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Abstract

Human activity recognition (HAR) using inertial motion data has gained a lot of momentum in recent years both in
research and industrial applications. From the abstract perspective, this has been driven by the rapid dynamics for building
intelligent, smart environments, and ubiquitous systems that cover all aspects of human life including healthcare, sports,
manufacturing, commerce, etc., which necessitate and subsume activity recognition aiming at recognizing the actions,
characteristics, and goals of one or more agent(s) from a temporal series of observations streamed from one or more
sensors. From a more concrete and seemingly orthogonal perspective, such momentum has been driven by the ubiquity of
inertial motion sensors on-board mobile and wearable devices including smartphones, smartwatches, etc. In this paper we
give an introductory and a comprehensive survey to the subject from a given perspective. We focus on a subset of topics,
that we think are major, that will have significant and influential impacts on the future research and industrial-scale
deployment of HAR systems. These include: (1) a comprehensive and detailed description of the inertial motion bench-
mark datasets that are publicly available and/or accessible, (2) feature selection and extraction techniques and the cor-
responding learning methods used to build workable HAR systems; we survey classical handcrafted datasets as well as
data-oriented automatic representation learning approach to the subject, (3) transfer learning as a way to overcome many
hurdles in actual deployments of HAR systems on a large scale, (4) embedded implementations of HAR systems on mobile
and/or wearable devices, and finally (5) we touch on adversarial attacks, a topic that is essentially related to the security and
privacy of HAR systems. As the field is very huge and diverse, this article is by no means comprehensive; it is though
meant to provide a logically and conceptually rather complete picture to advanced practitioners, as well as to present a
readable guided introduction to newcomers. Our logical and conceptual perspectives mimic the typical data science
pipeline for state-of-the-art Al-based systems.
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1 Introduction

Walid Gomaa, Mohamed A. Khamis have contributed Human-centered computing is an emerging research and
equally to this work. application area that aims at understanding the human

behavior (and psychology) and integrating users and the
social context with the digital technology. This necessitates
and subsumes human activity recognition (HAR) which
aims at recognizing the actions, characteristics, and goals
of one or more individual(s) from a temporal series of
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interaction, the military, etc. A comprehensive survey of
applications can be found in [1].

Generally, the objectives of HAR systems can be sum-
marized as follows: (1) determining (both in real-time and
offline) the ongoing actions/activities of a person, a group
of persons, or even the crowd based on sensory observation
data, (2) assessment of the ongoing action, for example, if
the action is an indoor squat exercise, what is the perfor-
mance level of the player and what mistakes done during
exercising, (3) determining certain characteristics of the
subject(s) such as the identity of people in the given space,
biometrics such gender, age, weight, etc., (4) knowledge
about the context within which the observed activities have
been taking place, and (5) estimating the body weight.

For our purposes in this article, we consider an action or
activity as an ordered intelligible sequence of bodily
movements.

HAR systems can be classified based on the modality of
sensory information used, as the kind of sensory data
greatly affects the types of features, algorithms, architec-
tures, and techniques used for analysis. Generally, we can
identify the following streams of research and develop-
ments in HAR systems: (1) HAR systems based on visual
data (such as images and video streams), (2) HAR systems
based on inertial motion streaming from sensors such as
IMUs (Inertial Measurement Units), (3) HAR systems
based on the received signal strength (RSS) from com-
modity routers installed in the surrounding environment
[2, 3], (4) HAR systems based on infrared signals, and (5)
HAR systems based on audio signals.

To the best of our knowledge, there is not much work
fusing several of these modalities together. In the current
study, we focus exclusively on the second modality,
namely, inertial motion timeseries data. This type of data
has the advantage of being more intrinsic in capturing the
motion dynamics of the activity, and is not affected by any
irregularities in the surrounding environment such as the
absence of light for visual capturing. However, this is also
its weakness as it has lower capability, in contrast to the
other modalities, in capturing the contextual environment,
and interactions with other objects and/or persons in that
environment.

The idea of an automatic HAR system depends on col-
lecting measurements from some appropriate sensors
which are affected by motion attributes and characteristics
of different body joints. Then, depending on these mea-
surements, some features are extracted to be used in the
process of training activity models, which in turn will be
used to do inference later about these activities and per-
formers. A typical example of a class of activities is those
Activities of Daily Living (ADL) that people have the
ability and custom for doing on a daily basis like eating,
moving, hygiene, dressing, etc. [4].
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There are many methods and data acquisition systems
which are based on different sensory readings for recog-
nizing these actions. Historically, heavy devices were used
to collect accelerometer data such as data acquisition cards
(DAQs) [5]. Later, smaller integrated circuits connected to
PDAs were used for this aim, for instance, camera-based
computer vision systems and inertial sensor-based systems.
In computer vision, activities are recorded by cameras [6].
However, the drawback of the camera-based approach is
that it may not work due to the absence of full camera
coverage of all person’s activities. In addition, for privacy
issues, cameras are meddlesome as people do not feel free
and comfortable being observed constantly.

Based on the data acquisition paradigm, HAR systems
can be divided into two general categories: ambient/sur-
rounding fixed-sensor systems and wearable mobile sensor
systems. In the fixed setting, data are collected from dis-
tributed sensors attached to fixed locations in the activity’s
surrounding environment (where users’ activities are
monitored) such as surveillance cameras, microphones,
motion sensors, etc; see [7] for applications in smart
homes. Alternatively, the sensors are attached to interactive
objects in order to detect the type of interaction with them,
such as a motion sensors attached to the cupboard doors or
microwave ovens (to detect opening/closing), or on water
tap to feel turning it on or off, and so on. Although this
method can detect some actions efficiently, it has many
limitations due to its fixed nature. Another limitation is that
if the user wants to leave the place, she will not be
observed from the fixed sensors and her activities won’t be
detectable. Privacy is also another issue, especially when
considering video surveillance cameras and/or auditory
Sensors.

Figure 1 shows the evolution of gathering inertial
motion data; a National Instruments DAQ card-1200 with
analog input, a USB-based wearable programmable chip,
the more advanced devices, e.g., smart phones and smart
watches.

In the wearable-based systems, the measurements are
taken from mobile sensors mounted to (or embedded on
commodity devices mounted to) human body parts like
wrists, legs, waist, and chest. Many sensors can be used to
measure selected features of human body motion, such as
accelerometers, gyroscopes, compasses, and GPSs. They
can also be used to measure phenomena around the user,
such as barometers, magnetometers, light sensors, tem-
perature sensors, humidity sensors, microphones, and
mobile cameras. These kinds of sensors are essentially
embedded on wearable devices. Consumer inertial MEMS
IMU sensors are tiny devices with typical package size of
2.5 mm x 3 mm which contain three axial accelerometers
and gyroscopes. They can be found in many commodity
products we use almost every day as smartphones, fitness
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Fig. 1 Acceleration sensing
hardware evolution

trackers, smartwatches, gaming controllers, etc. Two of
those high tech IMU devices named BMI160 are inside the
NASA helicopter Ingenuity which did fly many times on
Mars surface in 2021.

On the contrary to the fixed-sensor-based systems,
wearables are more intrinsic and able to continuously
measure data from the user everywhere, while sleeping,
working, or even traveling anywhere since it is not boun-
ded by a specific place where the sensors are installed.
Also, it is very easy to concentrate on directly measuring
data of particular body parts efficiently without a lot of
preprocessing that is needed, for example, in fixed depth
cameras. So, as opposed to ambient sensors, a wearable
sensor is intimately related to the body part to which it is
mounted. So, in some sense it is directly expressive of this
part (such as its motion dynamics, vital signs, etc.), without
the need of much or any preprocessing at all. Examples of
wearables include smartwatches, smart shoes, sensory
gloves, hand straps, and clothing [8, 9]. Recent statistics
show that the total number of smartphone subscribers
reached about 6.5 billion in 2022 and is expected to reach
7.7 billion by 2022 [10]. According to an IDTechEx report
[11] the wearable sensor industry is worth $2.5 billion in
2020, having tripled in size since 2014, and is expected to
reach more than $4.5 billion in 2024. Therefore, the dis-
advantages of wearable mobile sensors of being intrusive,
uncomfortable, and annoying have vanished to a great
extent, making this method of on-board sensing from smart
mobile and wearable devices very suitable for HAR data
acquisition.

As the current trends have been greatly shifted towards
systems that are data oriented with statistical machine
learning analysis and synthesis, feature extraction and
representation learning play essential roles in the effec-
tiveness and efficiency of HAR systems. Feature engi-
neering in timeseries inertial data has proven as effective as
automatic feature extraction/selection using representation
learning through the deep learning paradigm. From one
perspective this is due to the limited datasets available and
the small sizes of these datasets. From another perspective
inertial timeseries data is low on explicit semantics com-
pared, for example, with visual, auditory, and textual data;

so it is not very much amenable to the high level convo-
lutional operation dominant in deep neural networks.
However, the power of deep learning emerged exclusively
in transfer learning which is of great benefit in deploying
practical solutions based on wearable and mobiles devices.

Transfer learning is the transfer of knowledge gained in
one domain and/or task to another domain and/or task, so
we needn’t start over on the latter. Transfer learning is
essential in HAR systems, not only for saving computa-
tional resources [by avoiding end-to-end training on the
new task(s)], but more importantly for handling the
tremendous heterogeneities induced by the huge configu-
ration space incurred by the data collection and streaming
processes in IMU-based HAR systems. These include
among others the following:

1. Hardware heterogeneity:

o Different kinds of devices (with embedded IMUs)
such as smartphones, smartwatches, wrist bands,
specialized IMU sensors that can be placed on
different body parts, etc.

e Different brands of the same kind of device. For
example, varieties of smartphones such as iPhone,
Galaxy, Huawei, etc.

o Different models of the same brand of the same
device. For example, iPhone 10, iPhone 11, etc.

o All the above lead to different characteristics of the
IMU sensing technology, sampling rates, dynamic
ranges, sampling rate instabilities, etc.

2. Software heterogeneity:

e Different operating systems; for example, iOS vs.
Android.

e Different versions of the same operating system.

e Different filters embedded in the IMU sensors or
sensors logs.

3. Data collection heterogeneity:

e Variations in location(s) of the device(s) mounted
to the body part(s). Given a fixed type of device,
say smartwatch, it can be worn on the left or right
wrist. Smartphones have more wider range of
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locations. These lead to variations in the signals
corresponding to the same activity.

e All other factors fixed, gender and age greatly affect
the signals of the same activity.

Figure 2 gives a general framework of modern approaches
to HAR that are data-oriented. The first process in the
pipeline is, of course, the data collection which can be done
through ambient devices such as surveillance cameras,
microphones, etc., or through wearable devices such as
smartwatches, smart clothing, etc. The data then are
cleaned, curated, denoised, etc. Then, data go through
higher-level preprocessing steps including, for example,
the separation of body and gravitational acceleration. Data
are then segmented, for example, into time spans based on
gait cycle, or transitions between different consecutive
activities, etc.

The data go through a crucial step for feature extraction/
selection to capture and produce the main characteristics
and representations of the given data. This process can be
done in three main ways: (1) purely classical hand-crafted
features, (2) purely automatic feature generation through
deep neural methods, and (3) a hybrid of the two, where a
preliminary simple feature extraction/transformation step is
performed (for example, transforming the original time-
series into a new series induced by calculating the auto-
correlation function of the original signal), followed by
representation learning through deep neural methods. The
produced feature vectors/feature maps are then fed to a
learning model which can be classical such as support
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Fig. 2 General framework of HAR systems
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vector machines or more recent deep neural networks. In
the latter the last layer(s) are concerned with the applica-
tion domain which can greatly vary between recognizing
the type of the particular action performed, predicting and
estimating the biometrics of the person performing the
action such as the gender, age, weight, etc., the type of
surrounding environment such as the type of ground on
which walking occurs such as asphalt, grass, sand, etc.

To the best of our knowledge, we present the most
recent research works related to the use of transfer learning
in IMU-based HAR systems. The overall aim of this paper
is to give an introduction and survey of human activity
recognition systems using inertial motion data streamed
from IMU sensors embedded on-board smart mobile and
wearable devices. The survey is more oriented towards
technical aspects with some hints to application areas.
More specifically, we focus on the following:

1. We investigate the data collection process for HAR
systems. In addition, we provide an elaborate detailed
survey of all publicly available benchmark HAR
datasets. To the best of our knowledge, this is the
most comprehensive compiled list of available HAR
datasets done so far.

2. A major preprocessing step for any HAR system is how

to present the raw inertial data to the subsequent
machinery of either a machine learning model or more
traditional deterministic non-adaptive systems. Here
we survey traditional handcrafted feature engineering
techniques (extraction/selection) in addition to the
more recent representation learning based on deep
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neural computing. It is apparent that for the sole
purpose of end-to-end classification models, more
traditional techniques based on feature engineering
are effective enough, however, for transfer learning for
the purposes of cross-domain and/or cross-datasets
and/or cross-environmental configurations and setups,
deep learning is a necessity.

3. Transfer learning is a very powerful tool in machine
learning in general (and a major path to artificial
general intelligence), and in particular, for inertial-
based HAR systems. This is due to the tremendous
heterogeneity and the inherent gap between the data
collection and streaming process during the system
training and the corresponding process during deploy-
ment. This is further complicated by the low seman-
tical content of timeseries inertial motion data, as
compared, for example, with visual data. Here, we
survey the work done in cross-domain HAR systems
and how effective they are.

4. The following subject we address is based on a
categorization of HAR systems depending on whether
they are developed for online real-time prediction or
for offline batch analysis.

5. Deep neural networks are highly parameterized com-
plex models and they can be highly sensitive to small
perturbations (chaotic systems), caused by, what is
called, adversarial attacks. (“Chaotic” in the sense that
the process of training deep neural networks can be
viewed as the evolution of a dynamical system. This
dynamical system is not robust, that is, it is sensitive to
small perturbations. For example, small perturbations
in the weights initialization, the round-off errors caused
by floating point operations can lead to dramatically
different results such as divergence of the training
process instead of convergence, or convergence to
better or worse solutions over the loss function, etc.)
There are hardly few works addressing adversarial
attacks against timeseries data. The hardest challenge
is to qualify and quantify such attacks in this context.
In visual data, adversarial attacks can be mainly
characterized by the perturbed image being impercep-
tible to the human eye, a quality basically stemmed
from the high semantical content of visual data. Such
quality is absent from timeseries data. Here, we survey
the few works addressing adversarial attacks against
timeseries signals and further point to research chal-
lenges in this area.

6. We briefly discuss embedded implementation of HAR
systems.

7. Finally, we discuss and survey some major applications
domains of HAR systems based on inertial motion
data.

As the HAR research area is very huge, we had to focus on
particular aspects and give our own perspectives on what is
going on. Of course, it is by no means comprehensive.
However, it gives, at least, useful entry points for deeper
investigation into the particular aspect of interest for the
reader, in addition, to some tutorial and pedagogical merits.
All the materials are presented with rather assessment and
critical eyes.

The paper is organized as follows. Section 1 is an
introduction. Section 2 discusses the data collection
aspects and processes for human activity recognition tasks
based on the inertial motion modality. In addition, we
present, in a tabular form, a comprehensive survey of
publicly available benchmark datasets in the literature
related to that domain. This table is listed in “Appen-
dix A”. Section 3 introduces the feature extraction and
selection techniques for timeseries data that are used in
learning systems for activity analysis and inference. In
Sect. 4 we discuss offline systems that are based on one-
shot task, such as the recognition of a single isolated action,
versus real-time continuous operation over the online
streaming timeseries data. Section 5 surveys and assesses
the state-of-the-art techniques for transfer learning of
activity tasks based on inertial motion signals. Section 6
gives some typical application domains of activity recog-
nition from wearable IMUs; this spans biometrics (e.g.,
age, gender, gait), virtual coaching, healthcare, and ergo-
nomics. In Sect. 7, we discuss some implementations of
HAR systems on embedded devices. Finally, Sect. 8 con-
cludes the paper with an overall analysis of inertial-based
HAR systems and their future potential.

2 Data collection

There is a wide variety of activity datasets that are based on
inertial motion data. These are typically used as benchmarks
to test new techniques for activity analysis and inference
systems. A comprehensive survey and a rather elaborate
description of publicly available benchmark datasets are
given in Table 15 in “Appendix A”. Figure 3 shows some
configurations of different HAR datasets; (a) a motion-node
that recorded data in USC-HAD dataset [12], (b) the sensor
placement used for the REALDISP dataset [13].

Figure 4 shows sample images while performing dif-
ferent ADL activities (EJUST-ADL-2 [14]).

Figure 5 shows the activities and data collection of
EJUST-ADL-1 dataset [24] using Apple smartwatch.

At designing any sensor-based activity recognition sys-
tem, the number of sensors and their locations are very
critical parameters. Regarding the locations, different body
parts have been chosen from feet to chest. The selected
locations are chosen according to the relevant activities. For
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(a) A motion-node that recorded data in USC-HAD
dataset [12].

(b) the sensor placement used for the REALDISP
dataset [13].

Fig. 3 Configurations of different HAR datasets. Permission is taken
from the authors at [12] and [13] to use this figure

example, ambulation activities (such as walking, jumping,
running, etc.) are typically detected using waist or a chest
sensor [15]. On the other hand, non-ambulation activities
(such as brushing teeth, combing hair, eating, etc.) can be
naturally classified more effectively using a wrist-worn, or
in general upper body, mounted sensors [16].

Many kinds of physical features can be measured using
wearable sensors [17]. These include: (1) environmental
data such as barometric pressure, temperature, humidity,
light intensity, magnetic fields, and noise level, (2) vital

Fig. 4 Sample images while
performing different ADL
activities (EJUST-ADL-2 [14])

@ Springer

health signs such as pulse, body temperature, blood pres-
sure, blood sugar (glucose) and respiratory rate, (3) loca-
tion data which are typically identified by longitudes and
latitudes using GPS sensors, and (4) body limbs motion
such as acceleration and rotation of body parts like arms,
legs, and torso using accelerometers and gyroscopes. Note
that all of these can be considered as timeseries data. There
are other different kinds of data that can be produced by
wearable devices including textual data from social media.

However, in this article we focus exclusively on time-
series motion data. For the purpose of activity recognition,
the inertial motion measurements have proven to represent
human motion accurately, where some methods depending
only on acceleration measurements have achieved very
high accuracy [15, 16]. However, it is very difficult to
extract the pattern of motion from acceleration raw data
directly because of the high frequency oscillation and
noise. So, preprocessing in addition to feature extraction
and selection techniques should be applied on the raw data
before modeling, or alternatively use deep learning meth-
ods for automatic feature extraction and selection (repre-
sentation learning). The latter might not be a good choice
over raw noisy data taking into consideration adversarial
attacks, their qualitative and quantitative nature over
timeseries data.

A line of work aims at automatically determining the
on-body sensor location given the inertial motion signal of
a given fixed activity. For example, Madcor et al. [18]
study the particular action of ‘walking’ and how the
induced signal can be used to determine the sensor’s
location. They do not do any feature extraction, instead,
they use the raw signal data as a direct input to a random
forest classifier. They validate their work on four datasets:
EJUST-GINR-1 [19, 20], RealDisp [13, 21], HuGaDB
[22], and MMUSID [23]. All of these datasets are either
exclusively gait or including gait among other activities;
however, only the gait is used in the study.

Figure 6 shows a silhouette diagram with sensors’
locations in all the considered datasets. The signals used
for recognition are the tri-axial linear acceleration in
addition to the tri-axial angular velocity. These two
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Fig. 5 The activities and data
collection of EJUST-ADL-1
dataset using Apple smartwatch

modalities have proven effective enough to detect the
sensor’s location as evidenced by the performance metrics.
Accuracy reached above 90% and most of the recall and
F1-score results are above 80%. As expected most of the
confusion in location determination occurs between sym-
metric sensors across the body such as between left and
right calf, left and right wrist, etc. Such line of research can
be applied in data augmentation of timeseries inertial data
as well as in developing healthcare applications, for
example, in treatment assessment for people with motion
disabilities. Figure 7 shows a data sample of 3D acceler-
ation, 3D rotation, and 3D angular velocity signals of the
activity 'walk’ (dataset EJUST-ADL-1 [24]).

) BJUST-
GINR-1

(b) RealDisp

A similar line of research is conducted by Abdu-Aguye
in [25]. The output of this work can be used to create
‘virtual IMU sensors’. In [25] the authors explore the
feasibility of transforming/mapping inertial timeseries data
streamed from a ‘source’ body location, whilst performing
a given activity, to a different ‘target’ body location. They
use a bidirectional long-short-term memory (Bi-LSTM) to
learn such mapping. An LSTM is a rather stable form of
recurrent neural networks (RNNs) that can capture long-
term correlation between the current time sample with
historical samples of the input timeseries. The bidirectional
version takes as well the future into account when pre-
dicting the current moment, hence, it smooths the predicted

BackPack

(c) HuGaDB (d) MMUSID

Fig. 6 Schematic diagram of on-body sensors locations in some activity datasets
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signal, and hence, generates more accurate timeseries.
However, apparently it can only be used in offline mode (or
online mode with limited future input). The model is rather
simple and is shown in Fig. 8. Figure 9 shows the IMU
sensors placements on the human body (EJUST-GINR-1
dataset [19, 20]).

One of the most difficult and challenging problems in
the collection of inertial motion data is synchronization.
One reason that this process is more difficult in such data
modality is that timeseries data has much lower semantics
content, than, for example, visual or auditory data. In the
latter modalities synchronization and/or segmentation can
be done offline in a manual fashion, though it is a laborious
process. Such offline manual process is not feasible in the
case of timeseries data. Synchronization can involve
determining the start and end of unit actions, the transition/
switching between consecutive actions, synchronization
and alignment among different IMUs used simultaneously
in data collection, and in the case of multiple modalities the
alignment among such modalities.

Fayez et al. [26] collect the ValS dataset. It is a bimodal
dataset of squats: visual and inertial motion timeseries. The
authors use 9 different IMU devices mounted on different
parts of the subject’s body in addition to 2 RGB cameras
one positioned in front of the subject and the other at half
frontal/lateral. For the IMU devices that data are collected
from the devices and then sent in the form of CSV files to a
mobile app on an iPhone. Through this applications all of
the IMU sensors are readily synchronized. Each record in
the CSV files has a timestamp with a resolution in the order
of milliseconds. Hence, this is used to synchronize among
the 9 IMU devices. For the visual data they used the
camera of a smartphone. They used a timestamp app in

Fig. 7 A data sample of 3D

6-dimensional sample (Ax, Ay, Az, Gx, Gy, Gz)

Encoder Network
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100 Cells
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Fig. 8 Model for mapping inertial motion data across different body
locations [25]

order to annotate the video capturing with a time format
that is closest to that produced by the IMU devices. The
readings obtained from the IMU units have the global
timing in the following format <YYYY-MMM-
DDTHH:MM:SS.S>.

Figure 12 shows a snapshot the video capturing with
time annotation. Optical character recognition is then used
on that section of the frames depicting the time annotation
in order to extract the time. The time formats of both the
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Fig. 9 IMU sensors placements on the human body (EJUST-GINR-1
dataset [19, 20])

IMUs and that extracted from the frames are matched
together. They finally matched the time instances in both
modalities taking into consideration the difference in IMUs
sampling rate and the video streaming frame rate. This
caused a delay error between the two modalities that does
not exceed 200 ms. During the data collection process, the
authors used a whistle to indicate exactly when the subject
started the activity. This would generate a high frequency
peak in the sound wave used to cut the video indicating the
execution of the given activity. The first extracted frame is
then matched with the corresponding IMUs frame given
the aligned time steps. Similar procedure employed to
indicate the last video and IMUs frames.

The same authors have recently collected a new workout
activity dataset [27]. The dataset is called MMDOS; it is a
multi-modal dataset and is unique in the sense that it
combines many data modalities and sensors including:
RGB, inertial motion, depth, and thermal. Accordingly, the
synchronization here is much more challenging than in the
previous work. The data are collected from 50 participants
performing four types of workout exercises. As in the
previous work all the IMU sensors are already synchro-
nized through a mobile app running on an iPhone. All
IMUs have the same sampling rate. The depth imaging is
obtained using a Kinect camera, and the timestamp is
extracted from the Kinect metadata using MATLAB with

the same format as the IMUs. RGB video are captured
using mobile phones and a mobile app is used to annotate
each frame of the video capture with the timestamp.

See Fig. 10 for an illustration of time annotation of RGB
video frames. Optical character recognition is used to
extract this annotation and convert into proper time format.
The timestamp of the frontal camera is used as a frame of
reference for all other devices, taking into account the
different sampling rates of the involved sensors. In addi-
tion, the authors used a beep sound to indicate exactly
when the subject starts the activity so that it makes a peak
in the audio signal. This sound is used to align the start of
the RGB video, and all timestamps are then synchronized
taking into consideration the different sampling rates
across all devices. As for the thermal imaging they per-
formed the synchronization completely manually due to the
inability to receive any metadata, including timestamp,
from the video streaming. The whole synchronization
process is depicted in Fig. 11. Figure 12 shows a video
recording with timestamp annotation [26].

3 Feature extraction/selection

For inertial-based HAR systems, many approaches to fea-
ture extraction and selection have been developed focusing
on the structural and/or statistical properties of the input
timeseries. In this section, we survey the main feature
extraction and selection techniques. There are different
kinds of features used to represent timeseries data. Some
typical examples of features are shown in Table 1, which
are essentially based on handling the timeseries either in
the time domain or in the frequency domain.

Huynh et al. [29] have suggested that selecting individual
tailored features for each activity can improve both the
computational efficiency and the recognition accuracy. But,
designing a specific descriptor for each activity is not flexible

17:05:00.89

Fig. 10 Frontal camera view of a shoulder press exercise with the
timestamp on the lower right [27]
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Fig. 11 Synchronization among all modalities in the MM-DOS dataset [27]

for adding new activities to the system. For example, if the
system has fifty activities, fifty different descriptors are
needed to design in the worst case, which can be impractical.

In the following sub-sections, we survey research works
using different types of features, e.g., autocorrelation
function, Fourier analysis/spectra, autoregression, raw data,
embedding, etc. These types of features can be used stan-
dalone or combined with other types of features, e.g., time
domain features (standard deviation, variance, kurtosis,
root mean square, mean, skewness, etc.) and/or frequency
domain features (discrete cosine transforms, wavelet
transform, entropy, quantiles, etc.).

3.1 Autocorrelation function

One of the most effective and simple feature extraction
techniques is based on the use of autocorrelation function
[30] taking lag values starting from O up to a certain
maximum value. The autocorrelation function computes
the correlation/similarity between a given timeseries and a
lagged version of it. The empirical estimation of the
autocorrelation function can be computed as follows:

T—(
(0 =23 (e — Bl

Table 1 Different types of timeseries features

Fig. 12 Video recording with timestamp annotation [26]

where X is the sample mean of the timeseries and ¢ is the
lag value (the amount by which the original signal is
shifted). The autocorrelation function captures the linear
correlation between the timeseries and the shifted versions
of it. In some way it can be viewed as a feature reduction
technique that reduces the original signal into a smaller
signal of length depending on the maximum lag value /.
From another perspective, it can be as well considered as
length normalization, that is, different timeseries may have
different lengths, however, if we fixed a certain lag, then
the acf of all of them up to this lag will produce timeseries
with the same length. This might be necessary for many
analytical techniques, such as when required to find the
similarity/dissimilarity between two timeseries.

Technique Feature

Time domain features

[28]

Frequency domain
features

[16]

Standard deviation, variance, kurtosis, root mean square, mean, skewness, total energy, range (maximum—minimum)

Fourier transform, discrete cosine transforms, wavelet transform, entropy, quantile 0.25, quantile 0.50, quantile 0.75
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For example, Gomaa et al. [24] used a smartwatch to
collect sensory data for 14 activities of daily living
(ADLs), creating a dataset called EJUST-ADL-1 (see
Table 15 for full description). They compute the autocor-
relation function for each of the tri-axial timeseries of the
acceleration, angular velocity, and rotation displacement,
up to a certain lag (empirically choosing 10 as suitable).
These are vectorized and fed to a random forest (RF)
classifier that recognizes the performed activity. They
achieved 80% accuracy over the 14 activities.

The autocorrelation function has also been effectively
used for identifying periodic peaks [31] through segment-
ing repetitive actions. In a different context Mostafa et al.
[32] extracted the autocorrelation function from a tri-axial
accelerometer (linear motion) and a tri-axial gyroscope
(angular motion) to produce a multi-channel feature vector
consisting of 6 channels each of length 11 (10 is the
maximum lag of the acf). The signals are streamed from
IMU sensors during walking activity. The authors experi-
mented with multiple gait datasets including: EJUST-
GINR-1 [19, 20], OU-ISIR [33], Gait Events DataSet
(GEDS) [34], and Human Gait Database (HuGaDB) [22].

The acf features are then fed into two models for bio-
metrics predictions: a classical random forest for gender
classification and a convolutional neural networks (CNN)
for age estimation. Figure 13 shows the CNN architecture
used. In comparison with other works in the literature, their
CNN regressor performs better over almost all the datasets
considered with age mean-absolute-error ranging from
0.9 years up to 2.4 years. For gender recognition both the
random forest and CNN have comparable results above
90% (except for the OU-ISIR dataset). This indicates the
effectiveness of the autocorrelation function as timeseries
representation which is rather simple to compute and
interpret.

Adel et al. [20] use the autocorrelation function as a
feature extractor for person identification using inertial
streaming from wearable IMUs during walking activity.
Again the acf is computed for the 6-axial inertial signal (3-
axial accelerometer and 3-axial gyroscope). They experi-
ment with the EJUST-GINR-1 gait dataset [19, 20]. It is
apparent from Fig. 14 the inherent periodicity of the gait
signal, specially in the y-direction, and hence, the acf is
well suited to capture the gait characteristics of the given
timeseries, specially capturing the corresponding unique
gait fingerprint of each individual. The authors feed the
induced feature vectors to three classifiers: a SVM, a RF,
and a CNN. The number of subjects are rather limited (20),
however, the authors study the best on-body sensor loca-
tion for person identification and how fusion of several
IMU sensors mounted on different body parts would affect
the results. Even though the case for gait is obvious (lower
body locations), the proposed methodology open new

directions for similar kinds of research with more complex
types of activities.

A hidden assumption in the use of autocorrelation is that
the activity signals are statistically stationary. It means that
the statistical behavior of the timeseries does not change
over time. To the best of our knowledge this has empiri-
cally shown to be the case where the performance of pre-
dictive models is rather satisfactory. However, much work
still needs to be done to verify that assumption and for
which classes of activities. And more importantly to
explicitly state this assumption and put it in perspective.
Another assumption, or maybe rather simplification, is that
each inertial modality (whether linear or angular), and each
axis of the same modality is assumed to be completely
independent of the others. Maybe a better descriptor would
be obtained by considering the cross-correlation among the
different axes of the same modality and even across dif-
ferent modalities.

Nourani [35] presented a comprehensive comparison of
HAR activities using IMU sensors; Nourani selected five
state-of-the-art feature-sets as case studies; statistical fea-
tures, self-similar features, histogram bins features, physi-
cal features, orientation invariant features. The self-similar
features includes the number of autocorrelation peaks,
prominent autocorrelation peaks, weak autocorrelation
peaks, maximum autocorrelation value, first autocorrela-
tion peak height, etc.

Wang [36] presented a data fusion-based hybrid sensory
system for elderly ADL recognition; one of the proposed
features is the autocorrelation of the data collected from the
accelerometer, gyroscope, magnetometer, barometer, and
temperature sensors. Janidarmian et al. [37] presented a
comprehensive analysis on wearable acceleration sensors
in HAR; one of the features used is the autocorrelation; the
height of the first and second peaks and the position of the
second peak.

Morris et al. [38] proposed RecoFit a system that uses a
wearable sensor to find, recognize, and count repetitive
exercises. Data was acquired by a wearable armband worn
on the subject right forearm; it contains a SparkFun IMU
sensor (3-axial accelerometer and 3-axial gyroscope). The
authors used the autocorrelation function to find patterns of
self-similar repetitive exercise. Each 5-s window is trans-
formed into 224 features. For instance, the authors compute
the following five features; number of autocorrelation
peaks, prominent peaks, weak peaks, maximum autocor-
relation value, height of the first autocorrelation peak after
a zero-crossing.

Muehlbauer et al. [39] proposed a HAR system based on
segmentation, recognition, and counting. They achieved
85% segmentation accuracy and 94% recognition accuracy
on ten classes based on user-independent training. The
proposed approach for segmentation utilizes features based

@ Springer



20474

Neural Computing and Applications (2023) 35:20463-20568

Fig. 13 The BioDeep CNN
architecture [32]
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on an autocorrelation function. For each window, the
authors calculated the median crossings and peaks of the
signal autocorrelation function. The high values of these
two features indicated clearly that an exercise was
performed.

Zebin et al. [40] proposed a HAR system based on
multichannel time series signals collected by five wearable
sensor units each with an integrated MPU-9150 IMU (ac-
celerometer and gyroscope). Six activities were recog-
nized; walking, walking upstairs, walking downstairs,

@ Springer
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Dropout = 0.5
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sitting, standing, lying down. The authors applied four
machine learning algorithms; k-NN, NB, SVM, and MLP.
Several feature extraction methods were adopted; average
value for all three acceleration components, RMS value for
all three acceleration components, autocorrelation features
(height of main peak, height and position of second peak),
spectral peak features (height and position of first six
peaks), spectral power features (total power in five adjacent
and pre-defined frequency bands).
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Fig. 14 A sample of gait signal (EJUST-GINR-1 gait dataset [19, 20])

Jain et al. [41] proposed a stride segmentation method
from 3-axial accelerometer data for three walking activities
(level walking, walking upstairs, and walking downstairs).
The autocorrelation function is used for stride boundaries
estimation. The segmentation and extraction of stride rel-
evant data were achieved using a tuning parameter based
on the minimum standard deviation among the segmented
strides. The method evaluation is performed on the HAPT
[42] and OU-ISIR gait [43] inertial sensor datasets.

Bota et al. [44] proposed a Semi-Supervised Active
Learning (SSAL) based on Self-Training (ST) approach for
HAR to automate partially the annotation process in order
to reduce the required number of annotated samples by an
expert. The proposed approach selects the most relevant
samples for annotation and propagate their annotation to
the most confident samples. The authors compared super-
vised and unsupervised models with the proposed approach
on two ADL datasets; (1) the UCI dataset [45] with the
following activities; standing, sitting, downstairs, upstairs.
The considered features are statistical domain features
(e.g., skewness, max, mean, histogram), temporal domain
features (e.g., zero crossing rate), spectral domain features
(e.g., median frequency, max power spectrum). (2) the
CADL dataset (collected by the authors) with the following
activities; standing, sitting, downstairs, upstairs. The con-
sidered features are statistical domain features (e.g., mean,
histogram, root mean square), temporal domain features
(e.g., autocorrelation, temp centroid), spectral domain
features (e.g., max power spectrum). The proposed method
reduced the required annotated samples by more than 89%
while maintaining an accurate model.

Altun and Barshan [46] compared various techniques for
HAR using inertial and magnetic sensors; Bayesian deci-
sion making (BDM), least-squares method (LSM), k-NN,
DTW, SVM, ANN. Daily and sports activities are recog-
nized using five sensor units. The sensor units are worn by
eight users on chest, arms, and legs. Each sensor unit

comprises 3-axial gyroscope, 3-axial accelerometer, 3-ax-
ial magnetometer; 26 features were calculated for each
signal: minimum and maximum values, mean value, vari-
ance, skewness, kurtosis, 10 equally spaced samples from
the autocorrelation sequence, first five peaks of the discrete
Fourier transform and the corresponding frequencies.

Yu [47] presented CNN and RNN models to classify fall
and non-fall activities. A publicly available dataset was
used [48]; 6 MTXx sensor units were worn; each sensor unit
comprises 3-axial accelerometer, 3-axial gyroscope, 3-ax-
ial magnetometer and atmosphere pressure; this dataset
includes 20 fall activities and 16 ADL activities. CNN
achieved an accuracy of over 95% for classifying fall and
non-fall activities. RNN achieved an accuracy of over 97%
in classifying fall, non-fall, and a third category (defined as
“pre/postcondition”). The following features were extrac-
ted for each time window: minimum and maximum values,
mean value, variance, skewness, kurtosis, first 11 values of
autocorrelation sequence, and the first five peaks of discrete
Fourier transform.

Pereira et al. [49] presented a biofeedback system based
on sSEMG and IMU sensors for home-based physiotherapy
exercises evaluation. SEMG signal was used to identify
temporal intervals in which muscular activity was occur-
ring. Exercise repetitions were segmented into time win-
dows where features related to subject posture were
extracted. The extracted features include; statistical fea-
tures (e.g., skewness, kurtosis, histogram, etc.), temporal
features (e.g., mean, median, maximum, minimum, vari-
ance, temporal centroid, standard deviation, root mean
square, autocorrelation, etc.). These features were input to
DT, k-NN, RF, and SVM methods to classify proper/im-
proper exercise execution and achieved an accuracy of
> 92%.

Rosati et al. [50] compared two feature sets for HAR;
the first includes time, frequency, time-frequency domain
features, while the second feature set includes time domain
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features considering the signals physical context. The
comparison of the 2 feature sets were based on 4 machine
learning classifiers performance. 61 healthy subjects per-
formed 7 ADL (activities of daily living) activities while
wearing an IMU-based device. A 5 s window was used to
segment each signal; for each window 222 and 221 features
were extracted for each feature set, respectively. The first
feature set includes 222 features from different domains;
20 time-domain features (mean value, variance, standard
deviation, skewness, kurtosis, minimum value, maximum
value, 25th percentile, 75th percentile, interquartile range,
10 samples from the autocorrelation sequence), 3 fre-
quency-domain features (mean and median frequency of
the power spectrum, Shannon spectral entropy), 14 time-
frequency domain features (norms of approximation and
detail coefficients of 7 levels of decomposition of discrete
wavelet transform). Each feature set had simultaneous
feature selection and classifier parameter optimization
performed using a Genetic Algorithm (GA). The results
showed that the SVM has the best performance on both
feature sets (97.1% and 96.7%). The second feature set al-
lowed for easier understanding of changes in the biome-
chanical behavior in complex cases, e.g., the application on
pathological subjects.

Muaaz [51] proposed a HAR system called WiWeHAR
using Wi-Fi and wearable IMU sensors. The standard Wi-
Fi network interface cards collected the Channel State
Information (CSI) and the wearable IMU (accelerometer,
gyroscope, magnetometer) collected the subject’s local
body movements. The authors computed the time-variant
Mean Doppler Shift (MDS) from the processed CSI data
and the magnitude from each IMU sensor. Then, they
extracted 23 time-domain and frequency-domain features
from the MDS and the magnitude data: mean, variance,
standard deviation, skewness, mean absolute value, wave-
form length, enhanced mean absolute value, enhanced
waveform length, weighted mean absolute value (window
function step-wise or continuous), maximum fractal length,
mean amplitude change, root mean square, difference
absolute standard deviation, simple squared integral, Wil-
lison amplitude, zero crossing, slope sign change, max of
the absolute value, slope, peaks of the autocorrelation,
spectral peaks, spectral energy. The authors evaluated the
performance of WiWeHAR by using a multimodal human
activity dataset that was collected by 9 subjects. Every
subject performed four activities: walking, falling, sitting,
picking-up object from floor. The results indicated that the
proposed multimodal system outperformed the unimodal
individual CSI, accelerometer, gyroscope, and magne-
tometer HAR systems achieving overall recognition accu-
racy of 99.6-100%.

@ Springer

3.2 Fourier analysis

Another major, and very classical descriptor, of the time-
series is based on Fourier transform and its variants.
Generally, Fourier transform can be considered as the
projections of the given timeseries over an infinite basis of
complex exponentials ™. As these complex exponen-
tials are orthonormal they can be considered to form a basis
of an infinite dimensional space. So, the Fourier coefficient
is a projection. In other words the nth Fourier coefficient is
a projection of the function f{f) over the axis of nth com-
plex exponential ™. The numerical/computational real-
ization of the Fourier transform is the Discrete Fourier
transform, and its most prominent implementation is called
the Fast Fourier transform. The coefficients of the trans-
form can be taken as a descriptor/feature vector of the input
timeseries. As the transform is infinite in nature, we con-
sider only the dominant components which correspond to
the dominant frequencies (in magnitude) in the original
timeseries.

Of particular interest is the wavelet transform. Wavelet
transform is an improvement over the classical Fourier
transform where the signal now can be decomposed in
terms of both time and frequency localized basis functions.
This helps capture the irregularities and non-stationarities
in the input timeseries as it is a localized Fourier transform.
Given a continuous-time signal x(7), its idealized Fourier
transform can be computed as follows:

100.9) = = [ 300 - (S)a @)

The function s represents the wavelet basis function
(called the Mother wavelet). Its wavelet is characterized by
two parameters: its translation value 7 and its scaling value
s. These parameters determine both the time-localization
and the frequency-localization of the mother wavelet. By
continually changing the parameter 7, the mother wavelet
is translated and accordingly temporal resolution is
achieved. On the other hand, by continually changing the
parameter s resolution in the frequency ranges is gained.

By convolving the given timeseries with the scaled and
translated version of the mother wavelet, a similarity value
between the signal and the mother wavelet at that trans-
lation and scale is obtained. This similarity defines the
wavelet coefficient y(s,7). Abdu-Aguye et al. [52] did
investigate the effectiveness of two feature extraction
techniques. One of them is based on decomposing the
signal applying wavelet transform using the Haar mother
wavelet.

The autocorrelation of the resulting coefficients are
computed up to a certain lag (they experimented with 5, 10,
and 15). The resulting feature vectors are then fed to 4
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different classifiers: random forests [53], canonical corre-
lation forests (a variation of random forests) [54], ProtoNN
[55], and Deep Forests (gcForest) [56].

The problem explored is direct activity recognition,
specifically, recognizing activities of daily living over three
datasets: HAPT [42], Sports and Daily Activities [57], and
EJUST-ADL-1 [24]. Their results show the effectiveness of
the developed descriptor based on the wavelet transform,
specially with comparison with the other descriptor, pro-
posed by the authors, based on autoregressive modeling.
Across all classifiers and datasets the wavelet-based
descriptor achieves at least in the range of 80%’s.

Motivated by the strong need of monitoring human
activities for healthcare, Preece et al. [58] have done a
rather extensive comparison of different types of feature
descriptors extracted from accelerometer signals. They
compare 14 feature extraction methods derived from
wavelet transform, time-domain, and frequency-domain
characteristics of the inertial signals. The comparison was
done using two activity datasets collected from 20 subjects.
One dataset contains the common daily activities of
walking, ascending stairs, and descending stairs. The sec-
ond dataset is more encompassing and contains 8 activities
including hopping, running, jogging, and jumping. To test
the sensitivity of the feature descriptors with respect to the
sensor’s location, the authors compared the activity clas-
sification accuracy over inertial signals streamed from
three different lower limb locations: waist, thigh, and
ankle, and combinations of these. The lower limb was
chosen exclusively as all the activities mainly involve the
lower body joints. Nearest neighbor classifier was used to
test the performance of different configurations of feature
descriptor/sensor placement/activity set. Cross-subject
validation is used to assess and compare amongst the dif-
ferent configurations. Their empirical study indicated that
the wavelet transform can best be used to characterize non-
stationary inertial signals, however, it does not perform as
well for classifying stationary activities performed by
healthy subjects. In the latter case frequency-based features
perform supreme with respect to others. Their best
descriptor performed about 95% cross-subject classifica-
tion accuracy.

Foerster and Fahrenberg [59] proposed motion and
posture recognition model based on accelerometers data.
The considered activities include posture, motion, stairs,
lying, supine, sitting, walking, and bicycling. The activities
were recorded by 31 subjects comprising 13 motions and
postures that were repeated for three times. Five uni-axial
sensors and three placement locations (sternum with three
axes and right and left thighs). The authors proposed a
hierarchical classification method that recognizes sub-cat-
egories of motion and posture activities with only 3.2%
mis-classifications. The raw DC values and rectified AC

values were averaged for each activity and monitoring
segment. The walking frequency was calculated using
short-time Fourier transform within a frequency band of
0.5-4 Hz from the sternum sensor z-axis.

Preece et al. [58] compared different feature descriptors
extracted from accelerometer signals. They compared 14
feature extraction methods derived from wavelet transform,
time-domain (e.g., mean, standard deviation, median, etc.),
and frequency-domain (e.g., principal frequency, spectral
energy, magnitude of first five components of FFT analysis,
etc.) of the IMU signals. In order to extract the frequency-
domain features, an FFT was applied on each 2-s window
(128-sample) with 50% overlap between consecutive
windows. The final frequency-domain feature set com-
prises of the magnitudes of the first five components of the
FFT power spectrum.

Janidarmian et al. [37] proposed a HAR system based on
wearable accelerometers. The proposed features include
the Power Spectral Density (PSD), the Fourier coefficients
in the frequency domain, the positions and power levels of
the highest 6 peaks of PSD computed over a sliding win-
dow, and the total power in 5 adjacent and pre-defined
frequency bands.

Bao and Intille [60] proposed a HAR system based on
subject annotated acceleration data. Features like mean,
energy, frequency-domain entropy, and correlation are
extracted from 512 sample sliding windows of acceleration
data with 50% overlapping between consecutive windows.
Each window duration is 6.7 s. A several seconds window
is sufficient to cover cycles in activities like walking,
window scrubbing, and vacuuming. The window size of
512 samples allows for quick computation of FFTs.

Huynh and Schiele [29] studied the impact of features
and window length on HAR accuracy. To study the effect
of various windows lengths, acceleration features were
extracted from windows of 128, 256, 512, 1024, and 2048
samples. For each window, the authors computed the
magnitude of the mean, variance, energy, spectral entropy,
and the discrete FFT coefficients. The results showed that
there is neither a single feature nor a single window length
that achieved best accuracy for all activities. The FFT
features were always among the features with the highest
cluster precision. However, the FFT coefficients that
achieved the highest precision differ for each activity, and
the recognition can be enhanced by selecting features for
each activity individually. In general, the highest peaks for
the FFT coefficients were laid between the first and the
tenth coefficient. The recognition results indicated as well
that integrating different FFT coefficients to bands of
exponentially increasing size can be a trade-off for using
individual or paired coefficients. For the non-FFT features,
the variance has continuously high precision values, how-
ever, the spectral entropy has the highest values for the
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activity ‘standing’. On average, the features with window
lengths of 1 and 2 s achieved slightly higher precision
values than those with other window lengths. However,
there are big differences across the various activities, and
selecting different window lengths for various activities
resulted in higher recognition rates.

Eyobu and Han [61] presented a spectrogram-based
feature representation and data augmentation technique for
HAR based on wearable IMU sensor data. The Hanning
window was utilized and 512 samples were used in each
FFT vector with a sampling frequency of 50 Hz. The
Hanning window can be defined as in Eq. (3) and was
named for Julius von Hann, an Austrian meteorologist. It is
also known as the Cosine Bell.

N-—-1
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An ensemble of data augmentations in feature space is
proposed to tackle the data scarcity problem. Performance
evaluation was done on an LSTM architecture to assess the
impact of the proposed feature representation and data
augmentations on HAR accuracy. In addition to evaluating
on a newly proposed dataset, the data augmentation tech-
nique is evaluated on the UCI HAR dataset [62]. Using few
spectral features, the authors achieved state-of-the-art
recognition performance. Fewer spectral features exhibit a
lesser training time of about 1 h and 45 min compared to
about 2 h and 30 min for the large feature set utilized in
this work. The proposed extraction approach achieved the
best performance enhancement in accuracy of 52.77%
compared to the UCI online dataset. The proposed OR
(Original spectral features) + LAl (1st Local Averaging)
achieved the best performance enhancement in accuracy of
32.6% compared to the UCI online dataset.

Garcia [63] proposed human activity recognition and
segmentation using Hidden Markov Models. The recogni-
tion is based on IMU signals collected by two smartphone
sensors: accelerometer and gyroscope. Six different activ-
ities are considered: walking, walking-upstairs, walking-
downstairs, sitting, standing, and lying. These activities
were performed by 30 users. The feature vector included:
mean, standard deviation, median, absolute value (for each
axis), minimum and maximum values, Signal Magnitude
Area (SMA), energy average sum of squares, interquartile
range, entropy, autoregression coefficients, correlation
coefficient between two signals, maximum frequency
component, frequency signal weighted average, skewness,
kurtosis, frequency interval energy within FFT 64 bins of
each window, angle between two vectors. The author
concluded that using Cepstral techniques were suitable for
HAR and segmentation. Despite inertial analysis being
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similar with speech recognition, some transformations (like
pre-emphasis) are useless for inertial signals analysis. The
RASTA filtering and delta coefficients were found to be
only suitable for activity segmentation. Thus, their use is
not recommended when the subject/activity recognition is
the main goal. The use of Activity Sequence Modelling is
highly suggested since it reduced all error rates for
recognition and segmentation. The subject recognition
error rate was reduced from 26.8 to 16.5% and the vector
size from 561 to 180 features. The activity segmentation
error rate was reduced from 5.2 to 0.4% and the vector size
from 561 to 405 features. The activity recognition error
rate was increased slightly from 3.5 to 3.6% using the
Cepstral techniques, however the vector size was lower
(only 180 features).

3.2.1 Spectra

Machado et al. [64] proposed a HAR system based on a
3-axial accelerometer sensor; the proposed system is based
on unsupervised learning approach. The considered fea-
tures are statistical domain features (kurtosis, skewness,
mean, standard deviation, interquartile range, histogram,
root mean square, median absolute deviation), temporal
domain features (zero crossing rate, pairwise correlation,
autocorrelation), spectral domain features (maximum fre-
quency, median frequency, cepstral coefficients, power
spectrum, Mel-frequency cepstral coefficients, fundamental
frequency, power bandwidth).

Krause et al. [65] proposed a wearable system to specify
online the user context and context transition probabilities.
The authors tried various sampling frequencies and dif-
ferent feature engineering methods were applied. For low
sampling rates (1 and 10 samples per minute), the onboard
averages and absolute differences were calculated. For high
sampling rate (8 samples per second), the Fast Fourier
Transform (FFT) oscillatory spectra of the recorded
accelerometer values were calculated. A 64 point FFT (i.e.,
spectra of 8 s windows with different spectrum for each
axis) is a good choice to discriminate various fine-grained
movement patterns. The resulting spectra were log-trans-
formed. In the low sampling rate cases, all 8§ data channels
of the BodyMedia device were recorded forming an 8-dim
feature-space. For the high sampling rate, the spectra of the
two accelerometers were recorded forming a 128-dim
feature-space.

Abreu et al. [66] proposed a HAR system where the
signals were collected from four sensors: accelerometer,
gyroscope, magnetometer, and microphone. A new dataset
was proposed comprising 10 activities; e.g., opening door,
brushing teeth, typing on keyboard, etc. The proposed
HAR classifier is based on multiple HMMs one per
activity. The authors extracted all the three axes (x, y, z) of
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the 3-axial sensors (accelerometer, gyroscope, and mag-
netometer) and the overall magnitude of each

x2 +y2 4+ 72, To address similar activities classification
conflict (e.g., opening door and opening faucet), the sound
was considered in the classification process; the authors
combined the IMU sensors with the microphone. Each
signal is segmented in time windows of length 250 ms
without overlap. For each 250 ms window, over 30 dif-
ferent features were extracted. The features came from
temporal, spectral, and statistical domains that were cal-
culated for all sensors and axes. The final output is a fea-
ture vector with 265 features for each 250 ms time
window. The authors achieved an overall accuracy of 84 +
4.8% utilizing 27 features selected by Forward Selection
coming from different domains (statistical, temporal and
spectral). In online recognition, the proposed solution
experienced preliminary tests by 3 of the 8 initial subjects.
The classifier detected activities within a continuous stream
with an Fl-score of 74 4 26%.

Shoaib et al. [67] present a fusion-based HAR system
using smartphone motion sensors. Ten male subjects per-
form seven activities; walking, running, sitting, standing,
jogging, biking, walking upstairs, walking downstairs. Five
smartphones (Samsung Galaxy SII i9100) are used with the
following sensors: accelerometer (with and without grav-
ity), gyroscope, magnetometer. The authors adopted vari-
ous machine learning techniques: Bayesian networks,
SVM, logistic regression, k-NN, decision trees, and ran-
dom forest. Three feature sets were proposed of time
domain features and one set of frequency domain features
(the sum of the first 5 FFT coefficients and spectral
energy). The authors showed that the utilized sensors,
except the magnetometer, were individually able of
recognition based on the activity type, the body locations,
the feature set, and the classification method (personalized
or generalized). The authors also showed that the sensors
fusion only enhances the overall recognition accuracy
when their individual performances are not high enough.

Tahir et al. [68] presented a HAR model based on IMU
sensors, i.e., gyroscopes and accelerometers. The IMU data
is processed using multiple filters such as Savitzky—Golay,
median, and Hampel filters for examining the lower/upper
cutoff frequency patterns. Statistical features (average,
middle, squared deviation, and max/min values), frequency
features (chirp z-transform (CZT), spectral entropy, the
Helbert transform), and wavelet transform features (the
Walsh—-Hadamard transform) were extracted. The Adam
[69] and AdaDelta [70] methods were utilized in the fea-
ture optimization phase. The proposed model was evalu-
ated on the USC-HAD dataset [12] and the Intelligent
Media-sporting Behavior (IMSB) dataset [71] that is a new
subject-annotated sports dataset. The “leave-one-out”

cross validation is utilized and the proposed model
achieved recognition accuracy of 91.25%, 93.66% and
90.91% when compared with the USC-HAD [12], IMSB
[71], and Mhealth [72] datasets, respectively.

Figueira et al. [73] proposed a HAR system where two
sensors were used (accelerometer and barometer) with
sampling frequency of 30 and 5 Hz, respectively. The
signals obtained were divided into 5-s windows. The
dataset used is composed of 25 subjects. ADLs were per-
formed with smartphone worn in 12 different positions.
Three sets of features were extracted from each window;
spectral domain (maximum/median/fundamental frequen-
cies, max power spectrum, total energy, spectral centroid/
spread/skewness/kurtosis/slope/decrease/roll-on/roll-off,
curve distance, spectral variation), statistical domain
(skewness, kurtosis, histogram, mean, standard deviation,
interquartile range, variance, root mean square, median
absolute deviation), temporal domain (correlation, tempo-
ral centroid, autocorrelation, zero crossing rate, linear
regression).

Attal et al. [74] presented various classification methods
for HAR. Three accelerometers were placed at the subject
chest, right shank, and left ankle. Four supervised classi-
fiers k-NN, SVM, GMM, RF and three unsupervised
classifiers k-means, GMM, HMM were compared. Sensors
raw data and extracted features are used independently as
inputs for each classification method. Nine accelerometer
signals were collected from three MTx IMUs. For each
signal, the following time and frequency-domain features
are calculated: eleven time-domain features (mean, vari-
ance, median, interquartile range, skewness, kurtosis, root
mean square, zero crossing, peak-to-peak, crest factor, and
range) and six frequency-domain features (DC component
in FFT spectrum, energy spectrum, entropy spectrum, sum
of wavelet coefficients, squared sum of wavelet coeffi-
cients, and energy of wavelet coefficients). The k-NN gave
the best results between the supervised classification
algorithms, while the HMM provided the best results
between the unsupervised classification algorithms.

Suto et al. [75] presented various feature extraction
methods applied in the HAR domain. The quality of the
selected features was assessed using feed-forward artificial
neural network, k-Nearest Neighbor, and decision tree. The
authors applied a time sliding window of 32 samples with
50% overlap between the consecutive windows. This
window length spans 1.6 s time interval as the authors used
the WARD database [76] that has a sampling frequency of
about 20 Hz. The extracted time-domain features are the
mean, variance, mean absolute deviation, root mean
square, zero crossing rate, interquartile range, 75th per-
centile, kurtosis, signal magnitude area (SMA), and the
min—-max values. The extracted frequency domain features
include the spectral energy, spectral entropy, spectral
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centroid, and the principal frequency. Other kinds of
extracted features are the correlation between axes,
autoregressive coefficients, and the tilt angle. The results
showed that the proposed machine learning and feature
selection approach outperformed other classification
methods (up to approximately 100% recognition rates).
The authors also showed that a few number of sensors
(compared to other works) can be sufficient for good
classification performance.

3.3 Autoregression

Vector autoregression is an extension of the ordinary least
squares (OLS) regression to the multivariate case. A k-
dimensional timeseries (k can be the number of inertial
sensors times the number of degrees of freedoms of each
sensor) can be linearly regressed in time. In other words,
the vector value at time ¢ is linearly dependent on the
vector values at previous time steps (up to a certain order)
plus a Gaussian noise. Formally, this can be written as
follows:

Y, = A1y, +AZYr—2+"'+APYt—p+b+ft (4)

The {A;} matrices represent the linear transformations, b is
a bias/intercept term, and ¢, is a white Gaussian noise. This
kind of regressions are called autoregressive (AR) models
in the terminology of timeseries analysis. A key to the
validity of these models is that the given timeseries is
stationary [30], which roughly means that the statistical
properties (such as the moments) of the signal remains
fixed over time. Even though this might arguably be not the
case for many human actions, features based on autore-
gressive models have been used with reasonable success.
The model’s unknowns are these matrices, the bias vector,
and the covariance matrix of the noise term. These can be
estimated using a variant of the ordinary least squares
technique. Once these parameters are estimated, they can
be taken as the feature vector or the descriptor of the given
timeseries.

Abdu-Aguye et al. [77] investigated the effectiveness of
this kind of features for activity recognition using four
different classifiers, namely, random forests, canonical
correlation forests, ProtoNN, and deep forests. They tested
their work over three benchmarks: EJUST-ADL-1 [24],
HAPT [42], and Daily and Sports Activities [57]. The
dimensionality of the timeseries in each dataset depends on
the multitude of the inertial modalities used. The empirical
study shows the general efficacy of using the autoregres-
sive coefficients as a feature descriptor of the timeseries,
even though the statistical stationarities across all the
activities given in the datasets are questionable in several
kinds of actions. The results though differ widely based on
the dataset used as well as the classifier applied. However,
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random forests can be considered the best economical
choice in terms of the achieved predictive performance and
their demand of computational resources.

Hassan et al. [78] presented a HAR system using the
smartphone IMU sensors and deep learning. Firstly, the
relevant features are extracted from the raw sensor data,
e.g., mean, median, autoregressive coefficients, etc. Sec-
ondly, the features are processed by a Kernel Principal
Component Analysis (KPCA) and a Linear Discriminant
Analysis (LDA). Finally, the features are trained using a
Deep Belief Network (DBN) for accurate activity recog-
nition. The proposed approach outperformed the traditional
recognition methods such as multiclass Support Vector
Machine (SVM) and Artificial Neural Network (ANN).
The system had been examined for 12 different physical
activities where the mean recognition rate was 89.61% and
the overall accuracy was 95.85%. The other traditional
methods achieved at best a mean recognition rate of
82.02% and an overall accuracy of 94.12%.

Khan et al. [15] presented a HAR system based on a 3-
axial accelerometer via augmented feature vector and a
hierarchical recognizer. At the last level, the activity state
(static, transition, dynamic) is classified using statistical
features and ANNSs. The upper recognition level utilizes the
autoregressive modeling of the acceleration signals. The
augmented feature vector consists of autoregressive coef-
ficients, signal magnitude area, and the title angle. The
resulting feature vector is further processed by linear-dis-
criminant analysis and ANNs to recognize a particular
human activity. The proposed activity-recognition method
recognizes 3 states and 15 activities with an average
accuracy of 97.9% using a single 3-axial accelerometer
placed at the user’s chest.

San-Segundo et al. [79] adopted the well-known meth-
ods successfully applied in the speech processing domain:
Mel Frequency Cepstral Coefficients (MFCCs) and Per-
ceptual Linear Prediction (PLP) coefficients. In addition,
Relative Spectra (RASTA) filtering [80] and delta coeffi-
cients were also evaluated for IMU processing. The pro-
posed HAR system is based on Hidden Markov Models
(HMMs) and recognizes 6 activities: walking, walking
upstairs/downstairs, sitting, standing, and lying. A publicly
available dataset was used, UCI Human Activity Recog-
nition Using Smartphones [81, 82]. This dataset includes
several sessions of physical activity sequences from 30
subjects. The dataset had been divided randomly into 6
subsets to apply a sixfold cross validation procedure. The
baseline method for feature extraction performed several
calculations in the time and frequency domains. For the
time domain, the features included the mean, correlation,
signal magnitude area (SMA), and autoregressive coeffi-
cients. For the frequency domain, the features included the
energy of different frequency bands and frequency
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skewness. Other features included the angle between vec-
tors. A total of 561 features were extracted to represent
each window (i.e., every 2.56 s). The results presented in
this paper enhances significantly the error rates of the
baseline method. The adapted MFCC and PLP coefficients
enhanced HAR and segmentation accuracies while
decreasing the size of the feature vector. RASTA-filtering
and delta coefficients reduced the segmentation error rate
significantly giving the best results: an activity segmenta-
tion error rate lower than 0.5%.

3.4 Raw data

Most of the work done in HAR systems are based on
supervised learning over derived features, manually or
automatically extracted from the sample timeseries. In the
following we survey some of the techniques that are
deviated from this direction.

Some research work have treated the streamed signals as
direct input without any prior preprocessing and/or feature
engineering. Most of that work can be considered as
automatic feature engineering (representation learning)
through the use of the recent advances in deep neural
networks. However, some of that work just directly models
the temporal aspects of the incoming signal without
explicitly learn any feature representation. In other words,
the dynamics of the model itself encode the input signal
without explicitly transforming (whether manually or
automatically) the signal into some feature space. The most
prominent example in that direction is the use of Hidden
Markov Models (HMMs). An HMM is a latent variable
model where there is a sequential relationship amongst the
latent variables. It is theoretically founded on the theory of
Markov stochastic processes, where, such process satisfies
the Markovian property that the current state of the system
depends exclusively on the previous state, and hence,
independent of earlier history.

The introduction of latent states, forming the HMM,
actually extends this model beyond such Markovian
assumption. More specifically, the latent variables repre-
sent discrete states that transit among themselves according
to some stochastic law. The transition behavior follows the
Markovian property, that is, the next transition depends
only on the current state. Along side transiting to a new
state, a sampled output is observed, through which these
hidden states are inferred. The parameters of the model to
be learned or estimated are: the transition probabilities, the
parameters of the observables distributions, and the dis-
tribution of the initial state. By its inherent nature, HMMs
are very suitable for modeling sequential data, and in
particular, in our context timeseries data. They can be used
as inferential engine as well as generative engine. The main
advantage is that HMMs are very well mathematically

established and hence, can provide explanation to its
induced inferences and outputs. They require relatively
modest computational resources during training (specially
when training using frequentist approaches such as
expectation maximization) when compared to deep neural
networks.

In the context of timeseries HAR signals, an HMM
model can be viewed as encoding the given activity. For
example, assume that we have only an HMM H with only
two states, that is used to model the timeseries given in
Fig. 15a. Figure 15b shows the corresponding states pro-
duced by an HMM that models the timeseries and consists
of two states. As can be seen from the figure we can per-
ceive the HMM model as encoding the timeseries using a
binary string. So, for example, if the timeseries is the z-
acceleration of a pushup exercise, then the modeling HMM
just encodes this exercise using two levels, they could be
the up position and the down position.

Ashry et al. [83] have used HMM for activity classifi-
cation. Their main contribution is the novel application of
such models, along with devising dissimilarity measures
between different HMMs in the domain of activity recog-
nition. Each activity sample, a multi-axial timeseries, is
modeled using HMMs for the different axes; the HMM
itself is taken to represent the signal (a descriptor of the
signal). The training phase consists entirely of deriving the
HMM models for all the activity samples in the given
dataset. These are considered templates/prototypes to be
used in the subsequent testing phase. In a 1-Nearest
Neighbor fashion, a new test multi-dimensional timeseries
is used to induce its characterizing HMM. This HMM is
compared against those of the templates using a dissimi-
larity measure developed by the authors to deduce the
closest one whose class of activity is then taken as the
decision for the new sample.

Figure 16 shows the architecture of the proposed model
in [83]. The authors validated their work on two publicly
available datasets, namely, the EJUST-ADL-1 [24] and
USC-HAD [12]; and compared the performance against an
extant approach utilizing feature extraction and another
technique utilizing a deep Long Short-Term Memory
(LSTM) classifier. Table 2 shows a snapshot of the results.
On the EJUST-ADL-1 they achieved performance metrics
(accuracy, sensitivity, specificity, precision, and F-mea-
sure) in the order of 90% and on the order of 85% over the
USC-HAD dataset.

A crucial notice about this work is that there is no
preprocessing step for feature extraction is done, the raw
timeseries data streamed from the sensors are fed directly
to the HMM. Hence, in some sense, HMM can provide the
same advantage as deep neural networks for automatic
feature extraction. However, the type of extracted features
here are encoded in the form of dynamics. This is very
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(a) An sample timeseries, for example, the z-acceleration of a wearable sensor during some action.

DAL ARG LA

(b) An HMM encoding with two states.

Fig. 15 An example signal and its corresponding HMM abstraction with two states

appropriate for low semantical content data such as time-
series. However, this may not be feasible for more com-
plicated data modalities such as visual or audio data. It is
also of noticeable interest whether HMMs can be used for
transfer learning which is a basic advantage of deep neural
networks. In principle it seems plausible that HMMs can be
used for that purpose, however, to the best of our knowl-
edge, we have not found any work addressing the feasi-
bility and/or effectivity of HMMs for transfer learning.
On a different track Gomaa et al. [84] apply two well-
known statistical and measure-theoretic approaches in the
context of human activity recognition. The first approach is
time-neglectful in the sense that the temporal order among
the sampled points of the timeseries is dropped. It is based
on using statistical methods, particularly, goodness-of-fit
tests, where the timeseries is treated as a collection of
unordered points that are generated from some unknown
probability distribution. A goodness-of-fit test is a statisti-
cal tool used to test the hypothesis that a specific sample (in

our case the collection of timeseries points) is generated
from a given distribution.

In [84] the authors apply one of the best known good-
ness-of-fit tests, namely, the Kolmogorov—Smirnov (KS)
test. This test was developed in the 1930s by two Russian
mathematicians Kolmogorov and Smirnov [85, 86]. The
second approach is more time-aware considering the
ordered nature of the timeseries as a sequential stream of
measurements. Their approach is based on direct analysis
of the timeseries sample points by using two distance
metrics that can measure the dissimilarity between two
timeseries even if they have different lengths which is
typical in HAR applications. The first dissimilarity metric
is based on the estimated autocorrelation coefficients of the
given signals. The second is the infamous dynamic-time
warping (DTW). The latter is much more accurate, though
it is more computationally demanding. Their approach is
essentially a 1-NN (1-Nearest Neighbor), where the dis-
tance function is taken to be one of these two dissimilarity
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Fig. 16 Framework of the proposed HMM model for HAR [83]
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Table 2 A comparison between an HMM-based method [83], LSTM using raw data, and RF [24] over two different public datasets

Dataset Method (%) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure (%)
USC-HAD RF 78.5 70.45 98.2 60.5 65.1

LSTM 78.57 72.8 85.71 71 71.88

HMM 83.95 83.8 98.54 84.36 83.49
EJUST-ADL-1 RF 81.64 82.47 98.67 84.6 83.53

LSTM 87.19 78.5 93.1 77 77.74

HMM 91.9 914 99.37 92.54 91.64

The highest values are highlighted in bold

measures in an infinite dimensional timeseries space. Their
experimentation is very limited to one dataset of signals
from a wrist-worn accelerometer collected for ADL
activity recognition; the dataset is called “Dataset for ADL
Recognition with Wrist-Worn Accelerometer” [7, 87],
which has 14 activities of daily living. The DTW-based
method is more stable reaching an accuracy of about 84%
which is better of by more than 25% that of the other
autocorrelation dissimilarity measure. The results based on
the KS-test are much less promising.

On a similar track, where the sequential nature of the
timeseries signal is ignored, Gomaa et al. [88] treat a
timeseries as an unordered set of measurements sampled
from an unknown probability distribution. They choose
some random timeseries samples from each activity and fit
them using probability distributions. These templates are
then used as prototypes against which a new inertial motion
sample is tested to determine the corresponding action. The
authors used two probabilistic modeling techniques: his-
tograms and kernel density estimates. For histograms,
Manhattan distance is used as a measure of dissimilarity,
whereas Manhattan distance and KL-divergence are used
as measures of dissimilarity for kernel density estimates.
Again, the validation of the approach is very limited by
experimenting only on one dataset, which is the “Dataset
for ADL Recognition with Wrist-Worn Accelerometer”
[7, 87]. This dataset has 14 ADLs. For some configurations
they managed to reach above 80% accuracy.

3.5 Embedding

All of the previous discussion have focused on either
handcrafted feature engineering or using the timeseries
data directly. A third alternative has gained much attention
recently with the emergence of deep learning, in particular,
deep neural networks, which is representation learning, or
more concretely automatic feature extraction. Generally,
automatic feature extraction through deep neural comput-
ing has achieved tremendous success in recent years and
allowed for technological applications, and concerns as

well, that had been unimaginable before. As the burden of
engineering effective features is now alleviated, it came
with a price: we don’t understand the generated embed-
ding/representation, and generally the inferred decisions. In
some cases, specially with the visual modality, some work
has been done to visualize and interpret the resulting
hierarchical representations. Generally, the ability to gen-
erate informative embedding is crucial for effective trans-
fer learning. In addition, the data manifold in the
embedding space is generally easier to manipulate than the
original input space.

Deep neural networks entered the mainstream with the
seminal work of Hinton and Salakhutdinov [89]. Since
then, the general trend in machine learning research has
been directed towards the adoption and analysis of deep
methods as applied in different domains. Abdu-Aguye
et al. [90] train a convolutional neural network (CNN)
essentially for representation learning to generate embed-
dings for inertial timeseries data that are then used for
transfer learning across different datasets. They train a
CNN and use its convolutional filters as a feature extractor,
then subsequently they train a feedforward neural network
as a classifier (or for that matter any classifier can be used
instead) over the extracted features/embeddings for other
datasets. The overall architecture of their system is shown
in Fig. 17.

The authors use a spatial pyramid pooling layer in order
to generate a fixed-size embedding regardless of the length
of the input timeseries, hence, alleviating the need to fix the
input length of the timeseries. They validate the effec-
tiveness of their embedding model on five different activity
recognition datasets: EJUST-ADL-1 (aka Gomaa-1) [24],
HAPT [42, 91], EJUST-ADL-2 (aka HAD-AW) [14],
Daily and Sports Activities [57], and REALDISP [13].

Tables 3 and 4 show example results from the transfer
learning, the first table shows the performance metric in
terms of the overall accuracy, and the second shows the
computational resources in physical time (seconds). The
diagonal is the baseline (self-testing), whereas cross-testing
are the off-diagonal entries.
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The machine used to obtain these timings utilized an
8-core Intel Xeon Platinum 8168 CPU with 16 GB of
RAM. During the training cycles, CPU-only training was
used to give a fair estimate of performance and eliminate
any extraneous advantages due to the use of graphics
processing units (GPUs). The authors thereafter report the
mean and standard deviation of the obtained times mea-
sured in seconds.

In the latter, a model is pre-trained on each source
dataset mentioned in the first column, and then fine-tuned
and tested on a target dataset in each corresponding row in
the table. It is apparent that transfer learning, and hence,
the generated embeddings, are effective where the maxi-
mum reduction in accuracy is about 6%, and in most cases
it is about 3%. On the other hand, the bottom table shows
tremendous saving in computational resources as a result of
transfer learning. The only computation here is required for
fine-tuning. In the worst case (i.e., on the Daily Sports
dataset) about 24 x speedup is achieved compared to the
self-testing scenario; and about 52x speedup in the best
case (i.e., on the REALDISP dataset). It is also apparent
that when the authors used the datasets, Daily Sports and
EJUST-ADL-2, the best results have been achieved
regarding transfer learning. This means that their pre-
trained model is the most powerful when transferring the
gained knowledge from these datasets to another dataset.
This can be attributed to the wide spectrum of activities
contained in these two datasets (19 actions in the former
and 31 in the latter); see Table 15 for full description of
these datasets.

Another work based on proper embedding representa-
tion learning of timeseries inertial signals is done by Abdu-
Aguye et al. [92]. In particular, they employed such
embedding representation in a deep metric learning (aka
similarity learning) framework for activity recognition. A
deep Triplet Network is used to generate fixed-length
embeddings/descriptors from activity samples. Such
embeddings are located in a classical Euclidean space and

Dilated Conwv. Filters

are to be used for activity classification. The overall system
architecture is similar to that shown in Fig. 17, except for
the use of triplet network with the corresponding loss
function and the replacement of the fully connected layers
towards the end of the information flow by a 1-Nearest
Neighbor classifier with the Euclidean distance as the
dissimilarity metric. The triplet loss can be defined as
follows:

= > max (1B — Bl — |1Ea = Eall} +,0)  (5)

where E, is the embedding of the anchor sample, E, is the
embedding of the positive sample, and finally, E, is the
embedding of the negative sample. The summation of the
loss function is taken over all the triplets in the training set.
o represents a margin parameter that describes the mini-
mum desired spacing between entities of different classes.

The authors evaluate their work using the same 5
datasets used in [90]. Transfer learning (cross-testing) is
also performed across different datasets: a model is built by
pretraining in some source dataset, then fine-tuned and
tested on a target dataset. Table 5 shows a sample of the
results, both self-testing and cross-testing, of the proposed
deep metric architecture of the five mentioned datasets.
Comparing these results with those of the previously
mentioned work, Table 3, we observe the following; (1)
the results of self-testing are comparable, both methods are
in close proximity to each other, however, (2) the method
proposed in [90] is much more capable to transfer to new
datasets, that is, the induced embeddings from this
scheme is much more abstract representation of the time-
series inertial signals that can transcend the source dataset.
As the two lines of work do their evaluation over the same
list of datasets, it is worth to investigate what factors affect
the transferability power of the underlying model.

The work done in [90] learns the embeddings within an
end-to-end training pipeline for the overall final purpose of
activity recognition, whereas the work in [92] learns the
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Fig. 17 CNN for feature extraction + classification [90]
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Table 3 Classification accuracy S o
using 4-2-1 pooling [90] Training dataset Testing dataset
Gomaa-1 HAPT D_Sports HAD-AW REALDISP
Gomaa-1 96.99 + 1.28 94.53 £ 1.55 92.19 £+ 0.64 82.66 £ 1.01 71.94 £ 2.64
HAPT 95.09 £ 1.90 96.00 + 1.18 91.06 £+ 0.76 83.10 £ 1.12 68.85 £ 1.77
D_Sports 95.98 £+ 1.48 95.24 £+ 1.09 95.31 + 0.36 83.20 £ 1.15 71.14 +£ 3.70
HAD-AW 9593 £ 1.55 95.61 £+ 1.18 92.38 £+ 0.50 88.36 = 1.18 71.63 £ 2.15
REALDISP 95.58 £ 1.18 94.82 £+ 1.55 92.59 £ 0.41 83.60 £ 1.02 76.60 + 1.88
The highest values are highlighted in bold
Table 4 Training times (in seconds) for self-testing and cross-testing scenarios (4-2-1 pooling) [90]
Training dataset Testing dataset
Gomaa-1 HAPT D_Sports HAD-AW REALDISP
Gomaa-1 426.10 + 5.95 16.44 £ 0.50 62.30 £ 1.37 49.70 + 1.18 27.07 £ 0.95
HAPT 9.91 £ 0.29 513.33 + 4.50 62.02 £ 0.94 49.44 + 0.90 27.02 £ 0.65
D_Sports 9.98 £ 0.40 16.30 &+ 0.40 1503.26 + 13.38 50.20 £ 1.35 27.08 £ 0.75
HAD-AW 9.92 £ 0.35 16.32 £ 0.54 63.12 £ 1.63 1952.15 + 16.19 27.16 £ 0.63
REALDISP 9.98 £ 0.31 16.33 £+ 0.45 62.57 £ 1.42 49.84 + 1.26 141345 + 16.13

The highest values are highlighted in bold

embeddings in a more abstract setting, where the task of
activity recognition appears more implicit in the choice of
the three examples for the triplet loss: the anchor, the
positive example, and the negative example. It may as well
be the technique used for action classification may play a
role in effecting the transfer learning; in the former work a
fully connected neural network is used, whereas in the
latter a 1-Nearest Neighbor is used. Maybe the choice of 1
neighbor leads to overfitting and more smoothing are
needed as a regularization. All of these need to be inves-
tigated, as transfer learning in general, and its particular use
in inertial timeseries data are so crucial in the success of
such systems and the practical widespread effective use of
wearable devices.

Khaertdinov et al. [93] use a variant of deep metric
learning equipped with attention for HAR. The main focus
of the paper is to design a system that is robust against two
problems in wearables-based HAR systems: (1) inter-class
similarities (different activities have similar inertial motion
patterns) and (2) subject heterogeneity, where different

subjects perform the same activity quite differently. The
authors show the detrimental effect of these two factors on
the recognition performance by using t-SNE visualization
over 2-dimensional Euclidean space. The crux of the
argument of the plotted graphs is that different actions have
quite overlapping clusters and the same action may spread
over different clusters in that 2-dimensional space. These
motivate the whole work, however, it can be criticized that
visualization is a quite poor evidence as it projects from the
rich high dimensional space of the timeseries into very low
2-dimensional space, with much less degrees of freedom.

More evidence is needed, for example, plotting 3-di-
mensional visualizations, plotting multiple 2-dimensional
visualizations over varying features, or any other means.
The main technical contributions of the paper behind that
motivation of well-class separability are: (1) developing a
hierarchical triplet loss function and (2) developing a smart
triplet mining algorithm. The hierarchical triplet loss is
based on a data structure called the “hierarchical tree” that
stores information about the inter-class and intra-class

Table 5 Classification accuracy

of embeddings using deep Training dataset

Testing dataset

metric learning [92] Gomaa-1 HAPT D_Sports HAD-AW REALDISP
Gomaa-1 96.69 +123  89.60 4 1.72  91.34 + 041  68.67 + 1.09  59.48 & 2.77
HAPT 8327 £2.16 9625+ 1.09 8998 +0.74 6446+ 1.46  50.61 £ 2.19
D_Sports 86.16 +2.69  88.67 £ 1.17 9659+ 039  68.62+ 1.14  56.59 + 2.27
HAD-AW 9075+ 142  89.10 = 1.41 91354056 8528 +1.19  60.60 + 2.00
REALDISP 91.16 £ 2.14 9140+ 138  91.63+0.47  70.10 + 1.65  75.01 + 1.92

The highest values are highlighted in bold
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distances of all activity classes in the dataset. Given two
activity classes a; and a», their inter-class distance can be
computed as follows:

1 2
- Ei —E
il -l 2= Vi = Bl (6)

ieal,jeag

inger (al s Clz)

where E} is the embedding of sample k. So, it is the average
of all distances between pairwise samples from the two
classes. On the other hand, the intra-class distance for
activity b can be computed as follows:

Z IE: = Ejll (7)
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Each leaf node corresponds to a certain class label. Classes
are merged at different levels of the tree based on some
merging threshold. Now the hierarchical loss function can
be computed as follows:

1 u 2 n (|2
£10) = 7 2 max {187 — EF I = 187 = BT} + o/ 0}

(3)

where N is the number of triplets, E? EY E" are the
embeddings of the anchor, positive, and negative samples
in the triplet i. o' is the dynamic margin that depends on the
intra-class distance of the anchor activity as well as the
level ¢ in the hierarchical tree at which the anchor and
negative classes are merged. So, adapting the margin to the
particular activities involved in the triplet makes the
training more robust and resilient to the two opposing
effects of inter-class similarities and subject heterogeneity.
The second main technical contribution of this work is the
technique for mining triplets for a mini-batch. They call
their method “anchor-neighbor sampling”.

It is essentially a smarter guided selection of the triplets
to make proper use of the constructed hierarchical tree to
improve the training process and well separate the classes.
The authors evaluate their work over three public bench-
mark datasets: PAMAP2 [94], USC-HAD [12], and
MHEALTH [95]. Their embedding model is based on
LSTM with two types of attention, attention based on the
temporal sequence of timeseries points and spatial attention
scanning multiple channels (different inertial types and
axes) at the same time. They report results over all three
datasets and multiple configurations of their model (for
example, use one or both types of attention) and compare
with other state-of-the-art methods.

Strombick et al. [31] create an iconic dataset, called
“MM-Fit” for workout exercises. This dataset is multi-
modal collected from varying devices streaming the fol-
lowing types of data: (1) inertial motion data collected
from  multiple devices including  smartphones,
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smartwatches, and earbuds, (2) multi-view RGB-Depth
video streaming, and (3) 2D and 3D pose estimates. The
task is to do activity recognition, particularly in this case,
recognition of the workout exercise. The authors compare
the power of different deep recognition models based on
unimodal vs. multimodal data types.

Each modality is trained separately using a stacked
convolution autoencoder to produce an embedding repre-
sentation of the crucial features from the given modality.
For the inertial motion timeseries the autoencoder archi-
tecture consists of 1D convolution filters. As for the visual
streaming, they use the 3D pose estimates from [96] and
the relative joint positions are encoded using cylindrical
coordinates as such coordinate system is more robust
against background and illumination variation. Such 3D
poses are arranged into 3D images that are fed to an
autoencoder that is based on 2D convolution filters.

Each unimodal type of sensory data is trained inde-
pendently to generate an embedding that is output from the
later layer of the autoencoder (the last layer of the encoder
part). These induced embeddings representations of the
different modalities are then fused and fed to a multi-modal
fully connected autoencoder. Lastly, the fused embeddings
of this latter network are used to train a fully connected
classification network to recognize 10 different workout
exercises. Their multi-model framework achieves 96%
accuracy on unseen subjects in their dataset MM-Fit. This
is in contrast with 94% using data from the smartwatch
only, 85% from the smartphone only, and 82% on data
from the earbud device. A general critic to this work is that
their proposed model architecture maybe overly
complicated.

Mahmud et al. [97] proposed a self-attention model that
utilizes different types of attention mechanisms to generate
higher dimensional feature representation. The authors
evaluate on four publicly available HAR datasets:
PAMAP2 [94], Opportunity [98], Skoda [99], and USC-
HAD [12]. The sensor attention maps can capture the
importance of sensors modalities and location in predicting
the activity classes. The authors adopted the self-attention
architecture from the Neural Machine Translation (NMT)
task [100] into the HAR problem and proposed a model
incorporating self-attention with sensor and temporal
attention.

The authors proposed that the data samples are equiv-
alent to words and the time windows are analogous to
sentences. They introduced the first attention layer on the
raw input. Secondly, the authors adopted the self-attention
and positional encoding from the transformer architecture
into the HAR problem in order to capture the spatio-tem-
poral dependencies of sensor signals and their modalities.
After a number of self-attention blocks, the authors added
another layer of attention to learn the global attention from
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the context. Finally, a fully connected layer was placed to
classify the activity. The proposed model achieved
remarkable performance enhancement over the existing
state-of-the-art models on both benchmark test users and
Leave-one-user-out evaluation. The authors also observed
that the sensor attention maps was able to focus on the
impact of the sensors modality and placement in predicting
the various activity classes.

Tao et al. [101] proposed an attention-based model for
HAR using multiple IMUs worn at various body locations.
A feature extraction module extracts the most discrimi-
nating features from every sensor with CNNs. An atten-
tion-based fusion method learns the sensors importance at
various body locations and generates an attention-based
feature representation. A feature extraction module learns
the inter-sensor correlations that are connected to a clas-
sifier predicting classes of activities. The proposed method
was evaluated using 5 public datasets: Daily [102], Skoda
[103], PAMAP2 [94], Sensors [67], DaphNet [104]) and
outperformed the state-of-the-art approaches on various
activity categories.

Li and Wang [105] proposed a deep learning method
that is based on residual blocks and bi-directional LSTM
(BiLSTM). The model extracts spatial features of multi-
dimensional signals from IMUs using the residual block.
The model then gets the forward and backward depen-
dencies of the features sequence using BiLSTM. The
resulting features were input to a Softmax layer to perform
the HAR task. The optimal parameters of the model were
acquired experimentally. A new dataset was proposed
containing six activities: sitting, standing, walking, run-
ning, going upstairs, going downstairs. The proposed
model was evaluated on the newly proposed dataset and
two other public datasets namely WISDM [106] and
PAMAP2 [94]. The accuracies achieved are 96.95%,
97.32% and 97.15% on the newly proposed dataset,
WISDM and PAMAP2, respectively.

In [107], the authors proposed a graph neural network
(GNN) that is end-to-end. This system captures the sample
information with an efficient way and also captures the
relation with the other samples as an undirected graph
form. This is probably the first contribution where time
series are represented as a graph-based structural repre-
sentation aiming at HAR utilizing sensor data. The pro-
posed approach was experimented on six publicly available
datasets. The proposed method achieves for all the datasets
approximately 100% recognition accuracy. The GNN
classification was done at two steps. First, the node clas-
sification was done for each node v € V of G that is labeled
as y, to predict the labels of every node v by calculating an
embedding vector &, where y, = f(h,) and f is a differen-
tiable function for approximation. f was utilized in order to
make mapping for the similarity between the nodes in an

embedding dimension with the real graph nodes that are
existing in the real graph. In the embedding dimension,
some information was saved in a compressed approach
withing h,. Second, the graph structure is considered as
well for the graph classification beside using the node
information.

3.6 Input tensor structure

In the analysis of inertial motion data, a diverse set of
tensor structures have been used as inputs to the learning
architectures (whether classical or variants of deep neural
networks). The input tensor structure essentially depends
on several factors, notably, the number of IMU sensors to
be used for analysis, the number of axes of the sen-
sor(s) used, whether vectorization (concatenating into a
single vector) is used, whether raw sensor data or some sort
of extracted features are used, etc.

For example, one may use only the accelerometer data
in one dimension (or take the magnitude of several direc-
tions into one resultant vector). In this case 1D tensors are
used. It may be the case of taking the three axes of an
accelerometer and concatenate them together into a single
vector (vectorization), making also for a 1D input tensor.
One may take the three axes of the accelerometer making
each in a separate channel, making 2D tensor input, or
making them in one channel, however, stacked vertically,
making again a 2D tensor. One may use several sensors:
accelerometer, gyroscope angular velocity, and magne-
tometer. Each has three axes that can be stacked vertically
in a single channel. Thus, having three channels, each is a
2D array of three axial readings, so in this case, we have
3D input tensor. So, in conclusion the input tensor structure
depends on the particular work and the authors’ choice.

An example of such variations can be found in the work
of Mubarak et. al. [90], where the authors used six 1D
channels: accelerometer-x, accelerometer-y, accelerometer-
z, gyroscope-x, gyroscope-y, and gyroscope-z. Each of
these is a 1D timeseries, so the whole tensor can be con-
sidered a 2D tensor input. Similar strategy was applied in
the work of Abeer et. al. [32]. In [83] the authors use
hidden Markov models (HMMs) to model inertial motion
data. For each axis of each sensor a dedicated HMM is used
to model the dynamics of motion along this axis. So, the
input to each HMM is a univariate timeseries motion data,
in other words, it is a 1D tensor. On the other hand, Madcor
et. al. [18] have used two sensors, the accelerometer and
gyroscope, each sampled in three axes. The timeseries of
the six axes are, after some preprocessing, concatenated
into one big vector (vectorization) to be input to the
learning architecture. So, here the input is a 1D tensor.
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3.7 Transformers

In this subsection, we survey the use of the transformer
model in Human Activity Recognition from IMUs time
series data. The transformer model is a deep learning NN
model that was developed primarily for the NLP and
computer vision tasks.

In [108], the authors proposed a one-patch lightweight
transformer that combines RNNs and CNNs advantages. In
addition, the authors proposed TransFed that considers
more the privacy concerns. TransFed is a federated learn-
ing classifier that utilized the proposed lightweight trans-
former. The authors designed a test framework to acquire a
new HAR dataset gathered from 5 subjects, and then uti-
lized the novel dataset in order to assess the performance of
the HAR classifier in the two settings of federated and
centralized environments. In addition, the authors used a
public dataset to assess the performance of the HAR
classifier in centralized environment for comparison with
other HAR classifiers. The results showed that the pro-
posed approach outperformed the state-of-the-art HAR
classifiers which are based on CNNs and RNNs and in the
same time was more efficient computational-wise. Table 6
presents the hyper-parameters adopted during the training
phase.

Table 7 presents a comparison of 2 main features
between the proposed transformers in [108] with the RNNs
and CNNs. The RNN models have no parallelization dur-
ing training due to the sequential nature, thus the model is
slow and computationally expensive. The CNN models can
have parallel computation, however, computationally
extensive due to the convolution function. The proposed
transformer approach removes the recurrence and convo-
lution. That are replaced with a self-attention approach to
perform input/output dependencies. The method relies
completely on an attention mechanism to calculate input/
output representations. Moreover, the transformers allow
for computations parallelization. Also, RNNs and CNNs
utilize a huge number of parameters (hundreds of thou-
sands or more), while the proposed transformer in [108]
has only 14,697 parameters. In addition, the proposed
transformer utilizes a single patch not multiple-patches,
thus, it is computationally efficient.

Table 8 presents the comparison of the proposed trans-
former in [108] with state-of-the-art approaches. The pro-
posed approaches achieved a big enhancement in accuracy:
(1) trained and tested on the proposed new dataset (labelled
with b) and (2) the WISDM dataset (labelled with a). The
proposed approach has an accuracy of 98.74% (federated
setting) and 99.14% (centralized setting) on the newly
gathered dataset. The proposed approach has an overall
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Table 6 Hyper-parameters of each subject for federated learning
[108]

Hyper-parameter Value
Learning rate 0.01
Number of epochs 100
Batch size 30
Weight decay 0.001
Transformer layers 2
Multi-attention heads 5

Input shape 140 x 9

Table 7 Comparison of the transformer method with the RNNs and
CNNs methods based on the computational costs [108]

Method Parallelization Computationally expensive
RNNs No Yes
CNNs Yes Yes
Transformers Yes No

accuracy of 98.89% on the WISDM dataset (centralized
setting).

In [112], the authors proposed Human Activity Recog-
nition Transformer (HART) a transformer framework
based on sensors adapted to the IMUs inside the mobile
devices. The results on HAR activities on many public
datasets revealed that HART has less Floating point
Operations Per Second (FLOPS) and fewer parameters
achieving better results than the state-of-the-art methods. In
addition, the authors provided performance assessments on
various architectures in heterogeneous environments. The
proposed models can generalize better either on various
sensor devices or on-body locations.

Table 9 shows the F-score for various models on four
datasets: RealWorld, HHAR, MotionSense, and SHL.
Moreover, the authors combine five datasets to form the
largest one with biggest diversity for assessment. The
combination had thirteen different activities predicting data
with high-class imbalance from various devices and
locations.

For the proposed configuration with MobileViT and
MobileHART, 2 network settings were developed: extra
small (XS) and extra extra small (XXS). The XS and XXS
are differently characterized by the filters number, the
expansion factors leading to filter growth after every MV2
layer, and the MobileViT / MobileHART blocks embed-
ding size. The layers number and attention heads are the
same in the 2 network settings.



Neural Computing and Applications (2023) 35:20463-20568

20489

Table 8 Comparison of the

Centralized or federated

Number of activities Accuracy (%)

transformer method with state- Scheme

of—thf:—art .approaches for HAR [109] Federated

classification [108] .
[110]¢ Centralized
[111]¢ Centralized
Proposed Centralized
Proposed® Federated
Proposed® Centralized

89.00
97.63
96.70
98.89
5 98.74
15 99.14

—_— N N &N O

In [116], the authors proposed a self-attention Trans-
former model for ADLs classification. The authors com-
pared the proposed method with a recurrent Long-Short
Term Memory (LSTM) model. The proposed approach is a
two-level hierarchical model where atomic activities are
detected in the first step then in the second step the prob-
ability scores are calculated and used by the Transformer-
based to classify 7 more complex ADLs. The experiments
showed that the Transformer model was on bar with and
sometimes outperforms LSTM in the subject-dependent
setting (73.36% and 69.09%) only depending on the
attention-approach to present global dependencies between
input and output without using any recurrence. The pro-
posed model was evaluated on 2 different segment lengths
proving its effectiveness to learn long-range dependencies
of actions of short lengths occurring in complex activities.

In [117], the authors presented a Two-stream Convolu-
tion Augmented Human Activity Transformer (THAT)
model. The proposed approach utilized a two-stream
architecture to extract both time-over-channel and channel-
over-time features, then use the augmented multi-scale
convolution transformer to extract the range-based pat-
terns. Results on four evaluation datasets showed that the
proposed approach is more effective and efficient com-
pared to the state-of-the-art models. Table 10 presents the
THAT model recognition accuracy in comparison with five
state-of-the-arts models on four evaluation datasets.

In [121] the transformer model was utilized for Human
Activity Recognition from time-series signals. The self-

attention approach in the transformer model present the
individual dependencies between time-series values. The
attention mechanism has a comparable performance to the
state-of-the-art CNN-LSTM (e.g., [122]). The transformer
model was evaluated on the KU-HAR dataset spanning a
wide range of activities [123] achieving an average
recognition accuracy of 99.2% compared to 89.67% of the
Random Forest with FFT [123].

4 Confined versus streamed actions

Most of the work done in HAR target offline applications
and hence, focusing on recognizing confined actions, that
is, the timeseries sample is assumed to represent exclu-
sively one action/activity of interest. A line of research
though has been targeting online real-time applications,
and hence, focusing on recognizing a continuous stream of
actions in real-time. Most of this work, though, use vision-
based models [124], in which actions in a video stream are
detected and recognized in both offline and online modes
[125]. In other approaches, data are collected from dis-
tributed ambient sensors such as microphones, cameras,
and motion sensors that are attached to fixed locations in
the surrounding environment (e.g., walls, cupboards doors,
microwave ovens, and water taps). Examples of these
system include the Aruba and Tulum datasets [126]. These
are created within the CASAS smart-home project [127].
Studies on these datasets are done by Yala et al. [128].

Table 9 The F-scores on five

datasets [112] Architecture UCI MotionSense HHAR RealWorld SHL Combined
CNN [110] 94.53 96.91 96.99 91.71 87.08 86.87
CNN-LSTM [113] 92.79 97.80 96.97 92.33 88.92 88.03
ViT [114] 93.66 98.09 97.39 94.57 93.11 93.52
HART [112] 94.49 98.13 98.31 95.49 94.39 94.59
HARTQpemsA [112] 94.37 98.29 98.28 95.74 94.88 94.07
MobileViT (XS) [115] 96.89 98.19 98.65 95.07 94.14 93.19
MobileHART (XS) [112] 97.20  98.49 98.72 95.81 94.86 94.24
MobileViT (XXS) [115] 96.55 98.42 98.30 93.72 91.46 91.07
MobileHART (XXS) [112] 97.67 98.32 98.19 94.32 92.60 91.91

The highest values are highlighted in bold
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Table 10 The THAT model recognition accuracy in comparison with
five state-of-the-arts models on four evaluation datasets [117]

Methods Office Activity Meeting Activity + meeting
S-RF [118] 75.3 80 84.7 82.6
S-HMM [119]  79.7 75 83.4 80.5
LSTM [118] 91.4 89.7 90.6 90.1
CNN [118] 96.4 94.3 96.2 954

ABLSTM [120] 97.1 95.6 96.8 95.9
THAT [117] 98.2 98.4 99.0 98.6

These sensors, however, have many restrictions owing, in
particular, to their fixed nature, and user activities are not
detectable, let alone recognizable, if the user goes outside
the spatial area where these sensors are installed. Addi-
tionally, from the perspective of privacy, it is neither
acceptable nor convenient to monitor people continuously
using cameras in private rooms. And even for less private
places, monitoring is susceptible to security breaks.

For detecting activities in a continuous stream of inertial
motion signals from wearable devices, some segmentation
approaches such as activity-based windowing, time-based
windowing, and sensor-based windowing [128] have been
proposed. However, each one of them admits some kind of
drawback. In activity-based windowing, the activities are
in general not well distinguished resulting in largely
imprecise activity boundaries. In time-based widowing,
streaming data are divided into fixed-time intervals/win-
dows. However, it is faced with the problem of determining
the proper window length. If it is too small, the window
may contain insufficient information for decision making;
if it is too large information of multiple activities may be
included in the allotted window. Generally, this parameter
is problematic as it may differ according to the activity, the
gender of the subject performing the activity, the age of the
subject performing the activity, the sampling rate of the
IMU device, etc. So, smarter techniques should be used to
determine an adaptive window size, for example, detecting
the change in the stochastic properties of the signals, as
generally is done in Markov regime switching-based
methods. In sensor-based windowing, each window con-
tains the same number of sensor events [128]. A major
drawback of this method is that the window may contain
sensor events that are widely separated in time, and it may
contain sensor events of more than one subject as in the
Tulum dataset.

One recent work that addresses the continuous recog-
nition of streaming of actions is done by Ashry et al. [129].
They process inertial motion signals streamed from IMU
sensors on-board a smartwatch. They collect their own
dataset, called “CHAR-SW?”, which consists of different
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streams of activities of daily living, see Fig. 18a. See
Table 15 for a full description of the dataset. They used
cascading bidirectional long short-term memory (Bi-
LSTM) for their analysis. Bi-LSTM has better and more
stable performance than the uni-directional LSTM as the
former can perform smoothing as at any point in time the
past and future motion samples are available for the current
prediction. From another perspective this architecture may
not be feasible for real-time systems where only past
samples (and possibly a small window of future samples)
can only be available. In this work the input to the Bi-
LSTM is not the raw timeseries data, however, it is a
descriptor which composed of a continuous stream of the
following extracted windowed features: autocorrelation,
median, entropy, and instantaneous frequency. So their
approach is a mixture of classical feature engineering, as
manifested by the handcrafted descriptor of the input
timeseries, and deep automatic feature extraction, as
manifested by the Bi-LSTM which automatically captures
the sequential dependency of the streaming actions. So, the
technique can be viewed as converting the original time-
series into a coarser more abstract timeseries. The system
architecture is shown in Fig. 18b. The evaluation of the
system showed that it can recognize activities in (almost)
real-time with an accuracy up to 91%. Figure 19 shows a
framework for gait-based person identification [20].

Khannouz and Glatard [130] proposed data stream
classifiers on the HAR use case. The authors measured the
classification accuracy and resource consumption (in terms
of runtime, memory, and power) of five stream classifiers
on two real human activity datasets [13, 38] and three
synthetic datasets. The results showed that the Hoeffding
Tree, the Mondrian forest, and the Naive Bayes classifiers
were overall better than the Feedforward Neural Network
and the Micro Cluster Nearest Neighbor classifiers on four
datasets including the real ones. The three best classifiers
overall performed much worse than an offline classifier on
the real datasets. The Hoeffding Tree and the Mondrian
forest are the most memory draining with longest runtime
but no difference in the power consumption between
classifiers was reported. The stream learning for HAR on
connected devices had two main challenges: high memory
consumption and low F1 scores.

Krishnan and Cook [131] proposed a sliding window
technique for HAR in an online streaming behavior which
means classifying activities whenever new sensor events
came in. Since different activities can be best classified by
different window lengths of sensor events, the authors
incorporated the time decay and mutual information-based
weighting of sensor events within a sensor window. More
contextual information like the previous activity and the
previous window activity were also added to the feature
characterizing a sensor window. The experiments
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(a) Snapshot streaming actions of CHAR-SW dataset
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Fig. 18 Online analysis of a streaming sequence of actions using IMU sensory data from a wearable device [129]

evaluating these methods on real-world datasets concluded
that combining mutual information weighting of sensor
events and the past contextual information into the feature
leads to the best performing streaming activity recognition.

Abdallah et al. [132] proposed a dynamic human
activity recognition framework with growing data streams.
This framework was called STAR standing for STream
learning for mobile Activity Recognition. This framework
comprised of incremental and active learning methods for
real-time recognition and adaptation in streaming situa-
tions. While the data stream grows, the authors refine,
improve, and personalize the model to handle the drift in
the given data stream. To detect the concurrent activities,
the authors applied an online clustering for each data
chunk. The prediction and adaptation methods were
deployed on each cluster. The experimental results using
three real activity datasets, OPPORTUNITY [98], WISDM

[106], Smart Phone Accelerometer Data (SPAD) [133],
showed that the proposed approach enhanced the perfor-
mance of the activity recognition specifically across dif-
ferent subjects.

Abdallah et al. [134] proposed and evaluated a method
for concept evolution (e.g., new action or activity) that was
applied to emerging data streams. This method continu-
ously screens the streaming data movement in order to
detect any evolving updates. This method was able to
detect the arrival of any new concepts either they were
normal or abnormal. This approach has also applied con-
tinuous and active learning to adapt with the observed
concepts in real-time. The authors evaluated the proposed
approach on the HAR datasets OPPORTUNITY [135] and
WISDM [106] as benchmarks for the emerging data
streaming application. The proposed approach proved its
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Fig. 19 Framework for gait-based person identification [20]

effectiveness on these datasets in observing new concepts
and adapted continuously with low computational cost.

Yala et al. [136] proposed an approach of HAR using
online sensor data. The authors presented four techniques
for extracting features from sensor events sequence. They
proposed a sensor window approach to perform HAR
online by recognizing activities when new sensor event
occurs. As different activities can be better identified by
various window lengths, the authors proposed a mutual
information-based weighting of sensor events within a
window. As some activities do not necessitate many
movements, the authors proposed a “last-state” of sensor
feature set within a window to identify activities. These
techniques are evaluated on first 6 weeks of Aruba dataset
and on 3 months of Tulum dataset [126]. These methods
showed an enhancement in classification accuracy over the
baseline approach when removing events with missing
labels. In the baseline case, the authors construct a feature
vector with fixed dimension that contains the first and last
sensor events time, the window duration, and the different
sensor events count within the window.

Zhang and Ramachandran [137] adopted an online
method called Very Fast Decision Tree (VFDT) to simulate
the real HAR scenario. The two main contributions are (1)
the authors trained the model online using the data samples
only once for training and (2) the model can be updated to
recognize new activities after building the VFDT by adding
small number of labeled samples. The proposed method
achieves an average accuracy of 85.9% for all subjects and
the accuracy rates of single subject are between 60.5% and
99.3%. The average accuracy of learning new activity from
another data is 84% and the accuracy rate of a single
subject reached up to 100%.

Kwon et al. [138] proposed IMUTube integrating
computer vision and signal processing techniques to con-
vert human activity videos into virtual IMU data streams.
These virtual IMU data streams are equivalent to
accelerometer signals collected from various human body
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locations. The virtually generated IMU data can enhance
the performance of different models on public HAR data-
sets. This work represents an integrated system that utilizes
computer vision and signal processing for sensor-based on-
body HAR that opens the door to further enhance the
recognition accuracy based on a large dataset.

5 Transfer learning

Transfer learning refers to the learning paradigm where
what has been learned in one setting and/or task is
exploited to initiate and/or improve generalization in
another setting and/or task [139]. It is the improvement of
learning in a new task through the transfer of knowledge
from a related task that has already been learned [140].
Transfer learning has been boosted by the recent revolution
in deep learning, though it is not particularized to the latter.
Deep neural computing has revolutionized representation
learning which has made transfer learning readily
available.

5.1 Fine tuning

The key motivation, especially in the context of deep
learning, is the fact that most models which solve complex
problems need much data, and getting vast amounts of
labeled data for supervised models can be really difficult,
considering the time and effort it takes to label data points.
Hence, foundational models (i.e., models that have already
been learned on massive amounts of data in capable entities
such as big corporations) can be downloaded and fine-tuned
for specific tasks with only limited amount of data with
noticeable degree of success.

A rather recent survey on the progress of transfer
learning for classification, regression, and clustering
problems can be found in [141]. Lisa Torrey and Jude
Shavlik in their book [140] described three possible
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advantages to consider when employing transfer learning
on a target task using a model pre-trained on a source task.
These benefits are illustrated in Fig. 20, where two per-
formance curves are shown: the green curve is the training
performance using trained-from-scratch (end-to-end train-
ing) model on the target task whereas the red curve shows
the performance of fine-tuning pre-trained source model to
work on the target task.

1. Higher start The target skill starts higher than it
otherwise would be. In some cases this can be
considered as a satisfactory performance where fine-
tuning may be unnecessary anymore.

2. Higher slope The rate of improvement of the target
task during training (fine-tuning) of the source model is
steeper than it otherwise would be. This means the
convergence rate is higher.

3. Higher asymptote The convergence of the pretrained
source model on the target task is better than it
otherwise would be. This means it converges to a
higher performance point.

On a more foundational level, the work done in [142]
empirically investigates and quantifies the generality vs.
specificity of neurons in each layer of a deep CNN. Their
results indicate that transferability is negatively affected by
two factors: (1) the specialization of higher layer neurons
to their original source task at the expense of performance
on the target task and (2) optimization difficulties related to
splitting networks between co-adapted neurons (different
hidden neurons having correlated behavior). They did an

Fig. 20 Different ways of
learning improvement through
transfer learning

Perfromance

higher, slope

example network trained on ImageNet and demonstrated
that either of these two issues may dominate, depending on
whether the features are transferred from the bottom,
middle, or top of the network. It is also derived, rather
naturally, that transferability of features decreases as the
distance between the base/source task and target task
increases, but in any case transferability is better than
random initialization (training-from-scratch). A final result
is that initializing a network with transferred features from
almost any level of layers can produce a boost to gener-
alization, though depending on the layer the degree of
effective transferability varies. Most of the research on
transfer learning have been exclusively focused on visual
data. Some recent work are directed towards timeseries
specially inertial motion data for the purposes of activity
recognition and gait analysis.

In the following, we survey some of the transfer learning
work on timeseries data. Through the above-mentioned
discussion we have already talked about several research
works that in principle represent effective applications of
transfer learning in the context of timeseries analysis. For
example, Abdu-Aguye et al. [90] developed an approach to
transfer learning for fixed and variable-length activity
recognition inertial motion timeseries data. They do an end-
to-end training using a CNN, see Fig. 17, then the convo-
lutional filters are used as an unsupervised feature extractor.
This portion of the network is then used to generate features
for any dataset and activities; where such features can
subsequently be fed to any classifier (in the paper, the
classifier is a classical feedforward neural network).

Training
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The authors used a mini-batch of size 128 for all the
pooling parameters evaluations. The learning-rate number
of training epochs in both self-testing and transfer learning
was 35 epochs. The training and testing phases were
repeated 15 times with different data samples were used
each time for training and testing. In self-testing and
transfer learning; training with 75% of data and testing
with 25% of data.

The authors validated their approach on five different
heterogeneous activity datasets, and a snapshot of their
results is shown in Table 3. The classification accuracies
obtained are shown together with their standard errors.
(i.e., accuracy =+ std.err). The baseline are the diagonal
elements indicating the self-testing scenarios (train and test
on the same dataset). Whereas the off-diagonals show the
transfer learning results (cross-testing): train on a dataset,
fine-tune and test on another. Relative to the baseline
diagonal accuracies, transfer learning shows very promis-
ing results, specially considering that the given datasets are
very diverse regarding the devices used to collect the
streaming data, the sampling rates, the subjects performing
the activities, the locations of the sensors on the subject’s
body, etc. The results also indicate the stability and
robustness of the transfer learning scenarios where the
standard errors of the results are generally low, remaining
below 3% in all the scenarios considered, and implying that
transfer learning across the timeseries activity datasets is
effective and comparable to training from scratch.

It can be observed that the HAD-AW and REALDISP
datasets consistently have the best transfer learning (cross-
testing) results. This can be attributed to the fact that they
consist of a large and diverse range of activities, causing
the convolutional filters to be relatively more discrimina-
tive than when trained on other smaller datasets. So, wider
range of activities may play more crucial role in the
effectiveness of transfer learning than having many and
longer samples of a smaller set of activities. This conclu-
sion is as well supported by observing that the HAPT
dataset, having the smallest number of activities shows the
poorest transfer learning results in all scenarios. This makes
a stronger case for the use of class-diverse datasets as
source datasets for transfer learning.

Now we look at the second important benefit of transfer
learning, namely, computational feasibility. As transfer
learning should save huge amount of computational
resources as the target task requires just fine-tuning rather
than training-from-scratch. The average times required for
self-testing and transfer learning scenarios are shown in
Table 4. The self-training scenarios take much longer
times, due to the multitude of operations inherent in
training the feature extraction part, namely the convolu-
tional layers.

@ Springer

In transfer learning, the training is done on some dataset,
then the classifier is fine-tuned on some other dataset. In
this paper specifically, the authors train a CNN and used its
convolutional filters as a feature extractor then trained a
feedforward neural network classifier on the extracted
features for other datasets. The transfer learning (cross-
testing) scenarios take significantly less time (only for fine-
tuning), yielding a 24.17x speedup compared to the
diagonal baseline (end-to-end training) in the worst case
(i-e., on the Daily Sports dataset) and a 52.31x speedup in
the best case (i.e., on the REALDISP dataset). We can as
well observe that the timings for the transfer-learning
scenarios are fairly steady, regardless of the source dataset.
This implies that the transfer learning testing times are
purely dependent on the size of the target dataset.

The same authors have done another work in the same
direction [92], where instead of using CNN as a feature
extractor, they apply deep metric learning. Metric learning
is based on representation learning of the input samples
inside some embedding Euclidean space, such that, similar
inputs (e.g., inertial timeseries from the same activity) are
mapped to proximal representations in the embedding
Euclidean space, and different inputs (e.g., inertial time-
series corresponding to different activities) are mapped to
faraway representation vectors in the embedding space. Of
course, the distance here is essentially the Euclidean dis-
tance. The “deep” qualifier in deep metric learning just
refers to the use of the deep learning technology to generate
such representations. The authors used a deep Triplet net-
work to generate fixed-length descriptors for inertial
timeseries samples for the purpose of activity classification.

The triplet network consists of 2 convolutional and 3
feed-forward layers. The authors involved between the
convolutional and feedforward layers a 1-D Spatial Pyra-
mid Pooling layer. Batch Normalization is used in between
successive feedforward layers. The triplet loss function has
a margin o parameter equals to 1. The triplet selection
strategy was set to be the Random Negative Triplet
Selection. The optimizer was the Stochastic Gradient
Descent with a Nesterov Momentum value of 0.90. A 128-
feature embedding vector was used as a feature vector for
classification. For training, 75% of the selected datasets
were utilized. After training, the training samples embed-
dings were used as exemplars for a 1-Nearest Neighbor
classifier. This classifier is then used to obtain the
embeddings classification accuracy of the unseen 25% of
the dataset. Experimentation is carried out on the same five
datasets as in Tables 3 and 4. Activity classification
accuracies reached up to about 96% in the self-testing
scenarios and up to about 91% in cross-testing without
retraining.

Similar approach was taken up by Khaertdinov et al.
[93] where they use deep metric learning equipped with
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attention for HAR. Their goal is to develop a robust
wearable-based HAR system that overcomes two difficul-
ties: (1) inter-class similarities (different activities have
similar inertial motion patterns) and (2) subject hetero-
geneity, where different subjects perform the same activity
quite differently. The hyperparameter tuning was done on
the datasets validation sections. The models parameters
were optimized by the Stochastic Gradient Descent with
Adaptive Moment Estimation (ADAM) using the default
parameters (e = 1073, B, = 0.9, B, = 0.999). The models
were trained for period of 100 epochs. The learning rate
was doubly decreased after every 10 epochs without per-
formance improvement. Training with Hierarchical Triplet
Loss (HTL) needs pre-training with the original triplet loss.
Thus, the best models on the validation sets were fine-tuned
using HTL for 10 extra epochs. For all models (including
the LSTM model trained with the original triplet loss), the
authors made of the LSTM hidden state vectors size equals
to 512. For all the triplet networks, the authors fixed the
mini-batch size near to 128.

Hu et al. [143] did work aiming at re-purposing activity
instances collected in some activity domain for training a
classifier in some other activity domain. The authors call
these samples “pseudo training data” in the target domain.
Contrasted with the previous work, which is feature-based,
this kind of transfer learning is instance-based. They
achieve their goal by developing an algorithm that utilizes
pre-existing web data describing the two activity sets.
Using such descriptions a similarity framework is built
within which activity samples in the source domain are
mapped to activity samples in the target domain with some
confidence value.

The authors are omitting sequential information in the
dataset, Thus, the evaluation criteria is just to calculate the
accuracy on the test dataset; that is the correctly predicted
activities over the total activities number in all time peri-
ods. Using the activity names (e.g., preparing breakfast,
cleaning, etc.) as queries submitted to Google and
retrieving the top K results; K is a parameter tuned to
clarify the relationship between the algorithm accuracy and
the Web pages number retrieved for each query. Using that
approach the authors managed to get significant perfor-
mance increase in activity recognition in the target domain
as compared to the baseline case where no knowledge
transfer is done. In experimentation over real world data-
sets, their algorithm achieved about 60% accuracy with no
or very few training data in the target domain.

Khan et al. [144] proposed an instance-based transfer
learning framework. The work is quite motivated as they
emphasize the need for transfer learning. Their justification
can be articulated in the following points:

1. HAR systems are typically based on a limited number
of activities that are present in the training and testing
splits of the underlying dataset. However, in practical
scenarios these limited set of activities need to be
extended (concept drift).

2. In practical scenarios the data distributions can be
radically different from the distributions inferred
during the training phase of the HAR system (data
drift).

3. There is shortage in labeled data samples, and abun-
dance of unlabeled samples. Transfer learning can help
in that direction of self-supervised learning.

4. Training and testing environment and setup are typi-
cally quite different from the corresponding
deployments.

Many more can be said about the challenges in inertial
motion-based HAR systems. Some detailed discussion is
given regarding the heterogeneities in HAR systems in
Sect. 1. See as well Fig. 20 and the associated discussion at
the beginning of Sect. 5 about the learning benefits gained
from transfer learning.

In the face of such challenges, Khan et al. [144] pro-
posed a framework, called TransAct, by augmenting the
Instance-based Transfer Boost algorithm. They apply their
method on three publicly available datasets: MHealth [95],
Daily and Sports Activities [57], and SBHAR [42] (de-
tailed description of these datasets can be found in
Table 15). The authors experimented with these datasets in
such a way to ascertain their transfer learning agenda. They
do cross-testing spanning different environments, and
accommodating new sets of activities and changes in the
data distribution by using a combination of clustering with
anomaly detection.

The accelerometer data was segmented by sliding win-
dow with frames of 128 samples with 50% overlap. The
frame length was the same across all the datasets. The
authors removed noise using low-pass filter. Using FFT on
the accelerometer data, most of the high-energy frequency
components were lying in-between 0 and 20 Hz. The
authors extracted both time domain and frequency domain
features. Time domain features (e.g., mean, standard
deviation, etc.) and frequency domain features (e.g.,
energy, entropy, etc.) are calculated using FFT on each
frame. The experimental results show that the TransAct
model achieves on average 81% activity detection
accuracy.

Khan et al. [145] proposed a framework, called UnTran
that aims at bridging the gap between a learned HAR
model in some source domain and its adaptability or
deployment in a different activity target domain (device
heterogeneities, sensing biasness, inherent variabilities in
subjects’ behaviors and actuations). UnTran is based on
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transferring two layers of an autoencoder pretrained on
samples from the source domain to the target domain,
where such two layers are used to generate common feature
space for the two domains. Specifically, the authors trained
a Deep Sparse Autoencoder (DSAE) on pre-extracted
feature vectors and subsequently use a part of the pre-
trained encoder as a generic feature extractor. Three SVM
classifiers are trained across three different configurations:
(1) training on features extracted by the DSAE over the
source domain samples, (2) training on features extracted
from DSAE over the target samples, and finally, (3)
training on low-level features extracted from the target
samples. The decisions from the three classifiers are then
fused to induce a final decision. The authors validated their
work on three datasets: Opportunity [146], Daily and
Sports Activities [57], and WISDM Actitracker [106]
(detailed description of these datasets can be found in
tab 15).

The authors segmented the accelerometer data into
frames of 128 samples with 50% overlap between frames.
Low-pass median filter was applied to cancel noise. Sta-
tistical time-domain and frequency-domain features were
extracted. These features were fed to the classifier in bat-
ches each with a batch size of 32. The frame length and
batch size were the same across all datasets and experi-
ments. Transfer learning baseline methods were imple-
mented; Transfer Component Analysis (TCA) [147] in
Python and Joint Distribution Adaptation (JDA) [148] in
MATLAB. The proposed Deep Sparse Autoencoder
(DSAE) is comprised of 4 layers. A softmax layer was used
to encode the classification labels in the source domain.
The first two layers of the source tuned network were used
to build the proposed classifier.

The experiments show that UnTran achieves about 75%
Fl-score in recognizing unseen new activities using only
10% percent of the target samples. The system also
maintains an Fl-score of %98 for recognition of seen
activities in presence of only 2-3% of labeled activity
samples.

Motivated by almost the same reasons, Chikhaoui et al.
[149] explored the development of a transfer learning
framework based on CNN. Learned feature representations
in one activity dataset are used to analyze activities in
another dataset that is characterized by different data col-
lection hardware and software setups, and even changes in
the sensing modalities. A CNN classifier is pretrained and
the learned weights are transferred to a new similarly
structured network in the target domain. The latter network
is fine-tuned using samples from the target dataset without
making any changes or updates to the transferred weights.
The authors validated their work over three benchmark
datasets: MobiAct [150], RealWorld Human Activity
Recognition (RWHAR) [151], and Mobile Sensing
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Heterogeneities for Activity Recognition [152]. Hence,
they tested the effectiveness of their approach across dif-
ferent users, device placements, and sensors modalities.
The accelerometer data was segmented into non-over-
lapping 4 s segments. The authors trained the source
model using 100 epochs and the target models were fine-
tuned with 50 epochs. The CNN models were implemented
using the Tensorflow library. The authors obtained F1-
scores up to about 0.94 in some of the evaluated scenarios.
Another interesting work with a different spirit is that
done by Abdu-Aguye et al. [25]; we briefly discussed this
work above. The idea can be conceptualized as generating
“virtual IMU sensors”. Given inertial motion data
streamed from a real IMU sensor mounted on some source
body location, these timeseries are then mapped to their
correspondence on a target body location. So, these latter
samples can be considered as streaming inertial motion
data from a virtual IMU sensor mounted on the target body
location. Independent of the performed activity the authors
developed a learning architecture that maps an inertial
sample from the source body location to the target body
location. It is emphasized that this is done regardless of the
activity, it is meant to capture how dynamics in general are
transferred and correlated across different body locations.
In order to empirically test their work they developed a
rigorous evaluation strategy as shown in Fig. 21. Given a
source body location and a target body location the dataset
inertial samples are divided into 3 groups: 50%, 25%, and
25%. The mapping between the source and target locations
is called “roaming”. Three sets of evaluations are per-
formed. The first kind of evaluation is aimed at establishing
a baseline as a lower bound for the predictive performance:
a classifier is trained on 25% of the target samples (1B in
Fig. 21), then testing on 25% of the source samples (0C)
using this classifier. The second evaluation is based on
training a roaming model on the 50% source and target
samples (denoted as OA and 1A Fig. 21), the input to the
roaming model is a source sample and the output is a target
sample. Then, roam 25% of the source samples (0C) using
the trained model. The classifier developed in the first
evaluation is then used to evaluate the roamed samples,
that is, the roamed samples form the testing data. This
evaluation helps deriving the performance gains obtained
from using the roaming model. The third and final set of
evaluations is done to obtain an upper bound of the pre-
dictive performance, where the trained classifier, from the
first set of evaluations, is used to evaluate genuine target
samples (1C). As designed the predictive performance of
the roaming model (the second set of experiments) lies
between the lower and upper bounds obtained by the first
and third sets of evaluations. The authors used the
REALDISP [13] data set for their empirical study, where
multiple sensors stream from different body locations at the
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Source Data Target Data

(50%) (50%)

Train Roaming Train Roaming
Model Model
(25%)

Train Classifier
(25%) (25%)

Samples to be Roamed Pure Samples from Target

Fig. 21 Data assignment for experimental and evaluation methodol-
ogy [25]

same time; see Table 15. A recurrent deep model, based on
Bi-directional LSTM is used for training the roaming map,
see Fig. 8.

Table 11 shows a sample of the results obtained through
roaming in terms of average accuracy and Fl-score of
activity recognition. The left column shows the activities
categorized into four groups: activities involving the whole
body (1), trunk activities (||), the upper extremities (}), and
the lower extremities (). The source location is the right
lower arm (RLA) and two target locations: the right upper
arm (RUA) and back (BACK). Except for activities
involving the lower extremities the RUA upper bound (the
UB column) shows good Fl-metrics. This can be trivially
explained by the fact that such activities have more
dynamics captured by the RUA as compared to those
involving only the lower extremities. In addition, the lower
bounds (the LB column in the table) indicate that the upper
and lower parts of the arm generate similar dynamics; this
may be attributed to their proximity and connectedness.
The targeted proposed roaming (the “Proposed” column in
the table) then show significant improvement over the
lower bound indicating the effectiveness of the roaming
model. Turning into the back location we see the lower
bounds results are much worse. This means that the clas-
sifier is unable to detect the proper dynamics of the back
from the RLA. This emphasizes the need for transforma-
tion, ‘roaming’ using the authors’ terminology, of the
inertial motion signals of the RLA to the back before
making any useful inference. As shown in the table the
transformation is rather effective in many of the cases,
specially when comparing to the upper bounds.

5.2 Prompting

With the rise of pre-trained models, fine-tuning these
models to target domains is a crucial task. Thus, parameter
efficient transfer learning of large models is very important.
In [153], the authors proposed black-box visual prompting
(Black-VIP) that adapts the pre-trained models efficiently
without knowing the model architectures and parameters.
Black-VIP consists of two components; coordinator and
simultaneous perturbation stochastic approximation with
gradient correction (SPSA-GC). The coordinator designs
input-dependent image-shaped visual prompts that enhan-
ces the few-shot adapting on distribution and location shift.
SPSA-GC estimates efficiently the target model gradient to
update the coordinator. Experiments on 16 datasets showed
that BlackVIP allows robust adaptation to different
domains with no access to the pre-trained models param-
eters using lowest memory requirements. Such prompting
models can help in communicating with the feedback of a
virtual coach for human activity recognition and assess-
ment [154].

In [155], the authors proposed “inverse prompting” to
control better the generation of text. The main idea of
inverse prompting is using the generated text in order to
inversely predict the prompt that improves the relevance
between the prompt and the generated text. The authors
pre-trained a large-scale language model for a systematic
study using human evaluation on tasks of open-domain
poem generation and question answering. The results
showed that the proposed approach outperforms the base-
line models and the generation quality was near to the
human performance in some tasks.

In [156], the authors proposed a Prompt approach for
Text Generation (PTG) in a transferable setting. Initially,
PTG learns some source prompts for different source
generation tasks and then these prompts are transferred for
target generation tasks. The authors designed an adaptive
attention approach to calculate the target prompts that
includes task-level and instance-level information. For
each data instance, PTG learns a specific target prompt
attached to highly relevant source prompts. The results
showed that PTG achieved better results than fine-tuning
approaches. The authors released the proposed source
prompts as open source where researchers are able to reuse
in order to enhance new text generation tasks.

In [157], the authors presented Multitask Prompt Tuning
(MPT) that initially learns a single transferable prompt by
transferring knowledge from different task-specific source
prompts. The authors then learned multiplicative low rank
changes to this prompt to adapt efficiently to every
downstream target case. Results on 23 NLP datasets
showed that the proposed method outperforms the state-of-
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Table 11 Fl-measures for
roaming experiments for right
lower arm (RLA) to right upper
arm (RUA) and back (BACK)
[25]

the-art approaches including the full fine-tuning baseline

Source location RLA

Target location RUA BACK

Method LB Proposed UB LB Proposed UB
Average classification accuracy (%): 21.21  66.05 73.48 4.66 44.18 63.35
Walking? 0.55 0.71 0.83 0.00 0.63 0.78
Jogging? 0.04 0.72 0.77 0.00 0.54 0.70
Running? 0.02 0.70 0.79 0.01 0.63 0.85
Jump up? 0.28 0.52 0.59 0.02 0.38 0.40
Jump front and back? 0.36 0.56 0.64 0.16 041 0.68
Jump sideways? 0.11 0.41 0.50 0.11  0.44 0.65
Jump legs/arms open/closed? 0.21 0.86 0.92 0.04 035 0.54
Jump ropet 0.24 0.57 0.60 0.03 0.24 0.35
Rowing? 0.07 0.64 0.66 0.01 0.55 0.64
Elliptic bike* 0.00 0.71 0.63 0.00 0.46 0.56
Cycling! 0.05 0.57 0.78 0.00 0.11 0.47
Trunk twist (arms out)! 0.41 0.83 0.85 0.02 0.55 0.59
Trunk Twist (elbows bent)! 0.00 0.94 0.94 0.04 0.51 0.63
Waist bent forward! 0.16 0.56 0.75 0.01 0.69 0.92
Waist rotation 0.02  0.65 0.76  0.05 045 0.77
Waist bends (reach foot w/ opposite hand)l ~ 0.27 ~ 0.78 092 0.00 067 0.87
Reach heel backwards! 0.46 0.52 0.67 020 0.29 0.56
Lateral bend! 0.14 051 054 011 042 0.62
Lateral bend arm up! 0.17 0.41 0.49 0.05 032 0.57
Repetitive forward stretching]! 0.15 0.68 0.79 0.00  0.63 0.90
Upper trunk and lower body opposite twistl ~ 0.13 0.42 0.61 0.01 0.10 0.51
Arms lateral elevation! 0.12 0.70 0.59 0.00 0.10 0.23
Arms frontal elevation 0.07 0.69 0.72 0.00 0.14 0.25
Frontal hand clapsf 0.38 0.68 0.78 0.00 0.25 0.40
Arms frontal crossing 0.29 0.83 0.84 0.00 0.17 0.49
Shoulders high-amplitude rotation 0.72 0.89 0.91 0.01  0.13 0.33
Shoulders low-amplitude rotation 0.22 0.87 0.83 0.01 023 0.29
Arms inner rotation 0.06 0.76 0.72 0.00 0.11 0.60
Knees (alternately) to breast” 0.17 0.71 0.86 0.14 0.63 0.88
Heels (alternately) to backside” 0.35 0.73 0.73 023 0.59 0.80
Knees bending (crouching)” 0.31 0.31 0.35 0.24 032 0.60
Knees (alternately) bent forward” 0.18 0.43 0.59 0.02 0.28 0.54
Rotation on knees” 0.01 0.69 0.69 0.00 0.56 0.74

method in some tasks though tuning only 0.035% of task-

specific parameters.
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6 Application domains

In this section we demonstrate some of the case studies for
which inertial motion sensors are effectively used for dif-
ferent kinds and tracks of human actions.
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6.1 Biometrics

Human biometrics are a set of measurements of bodily
characteristics that are to be used for authentication and/or
identification. The most common biometrics include: fin-
gerprints, facial, voice, iris, palm or finger vein patterns.
However, in our context the biometrics are based on the
execution pattern of an action or activity, through the use
of streaming IMU motion signals. Recognition of human
biometrics has been widely studied in the recent years due
to its significance and use in many applications such as
security and surveillance, speech analysis [158, 159], rec-
ommendation systems [160], and healthcare applications
[161].

The wide and varying types of biometrics dictate the use
of various kinds of data modalities streaming from differ-
ent kinds of sensors. The typical sensors used are the
visual, audio, and inertial motion data. Here, we naturally
focus on the latter, specially that its applicability is more
recent with the wide spread use of wearables with
embedded IMU units.

To the best of our knowledge IMU-based biometrics
systems have been exclusively directed towards three
characteristics: age, gender, and gait. The next subsection
is dedicated to gait analysis, and here we consider age and
gender. Mostafa et al. [19] proposed a method for gender
recognition from inertial data based on wavelet transform
(refer to Sect. 3.2 for details about feature extraction using
Fourier transforms and its variants). The motion data are
collected during walking activity (gait streaming data).
They co-collect data for that purpose, which is the EJUST-
GINR-1 [19, 20], which contain samples from smart-
watches in addition to specialized IMU units placed at 8
different parts of the human body; see Fig. 9. Random
forest and CNN are used for the binary classification: male/
female; with input features the wavelet transform of the 6-
axial timeseries: 3-axis accelerometer and 3-axis gyroscope
angular velocity. The authors studied which sensor loca-
tion(s) on the human body is(are) optimal in terms of
distinguishing males from females during the act of
walking. They found, rather expected, that sensors placed
on the legs and waist are best in recognizing the gender
during walking. They reached accuracy of about 97% using
the sensor placed on the left cube. The authors did exper-
iments as well with the OU-ISIR Gait dataset [33], how-
ever, the performance was rather modest about 75% (using
the CNN).

Using the OU-ISIR dataset [33] a competition for gen-
der recognition and age estimation was conducted [43]
based on IMU signals extracted during gait activity. Most
of the participated teams got relatively low accuracy in
gender classification. On the other hand, results on age

estimation were much better. The best results of this
competition are presented by Garofalo et al. [162], which
reached accuracy of about 76% for gender recognition and
a mean absolute error of about 5.39 for age regression by
using orientation independent AE-GDI representation
along with a CNN.

Riaz et al. [163] proposed a system for gender recog-
nition, age and height estimation based on IMU signals
streamed from on-body sensors during gait action. Age
estimation is formulated as a classification problem by
splitting the age into three ranges: (1) less than 40 years,
(2) between 40 and 50, and (3) older than 50 years. Height
estimation is formulated as a classification problem by
splitting the height into three ranges: (1) less than or equal
170 cm, (2) between 170 and 180, and (3) greater than or
equal 180 cm. The authors used random forest as a clas-
sifier with two kinds of validation strategy: tenfold cross
validation and the more difficult subject-wise cross-vali-
dation. They reached an accuracy about 93% for gender
recognition using the sensor on the chest, about 89% for
age classification using chest and lower back sensors, and
about 89% for height classification using the chest sensor.

Jain et al. [164] did gender recognition, from gait action,
using accelerometer and gyroscope signals streamed from
IMU sensors embedded onto a smartphone. The authors
used multi-level local pattern and local binary pattern as
feature extractors. The extracted features are then fed to an
SVM and aggregate bootstrapping (bagging). To evaluate
these models, 252 gait signals collected from 42 subjects
were used. They achieved an overall accuracy of about
77% using multi-level local pattern as the extracted fea-
tures along with bagging.

Mostafa et al. [32] proposed a system, called BioDeep,
for gender and age analysis. The author employ a simple,
yet effective as shown above in other works, feature
extraction technique which is based on the autocorrelation
function. This descriptor is then fed to two decoupled CNN
networks, one for gender recognition and the other for age
estimation. Age estimation here is formulated as a regres-
sion problem. As a baseline they also used random forest
justified by the fact that they test the effectivity of deep
neural networks. However, there is some confusion in the
paper as they claim to test the effectivity of deep learning,
rather, they test the effectivity of deep neural networks in
particular, as random forest is a deep learning strategy as
well [165]. The main contribution in the paper can be
considered as the extensive empirical studies they per-
formed on a varying list of datasets. To the best of our
knowledge, this might be the most comprehensive study
from that perspective. They perform self-testing as well as
cross-testing (transfer learning) across these datasets. The
proposed system architecture is shown in Fig. 13. The
authors validated their work using several datasets and
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different on-body sensors including: EJUST-GINR-1 (right
cube RC sensor), EJUST-GINR-1 (Waist sensor) [19, 20],
HuGaDB (Right Shin RS) [22], and GEDS (Tibialis ante-
rior Right TaR) [34].

Tables 12 and 13 show a sample of the results produced
in this paper both for gender recognition and age estima-
tion. The diagonal elements show the self-testing scenarios,
that is, train and test on the same dataset, which also play
the role of a baseline when considering the off-diagonal
elements which represent the cross-testing results, that is,
train on a dataset and testing on a completely different one.
The performance metric for gender recognition is the
overall accuracy, whereas it is the mean absolute error for
age estimation. The results indicate that the proposed
method seems very effective in both self-testing and cross-
testing as well, where the latter is more significant as it
represents a sort of transfer learning that can be used to
overcome the heterogeneity problem in inertial-based sys-
tems (see the discussion in Sect. 1 for the sources and
consequences of this problem). For gender recognition, the
results are transferable to within 1-2%; for age estimation
the results are transferable to within 2-3 times increase in
the mean absolute error. The authors claim that transfer
learning provided 20-30x speedup in the training time
compared to end-to-end training on the same dataset.

Riaz et al. [166] estimate the age based on the IMU
analysis of human walk. The authors recorded 6-dim
accelerations and angular velocities of 86 subjects when
they perform standard gait activities using IMUs mounted
on chest. The recorded signals were segmented into single
steps; for each step, a total of 50 spatio-spectral features
were computed from the 6 dimensional components. In
order to estimate the subject age, three ML classifiers were
trained: RFs, SVMs, and MLP. Two cross validation
techniques were utilized: tenfold and subject-wise cross-
validation. A random forest regressor trained and validated
on hybrid data achieved an average RMSE (root mean
squared error) of 3.32 years and a MAE (mean absolute
error) of 1.75 years with tenfold cross validation and
average RMSE of 8.22 years with subject-wise cross val-
idation. Since the subjects belong to two demographical
regions (Europe and South Asia), this gives broader
empirical confirmation that age can be estimated based on
human gait.

Khabir et al. [167] estimated gender and age from IMU-
based gait dataset that is part of the Osaka University-ISIR
Gait Database [43]. The authors showed that a SVM model
had the best accuracy for classifying gender while Decision
Trees had the highest variance score (R value) for age
prediction.

Rasnayaka et al. [168] studied the personal character-
istics collected from on-body IMU sensors and the sensor
location effect on the user’s privacy. By analyzing the
sensor locations with respect to privacy and service, the
authors recommended locations have maintained the
functionality (like the biometric authentication) while
reduced the privacy invasions. The authors collected multi-
stream dataset from 3 on-body IMU sensors consisting of 6
locations for 6 actions with different physical, personal,
and socio-economic characteristics from 53 subjects. An
opinion survey was conducted about the relative impor-
tance of each characteristic from 566 persons. Using these
datasets the authors showed that the gait data can tell much
personal information that may be considered a privacy
issue. The opinion survey gave a ranking of the physical
attributes based on the recognized importance. Using a
privacy vulnerability index, the sensors located in the front
pocket/wrist were more privacy invasive compared to the
back-pocket/bag sensors that were less privacy invasive
without a big loss of the functionality (e.g., the biometric
authentication).

6.1.1 Gait analysis

Gait is the manner of human walk, and it is a biometric
trait that is unique to each individual [169]. In the com-
putational domain, gait analysis has importance, particu-
larly, in person authentication and identification. Person
authentication is concerned with the problem of identifying
if a new gait instance belongs to a legitimate user or is an
imposter [170]. This is typically done by searching for the
new pattern in a list of patterns of the legitimate users
[171]. In contrast, for person identification/recognition, the
task is to classify a new gait instance to belong to one of a
set of predefined users [43]. The embedded inertial motion
sensors in the commodity wearable devices provide real-
time streaming of linear acceleration and angular velocity,
in addition to magnetometer readings, which together can

Table 12 Self- and cross-testing

.. Training dataset
results of gender recognition

Testing dataset

(accuracy) [32] EJUST-GINR-1(RC) HuGaDB(RS) GEDS(TaR) OU-ISIR(Waist)
EJUST-GINR-1(RC) 97.05% 98.13% 96.56% NA
HuGaDB(RS) 95.58% 99.37% 96.2% NA
GEDS(TaR) 95.9% 98.03% 97.47% NA
EJUST-GINR-1(Waist)  NA NA NA 67.93%
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Table 13 Self- and cross-testing Training dataset

Testing dataset

results of age estimation (mean

absolute error) [32] EJUST-GINR-1(RC) HuGaDB(RS) GEDS(TaR) OU-ISIR(Waist)
EJUST-GINR-1(RC) 0.883 2.0 2.5982 NA
HuGaDB(RS) 2.5685 0.835 3.6507 NA
GEDS(TaR) 2232 2.19 1.963 NA
EJUST-GINR-1(Waist) NA NA NA 5.1209

fully capture the motion dynamics of the owner’s motion,
or at least the motion dynamics of the body part (for
example, wrist) to which the device is attached. The main
advantage here is that such process occurs implicitly and
does not require the active participation of the human
subject [172-175]. This is in contrast to fingerprint
authentication where the person has to take an action for
authentication or even to face recognition which can be
easily fooled. Person identification using motion data
streaming from wearables turns out to be important in
applications, for example, when different people share the
same wearable device and it is desirable to identify who is
using the device at a given time while walking.

The work done in [20] tries to answer two questions
(though the answers seem obvious, but it is more of an
engineering verification): (1) what is(are) the body loca-
tion(s) that is(are) most effective for person identification
through streaming from an IMU device attached to such
part(s) and (2) if we have the freedom of mounting more
IMU devices to different body parts, then which combi-
nation is the most effective? The authors apply their work
on the EJUST-GINR-1 [19, 20] dataset. It is a gait dataset
with 20 subjects, 10 males and 10 females. See Table 15
for a full description of the dataset; and see Fig. 9 for a
depiction of the sensors locations over the different body
parts. Two of these sensors are smartwatches worn on both
wrists. The authors use all the 3 axes of the linear accel-
eration as well as the 3 axes of the angular motion as
streaming sources. Then, they use derivatives of these
timeseries, specifically, the autocorrelation function, to
derive 6-axial fixed size much smaller signals. These are
fed to 3 different classifiers, namely, random forest, sup-
port vector machine, and a convolution neural network.
The overall schema of the system is shown in Fig. 19.
Detailed performance metrics are given for every sensor on
the body and for paired combination of sensors for the
three classifiers. Generally, the results seem good, and, as
expected, the best results are obtained from sensors
mounted on the lower part of the body as they are closer to
the motion source. However, the sensor on the back of the
neck achieves next best performance to those IMUs
mounted on the lower body parts. The authors hypothesize
that the “gait patterns are transmitted almost intact through
the backbone up to this location”, however, they do not

provide any further evidence of references to this claim.
The main drawback of this work is that the number of
subjects are small (total of 20), in addition to the lack of
diversity in their age (they are all early 20s), though they
are balanced regarding gender.

An extension of this work was done by Adel et al. [176],
by using a more advanced modeling technique, namely,
Siamese networks, and validating the work over multiple
richer datasets. In a sense, this work brings the long
standing work of visual-based gait recognition using Sia-
mese networks into the realm of inertial motion data. As
expected these networks are used for automatic feature
extraction. The proposed scheme is used for person
authentication, where the network is trained, using raw
inertial data, with only few samples per authorized subject.
Once trained, the network can then be used to authenticate
any given user using only one gait sample of that user. The
work is validated using three publicly available datasets:
OU-ISIR [33] (large-scale dataset with 744 subjects),
EJUST-GINR-1 [19, 20] (small scale dataset with 20
subjects only), and MMUISD [23] (medium scale dataset
with 120 subjects). The main performance metric adopted
in this paper is the equal error rate (EER). The EER is the
point on the ROC (receiver operating characteristic) curve
where the false acceptance/positive rate equals the false
rejection/negative rate. It is one of the typical metrics used
to measure the performance of person identification and
authentication systems. Accuracy is reported as well. The
overall framework is shown in Fig. 22. Their model
achieved 3.42% EER on OU-ISIR (it is the world’s largest
inertial gait dataset) after training on 592 subjects and
testing on other 78 subjects; on average each subject pro-
vided an average of 5.9 s of gait data. The best EER on the
MMUISD was 6.26%, and 5.13% on the EJUST-GINR-1.
The latter dataset has the fewest number of subjects (only
20), but the largest gait duration of each subject. So, we can
conclude from these results that larger number of subjects
is more effective than the gait longevity of the subjects. An
interesting work done by the authors is the use of transfer
learning to train on subjects from a particular dataset and
authenticate subjects from another. The hardware and
software setup across the different datasets are quite dif-
ferent (for example, the type of the sensor and its location
on the body); see Table 15. Hence, this task is quite
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Fig. 22 Framework based on Siamese networks for person authentication based on inertial gait streaming [176]

difficult. The base case of performance is, of course, when
the source and target datasets are the same. The trained
Siamese network is essentially used to generate embed-
dings and, then, difference vectors, for the target datasets.
Applying the same reasoning as above using the OU-ISIR
as the source dataset produces the best transfer results over
the other datasets.

6.2 Virtual coaching

In this section, we survey the activity recognition works
mainly focusing on indoor exercises (push-ups, squats,
etc.). In the context of athletics and sporting, inertial
motion sensors are typically made up of accelerometers to
measure force and acceleration, a gyroscope to give an
indication of rotation (angular velocity and angular dis-
placement), and a magnetometer to measure body orien-
tation. Each of these sensors collects data across three
perpendicular axes and can capture athlete’s movement in
minute detail. These are used to continuously stream data
that are typically processed by state-of-the-art machine
learning, data modeling, and inference techniques that
induce much higher level useful information from such
data for workout and exercising actions. For example, they
can be used to differentiate between a jump to the right or a
jump to the left, a walk or a run, a walk on sand, solid land,
or grass, etc. Other uses include measuring bowling in
cricket, jumping in basketball, or kicking a ball in soccer,
fencing, etc. One of the most popular uses of inertial sen-
sors is in trying to quantify athlete readiness and fatigue in
the field. For example, there are protocols that are often
included in athlete’s warm up while wearing sensors.
Wearables, especially IMUs, can be used to detect changes
in acceleration or direction of acceleration which may
change with injury and/or fatigue. Each person has an in-
dividual motion signature, so coaches, trainers, and sports
scientists can compare an athlete to her typical normal self.
IMUs can provide good insights into the exercising and/or
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playing performance and can aid in providing assessment
and feedback to athletes recovering from injury.

Generally, IMUs can be placed anywhere on the human
body. However, depending on the exercise or workout,
some places are more proper to capture the dynamics of the
motion of that exercise. For example, IMUs can be placed
at the ankle for running sports, at the waist to detect
jumping, at the wrists for sports such as tennis and fencing,
and in between the scapula to approximate rough body
movements. Current IMU technologies have increased
dramatically, for example, sampling rates have exceeded
1 kHz, which allows for thorough and detailed analysis of
high speed movements. Also, dynamic ranges have
increased to about 200 g (for force and acceleration mea-
surements), sO we can now measure movements such as
high velocity cutting, acceleration and deceleration, and
jumping.

Optimal human movement is an important goal for
coaches, trainers, therapists, and athletes in most sports.
Skeletal muscles generate the force needed for these
motions. Consequently, proper timing of skeletal muscle
activation is important to improve movement quality and
achieve better sports performance. However, injury, fati-
gue, and/or poor training can lead to sub-optimal timing
and coordination of skeletal muscle activations [177, 178].
Consequently, this can lead to severe decrease of exercis-
ing performance and increase the risk of injury. Therefore,
the assessment of muscle activation patterns provides a
picture of the overall health and effectiveness of the mus-
culoskeletal system [179]. It allows athletes to reduce
muscle injury or imbalance and increase the effectiveness
of training exercises.

Different feedback systems are used in the field of sports
and rehabilitation. The use of such systems has shown
some success by providing a positive effect on training
control [180, 181]. In addition, the feedback system has the
advantage of providing early warnings and precautions that
can help to reduce the risk of injury [182] and to improve
the performance during different movement tasks (e.g.,
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balance) of elderly people [183]. Feedback can be given in
several ways including visual, auditory, haptic, textual, or
various combinations of these.

In [31], the authors present a multi-modal deep learning
method utilizing many data sources for activity segmen-
tation, exercise recognition, in addition to counting the
number of repetitions. The authors introduced the MM-Fit,
which is a multi-modal dataset containing a collection of
IMUs extracted from multiple devices: smartphones,
smartwatches, and earbuds. These devices were worn by
subjects performing full-body workouts and are time-syn-
chronized with multi-viewpoint RGB-D video, and pose
estimates in 2D and 3D. They have developed a very rig-
orous architecture that is hierarchical in nature, where at
the bottom level, autoencoders are used to learn represen-
tations of the individual modality signals. Then, at later
layers incremental fusing of the representations of different
modalities is done in order to learn more abstract repre-
sentations (embeddings) of the learned lower level repre-
sentations. Three main tasks are addressed by this work:
activity segmentation, exercise recognition, and counting
the number of repetitions of a given exercise. Totally, 21
full-body workout sessions are recorded; totalling 809 min
across 10 participants; workout lengths range 27-67 min
with average duration 39 min. Workout exercises moni-
tored in this dataset include: squats, lunges (with dumb-
bells), bicep curls (alternating arms), sit-ups, push-ups,
sitting overhead dumbbell triceps extensions, standing
dumbbell rows, jumping jacks, sitting dumbbell shoulder
press, and dumbbell lateral shoulder raises. Table 15 gives
more detailed description of the dataset. For exercise
recognition the authors did extensive evaluation using each
device separately and individual modalities within device,
in addition to different fusion of all these. For example,
taking IMUs, the authors experiment with accelerometer
only, gyroscope only, and a combination of both. The best
recognition accuracy is obtained from the fusion of all
sensors’ modalities reaching more than 99%. On the other
hand, the inertial sensors of the earbud and the smartphone
put in the right trouser pocket gave the lowest accuracy
around 80%. Similar fine extensive evaluation has been
done regarding the performance of counting repetitions of
each exercise across each device. The performance metrics
used were mean absolute repetition counting error and the
percentage of exercise sets for which the predicted repeti-
tion count is exact, within 1, or within 2 of the ground truth
repetition count. From the perspective of exercise type,
squats, lunges, and lateral raises gave the lowest mean
absolute error regarding their repetition counting. On the
other hand, biceps curls and push-ups gave the worst mean
absolute error. These results are consistent across all
devices, sensors, and modalities. From the device per-
spective, on average across all exercises, the smartwatch on

the left hand gave the lowest mean absolute repetition
counting error.

6.3 Healthcare

Accurate and reliable timely quantification of human psy-
chological, physical and physiological state using wearable
sensing devices is paramount in health monitoring and
safety surveillance. This in accordance necessitates the
measurement of relevant signals from various on-body
spots. A comprehensive review on the use of wearables in
the medical sector can be found in [184]. All the capabil-
ities of smartphones, including on-board embedded IMU
sensors, can be used to collect behavioral data unobtru-
sively (without any intervention or disturbance to the
subject), in situ, as it unfolds in the course of daily life
[185]. Harari et al. [185] investigate the use of continu-
ously streaming data of a person’s social interactions, daily
activities, and mobility patterns for psychological research
and profiling and for discussing the ongoing methodolog-
ical and ethical challenges associated with research in this
domain. The authors boldly claim that smartphone, and
generally wearables, sensing would lead the psychology on
the road to fully realizing its promise as a truly behavioral
science.

The work done by Baghdadi et al. [186] aims at
developing a general framework for a monitoring system
for the prediction of critical physical states prior to any
potential safety and health incident. They used Kalman
filter to estimate the hip acceleration and trunk posture
from a data streamed from a single IMU mounted at the
ankle. Such data is combined with apriori information from
Fourier series approximation to relate body kinematics
considering the periodic nature of gait. As a first applica-
tion they built an SVM classifier for the continuous mon-
itoring of fatigue by classifying the feature pattern of the
kinematic profile categorizing into ‘fatigue’ versus ‘non-
fatigue’ states. This provides for minimally intrusive,
inexpensive approach for fatigue detection in the work-
place. The authors examined a couple of research ques-
tions: (1) can a single IMU unit placed at the right ankle be
sufficient to capture the subtle changes in gait due to fati-
gue? and (2) can a computationally efficient classifier be
used to distinguish between fatigued and non-fatigued
states? The authors did experiments using SVM as a
classifier and the results affirmed positively these ques-
tions. They managed to reach an accuracy of 90% in pre-
dicting the fatigue states for the 20 recruited subjects. This
study found that the fatigue, due to a simulated manufac-
turing task of manual material handling, results in changes
in gait kinematics. So, in a more abstract sense, this is
saying that inertial motion data are able to distinguish and
capture the fatigue state. From the feature extraction/
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selection perspective, not all features of gait kinematics
have the same performance in fatigue prediction; foot
acceleration and position trajectories are among the high
performing ones. This line of research is crucial for studies
in ergonomics. The authors projected that their research
studies propose a framework for safety surveillance and
fatigue monitoring to prevent safety incidents utilizing a
minimal set of sensors and data that can be extended to
other movement monitoring applications in healthcare
through the ordinary smart wearable devices.

IMU devices typically have local storage that is large
enough, so data can be recorded directly to the device,
hence, sampling rates can be increased to capture minute
motion details and very fast speed like in sports [27]. IMUs
can easily be used indoors, across long distances, and even
underwater in some cases.

6.3.1 Vital signs

Vital signs can be defined as the measurements of the basic
functions of the human body [187]. The four major vital
signs that are always monitored by the medical doctors and
healthcare specialists include [187]: The human body
temperature, the pulse rate, the respiration/breathing rate,
and the blood pressure. The blood pressure cannot be
considered as a vital sign, however, it is often measured
with the other vital signs. Vital signs are indeed useful in
monitoring and detecting medical issues.

Epson sensing technology for vital signs monitoring is a
product that has a sensing device that measures the vital
signs indicating a biological activity in human bodies
[188]. The proposed vital sign solution utilizes the photo-
electric sensing. This measurement technology uses the
hemoglobin’s light absorbing properties. This technology
is based on shining light using a green LED to the blood
vessels lying under the skin. Epson has improved the
measurement accuracy by using a 3-axial accelerometer
and an algorithm to detect and eliminate the noise of the
body movement (e.g., caused by arm movement).

In [189], the authors reviewed the utilization of wear-
able devices in healthcare and workout monitoring based
on vital signals. This includes the electrocardiogram
(ECG), electroencephalogram (EEG), electromyography
(EMG), inertia, body movements, heart rate, blood, sweat,
etc.

In [190], the authors reviewed the utilization of wear-
able devices and detection algorithms utilizing the
piezoresistive/inertial sensors for monitoring the breathing
factors and respiratory parameters based on inertial sensors
(i.e., accelerometers and gyroscopes) and detecting dys-
functions or pathologies without surgery. Several tools
were utilized to gather the respiratory parameters from the
acceleration data.
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In [191], the authors proposed an approach for detecting
sleep parameters. This is achieved by measuring the earth
magnetic field variation. The authors used a magnetometer
sensor that is laid on the body which detects the night-time
breathing movements (in millimeter). This is done by
measuring the magnetic vectors changes. A wearable sen-
sor that is soft and non-invasive is printed on a miniature
printed circuit board. This includes a wireless Bluetooth
low-energy (BLE) module and a low-power microcon-
troller. A minimum power consumption is achieved by
utilizing a smart processing algorithm. This algorithm
calculates respiration rate, apnea time, and time while
movement.

In [192], the authors reviewed the conventional
approaches for monitoring cardio-pulmonary rates and the
ability of replacing these methods with radar-based
approaches. The authors also studied the challenges that
need to be overcame by the radar-based vital signs moni-
toring approaches in order to be applied in the healthcare
domain. The authors presented a PoC for a radar-based
vital sign detection and showed good measurement results.
In [193], the authors highlighted the abilities of the IMU
sensors to detect the vital signs. The results presented were
promising in monitoring the soldiers’ vital signs.

6.4 Ergonomics

Kuschan et al. [194] studied 2 lifting movements utilizing
the acceleration and angular velocity signals. The ergo-
nomic movement was done by the test subjects bending at
hips and knees only generating the lifting power by
squatting down. The unergonomic movement was done by
the test subjects bending forward to lift the box with their
backs mainly. The signals were collected by a vest
equipped with 5 IMU sensors each with 9 dimensions. The
IMU data collected from both the ergonomic and uner-
gonomic movements were statistically analyzed and visu-
alized. A CareJack vest was used that provided the worker
with a real-time feedback about his ergonomic movement
decreasing the spinal and back diseases risk.
Mudiyanselage et al. [195] proposed surface elec-
tromyogram (EMG) system using machine learning to
recognize body movements that may harm muscles while
handling materials. This study utilized a lifting equation
developed by the U.S. National Institute for Occupational
Safety and Health (NIOSH). The equation specifies a
Recommended Weight Limit that recommends the maxi-
mum acceptable weight that a healthy worker can lift/carry
and a Lifting Index value to assess the risk threshold. Four
different ML models (Decision Trees, SVM, k-NN, RF)
were developed to classify the risk assessments based on
the NIOSH lifting equation. To find the best performance
of each algorithm, the models sensitivity to different
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parameters was also studied. The results showed that the
Decision Tree model was able to predict the risk level with
an accuracy near to 99.35%.

Humadi et al. [196] proposed a system based on IMUs
and Kinect V2 for Rapid Upper Limb Assessment (RULA)
risk assessment that was compared to a reference motion-
capture cameras. The activities here were the different
tasks of manual material handling. The calculated RULA
scores were compared to the reference system using the
proportion agreement index (Po) and Cohen’s Kappa
coefficient (x). The wearable-based approach showed a
“substantial” agreement (x > 0.6) with the motion-capture
cameras. The optical-based approach showed an “incon-
sistent” agreement with the motion-capture cameras rang-
ing from “fair” (k<0.4) to “moderate” (x> 0.4)
agreements caused by self-occlusion and object-occlusion.
Thus, the wearable-based approach was more suitable for
in-field ergonomic risk assessment compared to the optical-
based approach.

Fauziah et al. [197] proposed a tool to feedback with
real-time assessment for workers ergonomic risks based on
workers’ postures. Direct visits to a manufacturing site in
Indonesia were performed to study various production
tasks to obtain complaints data of Work-Related Muscu-
loskeletal Disorders (WMSDs). Tasks with a higher risk of
injury were chosen to perform task analysis in order to
segment the task steps. Appropriate risk assessment
methods were chosen, e.g., Rapid Entire Body Assessment
(REBA), Rapid Upper Limb Assessment (RULA), Ovako
Working Posture Analysis System (OWAS), etc., based on
the tasks critical characteristics. The tasks being studied
included: cleaning up production residues, grinding pro-
cesses, manual bending, and welding. The appropriate
assessment method utilized was the OWAS. The measures
considered as the WMSDs risk factors were the posture of
back, arms, legs, and weight being handled. These mea-
sures were considered in the design of the sensor system
which integrated 7 IMUs placed on the mentioned body
locations. On a developed mobile application, a score
shows the risk value and a warning signal is prompted to
the worker.

Hsu and Lin [198] proposed a system of IMUs and
exoskeleton robot for work performance assessment and
assisting workers in performing different agricultural
activities. By locating 3 IMUs on the worker’s trunk and
legs, the system controls the exoskeleton robot to move the
workers’ legs while supporting their backs. For evaluating
the waist assistance system, ergonomic assessment tests
were applied, e.g., Rapid Upper Limb Assessment (RULA)
and electromyography (EMG). By using the exoskeleton
robot, the muscle activity of the Erector Spinae was
reduced by about 17.3% for lifting 10 kg objects during
stoop lifting and by 20.4% for lifting 10 kg during semi-

squat lifting. For the same tasks, the muscle activity of
Biceps Femoris was reduced by 18.2% and 15.2%,
respectively. This work is also applicable to rehabilitation
activity, construction work, and other related work
domains.

Humadi et al. [199] proposed an IMU system in order to
assess the manual material handling activities using in-field
RULA score. This was done using 3D Cardan angles and
2D projection angles relative to reference values recorded
by a camera system for motion-capture. The axes con-
ventions are generally used to establish the location/ori-
entation of coordinate axes as a frame-of-reference. For the
trunk and neck joint angles, the 2D convention had sig-
nificantly smaller RMSE (p <0.05). For the other upper-
body angles, the convention had significantly smaller
RMSE depending on the angle under analysis. The 3D
convention showed a “moderate” agreement with the
frame-of-reference, while the 2D convention showed a
“substantial” agreement for two activities and a “moder-
ate” agreement for one activity. For the 3D convention, the
intra-class correlation coefficients ranged from 0.82 to
0.94. For the 2D convention, the coefficients ranged from
0.87 to 0.95 for repeated sessions performed by each
subject. Thus, the proposed wearable IMU system using the
2D convention was found to be an accurate ergonomic risk
assessment tool.

Jahanian et al. [200] proposed a system to study the risk
and recovery metrics of arm use to discriminate between
(1) Manual Wheel Chair (MWC) subjects having spinal
cord injury (SCI) and matched able-bodied subjects and (2)
MWTC subjects with rotator cuff pathology progression for
1 year from users without pathology progression (longitu-
dinal study). 34 MWC subjects and 34 age- and gender-
matched able-bodied subjects were hired. Upper arm risk
(humeral elevation > 60°) and recovery (static >35 s and
humeral elevation <40°) measurements were calculated
from wireless IMUs placed on the upper arms and torso
while being in a free-living environment. Two independent
magnetic resonance imaging studies were evaluated for a
subset of 16 MWC subjects about 1 year apart. The risk
events frequency (p = 0.019), recovery events summed
duration (p = 0.025), and each recovery event duration
(p = 0.003) were higher for MWC subjects than able-
bodied subjects. The risk events summed duration
(p = 0.047), risk events frequency (p = 0.027), and risk to
recovery ratio (p = 0.02) were higher and the recovery
events summed duration (p = 0.036) and recovery events
frequency (p = 0.047) were lower for MWC subjects
having rotator cuff pathology progression (n =15) with
respect to the users without progression (n = 11). The
IMU-derived measurements which quantified the arm use
postures > 60° and risk to recovery ratios gave potential
risk factors insights for rotator cuff pathology progression.
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Vignais et al. [201] performed a material handling task
ergonomic analysis by integrating a subtask video analysis
and a RULA computation using a motion capture system
combining IMUs and electrogoniometers. Five workers
participated in the experiment and seven IMUs were
located at the worker’s upper body (pelvis, thorax, head,
arms, forearms). An upper body biomechanical model
continuously provided trunk, neck, shoulder, and elbow
joint angles. Wrist joint angles were provided from elec-
trogoniometers synchronized with the IMU system and the
activity of the worker was video recorded at the same time.
Joint angles were input to an ergonomic evaluation model
during post-processing based on the RULA method. An
RULA score was computed at each time step to specify the
upper body exposure risk (right and left sides). Local risk
scores were also calculated to identify the exposure
anatomical origin. The video-recorded work activity was
studied in time to recognize all subtasks included in the
task. The mean RULA scores were for all subjects at high
risk (for right and left sides, 6 and 6.2, respectively). A
temporal analysis showed that workers spent at an RULA
score of 7 most part of work time. Mean local scores
showed that during the task most exposed joints were
elbows, lower arms, wrists, and hands. Elbows and lower
arms were during the work cycle total time at a high risk
level (for right and left sides; 100%). Wrist and hands were
exposed during most work period to a risky level (right:
82.13 & 7.46%; left: 77.85 £ 12.46%). Subtasks called
‘snow thrower’, ‘opening vacuum sealer’, ‘cleaning’ and
‘storing’ were identified as the most unsuitable for right
and left sides where the mean RULA scores and time spent
percentages were at risky levels.

Villalobos and Mac Cawley [202] proposed an IMUs-
based system to recognize human activity using AI and ML
techniques to perform task classification and ergonomic
assessments in workplace location. The authors used low-
cost IMUs placed on slaughterhouse workers’ wrists to
gain information about their motions. The authors identi-
fied the wrists/hands risk factors leading to work-related
musculoskeletal disorders (WRMSDs). The authors
showed that by using low-cost IMU sensors on the
slaughterhouse workers’ wrists, the sharpness of the knife
can be accurately classified and the worker RULA score
can be predicted.

6.5 Human-computer interaction (HCI)

In [203], the authors proposed a wearable system that is
operating in real-time for recognizing finger air-writing in
3-D space using the Arduino Nano 33 BLE Sense. This
edge device runs TensorFlow Lite for action recognition on
the device. The proposed system allows users to write
characters (26 English lower-case letters and 10 digits) by
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moving fingers in air. This system uses a DL algorithm to
recognize 36 characters from the motion data collected
from the IMUs. This data is then processed by a micro-
controller embedded in the Arduino Nano 33 BLE Sense.
The authors prepared 63,000 stroke data samples written in
air of 35 subjects (18 males and 17 females). This data was
used in CNN training. The proposed system had a high
recognition accuracy of 97.95%.

In [204], the authors proposed a hand gesture segmen-
tation method that is a mobility-aware. The proposed sys-
tem detects and segments hand gestures. The authors
utilized a CNN in order to classify hand gestures consid-
ering noises due to mobility. The proposed system is called
MobiGesture was used for healthcare. The authors used the
leave-one-subject-out cross-validation test. The experi-
ments with real subjects showed that the proposed
approach achieves 94.0% precision, and 91.2% recall when
the subject is moving. The proposed algorithm is 16.1%,
15.3%, and 14.4% more accurate than the state-of-the-art
when the subject is standing, walking, and jogging,
respectively.

In [205], the authors proposed two hand gesture recog-
nition methods based on RNN. The first method is based on
video signal and utilized a combined structure of CNN and
RNN. The second method uses accelerometer data and only
RNN. A fixed-point optimization is used to optimize the
memory size for storing the weights and minimizing the
power consumption in hardware and software processing.
This optimization quantizes most of the weights into two
bits.

In [206], the authors proposed FingerPing sensing
technique. FingerPing is able to recognize different fine-
grained hand poses. This is achieved by analyzing the
acoustic resonance features. A surface-transducer that is
fixed on a thumb ring is able to inject acoustic chirps
(20-6000 Hz) into the body. There are four receivers on
the wrist and thumb to gather the chirps. Various hand
poses create different paths in order to the acoustic chirps
to travel. This creates specific frequency responses at the
four receivers. FingerPing could discriminate till 22 hand
poses. This includes the thumb touching every phalange of
the twelve one on the hand, also the ten American sign
language poses. Experiments with 16 subjects had showed
that the proposed system was able to recognize the afore-
mentioned two poses sets achieving an accuracy of 93.77%
and 95.64%, respectively.

In [207], the authors proposed a transfer learning
approach to train target sensor systems from existing
source sensor systems. This method utilizes system iden-
tification methods in order to learn a mapping function
between the signals from the source sensor system to the
target sensor system, and vice versa. This is doable for
sensor signals that are of the same or cross modality. The



Neural Computing and Applications (2023) 35:20463-20568

20507

authors proposed two transfer learning models in order to
translate recognition systems based on activity tem-
plates/models. This depends on the features of the source
and target sensor systems. The proposed transfer learning
approaches are evaluated in a HCI scenario; the transfer is
done between wearable sensors located at various body
locations, and between wearable sensors and ambient depth
camera. The results showed that a nice transfer is achiev-
able in just few seconds of data. This was done irrespective
of the transfer direction for similar/cross sensor modalities.

In [208], the authors proposed a Quantum Water Strider
Algorithm with Hybrid-Deep-Learning-based Activity
Recognition that is called QWSA-HDLAR model. The
proposed QWSA-HDLAR approach can recognize the
various types of HAR. The QWSA-HDLAR model utilized
a deep transfer learning approach. A neural-architectural-
search-network (NASNet)-based feature extractor was used
to generate feature vectors. The proposed QWSA-HDLAR
method utilizes a QWSA-based hyperparameter tuning
method in order to select the hyperparameters of the
NASNet model. The classification of human activities is
achieved using a hybrid CNN with a bidirectional RNN
model. The experiments were done using two testing
datasets, KTH and UCF Sports datasets. The results
showed that QWSA-HDLAR model outperformed the
state-of-the-art DL approaches.

7 Embedded HAR

In this section, we address HAR systems implemented on
embedded devices. Basterretxea et al. [209] aimed at an
FPGA-based autonomous single-chip HAR system without
needing external computing means or human intervention.
The system comprises all typical HAR process phases, i.e.,
signal segmentation, feature extraction through signal
processing, feature selection through dimensionality
reduction of input space, and activity recognition using a
neural network classifier. A physical activity recognition
application was utilized as a frame-of-reference to evaluate
the system performance and analyze FPGAs potential
benefits in prospective wearable HAR applications.

Czabke et al. [210] presented a microcontroller-based
algorithm for human activity classification based on a 3-
axial accelerometer. For long term activity patterns moni-
toring, the data amount is kept small with efficient data
processing. The authors classified in real-time the follow-
ing activities: resting, walking, running, and unknown
activity. The algorithm ran on the proposed device
Motionlogger with a key fob size and can be placed in a
pocket or a handbag. The algorithm testing with 10 users
locating the Motionlogger in their pockets showed an
average accuracy > 90%.

Li et al. [211] presented an activity recognition system
from passive RFID data using a deep convolutional neural
network. For activity recognition, the RFID data are feed
directly into a deep convolutional neural network, instead
of selecting features. A cascade structure is used that first
detects from the RFID data the “object use” then pre-
dicting the activity. The “object use” of specific activities
means recognizing activities based on the used objects, i.e.,
detecting human—object interaction from the sensed data.
The proposed system solves activity recognition as a multi-
class classification problem, thus it is scalable for appli-
cations having big number of activity classes. Testing the
proposed system using RFID data obtained in a trauma
room comprising 14 h of RFID data from 16 actual trauma
resuscitation (restoration of acute illness or near death).
The proposed system outperformed state-of-the-art systems
implemented for activity recognition and had similar per-
formance with process-phase detection like systems based
on wearable sensors. The authors also studied the strengths
and challenges of the proposed deep learning architecture
for activity recognition using the RFID data.

Sundaramoorthy et al. [212] proposed HARNet that is
efficiently handling resources and computationally practi-
cal network for on-line Incremental Learning and User
Adaptability to be a mitigation technique used for
anomalous user behavior recognition. Heterogeneity
Activity Recognition Dataset [152] was utilized for eval-
uating HARNet and other proposed variants by using
acceleration data collected from different mobile plat-
forms. The authors utilized Decimation for down-sampling
in order to generalize sampling frequencies between
mobile devices. Discrete Wavelet Transform was utilized
for preserving information among frequency and time.
Typical evaluation of HARNet on the adaptability of users
resulted in an accuracy increase by 35% by utilizing the
model ability to extract differentiating features between
activities inside heterogeneous environments.

Saponas et al. [213] argued that researchers have
explored various approaches like services running in
mobile phone background, cameras in environment, RFID
readers, etc. The authors recommended that for HAR sys-
tem to transition from interesting research topic to main-
stream technology and for enhancing the day-to-day
activities, HAR must use many of the user’s computing
ecosystem components, e.g., low-power embedded hard-
ware running continuously and mounted on phone, cloud
services tracking the user’s activities on long-term and
recognizing current activity from all inputs, etc. The
authors provided a brief discussion of how this system can
be implemented and utilized.

Chen et al. [214] proposed a multi-level HAR modeling
workflow named Stage-Logits-Memory Distillation
(SMLDist) in order to construct deep convolutional HAR
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models using embedded hardware. SMLDist comprises
stage distillation, memory distillation, and logits distilla-
tion. Stage distillation limits the intermediate features
learning direction. The student models were taught by the
teacher model how to explain and save the inner relation-
ship between high-dimensional features depending on
Hopfield networks in memory distillation. Logits distilla-
tion constructs logits filtered by a smoothed conditional
rule to keep the probability distribution and improve the
accuracy of the softer target. The authors made a com-
parison of the accuracy, F1 macro score, and energy cost
on a MobileNet V3 model [215] embedded platforms built
by SMLDist with different state-of-the-art HAR systems.
The batch size of the training and validating samples was
set to 256 while the learning rate was set to 1 x 10~*. The
proposed model had a good balance to be robust and effi-
cient. SMLDist can as well compress the models given a
slight performance loss with an equal compression ratio
compared to other advanced knowledge distillation
approaches on 7 public datasets.

Bhat et al. [216] proposed the first HAR system per-
forming both tasks of online training and inference. The
proposed system first generates features using the FFT and
discrete wavelet transform of a stretch sensor that is textile-
based and accelerometer. Based on these features, the
authors developed an ANN classifier that is trained online
utilizing the policy gradient algorithm. The experiments on
an IoT device (TT-CC2650 MCU) that is low power with
nine subjects showed an accuracy of 97.7% in recognizing
6 activities and the transitions between these activities with
< 12.5 mW consumption of power. Another line of work
by Bhat et al. [217] introduced an open source platform
called OpenHealth that allows for health monitoring using
wearable sensors. OpenHealth represents a hardware/soft-
ware set and wearable devices enabling autonomous inte-
gration of clinically related data. The OpenHealth platform
comprises a wearable device, standard software interfaces
and implementations of applications for activity and ges-
ture recognition.

Alessandrini et al. [218] solved the HAR problem
directly on embedded devices by developing an RNN on a
low cost, low power microcontroller, while checking the
targeted performance through accuracy and low complex-
ity. The authors first implemented an RNN which combines
Photoplethysmography (PPG) and 3-axial accelerometer
data in which these data is used to match motion artifacts in
PPG to recognize human activity accurately. The authors
then deployed the RNN to a Cloud-JAM L4 embedded
device that is based on an STM32 microcontroller. This
device is optimized to preserve an accuracy > 95% whilst
requiring small computational power and memory resour-
ces. The experiments showed that this system can
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efficiently be developed on a limited-resource system,
aiming at designing a wearable embedded system that is
fully autonomous for HAR and logging.

Choudhury et al. [219] presented a Mobile Sensing
Platform (MSP) that is a small wearable device. MSP is
designed for accurate activity recognition on embedded
devices to support ubiquitous computing applications that
are context-aware. The authors had performed many real-
world deployments and subject studies. The results are
utilized to enhance the hardware/software design and HAR
algorithms.

Ravi et al. [220] a HAR system based on a deep learning
for accurate and real-time classification on wearable
devices that have low power. In order to gain steadiness
against changes in the orientation, placement, and sampling
rates of sensor, a feature generation using the IMU data
spectral domain. The proposed method utilized the trans-
formed input temporal convolutions sums. the proposed
approach accuracy is assessed versus the current state-of-
the-art techniques on both laboratory and real world
activity datasets. The authors performed a systematic
analysis for the parameters used in feature generation. In
addition, the authors compared the activity recognition
computation times on mobile devices and sensor nodes.
The proposed system was deployed as an Android app and
as an embedded algorithm as well for the Intel Edison
Development Platform. Intel Edison was used to show
human activity classification on-node by using the trained
recognition model. Using a dual-core Intel Atom CPU with
rate of 500 MHz, wireless connectivity, and compact
physical with dimensions of 35.5 x 25.0 x 3.9 mm, the
Intel Edison is a small powerful platform that is suitable for
smart sensor networks applications.

Table 14 presents a comparison and summarize several
embedded HAR systems, including power consumption,
performance metrics and time consumption.

8 Discussion and conclusion

Human activity recognition (HAR) has gained tremendous
momentum in recent years along with the digitization of all
aspects of society in general and individual lives in par-
ticular. Of particular significance and potential are those
systems based on streaming of inertial data (such as linear
and rotational motion) from IMU devices. Such sensing
capabilities are currently embedded in almost all com-
modity mobile and wearable devices. As the field is very
huge and diverse, this article is by no means comprehen-
sive; it is though meant to provide a logically and con-
ceptually rather complete picture to advanced readers, as
well as to present a readable guided introduction to new-
comers. Our logical and conceptual perspectives mimic the
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Table 14 Comparison of several embedded HAR systems, including power consumption, performance metrics and time consumption

Reference Power consumption Performance metrics Time consumption
Basterretxea 268 mW (system running at maximum Overall accuracy: 84.9% (Minimal 25s
et al. [209] speed) ANN structure) and 89.7%
(Augmented structure)
Czabke et al. - Average accuracy > 90% 57s

[210]
Liet al. [211]

Sundaramoorthy
et al. [212]

Chen et al. [214]

Bhat et al. [216]

Bhat et al. [217]

Alessandrini
et al. [218]

Choudhury et al.
[219]

Ravi et al. [220]

Energy cost of SMLDist (Stage-
Memory-Logits Distillation) ranges
from 0.0209 to 0.0385 (mW - h/
sample) on 7 public datasets

Computation power consumption is
11.24 mW. Sensing power
consumption is 1.13 mW. BLE
Communication power consumption
is 5 mW.

Power consumption is about 12.5 mW
for single HAR activity recognition.
Power consumption is about 10 mW
for gestures recognition.

Power consumption is about 43 mW
(with all sensors running
continuously)

Average accuracy 72.03% for 5
resuscitation phases detection,
80.40% for 11 activities recognition,
and 90.8% for 6 lab activities
recognition

Accuracy of HAR-LCNet (LSTM —
Conv-1D — Conv-2D) is 96.79%

Accuracy of SMLDist ranges from
92.11 to 99.41% on 7 public datasets

Accuracy of 97.7% in identifying 6
activities and their transitions

Accuracy is > 90% for all HAR
activities. Accuracy is 98.6% for
gestures recognition.

Accuracy is over 95%

Highest Accuracy is 93.8% (Inference
v2.0 with temporal information
included and supervised learning)

Accuracy is 95.1% on ActiveMiles
dataset, 98.2% on WISDM vl.1,
95.9% on Skoda (Node 16), about
95% on Daphnet FoG

Time taken for Classification of a
single window of HAR-LCNet is
68.9 ms

Time cost of SMLDist ranges from
8.653 to 14.626 (ms/sample) on 7
public datasets

Processing time is 27.60 ms. Sensing
time is 1500 ms. Bluetooth Low
Energy (BLE) communication time is
8.6 ms.

Average test time is 150.1 ms at the
highest test accuracy of 95.54% on
the micro-controller unit (MCU)

Activities classified every 0.25 s

Computation time is 5.4 ms/20 ms/
13-42 ms for Spectrogram
generation and 5.7 ms/8 ms/14.9 ms
for Deep Learning classification on
LG Nexus 5/Samsung Galaxy S5/
Intel Edison, respectively.

typical data science pipeline for state-of-the-art Al-based
systems. Namely, starting with datasets, either publicly
available and/or collected, to feature engineering and/or
automatically extracted, developing learning models
including the transfer of pre-trained models to new datasets
and/or tasks, and finally validating the trained models. We
have as well touched on adversarial attacks as actual
deployment involves security/privacy issues. Adversarial
attacks against timeseries data is a pretty recent research
and only a handful of works are available.

There are huge opportunities both on the research and
industrial sides for IMU-based HAR. To the best of our
knowledge, there have been very few works addressing the

fusion of inertial and other data modality such as the visual.
Some recent work in empirical psychology aim at merging
IMU with social media texts trying to profile and under-
stand the mental status of the user and potential risks with
behavioral patterns and mood changes, for example. With
the COVID-19 outbreak, gyms among other public places
have been forced to close their doors in order to control the
spread of the global pandemic. Moreover, people were
advised to stay at home and in some places, were fined if
found outside. Hence, many people’s mental and physical
state started to deteriorate. As a result, more and more
workout mobile apps started to gain an increasing popu-
larity. Accordingly, there has been a growing interest in
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performing exercising and sports indoors with the assis-
tance of smart digital technology for tracking and assess-
ment of such exercising. Such kinds of apps are based
essentially on measuring and tracking motions, and here
where inertial data are readily, naturally, and directly
helpful. Much more quality inertial datasets need to be
collected and made open, where the setup and data con-
figuration have to be well documented. We believe that for
closed HAR systems (deployment environment very much
resembles the training model construction environment),
deep neural methods may not be that effective, especially
with the limitation of datasets and their sizes. However, as
seen above, deep methods are very effective and useful in
transfer learning handling the deployment of HAR systems
in radically different situations and contexts from those
where the model was built.

Inertial data streaming through IMU devices are more
intrinsic than other data modalities, specially the visual, as
they are embedded into wearables and hence, mobile car-
ried on with the user wherever she is. It has as well the
advantage of complying more with the security and privacy
concerns of the users. Its main disadvantage is high sen-
sitivity to noise and low explicit semantic content, as
compared, for example, with visual, audio, or textual data.
Hence, they need smart algorithms to extract the most
feasible and valuable information from them.

Some research works have applied advanced 3D data
tensor models in medical images analysis, specifically the
Azheimer’s disease [221-224]. However, the modalities
used in these works are visual scans (such as magnetic
resonance and in general 3D visual data). To the best of our
knowledge, these models have not been used for analysis of
inertial motion data which is the main focus of the current
paper. However, it is worth investigating the use of such
architectures, and others like normalizing flows and GANs
(Generative Adversarial Networks), for the analysis of
timeseries inertial motion data.

Another crucial research point in the domain of HAR
based on IMU Data is the “adversarial attacks” on time
series data. Deep neural networks are highly parameterized
complex models and they can be highly sensitive, and
hence, ill-robust, to small perturbations, as observed by
[225]. This is most witnessed in visual data, where the
perturbations can be completely imperceptible to the
human eye, however, may lead to vastly and widely dif-
ferent classification outputs than expected or desired [225].
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These perturbations may be explicitly engineered (target
adversarial attack) and added to inputs for malicious pur-
poses, which can potentially have devastating conse-
quences in critical production systems. Therefore, there is a
need to design methods that are robust to such attacks,
detecting and mitigating them, in order to maintain the
integrity and correct functionality of such systems [226].

Most of the work done in that direction have targeted
visual data, aiming at the detection and mitigation against
such attacks including techniques such as adversarial
learning and the proper development of adversarial
examples. Attacking timeseries streaming data can be of
detrimental consequences as well. For example, models
that are deployed to detect and monitor seismic waves can
be fooled into creating fear and panic in society; wearables
used for activity recognition from inertial signals can fool
the user into believing performing fake actions, or believ-
ing some performance level in a given activity [227].

Only recently there have been some emergent works
targeting adversarial attacks against timeseries data, among
which are the data streamed from IMU sensors. To the best
of our knowledge, Fawaz et al. [228] in 2019 were the first
to address adversarial attacks against deep learning models
trained on timeseries data. Such timeseries adversarial
examples can severely affect the predictive performance
and reliability of decisions taken by such models in real-
world applications specially those related to healthcare
applications, sports, and security. The crux of this work is
that timeseries data, similar to visual data, are also prone to
adversarial attacks. And even they developed adversarial
attacks (examples) by transferring and adapting adversarial
attacks that had been shown to work on images. More
specifically, the authors formulated attacks on timeseries
data based on two methods: (1) the Fast Gradient Sign
Method (FGSM) and (2) the Basic Iterative Method (BIM).
FGSM is based on one step update along the direction of
the gradient at each time step (this is the opposite to the
learning update).

Saponas et al. [213] highlighted the key challenges
which are facing the adoption of HAR in future systems in
industry. The authors mentioned that performing HAR
using “mobile devices” is the crucial factor and accord-
ingly the authors highlighted two important challenges: the
location independence and continuous operation/function.
The authors mentioned that no single device can figure all
the context needed for the required HAR use cases. The
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authors argued that the future HAR systems have a chal-
lenge to utilize all the computing ecosystem components
from embedded devices to the cloud.

In [229], the authors argue that one might have the false
perception that performing HAR using IMUs is already at a
perfect state and that no further actions need to be done. On
contrary, out of those who are not using their wearable
devices sensing: 36% cited that this is due to the mea-
surement accuracy and 34% cited that is because the
improper activity tracking [230]. The authors argue that
HAR is still far away from being solved due to the fol-
lowing reasons: (1) the difficulty in defining an activity, (2)
Heterogeneous benchmarks, (3) Collecting ground-truth
data for the HAR systems is expensive and not easy, (4)

Various characteristics causes diverse activity profiles, (5)
the lack of standardization in storing, processing, and
analyzing the data. These points highlight the open
research problems in this field and give some insights about
the future research works.

Appendix A. Public activity datasets

There is a wide variety of activity datasets that are based on
inertial motion data. These are typically used as bench-
marks to test new techniques for activity analysis and
inference systems. A brief description of these datasets are
given in Table 15.
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sensor to monitor heart
activity, tilt sensor to
monitor trunk position,
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(accelerometers) to
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