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Domenico Amato1 • Giosué Lo Bosco1 • Raffaele Giancarlo1

Received: 31 January 2023 / Accepted: 28 June 2023 / Published online: 21 July 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023, corrected publication 2023

Abstract
The new area of Learned Data Structures consists of mixing Machine Learning techniques with those specific to Data

Structures, with the purpose to achieve time/space gains in the performance of those latter. The perceived paradigm shift in

computer architectures, that would favor the employment of graphics/tensor units over traditional central processing units,

is one of the driving forces behind this new area. The advent of the corresponding branch-free programming paradigm

would then favor the adoption of Neural Networks as the fundamental units of Classic Data Structures. This is the case of

Learned Bloom Filters. The equally important field of Learned Indexes does not appear to make use of Neural Networks at

all. In this paper, we offer a comparative experimental investigation regarding the potential uses of Neural Networks as a

fundamental building block of Learned Indexes. Our results provide a solid and much-needed evaluation of the role Neural

Networks can play in Learned Indexing. Based on our findings, we highlight the need for the creation of highly specialised

Neural Networks customised to Learned Indexes. Because of the methodological significance of our findings and appli-

cation of Learned Indexes in strategic domains, such as Computer Networks and Databases, care has been taken to make

the presentation of our results accessible to the general audience of scientists and engineers working in Neural Networks

and with no background about Learned Indexing.

Keywords Information retrieval � Machine learning � Neural networks � Learned indexes

1 Introduction

Learned Data Structures are a new area of research that

combines Machine Learning (ML) techniques with those

inherent to Data Structures, with the goal of enhancing the

speed and space efficiency of traditional Data Structures. It

was started by Kraska et al. [27], has expanded quickly

[16], and has recently been extended to include Learned

Algorithms [35]. Its impact on the design of modern

Information Systems is expected to be quite significant

[28].

1.1 The motivation for learned data structures:
computer architectures

Due to their learning ability, Neural Networks (NNs) [38]

are without a doubt the ML models perceived to have the

greatest potential in the field of Learned Data Structures

[27]. However, they demand excessive computational

power. This computational bottleneck has essentially been

eliminated for their successful use in many application

areas [29], thanks to the adoption of highly engineered

development platforms such as TensorFlow [1], and the

introduction of graphics processing units (GPU) and tensor

An extended abstract related to this paper has been presented

at the 23rd International Conference EAAAI/EANN. The

Conference proceedings are the Series Communications in
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processing units (TPU) architectures in commercial com-

puters [40, 43]. The main advantage of these novel archi-

tectures is their excellent ability to parallelize algebraic

tasks performed by NNs. Further gains are foreseen since

current studies argue that the power of the GPU can

increase by 1000x in the next few years. On the other hand,

those performance gains are not anticipated for traditional

Central Processing Units (CPUs), due to Moore’s Law

limitations [36]. Therefore, a programming paradigm that

would promote straight-line mathematical operations,

which can be easily pipelined on GPUs, appears much

more promising than the one that uses branches of the if-

then-else type. Due to these factors and to the fact that

classic Data Structures implementations use branch

instructions, the use of ML models, like NNs, to reduce the

branchy part of code in Data Structures implementations

may lead to versions of those latter that can take full

advantage of the new cutting-edge architectures. Such an

achievement would have major effects on many strategic

domains, e.g., Computer Networks and Databases. Unfor-

tunately, even though the reason for creating Learned Data

Structures based on NNs is strong, how to achieve such an

advantage and a quantification of how much would that be

are at an early stage of an investigation, or not addressed at

all, as we discuss in more detail in the following.

1.2 The role of NNs: from motivation to design
and implementation of learned data
structures

• Learned Bloom Filters. Since the very beginning of

the field of Learned Data Structure, NNs have been

actively employed in the design and implementation of

Learned Bloom Filters [27]. Note that a Bloom Filter[9]

is a Data Structure to solve the so-called Approximate

Membership Problem for a given set A � U, where U is

a universe of elements. This means deciding whether a

query element x 2 U also belongs to A, with a certain

False Positive Rate � and zero False Negatives. Given a

False Positive Rate, query time and space occupancy

are crucial factors in determining how well a Bloom

Filter performs. These variables are closely related to

each other, as clearly stated in [11]. Convolutional and

Recurrent NNs have been adopted in the most recent

versions of Learned Bloom Filters [14, 27, 34, 42]. The

reader who is interested in this particular Learned Data

Structure can find an experimental comparative study in

[19].

• Learned Indexes. They have been developed to

address the so-called Predecessor Search Problem.

Letting now A be a sorted table and given a query

element x 2 U, the Predecessor Search Problem entails

locating the A[j] such that A½j� � x\A½jþ 1�. In Sect. 2,

a primer of the Learned Indexes methodology is

provided, designed for a general audience due to the

potential impact that this area may have on Machine

Learning and Data Structures. As stated earlier,

although the use of NNs to take advantage of novel

computer architectures is one of the main motivations

for this new area, unexpectedly and to the best of our

knowledge, none of the Learned Indexes proposed so

far, e.g., [4, 6, 7, 16, 17, 27, 31] to mention a few, use

NNs. Our assessment is in agreement with what was

reported in [30]. Even worse, no evaluation is available

regarding the real role that NNs can have in the design

and implementation of Learned Indexes.

Although Dynamic Learned Indexes have been

successfully designed, e.g., ALEX [15], PGM-Index

[17] and SageDb [26], here we concentrate on the static

version of the Predecessor Search Problem. Indeed, as

evident in what follows, our finding in this specific

context role out the use of NNs in the dynamic case.

• Additional Learned Data Structures. Both Learned

Rank and Select Data Structures [10] and Learned Hash

Functions [27] do not employ NNs. Once more, no

analysis is available that justifies such a choice.

1.3 Our findings: the atomic case of neural
networks in the design of learned indexes

Our original contribution to the development of Learned

Data Structures is the first evaluation of the suitability of

NNs as core elements of Learned Indexes, keeping in view

the State of the Art described in Sect. 1.2. Atomic Learned

Indexes (see Sect. 3.1) are taken into consideration in order

to provide a clear comparative assessment of the potential

usefulness of NNs in the aforementioned domain. They are

the most basic models that come to mind. The justification

for their choice is that in the case NNs do not provide any

significant advancement with respect to very simple

Learned Indexes, taking into consideration the results in

[4, 7], even with the benefit of GPU processing, NNs have

very little to offer to Learned Indexing. Basically, in this

paper, we provide the following contributions.

• The first Learned Index design solely based on NN

models. Because they provide an excellent balance

between time effectiveness, space occupancy, and

learning capacity [8], we opt for Feed Forward NNs.

We refer to this Learned Index as an Atomic Learned

Index because it lacks any additional ML

subcomponents.

• A thorough experimental investigation on the perfor-

mance of the Atomic Learned Index for both CPU and

GPU processing.
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• This Atomic Learned Index is thoroughly compared to

analogous Atomic Learned Indexes that merely use

linear regression[18] as the learned component. These

models have been analysed and utilised in [4, 7]. More

complicated models include them as building blocks,

e.g, [4, 7, 16, 17, 27, 31].

• For completeness, and in order to highlight how

delicate is to choose a Learned Index to effectively

process a given table, we also compare the Atomic

Learned Indexes with the ones that are considered State

of the Art.

Our findings unequivocally show the need to design NNs

specifically tailored for Learned Indexing, as opposed to

Learned Bloom Filters. A work like this, which paves the

road for the creation of NNs more tailored for Learned

Indexing, is significant from a methodological perspective.

In order to make this area accessible to researchers and

engineers working on NNs, care is taken in providing an

intuitive and easy-to-follow introduction to this area, that

then ‘‘moves on‘‘ to account in full for the State of the Art.

The software used for the experiments carried out in this

paper can be found at [21].

1.4 Structure of the paper

The structure of this article is as follows. A high level

presentation of the main ideas sustaining Learned Indexing

is provided in Sect. 2. Atomic Learned Indexes (see

Sect. 3.1) and the primary Hierarchical Learned Indexes

(see Sect. 3.2) are both covered in Sect. 3, which provides

an overview of Learned Indexes that have been actually

proposed in the Literature. We describe the adopted

experimental methodology in Sect. 4. Experiments and

results are reported in Sect. 5. We present conclusions and

future study directions in Sect. 6.

2 Classic and learned solutions
for searching and indexing in a sorted set

Consider a sorted table A with n keys drawn from a uni-

verse U. As already stated in the Introduction, the Prede-

cessor Search Problem, also known as Sorted Table Search,

states that for a given query element x, return the A[j] such

that A½j� � x\A½jþ 1�. In the sections that follow, we detail
both the traditional solutions to this problem and the

method suggested by Kraska et al. [27] for turning it into a

learning-prediction problem.

2.1 Traditional options: sorted table search
techniques

Binary and Interpolation Searches are well-known algo-

rithmic solutions to the Predecessor Search Problem. The

first is optimal in a worst-case time setting under various

computational models [2, 13, 25, 39], while the second has

an excellent average case time performance for

tables drawn uniformly and at random from the Universe

U [33, 39]. Moreover, they both feature loops with a very

small number of instructions, which makes them extremely

quick, even in practice. For the purposes of this paper, we

use two C?? implementations of Binary Search: a text-

book one, which we refer to as Standard (abbreviated as

BS), and an implementation of the Uniform variant (ab-

breviated as US), which was developed as part of a study

by Khoung and Morin [22], following an approach sug-

gested by Knuth [25]. Additionally, the Algorithms 1 and 2

provide the pseudo code for those two routines, respec-

tively. Recalling that we are interested in Learned Sorted

Table Search, as it will be evident in the remainder of this

paper, we could have considered also Interpolation Search

but, due to its poor performance in the Learned setting [3],

we have excluded it for the experiments conducted in this

paper.
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2.2 Learned indexing: the essential ingredients

As already indicated, Kraska et al. [27] developed a novel

strategy that converts the Predecessor Search Problem into

a learning-prediction one. Referring to Fig. 1, the potential

location of a query element in the table, in terms of an

interval to search into, is returned by the model that was

learned from the data. Binary Search is then used in that

possibly smaller interval with respect to the entire table, in

order to finalize the search. In other words, the model is

used as an oracle to predict the query element position: the

more accurate the oracle, the smaller the interval it returns.

In addition to that, the oracle must return its prediction very

quickly, possibly in constant time.

We now describe the simplest method for creating a

model for A using Linear Regression and Mean Square

Error Minimization [18], with the help of an example. In

light of Fig. 2 and Table A in the caption, a Learned Index

can be trained in the way described below.

• Computation of the Cumulative Distribution Func-

tion (CDF for short) of a Sorted Table. Regarding

Fig. 2a, we may plot the elements of A on a graph,

where the ordinates correspond to the ranks of the

elements, and the abscissa displays the corresponding

values of the elements. The outcome of this plot

resembles a Cumulative Distribution Function CDF that

underlines the table, as pointed out by Marcus et al [31].

The specific procedure illustrated here can be applied to

any sorted table to obtain the mentioned discrete curve,

which in the Literature is referred to as CDF.

• Select a Model for the CDF. The discrete CDF must

now be converted into a continuous curve. Fitting a

straight line with the equation FðxÞ ¼ axþ b to the

CDF is the simplest way to accomplish this. To get

a and b in this case, we apply Linear Regression with

Mean Square Error Minimization. This process is

depicted in Fig. 2b, where the resulting a and b are,

respectively, 0.01 and 0.85 when the array A specified

in the figure legend is used as input.

• Model Error Correction. Since F is a rough estimate

of the ranks of the elements in the table, using it to

predict the rank of an element may result in an error e.

For instance, in Fig. 2c, we apply the model to the

element 398 and get a predicted rank of 4.68 instead of

the actual rank of 7. This means that the error of the

model FðxÞ ¼ 0:01 � xþ 0:85 on this element is

e ¼ j7� b4:68cj ¼ 3. We must thus correct this error

before we can use the equation F to predict where an

element x lies in the table. It is natural to correct such an

approximate estimate by taking into account the

maximum error: the largest gap � between the actual

rank of each element in the table and its rank as

predicted by the model. Then, the search interval of an

element x is specified to be ½FðxÞ � �;FðxÞ þ ��. In the

example discussed in Fig. 2c, the resulting � is equal to

3.

3 Learned indexes

In Sect. 2.2, we presented the essential ingredients of a

Learned Index, also providing an example. However, those

Data Structures are quite successful and key to the future

development of Information Retrieval [28]. It comes as no

surprise that many proposals for Learned Indexes have

appeared in the Literature (see again [28]). In agreement

with the State of the Art and in order to best appreciate the

results of this paper, we provide synoptic details about the

definition and functionality of a Learned Index. In partic-

ular, we can distinguish two types of indexes:

• Atomic Learned Indexes. They are the simplest type

of Learned Indexes, i.e., as described in Sect. 3.1, they

21402 Neural Computing and Applications (XXXX) 35:21399–21414

123



consist of a single machine learning model capable of

learning particular features of the data.

• Hierarchical Indexes. As described in Sect. 3.2, they

use Atomic Learned Indexes as nodes of a tree-like

structure to achieve better performance.

3.1 Atomic learned indexes

A model for Learned Indexes can be a linear function that

models the CDF of the data, as described in Sect. 2.2. We

identify a model as Atomic if it consists of a closed-form

formula or a straightforward algorithm that estimates the

CDF on a specific point (see Fig. 1). That is, it lacks any

learned sub-component from the data.

3.1.1 Atomic learned indexes characterized by analytic
solutions to regression problems

Regression is a technique to estimate a given function G :

Rm ! R using a particular function model ~G. Predictors

and outcomes, respectively, are the terms used to describe

the independent variables x 2 Rm and the dependent vari-

able y 2 R. By minimising a given error function calcu-

lated using a sample set of predictor-outcome

measurements, the parameters of ~G can be estimated. The

Mean Square Error is the error function that is most fre-

quently adopted, and there are various approaches to carry

out the minimization task. Here, we adhere to the proce-

dure described in [20], which specifically provides poly-

nomial closed-form equations to solve the minimization of

mean square error. When a geometric linear form is taken

as a model for ~G, it is referred to as Linear Regression.

Simple Linear Regression (SLR) is used when m ¼ 1 and

Multiple Linear Regression (MLR) in all other circum-

stances. The objective is to characterise the linear function

model ~GðxÞ ¼ ŵxT þ b̂ by estimating the parameters ŵ 2
Rm and b̂ 2 R using a given training set of n predictor-

outcome couples ðxi; yiÞ, where xi 2 Rm and yi 2 R. The

design matrix Z can be defined as a matrix of size

n� ðmþ 1Þ, where Zi is the i-th row of Z and Zi ¼ ½xi; 1�.
Additionally, y denotes a vector of size n, whose j-th

component is indicated as yj. The estimation is carried out

by a Mean Square Error Minimization as follows:

MSEðw; bÞ ¼ 1

n
½w; b�ZT � y

�
�

�
�

2

2

ð1Þ

Taking into consideration that MSE is a convex quadratic

function on ½w; b�, it has a unique minimum that can be

obtained by setting to zero its gradientrw;b, whose value is

½ŵ; b̂� ¼ yZðZTZÞ�1 ð2Þ

The Simple Linear Regression case is characterized by a

polynomial with degree g ¼ 1. The general case of Poly-

nomial Regression, which adopts a polynomial with degree

g[ 1, is a special case of Multiple Linear Regression,

where

Fig. 1 A General Paradigm of Learned Searching in a Sorted Set [31].

The model is trained on the data in the table. Then, given a query

element, it is used to predict an interval in the table of a reduced size

where to search for the query (included in brackets in the figure). A

binary search in the reduced interval is then applied to find the

location of the query element in the table

Fig. 2 The Linear Regression Method for Learning a Simple Model.

Assume that A is [47, 105, 140, 289, 316, 358, 386, 398, 819, 939].

a The CDF of A is shown. In the diagram, the rank and value of each

element in the table are indicated by their y and x coordinates,

respectively. b By using linear regression, the values a and b of the

equation FðxÞ ¼ axþ b are determined. c The highest error epsilon
one can find using F is epsilon ¼ 3, i.e. the largest difference between

a rank of a value in the table and its predicted rank from F after

rounding. For the provided query element x, the interval to search

inside is given by I ¼ ½FðxÞ � epsilon;FðxÞ þ epsilon�
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~GðzÞ ¼ wzT þ b ð3Þ

w is of size g and z ¼ ½x; ::; xg�1; xg� 2 Rg is the predictor

vector for MLR. In this study, we employ linear, quadratic

and cubic regression models to estimate the function

F provided by the underlying CDF. The relevant models

are specifically prefixed with L, Q, or C, respectively.

3.1.2 Atomic learned indexes based on neural networks

The function G : Rm ! R can be also learned by a NN. We

concentrate on Multi-Layer Perceptrons (MLPs) Networks

following the paper by Kraska et al [27]. MLPs are feed-

forward networks and their general strategy entails an

iterative training phase where the ~G approximation is

improved at each iteration. After starting with an initial

approximation ~G0, at each iteration i, an effort is made to

reduce an error function E so that Eð ~Gi�1Þ	Eð ~GiÞ. A

training set T of examples is used for the minimization of

E. The process can continue for a fixed number of steps or

it can be terminated when, given a tolerance d,

j Eð ~Gi�1Þ � Eð ~GiÞ j � d. We list the fundamental compo-

nents that define the employed type of NN in the following.

1. TOPOLOGY OF THE ARCHITECTURE.

(a) The standard Perceptron [8] with relu activation

function represents the atomic element of our

NN.

(b) H, the number of Hidden Layers.

(c) nhi , the Number of Perceptrons for each hidden

layer hi.

(d) Fully Connected NN, i.e., each Perceptron of

layer hi is connected with each Perceptron of the

next layer hiþ1.

2. THE LEARNING ALGORITHM.

(a) E, the error function that measures how close is
~G to G.

(b) Starting from ~G0, a gradient descent iterative

process that at each step, approximates better and

better G by reducing E. The parameters of each

layer are changed via a backwards and forward

pass. A learning rate characterizes the model,

i.e., a multiplicative constant of the gradient

error.

3. THE TRAINING SCHEME.

(a) B, the size of a batch, i.e., the subset of elements

to extract from the training set T. At each

extraction of the batch, the model parameters are

updated.

(b) The number of epochs ne, i.e., the number of

times the training set T is presented to the NN for

the minimization of E.

A suitable training set is used by the learning algorithm of a

NN, to carry out the iterative gradient descent process. The

training data for the case of indexing, which is our goal, are

in the form of scalar integers. It is necessary to represent a

scalar integer x with a vector representation x! to do a

regression using a NN. As proposed by Kraska et al. for the

same indexing problem [27], x! is a string holding the

64-bit binary representation of x.

3.2 Learned indexes using hierarchical
structures

The Atomic Learned Indexes have been utilised as the

basis for more complex Learned Indexes with a hierar-

chical structure. Among the many proposals available, for

this research, we consider the three indexes that appear to

perform better than the others in the Literature [24, 31]. It

is to be pointed out that, although all of the Atomic Indexes

mentioned in Sect. 3.1 can be used as building boxes for

the more complex indexes described next, to the best of our

knowledge, and as already pointed out in the Introduction,

none uses NNs.

3.2.1 The recursive model index

Historically, the first Learned Index proposal is the

Recursive Model Index, or the RMI [27]. It is a Hierar-

chical Index with a tree-like structure, as seen in Fig. 4a.

Its nodes are all Atomic Learned Indexes, just like those

mentioned in Sect. 3.1. A prediction at each level indicates

the model of the following level to be used for the next

prediction, given a key to search for. The last level is

achieved after continuing this process from the root.

Finally, leaves provide a small interval for searching,

which is given in input to the Binary Search. In order to

obtain an RMI for a given Sorted Table, many hyperpa-

rameters must be specified, such as the number of levels,

the number of nodes for each level, and the model to

employ for each node. Which hyperparameters setting is

best depends on the real context in which the specific index

is employed, and its identification via efficient algorithms

is an open problem. A partial solution to this is provided by

the software platform CDF-Shop [32]: for a given dataset,

it returns up to ten RMIs, that are identified via Combi-

natorial Optimization heuristics.
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3.2.2 The piece-wise geometric model

The Piece-wise Geometric Model Index (abbreviated as

PGM) [17] is a Learned Index that uses a piece-wise linear

approximation algorithm [12] to estimate the CDF of the

data, combined with a bottom-up procedure. The prediction

error at each stage of its hierarchy is controlled by a user-

defined approximation parameter. An example of the PGM

is depicted in Fig. 4b and it is obtained as follows. The

piece-wise linear approximation of the CDF provides three

segments. The CDF of each segment is approximated by a

linear model. By choosing the lowest values in each of the

three segments, a new table is created. This new table is

again divided into segments as in the first stage. The pro-

cess is iterated until the resulting table consists of only one

segment. The search for an element starts at the root of the

PGM where the next model to query is selected until one

of the segments is reached at the bottom. Then, Binary

Search is used to finalize the query step.

3.2.3 The radix spline index

Another example of a bottom-up method to Learned

Indexing is the Radix Spline Index (RS for short) [23],

which, unlike the PGM, estimates the distribution through

a spline curve [37]. As seen in Fig. 4c, a spline is con-

structed to roughly represent the CDF of the table, and the

radix table is then utilised to determine which spline points

should be used to narrow the search interval. A maximum

approximation error is ensured for the RS using the user-

defined value.

3.3 Prediction accuracy of a model

The approximation error is crucial in minimizing the size

of the interval to search into, as it is clearly shown in

Fig. 2. The part of the table where the last search must be

done gets smaller while the error decreases. The percentage

of the table that is no longer taken into account for

searching after a prediction is the reduction factor (RF),

which we use in this study to describe the accuracy in the

prediction of a model. Because of the variability across the

models to establish the search interval, and in order to

place all models on par, we estimate empirically the RF of

a model. In particular, we utilize a batch of queries and the

model to decide how long the interval (I in Fig. 2) should

be for each query. This allows us to simply calculate the

reduction factor for that query. The reduction factor of the

model for the specified table is then determined by aver-

aging these reduction factors across the full set of queries.

Note that the machine learning problem related to a learned

index prediction does not involve any generalization error,

since the problem is formulated in such a way that the

predictions are always computed on the same dataset used

for the training. As a consequence, the RF is always

intended for the training.

4 Experimental procedure

4.1 Hardware

A workstation with an Intel Core i7-8700 3.2GHz CPU and

an Nvidia Titan V GPU has been used for the experiments.

A total of 32 Gbytes of DDR4 serve as the system memory.

Additionally, the GPU is equipped with 12 Gbytes of

DDR5 RAM on its own, and it uses the CUDA parallel

computing framework. A PCIe 3 bus with a 32Gbyte/s

bandwidth connects the CPU and GPU. Ubuntu LTS 20.04

is used as the operating system.

4.2 Datasets

We need to recall from Sect. 3.1.2 that an NN used in this

research on a given integer dataset, requires that the 64 bits

representation of each integer is transformed into a binary

vector with 64 entries. Therefore, after training, the NN

size is considerably larger than the original dataset used for

training, having for this latter the possibility of packing

each element in one memory word. Now, there exist large

and real datasets that are de facto standards in terms of

benchmarking of Learned Indexes [31]. However, they

have a dimension in the Gigabytes and therefore, they are

too large to be used in conjunction with NNs as Atomic

Learned Indexes. This brings to light a limitation: NNs can

be used only on relatively small datasets, i.e., size in the

Mbs.

Given all of the above, in order to benchmark NNs for

this study, we have resorted to a choice of datasets that

have also appeared in the Learned Indexing Literature at

the early stages of its development, e.g., [17, 27]. In par-

ticular, as detailed next, we use real and artificial datasets.

The first type has a size that NNs can work with, while the

size of the second type can be determined so that NNs have

no space problem.

1. Uni collects data sampled from a Uniform distribution,

defined as

Uðx; a; bÞ ¼
( 1

b� a
if x 2 ½a; b�

0 otherwise
ð4Þ

where a ¼ 1 e b ¼ 2r�1 � 1, where r is the CPU

integer precision. It contains 1.05e?06 integers and

has a size of 1.10e?04 Kb.
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2. Logn collects data sampled from a Log-normal distri-

bution, defined as

Lðx; l; rÞ ¼ e�
ðlnx�lÞ2

2r2

x
ffiffiffi

2
p

pr
ð5Þ

where l ¼ 0 is the means and r ¼ 1 is the variance of

the distribution. It contains 1.05e?06 integers and has

a size of 1.05e?04 Kb.

1. Real-wl collects timestamps of 
 715 M requests

performed by a web server. It contains 3.16e?07

integers and has a size of 3.48e?05 Kb.

2. Real-iot collects timestamps of 
 26 M events

recorded by IoT sensors. It contains 1.52e?07 integers

and has a size of 1.67e?05 Kb.

The CDFs of each of those datasets are reported in Fig. 5.

As evident from that figure, the logn dataset has a CDF that

may be challenging to learn, as stated in [27], while the

other datasets follow a uniform distribution and their CDF

can be considered easy to learn.

Fig. 4 Examples of different hierarchical learned indexes. a A RMI
example with two layers and a branching factor b. The top box

indicates that a linear function is used to choose the lower models.

Regarding the leaf boxes, each one identifies which of the Atomic

Learned Indexes is applied to the relevant part of the table where

making a prediction. b An illustration of a PGM index. The table is

broken into three segments at the bottom. In this manner, a new

table is built, and the procedure is repeated. c A RS illustration. The

bins at the top are where the elements fall according to their top three

digits. A linear spline with appropriately selected spline points that

approximates the CDF of the data is shown at the bottom. Each

bucket points to a spline point, and as a consequence when a query

element falls into a bucket (let’s say six), the search interval is

restricted by the spline points pointed by that bucket and the one

before it (five in our example)

Fig. 3 The neural network architectures used in this research. We use the notation: a NN0 for no hidden layers; b NN1 for one hidden layer; and

c NN2 for two hidden layers. The number of input neurons is 64, each layer has 256 units
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For each of the aforementioned tables, the query dataset

is equally divided across elements that are present in the

table and those that are absent. Its size is equal to 50% of

the reference dataset. The query datasets for all experi-

ments are not sorted.

4.3 Atomic learned indexes and binary search

We use the standard Binary Search strategy, and in addi-

tion to it, Uniform Binary Search [22, 25] for the last

search step. They are the routines BS and US of Sect. 2.1,

respectively. In terms of Atomic Learned Indexes, we

employ L, Q, and C. As for NNs, and as mentioned

already, we follow the initial proposal by Kraska et al. [27],

and use only Multi-layer Perceptron Networks with an

increasing complexity of architecture in terms of hidden

layers, as detailed below. Specifically, NN0 denotes an NN

with no hidden layers (see Fig. 3a), NN1 one with one

hidden layer (Fig. 3b), and NN2 one with two hidden

layers (Fig. 3c). Each layer has 256 units. For the sake of

clarity, we anticipate that, as is evident from the results

discussed in Sect. 5.2.2, no further studies are needed

regarding the investigation of network hyperparameters or

more complex architectures such as the Convolutional

(CNN), as even the simplest networks considered here turn

out not to be competitive in terms of query time with the

other models investigated. Two Atomic Learned Indexes

are provided by each of the models mentioned above, one

for each Binary Search routine utilized in the final search

stage. However, US may be streamlined to prevent

‘‘branchy’’ instructions in its implementation, according to

Khuong and Morin [22], yielding better performance with

respect to BS. For this reason, it performs better than BS in

our experiments and, for conciseness, we report only the

experiments regarding US. Given an input table, all Atomic

Indexes are built according to the procedures outlined in

Sect. 3.1.

4.4 Hierarchical learned indexes

As for Hierarchical Indexes, we consider RMI, PGM and

RS. We use the Search on Sorted Data (SOSD for short)

[31] platform for model training of the PGM and the RS,

for a given table. However, as already mentioned, for the

training of the RMI, we use CDF-Shop. As for query

processing, for each Hierarchical Index, each batch of

queries is executed within SOSD. It should be noted that

the main version of the SOSD platform only offers a

Uniform Binary Search implementation as the final stage of

the model that utilises the standard C?? lower_bound

procedure. A version of this platform suitably modified for

this research is described in [6].

5 Experiments and findings

The datasets outlined in Sect. 4.1 have been considered. To

use them as input for the NNs, both training and query

datasets are modified as described at the end of Sect. 3.1.2.

In regard to both training and query times, we report the

average per element. That is, for query processing, we take

the total time to process a batch with a given Learned Index

and then divide that time by the number of items in the

batch. An analogous procedure is followed for training on

an input dataset. This method of collecting timing results is

in agreement with the Literature since it assures a reliable

measure of time performance [31]. We report results

regarding both training and querying as follows.

• Training. A comparison between GPU and CPU

training is performed and reported in Sect. 5.1. In

particular, we use the highly engineered Tensorflow

platform with GPU support to train NNs Atomic

Indexes. As far as L, Q and C are concerned, we use

a CPU implementation for their training.

• Batch Query Processing. We perform four different

kinds of experiments in order to study the competitive-

ness of NNs Atomic Indexes with respect to the other

Table 1 Training time and reduction factor for atomic learned

indexes

Uni Logn

TT (s) RF (%) TT (s) RF (%)

NN0 2.55e�04 94.08 1.39e�04 54.40

NN1 4.18e�04 99.89 3.79e�04 94.21

NN2 4.49e�04 99.87 8.60e�04 97.14

L 8.20e�08 99.94 5.61e�08 77.10

Q 1.27e�07 99.98 1.02e�07 90.69

C 1.84e�07 99.97 1.74e�07 95.76

Real-wl Real-iot

TT (s) RF (%) TT (s) RF (%)

NN0 2.50e�04 99.99 1.28e�04 89.90

NN1 2.31e�04 99.88% 4.20e�04 98.54

NN2 2.33e�04 99.80 3.57e�04 97.31

L 5.82e�08 99.99 7.70e�08 96.48

Q 1.14e�07 99.99 1.25e�07 99.10

The training time for each element, indicated in seconds (column TT
(s)), and the percentage of table reduction (column RF (%)), as

defined in Sect. 3.3, are displayed for each dataset, indicated in the

first row of the tables, and each model, indicated in the first column.

L, Q and C are the linear, quadratic and cubic atomic models while

NN0, NN1, NN2 indicate NN models with 0, 1 and 2 hidden layers

respectively
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Learned Indexing models considered in this research,

and also in regard to the various hardware and software

solutions that we have available.

– TensorFlow. In order to do query searches with the

Learned Indexes based on NNs, we have carried out

query experiments using Tensorflow with GPU

support. Because of the overhead of uploading

Tensorflow to the GPU, results are quite poor and

hence not reported. This is consistent with the

outcomes mentioned in [27]. For this reason,

Tensorflow was exclusively utilized to train NNs.

– GPU and NNs vs Parallel Binary Search. We

employ two C?? CUDA implementations, one of

the Learned Index corresponding to NN0, and the

other relative to a parallel version of BS. Sec-

tion 5.2.1 shows a report of the findings highlighting

that using the GPU is not advantageous, also in

comparison with the baseline BS implemented in

CUDA. As a result, no additional GPU experiments

have been carried out. We point out that here we use

BS due to the technical difficulties a C?? CUDA

implementation of US imposes, de facto making it

analogous to BS.

– CPU only.

Atomic Learned Indexes. We have carried out

all of the experiments using the Atomic Learned

Indexes considered for this research. For the sake

of clarity and as anticipated, because the results

on BS would contribute very little to the discus-

sion, we only provide the results using US.

Section 5.2.2 reports and discusses them.

Table 2 Training time and

reduction factor of neural

networks for different sizes of

the logn training set

Sampling percentage NN0 NN1 NN2

TT (s) RF (%) TT (s) RF (%) TT (s) RF (%)

25% 4.77e�04 15,76% 4.07e�03 63,42 4.44e�03 83,71

50% 2.6e�04 17,09% 2.43e�03 64,23 3,57e-03 83,94

75% 3.13e�04 16,52% 2.42e�03 63.90 5,06e-03 82.61

100% 1.39e�04 54.40% 3.79e�04 94.21 8.60e�04 97.14

The first column indicates the sample size, while the remaining part of the table is organized as Table 1

Fig. 5 Datasets CDF. For each

dataset used in this paper, we

report in the x-axis the value of

each element in the dataset and

in the y-axis, its cumulative

probability computed as in [27]
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Insights into the Learning the Complex CDF of

a Sorted Table. The Hierarchical Learned

Indexes, i.e., RMI, PGM and RS, are the most

competitive in terms of query time. Therefore, it

is natural to ask what is the gap that NNs have in

performance with respect to the most advanced

Learned Indexes. As a complement to this

assessment, we also show that the choice of a

Learned Index for a given Sorted Table depends

critically on the complexity of the CDF that needs

to be learned. Section 5.2.3 reports and discusses

the findings of this set of experiments.

5.1 Training: GPU versus CPU

The training times for the experiments outlined at the

beginning of this section are reported in Table 1, along

with the corresponding RF, which was calculated as

explained in Sect. 3.3. The training time for Atomic

Learned Indexes L,Q and C is equal to the time required to

solve Eq. (2). The stochastic gradient descent learning

approach is employed for NN models, with a momentum

parameter of 0.9 and a learning rate of 0.1. A number of

epochs equal to 2000 are used with a batch size of 64. All

those values have been set via trial and error, observing

that increasing batch size and number of epochs does not

lead to improvements. As shown by the findings listed in

Table 1, the size of the employed NNs affects the reduction

factor and training time. In particular, the more layers, the

better the reduction factor and the higher the training time.

Moreover, NNs are not competitive with the L, Q and

C Atomic Learned Indexes, both in training time and RF.

In regard to training time, this lack of performance holds

even with GPU support and the use of the highly-engi-

neered Tensorflow platform. In fact, for each dataset, the

training time for NNs is four orders of magnitude longer

than that for non-NN Atomic Learned Indexes with a

similar RF, although those latter use a CPU and therefore

they do not benefit from parallelism. Since the training of

NN models is performed via Tensorflow, it is not possible,

to the best of our knowledge, to profile the CPU-GPU I/O

time, i.e., the time to input the data and get the trained NN,

and compare it with the training phase that is performed in

parallel within the GPU. Despite such a shortcoming and in

Fig. 6 Training Curve on a Sample of Size 25% of the logn dataset. Each figure reports the MSE (ordinate) over the epochs (abscissa) for the

given training sample. NN0, NN1 and NN2 are reported from left to right

Table 3 A comparison of

prediction accuracy on the logn

dataset: atomic learned indexes

versus hierarchical ones

Indexes Logn (%)

NN2 97.14

C 95.76

RMI 99.99

PGM 99.99

RS 99.99

For conciseness, only the most

complex Atomic Learned

Indexes are reported in the first

two rows of the table (NN2, C).
The hierarchical models are

RMI, PGM, RS. The values in

the table are the RF of each of

the considered Indexes on the

logn dataset

Table 4 Query time on GPUs

Methods Copy (s) Op. (s) Search (s) Query (s)

NN0-BS 3.27e�08 4.20e�09 1.84e�09 3.27e�08

BS 2.55e�09 - 1.89e�09 4.44e�09

Binary Search using NN0 as the prediction step is referred to as NN0-
BS, whereas GPU-based parallel Binary Search without a prior pre-

diction is indicated as BS. We report various time results, in seconds

and per element (averaged over an entire batch of queries), as follows.

The time for CPU-GPU copy operations and vice versa (column Copy
(s)); the time for math operations (column Op. (s)), the time to search

into the interval with BS (column Search (s)), and the overall time to

finish the query process (column Query (s))
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view of the results reported in Sect. 5.2.1, it is reasonable

to justify such a result with the fact that the I/O time

dominated the GPU training time, to the point of making

the use of parallelism detrimental. Given the order of

magnitude difference in training time between NN and

other Atomic Models training, such a picture is unlikely to

change even if the I/O bandwidth CPU/GPU increases by

constant factors.

Regarding the RF performance, the support for NN use

was motivated by Kraska et al. with their ability to learn

‘‘complex patterns‘‘ in the data that could not be captured

by Atomic Models based on regression. This may be the

case, as indicated by comparing the RF performance of the

NNs on the logn dataset with that of the other Atomic

Learned Indexes.

As far as NNs are concerned, it is of interest to assess

how TT and RF vary with respect to the size of the training

set. We have experimented only with the ‘‘most difficult’’

of the datasets, i.e., logn. Specifically, for each of NNO,

NN1 and NN2, different sizes of the training set have been

considered, ranging from 25% to 100%. The results are

reported in Table 2. It is clear that the RFs increase as the

size of the training set and the complexity of the networks

increase, with a corresponding increase in TT. It is worth

recalling from Sect. 3.3 that the machine learning problem

related to the learned index prediction does not involve any

generalization error, so the RF on validation or test are not

provided. For completeness, Figs. 6-9 depict the MSE of

the three models with respect to the learning epochs, on

different training set sizes.

Given all of the above regarding NNs, it seems to be

more profitable, in terms of prediction accuracy, to resort to

the Hierarchical Learned Indexes that divide the CDF to be

learned into pieces, possibly obtaining a set of ‘‘simpler‘‘

curves to learn. Such a fact is illustrated in Table 3 for the

logn dataset, where the Hierarchical Learned Indexes have

a nearly perfect prediction. Note that, in this table, we

report only the reduction factor of the NN2 model because

it has shown the best results in terms of training time and

reduction factor in regard to the experiments conducted on

all the datasets, reported in Table 1.

5.2 Query

5.2.1 GPU and NNs versus parallel binary search

Assuming as a baseline a simple parallel implementation of

Binary Search, i.e., BS, in order to determine whether there

is actually a benefit to using the GPU for queries in con-

junction with NNs, we conduct an experiment by com-

paring the former classic and simple parallel routine with

NN0 on the simplest of the datasets to learn, i.e., uni. Such

a choice provides an advantage to the NN. As already

mentioned, we could not use the Uniform version of Binary

Search, i.e., US, on the GPU because it was difficult to

import within CUDA. The results are reported in Table 4.

They clearly show that on GPUs, the usage of NNs on this

architecture is superfluous because a traditional parallel

Table 5 Query time of NN atomic learned indexes on CPU for each

of the considered datasets

Dataset US NN0-US NN1 NN2

Uni 2.81e�07 1.31e�07 1.56e�06 5.16e�06

Logn 2.08e�07 1.92e�07 1.69e�06 5.24e�06

Real-wl 3.38e�07 4.59e�07 Space Error Space Error

Real-iot 3.07e�07 4.76e�07 1.90e�06 1.94e�05

The datasets are indicated in the first column. The time taken by

Uniform Binary Search alone is indicated in the column named US,
while its version using NN0 as the prediction step is indicated by the

column NN0-US. The other columns refer to the time taken by NN1
and NN2 only for the interval prediction. The time is in seconds and is

per query element (averaged over an entire batch of queries). The

label Space Error indicates the case when the queries are too big to fit

in the main memory

Table 6 Query time of non-NN atomic learned indexes on CPU for

each of the considered datasets

Dataset US L-US Q-US C-US

Uni 2.81e�07 9.42e�08 8.11e�08 9.39e�08

Logn 2.08e�07 1.60e�07 1.59e�07 1.54e�07

Real-wl 3.38e�07 5e05e-08 2.12e�7 1.80e�7

Real-iot 3.07e�07 8.32e�08 1.99e�7 2.57e�7

Results with Linear, Quadratic and Cubic models are reported and

indicated in columns L-US, Q-US, C-US respectively. The first two

columns are the same as in Table 5. Every time in the Table is rep-

resented in seconds and is per query element (averaged over an entire

batch of queries)

Table 7 Query time of hierarchical indexes on CPU for each of the

considered datasets

Dataset US RMI PGM RS

Uni 2.81e�07 1.5e�07 1.62e�07 1.66e�07

Logn 2.08e�07 1.45e�07 1.59e�07 1.66e�07

Real-wl 3.38e�07 1.11e�07 1.26e�07 1.59e�7

Real-iot 3.07e�07 1.36e�07 1.45e�07 1.68e�7

The columns RMI, PGM and RS report the results with the con-

sidered Hierarchical Learned Indexes. The first two columns are the

same as in Table 5. Every time in the Table is represented in seconds

and is per query element (averaged over an entire batch of queries)
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Binary Search on the GPU is by itself faster than its

Learned counterparts. It is also of interest to point out that

copy operations from CPU to GPU and vice versa cancel

out the one order of magnitude speedup of maths opera-

tions. The lectures to be learned from this experiment are

rather subtle. Indeed, it is the case that GPU code execution

favours straight-line math operations (and therefore NNs)

with respect to if-then-else constructs (Binary Search).

However, transfer from the Main Memory to the GPU may

play a key role in cancelling eventual time gains. More-

over, recalling that the joint usage of GPU and NNs was

once again one of the motivations to resort to Learned

Indexing approaches, we find that when one is willing to

use the GPU, a simple parallel implementation of standard

Binary Search is enough. That is, the Learned Indexing

framework is certainly of success, but not with the com-

ponents initially envisaged. In particular, GPU usage.

5.2.2 CPU only: atomic learned indexes

We take Uniform Binary Search US as a baseline to

compare against the Atomic Learned Indexes. Such a

choice is motivated by the fact that results reported in [22]

indicate that US is usually faster than BS on modern

computer architectures. It results convenient to report the

experiments regarding NNs separately (Table 5) with

respect to the ones regarding the other Atomic Indexes

(Table 6). From those results, we have that only NN0 is

competitive on the artificial datasets with respect to the

baseline. As for the other two NNs, either they are not

competitive even for prediction time only, or they run out

of space. This latter fact is due to the coding of the query

data that must be used for its use in conjunction with the

NNs and that causes an expansion of the query set size, (see

Sect. 3.1.2). Therefore, NNs more complex than NN0 are

slow in time and costly in space. As for the remaining

Atomic Indexes, they all report a gain in time with respect

to the baseline. In conclusion, NNs are not very competi-

tive as Atomic Learned Indexes.

5.2.3 CPU only: insights into the complexity of learning
the CDF of a sorted table

Table 7 contains the findings of the query experiments

performed with the use of the Hierarchical Learned Indexes

on the datasets considered for the Atomic Indexes. A

comparison with Table 5 shows that NNs are not com-

petitive with Hierarchical Learned Indexes unless the CDF

of the input Table is particularly easy to learn (see the CDF

of uni in Fig. 5). In this case, only NN0 is worth consid-

eration. It is also of interest to compare the Hierarchical

Indexes with the remaining Atomic ones, whose results are

reported in Table 6. With the exclusion of the somewhat

difficult-to-learn table logn, the Atomic L Index is much

Fig. 7 Training curve on a sample of size 50% of logn dataset. The legend is as in Fig. 6

Fig. 8 Training curve on a sample of size 75% of the logn dataset. The legend is as in Fig. 6
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better than the Hierarchical Learned Indexes. This is due to

the regularity of the CDFs to be learned, not requiring

complicated models.

In order to better illustrate the above point, we have

performed an additional experiment with the use of the

Open Street Map (osm for short) dataset. It is the most

difficult in terms of the CDF, among the real benchmark

datasets used in [31] and that, as already pointed out, are

too large for the NNs. This dataset comprises 200 M

64-bits integers representing the cell IDs of embedded

locations in Open Street Map. Its CDF is depicted in

Fig. 10. The query time results of the Hierarchical Learned

Indexes and of the Regression-based ones are reported in

Table 8. The Q Index has been excluded for brevity since

it performs as the other two Atomic ones. As evident from

those results, the Hierarchical Learned Indexes are now

competitive with respect to the Atomic ones.

The lesson to be drawn here is that NNs are far from

being competitive with Hierarchical Indexes which, in turn,

are competitive with respect to Atomic Learned Indexes

only on Sorted Tables with a complex CDF curve to learn.

6 Conclusions

A perceived paradigm shift is one of the motivations for the

introduction of the Learned Indexes. Despite that, the use

of a GPU architecture for Learned Indexes based on NNs

seems not to be appropriate when we use generic NNs as

we have done here. It is to be pointed out that certainly, the

use of a GPU accelerates the performance of math opera-

tions, but the data transfer between CPU and GPU is a

bottleneck in the case of NNs: not only data but also the

size of the model matters. When we consider CPU only,

NN models are not competitive with very simple models

based on Linear Regression. This research clearly points to

the need to design NN architectures specialized for

Learned Indexing, as opposed to what happens for Bloom

Filters where generic NN models guarantee good perfor-

mance to their Learned versions. In particular, those new

NN models must be competitive with the Atomic Learned

Indexes based on Linear Regression, which are widely used

Fig. 9 Training curve on the full logn dataset. The legend is as in Fig. 6

Fig. 10 OSM Dataset CDF. The legend is as in Fig. 5

Table 8 Query time of

hierarchical indexes on difficult

datasets and a comparison with

atomic indexes

Dataset US L C RMI PGM RS

OSM 6.85e�07 6.67e�07 5.49e�07 2.75e�07 1.72e�07 1.71e�07

Logn 2.08e�07 1.60e�07 1.54e�07 1.45e�07 1.59e�07 1.66e�07

The Table reports query times of the search alone (column US), of Atomic Indexes (columns L and C,
respectively), and of Hierarchical Learned Indexes (columns RMI, PGM and RS, respectively) on two

‘‘difficult’’ datasets, one real (osm) and one synthetic (logn). Every time in the Table is represented in

seconds and is per query element (averaged over an entire batch of queries)
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as building blocks of more complex models [4, 7, 31]. It is

to be remarked that we have considered the static case

only, i.e., no insertions or deletions are allowed in the table.

The dynamic case has also been considered in the litera-

ture, i.e., [15, 17]. However, for that setting, no NN solu-

tion is available. In conclusion, this study provides solid

grounds and valuable indications for the future develop-

ment of Learned Data Structures, which would include a

pervasive presence of NNs.
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