g

fo
rw

ar
d

,
fa

ll
in

g
w

it
h

o
u

t

re
si

st
in

g
to

le
ft

/r
ig

h
t

A
n

k
le

O
n

e
3

-a
x

ia
l

A
D

X
L

3
4

5

ac
ce

le
ro

m
et

er

A
g

e
ra

n
g

e
2

1
–

6
0

y
ea

rs
,

h
ei

g
h

t
ra

n
g

e
1

.6
0

–
1

.9
5

m
,

w
ei

g
h

t
ra

n
g

e
7

0
–

1
1

0
k

g
.
T

o
ta

l
d

at
as

et
h

as
6

1
5

re
co

rd
s.

H
o

ld
-O

u
t

te
ch

n
iq

u
e,

R
ec

u
rr

en
t

N
eu

ra
l

N
et

w
o

rk
s

(G
R

U

an
d

L
S

T
M

);
sp

ec
ifi

ci
ty

;
9

2
–

9
3
%

C
h

ai
et

al
.

[3
8

5
]

1
4

(1
4

M
)

6
fa

ll
ac

ti
v

it
ie

s;
fo

rw
ar

d
fa

ll
w

it
h

k
n

ee
s,

fo
rw

ar
d

fa
ll

w
it

h
h

an
d

s,

le
ft

an
d

ri
g

h
t

si
d

es
o

f
in

cl
in

ed

fa
ll

s,
b

ac
k

w
ar

d
fa

ll
,

sl
o

w

fo
rw

ar
d

fa
ll

w
it

h
cr

o
u

ch
.

3

fa
ll

-l
ik

e
ac

ti
v

it
ie

s;
cr

o
u

ch
in

g
,

si
tt

in
g

,
w

al
k

in
g

w
it

h
st

o
o

p

C
h

es
t

IM
U

,
2

el
b

o
w

IM
U

s,
2

w
ri

st
IM

U
s,

2
th

ig
h

IM
U

s,

2
an

k
le

IM
U

s

9
IM

U
s

A
g

e
ra

n
g

e
2

1
–

2
4

y
ea

rs
,

h
ei

g
h

t
ra

n
g

e
1

.7
–

1
.8

8
m

P
at

el
et

al
.

[3
8

6
];

V
it

aF
A

L
L

A
D

L
ac

ti
v

it
ie

s;
w

al
k

in
g

,

st
u

m
b

li
n

g
,

si
tt

in
g

.
F

al
li

n
g

ac
ti

v
it

ie
s;

ri
g

h
t,

fo
rw

ar
d

,

b
ac

k
w

ar
d

,
le

ft

W
ri

st
3

-a
x

ia
l

A
D

X
L

3
3

5

ac
ce

le
ro

m
et

er
co

n
n

ec
te

d

w
it

h
A

rd
u

in
o

U
n

o
.

V
it

al

si
g

n
s

p
ar

am
et

er
s;

h
ea

rt

ra
te

,
h

ea
rt

b
ea

t,

te
m

p
er

at
u

re
m

o
n

it
o

ri
n

g

D
ir

ec
ti

o
n

al
fa

ll
s

d
et

ec
ti

o
n

ac
cu

ra
cy

8
5
%

,
sp

ec
ifi

ci
ty

1
0

0
%

,
se

n
si

ti
v

it
y

9
6
%

,
M

an
u

al
fa

ll
s

d
et

ec
ti

o
n

ac
cu

ra
cy

8
5
%

,
p

re
d

ic
ta

b
il

it
y

1
0

0
%

,
se

n
si

ti
v

it
y

1
0

0
%

P
al

m
er

in
i

et
al

.

[2
9

1
]

(F
al

ls
)

4
0

(2
2

F
,

1
8

M
)

1
4

3
fa

ll
re

co
rd

in
g

s
O

n
th

e
lo

w
er

b
ac

k
3

-a
x

ia
l

ac
ce

le
ro

m
et

er
M

o
st

fa
ll

re
co

rd
in

g
s

ar
e

4
0

m
in

lo
n

g
.

ag
e

ra
n

g
e

6
9
:2
�

1
2
:7

y
ea

rs
.

S
u

b
je

ct
-b

as
ed

cr
o

ss
-v

al
id

at
io

n
;

fi
v

ef
o

ld

cr
o

ss
-v

al
id

at
io

n
.

F
ea

tu
re

s
fr

o
m

m
u

lt
ip

h
as

e
fa

ll
m

o
d

el

?
S

V
M

;
se

n
si

ti
v

it
y

8
1
:1
%

,
fa

ls
e

al
ar

m
ra

te
p

er
h

o
u

r

0
.5

6
,

F
-m

ea
su

re
6

4
:6
%

M
ar

tı́
n

ez
-

V
il

la
se

ñ
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