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Abstract
This article discusses a novel type-2 fuzzy inference system with multiple variables in which no fuzzy rules are explicitly

defined. By using a rule-free system, we avoid the serious disadvantage of rule-based systems, which are burdened with the

curse of dimensionality. In the proposed system, Gaussian membership functions are used for its inputs, and linearly

parameterized system functions are used to obtain its output. To obtain the system parameters, a genetic algorithm with

multi-objective function is applied. In the presented method, the genetic algorithm is combined with a feature selection

method and a regularized ridge regression. The objective functions consist of a pair in which one function is defined as the

number of active features and the other as the validation error for regression models or the accuracy for classification

models. In this way, the models are selected from the Pareto front considering some compromise between their quality and

simplification. Compared to the author’s previous work on the regression-based fuzzy inference system, a new inference

scheme with type-2 fuzzy sets has been proposed, and the quality has been improved compared to the system based on

type-1 fuzzy sets. Four experiments involving the approximation of a function, the prediction of fuel consumption, the

classification of breast tissue, and the prediction of concrete compressive strength confirmed the efficacy of the presented

method.

Keywords Type-2 fuzzy systems � Regression models � Multi-objective optimization � Feature selection

1 Introduction

One of the categories of fuzzy systems is systems based on

type-2 fuzzy sets [101]. In these systems, which are an

extension of systems with type-1 fuzzy sets, we are dealing

with the uncertainty associated with defining the mem-

bership functions. In the last 20 years, there has been a

significant increase in scientists’ interest in systems with

type-2 fuzzy sets. This is evidenced by the search result for

the phrase ’type-2 fuzzy’ on the Web of Science website,

where we receive over 6000 records in mid-2023. The

scope of application of systems with type-2 fuzzy sets is

very wide. This is because these systems have a greater

potential (by having more degrees of freedom) than clas-

sical systems with type-1 fuzzy sets. Here, we can cite

some sample articles from the last five years in the fol-

lowing areas (in alphabetical order): chaotic systems

[25, 42, 56, 65], classification [9, 21, 28, 37, 61, 108],

cognitive maps [1–3], communication systems

[18, 19, 29, 44, 45, 74, 95, 97, 107], computing with words

[41, 94], control systems [35, 63, 67, 71, 73,

76, 77, 99, 102], data clustering [13, 34, 54, 75,

96, 100, 105], decision making [16, 39, 46, 62, 70, 78, 84,

86, 87, 89], differential equations [6, 8, 58], fault detection

[36, 64], image processing [31, 40, 48, 52, 80], jump sys-

tems [17, 47, 59, 69, 104, 106], linear programming

[33, 38, 43], time series forecasting [51, 66, 68, 72].

Although the results for type-2 fuzzy systems are

promising, the underlying problem is that the processing

times for these systems are higher than for type-1 fuzzy

systems. This is mainly due to the fact that these systems

are more complex and have more parameters that require

tuning. Therefore, the paper [55] proposes the following

directions that scientists could explore (apart from type

reduction, they also apply to type-1 fuzzy systems):
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– Model optimization—the choice of membership func-

tions, rules, and operations is still a big open question,

– Type reduction—this time-consuming operation should

still be improved,

– Defuzzification—despite the existence of many

defuzzification methods, there is a need to improve

their efficiency,

– Computational complexity—this issue can still be

explored because of the curse of dimensionality,

– Hybridization—the search for new learning algorithms

is desirable to improve the overall performance.

In addition, the authors point to the need for practical

applications in areas such as hardware implementations

and applications in medical diagnostics, in the area of Big

Data, or in robotics. The literature review presented in the

following cites some solutions that exist in the literature in

the areas mentioned above.

1.1 Related work

It should be stressed that most of the solutions proposed in

the literature are related to systems based on fuzzy rules.

Such systems are limited in their use because of the curse

of dimensionality associated with the exponential increase

in the number of rules. To optimize fuzzy models, some

attempts have been made to develop their structure without

a rule base. The paper [60] focuses on the synthesis of a

fuzzy logic control system using a new analytical approach

without any rule base. Unfortunately, no way to select

fuzzy system parameters is provided, especially when

using observed data. In the paper [88], the authors present a

new type of fuzzy inference system similar to that pre-

sented in [60]. Their system does not have a rule base, and

the number of its parameters increases linearly. The authors

do not provide a tuning method based on the observed data;

it is only mentioned that a method similar to backpropa-

gation is used. Another way to reduce the number of fuzzy

rules is to create hierarchical systems, as described in [50],

which proposes a type-2 fuzzy hierarchical system for

high-dimensional data modeling.

The problems of type reduction and defuzzification in

type-2 fuzzy systems are still the subject of research and

have not yet been finally solved. This paragraph presents

examples of papers devoted to these issues. The proposi-

tion of two type reduction algorithms along with a com-

prehensive study using various programming languages is

presented in [10]. In the paper [14], the authors propose an

inference and type reduction method for constrained

interval type-2 fuzzy sets using the concept of switch

indices. The paper [24] presents a technique, named stratic

defuzzification, for discretized general type-2 fuzzy sets.

This method is based on the transformation of a type-2

fuzzy set into a type-1 fuzzy set. Two algorithms, called

binary algorithms, are proposed in [49] to calculate the

centroid of interval type-2 fuzzy sets. A method to calcu-

late the center of gravity of polygonal interval type-2 fuzzy

sets is introduced in [57]. The authors’ method can be

applied both on discrete and continuous domains without

the need of discretization. A non-iterative method to obtain

the center of centroids for an interval type-2 fuzzy set is

presented in [5]. This method is based on the weighted sum

of the centroids for the lower and upper membership

functions. The study [11] presents three types of sampling-

based reduction algorithm for general type-2 fuzzy systems

that are extended versions of the algorithms proposed in the

literature for interval type-2 fuzzy systems. In the paper

[23], the authors present a theoretical approach to the type

reduction problem using the Chebyshev inequality.

Through their method, they obtain the centroids and the

bounds for type-1 and interval type-2 fuzzy numbers. The

paper [93] proposes a type reduction method for general

type-2 fuzzy systems using an a-plane representation. In

this representation, a series of a-planes is applied to

decompose a general type-2 fuzzy set. An experimental

evaluation of various defuzzification algorithms, namely

the Karnik-Mendel procedure, the Nie-Tan method, the

q factor method, and the modified q factor method, can be

found in [103].

Hybridization of type-2 fuzzy systems with various

learning algorithms has been considered in the following

sample papers. The paper [98] presents a hybrid approach

to build a type-2 neural fuzzy system that incorporates

particle swarm optimization and least-squares estimation.

The authors of the paper [53] propose a hybrid mechanism

for training type-2 fuzzy logic systems that uses a recursive

square root filter to tune the type-1 consequent parameters

and the steepest descent method to tune the interval type-2

antecedent parameters. In the paper [85], an evolving type-

2 Mamdani neural fuzzy system is proposed. The work [15]

introduces the extreme learning strategy to develop a fast

training algorithm for the interval type-2 Takagi-Sugeno-

Kang fuzzy logic systems. The paper [4] proposes a hybrid

learning mechanism for type-2 fuzzy systems that uses the

recursive orthogonal least-squares algorithm to tune the

type-1 consequent parameters and the backpropagation

algorithm to tune the type-2 antecedent parameters. The

work [79] presents an adaptive neuro-fuzzy inference

system (ANFIS) that uses interval Gaussian type-2 fuzzy

sets in the antecedent part and Gaussian type-1 fuzzy sets

in the consequent part. The structure of the proposed

ANFIS2 is very similar to that of the traditional ANFIS,

except for an extra layer for type reduction. In the paper

[22], the authors propose a design of an interval type-2

fuzzy logic system based on the quantum-behaved particle

swarm optimization algorithm. A trapezoidal type-2 fuzzy
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inference system is proposed in [30]. To optimize this

system, a tensor unfolding structure training method is

applied. A method of variable selection and sorting to

construct the type-2 Takagi-Sugeno-Kang fuzzy inference

system is described in [90]. This method selects indepen-

dent variables using Chi-square statistics. The paper [12]

presents an application of interval type-2 fuzzy logic

interval system to forecast the parameters of a permanent

magnetic drive. The authors use backpropagation and

recursive least-squares algorithms to optimize the fuzzy

logic system. In the paper [7], a composite framework is

presented that uses the deep learning technique for tuning

interval type-2 fuzzy systems. All paper mentioned above

use rule-based fuzzy inference systems.

1.2 Goals and contributions

According to the directions for the development of type-2

fuzzy systems mentioned above, the goals of the solution

proposed in this article are as follows. In the area of model

optimization, propose a system that does not use fuzzy

inference rules, which allows one to avoid the explosion of

their number along with the increase in the number of

inputs and fuzzy sets. In the area of defuzzification, elim-

inate this operation from a fuzzy system. Regarding the

type reduction, replace this operation with the weighted

sum of regression matrices. In terms of computational

complexity, propose a system in which the complexity

increases linearly or at most squarely, instead of the

exponential increase as in the systems known in the liter-

ature. Finally, in the area of hybridization, the use of ridge

regression and multi-criteria optimization with feature

selection to train the proposed system. In view of these

goals, the main contributions can be summarized as

follows:

– proposal of a new type-2 fuzzy inference scheme with-

out explicitly defined rules,

– using a hybrid method combining regularized regres-

sion and global optimization with feature selection to

train this system,

– improving performance over the previously published

type-1 fuzzy inference system.

Moreover, the proposed method is tested on four different

fuzzy modeling problems, which involve the approxima-

tion of a one-variable function and the prediction of fuel

consumption.

This paper is a continuation of the author’s previous

work [92], in which the type-1 RFIS model has been

discussed.

1.3 Paper structure

The structure of this paper is as follows. Section 2 provides

the description of a type-2 regression-based fuzzy infer-

ence system with linearly parameterized system functions.

The regression and design matrices used to design the

system are introduced in Sect. 3. A training method to

calculate the system function parameters and an illustrative

example are presented in Sect. 4. Section 5 presents a

training method for type-2 fuzzy sets. In Sect. 6, the cal-

culation of the objective functions is described. Section 7

contains the description of the experimental results.

Finally, the conclusions are given in Sect. 8.

1.4 Problem statement

We consider the problem of training a type-2 regression-

based fuzzy inference system (T2RFIS) with m inputs

x1; . . .; xm and one output y (Fig. 1). The problem concerns

the determination of type-2 fuzzy sets for the inputs of the

system and the parameters of a system function used to

obtain the output. To solve this problem, a hybrid training

method is proposed, in which fuzzy sets are determined by

a multi-objective genetic algorithm and the system function

parameters by a regression method. Because we assume

that the system function is linearly parameterized, this

method is implemented here by regularized ridge regres-

sion. The models generated by the proposed method are

simplified by applying a variable selection algorithm.

2 Type-2 fuzzy inference system

For the system inputs creating the vector x ¼ ½x1; . . .; xm�,
we define, for each input, p Gaussian fuzzy sets of type-2

(Fig. 2) described by the formulas

A1
j ðx1Þ ¼ gðx1; c1j ; r1j Þ; A

1

j ðx1Þ ¼ gðx1; c1j ; r1j Þ

..

. ..
.

Am
j ðxmÞ ¼ gðxm; cmj ; rmj Þ; A

m

j ðxmÞ ¼ gðxm; cmj ; rmj Þ

ð1Þ

where j ¼ 1; 2; . . .; p, xk 2 ½ck1; ckp�, k ¼ 1; 2; . . .;m, ckj is the

center of a fuzzy membership function, rkj is the width of a

lower fuzzy membership function, rkj is the width of an

upper fuzzy membership function, and gðx; c; rÞ ¼ exp

ð�0:5ðx� cÞ2=r2Þ. Using the defined fuzzy sets, we

introduce a lower fuzzy basis function nk
j
and an upper

fuzzy basis function n
k

j given by
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nk
j
ðxkÞ ¼

Ak
j ðxkÞ

Pp
j¼1 A

k
j ðxkÞ

; n
k

j ðxkÞ ¼
A
k

j ðxkÞ
Pp

j¼1 A
k

j ðxkÞ
ð2Þ

The lower fuzzy basis functions and upper fuzzy basis

functions are written as vectors

nðxÞ
1�p�m

¼ ½n1
1
ðx1Þ; . . .; n1

p
ðx1Þ; . . .; nm

1
ðxmÞ; . . .; nm

p
ðxmÞ�

nðxÞ
1�p�m

¼ ½n11ðx1Þ; . . .; n
1

pðx1Þ; . . .; n
m

1 ðxmÞ; . . .; n
m

p ðxmÞ�
ð3Þ

The output of the T2RFIS model is determined as

ŷ ¼
Xt

s¼1

bsdsðnðxÞÞ ð4Þ

where bs is the unknown system function coefficient, t is

the number of system function coefficients, and dsðnðxÞÞ is
a linear or nonlinear expression dependent on the lower and

upper fuzzy basis functions. The expressions dsðnðxÞÞ form
a design matrix DðnÞ as described in the next section. For

the proposed T2RFIS model, the calculation scheme of the

output ŷ is presented in Fig. 1.

3 Regression and design matrices

We assume that we know the pairs of observation data

ðxi; yiÞ, where i ¼ 1; 2. . .; n. These data are written as the

matrix Xo and the vector y of the form

Xo
n�m

¼

x1

x2

..

.

xn

2

6
6
6
6
4

3

7
7
7
7
5
¼

x11 . . . xm1
x12 . . . xm2

..

. ..
.

x1n . . . xmn

2

6
6
6
6
4

3

7
7
7
7
5
; y
n�1

¼

y1

y2

..

.

yn

2

6
6
6
6
4

3

7
7
7
7
5

ð5Þ

Assuming these data, we introduce the following three

regression matrices:

– the lower regression matrix

X
n�p�m

¼

nðx1Þ
nðx2Þ

..

.

nðxnÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

n1
1
ðx11Þ; . . .; n

1

p
ðx11Þ; . . .; n

m
1
ðxm1 Þ; . . .; n

m
p
ðxm1 Þ

n1
1
ðx12Þ; . . .; n1pðx

1
2Þ; . . .; nm1 ðx

m
2 Þ; . . .; nmp ðx

m
2 Þ

..

.

n1
1
ðx1nÞ; . . .; n1pðx

1
nÞ; . . .; nm1 ðx

m
n Þ; . . .; nmp ðx

m
n Þ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð6Þ

– the upper regression matrix

Fig. 1 Calculation scheme of the T2RFIS model. First, the member-

ship grades (1) and the fuzzy basis functions (2) for the lower and

upper membership functions are calculated, and then the lower (6)

and upper (7) regression matrices are obtained. The regression

matrices are combined to form one regression matrix (8), and the

design matrix (9) is determined. In the next steps, an optional feature

selection is performed, resulting in the matrix Df , for which the

parameters of the system function are calculated. In the end, the

output of the system is predicted

Fig. 2 Type-2 fuzzy sets for the inputs of the T2RFIS model
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X
n�p�m

¼

nðx1Þ
nðx2Þ
..
.

nðxnÞ

2

6
6
6
6
4

3

7
7
7
7
5

¼

n
1

1ðx11Þ; . . .; n
1

pðx11Þ; . . .; n
m

1 ðxm1 Þ; . . .; n
m

p ðxm1 Þ

n
1

1ðx12Þ; . . .; n
1

pðx12Þ; . . .; n
m

1 ðxm2 Þ; . . .; n
m

p ðxm2 Þ

..

.

n
1

1ðx1nÞ; . . .; n
1

pðx1nÞ; . . .; n
m

1 ðxmn Þ; . . .; n
m

p ðxmn Þ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð7Þ

– the regression matrix

X
n�p�m

¼ wXþ wX

wþ w

¼

n11ðx11Þ; . . .; n
1
pðx11Þ; . . .; n

m
1 ðxm1 Þ; . . .; n

m
p ðxm1 Þ

n11ðx12Þ; . . .; n
1
pðx12Þ; . . .; n

m
1 ðxm2 Þ; . . .; n

m
p ðxm2 Þ

..

.

n11ðx1nÞ; . . .; n
1
pðx1nÞ; . . .; n

m
1 ðxmn Þ; . . .; n

m
p ðxmn Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð8Þ

where nkj ¼ ðwnk
j
þ wn

k

j Þ=ðwþ wÞ and w, w are the

weights of the lower and upper regression matrix,

respectively. These weights are the variables subject to

optimization, as described later in the article.

The elements of the lower and upper regression matrices

are created from the elements of the vectors of the lower

and upper fuzzy basis functions (3), respectively. The

regression matrix X is formed as a weighted arithmetic

mean of the lower X and upper X regression matrices. The

elements of the described matrices are determined for all

input data xi.

Moreover, we introduce the design matrix

D
n�t

¼

d1ðnðx1ÞÞ; . . .; dtðnðx1ÞÞ
d1ðnðx2ÞÞ; . . .; dtðnðx2ÞÞ

..

.

d1ðnðxnÞÞ; . . .; dtðnðxnÞÞ

2

6
6
6
6
4

3

7
7
7
7
5

ð9Þ

The matrix D, calculated on the basis of the regression

matrix (Fig. 1), consists of the expressions dsðnðxÞÞ of the
system function used in formula (4). As in the case of

regression matrices, the elements of the design matrix are

determined for all input data xi. In the construction of this

matrix, four types of regression functions are applied

[83, 92]:

– ’linear’—model contains a linear term for each

predictor, for example

ŷ ¼ b1n1 þ b2n2 þ b3n3 ð10Þ

– ’purequadratic’—model contains linear and

squared terms for each predictor, for example

ŷ ¼ b1n1 þ b2n2 þ b3n3

þ b4n
2
1 þ b5n

2
2 þ b6n

2
3

ð11Þ

– ’interactions’—model contains a linear term for

each predictor and all products of pairs of distinct

predictors, for example

ŷ ¼ b1n1 þ b2n2 þ b3n3
þ b4n1n2 þ b5n1n3 þ b6n2n3

ð12Þ

– ’quadratic’—model contains linear and squared

terms for each predictor and all products of pairs of

distinct predictors, for example

y ¼ b1n1 þ b2n2 þ b3n3

þ b4n
2
1 þ b5n

2
2 þ b6n

2
3

þ b7n1n2 þ b8n1n3 þ b9n2n3

ð13Þ

The design matrix has the following sizes in subsequent

examples: n� 3, n� 6, n� 6, and n� 9. The predictors of

the lower and upper regression matrix form the columns of

the design matrix.

4 Training system function parameters

Training the system function coefficients consists of cal-

culating the elements of the vector b. For this purpose,

linear regression applied to the design matrix D and the

vector of output observations y can be used. In this paper, a

penalized least-squares method represented by ridge

regression [26] is applied. In this method, the cost function

J is given by

J ¼
Xn

i¼1

�
yi � ŷi

�2 þ kbTb ð14Þ

where the estimated output for the ith observation is cal-

culated from

ŷi ¼ DðxiÞb ð15Þ

and k[ 0 is a regularization parameter. For k ¼ 0, the

ridge regression becomes an ordinary least-squares

regression. The solution to the problem of minimizing the

function J is given by

b ¼
�
DTDþ kI

��1
DTy ð16Þ

where y ¼ ½y1; . . .; yn�T and I is the identity matrix. Ridge

regression, which has an additional parameter k, offers the
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important advantage of being a regularized regression, that

is, it can be used for ill-conditioned problems. This can

happen when the matrix DTD is close to the singular

matrix. Furthermore, this method is very fast because the

vector b is calculated directly from all the data in the

matrix D and the vector y.

4.1 Illustrative example

In this example, the goal is to train the T2RFIS model in

the regression problem for a very small amount of data

[92]. The fuzzy system has one input (m ¼ 1) denoted by x

and one output denoted by y. We assume two vectors of

observations of the form x ¼ ½1; 2; 3; 4�T and

y ¼ ½6; 5; 7; 10�T . For input x, we define p ¼ 2 fuzzy sets of

type-2, where the lower and upper membership functions

(1) are defined as (Fig. 3)

A1ðxÞ ¼ gðx; 1; 1:8Þ;A2ðxÞ ¼ gðx; 4; 1:2Þ ð17Þ

A1ðxÞ ¼ gðx; 1; 2:6Þ;A2ðxÞ ¼ gðx; 4; 1:8Þ ð18Þ

The parameters c and r in the sets described in Equa-

tions (17) and (18) have been arbitrarily chosen. However,

in the examples described in Section 7 ‘Experimental

results,’ these parameters are calculated by a genetic

algorithm.

For the defined fuzzy sets, the lower regression matrix

(6) and the upper regression matrix (7) have the form

X
4�2

¼

n
1
ðx1Þ n

2
ðx1Þ

n
1
ðx2Þ n

2
ðx2Þ

n
1
ðx3Þ n

2
ðx3Þ

n
1
ðx4Þ n

2
ðx4Þ

2

6
6
6
4

3

7
7
7
5
¼

0:8301 0:1699

0:6511 0:3489

0:4631 0:5369

0:3254 0:6746

2

6
6
6
4

3

7
7
7
5

ð19Þ

X
4�2

¼

n1ðx1Þ n2ðx1Þ
n1ðx2Þ n2ðx2Þ
n1ðx3Þ n2ðx3Þ
n1ðx4Þ n2ðx4Þ

2

6
6
6
4

3

7
7
7
5
¼

0:8004 0:1996

0:6326 0:3674

0:4647 0:5353

0:3395 0:6605

2

6
6
6
4

3

7
7
7
5

ð20Þ

where the lower fuzzy basis functions and the upper fuzzy

basis functions (8) are given by

n
1
ðxÞ ¼ A1ðxÞ

A1ðxÞ þ A2ðxÞ
; n

2
ðxÞ ¼ A2ðxÞ

A1ðxÞ þ A2ðxÞ
ð21Þ

n1ðxÞ ¼
A1ðxÞ

A1ðxÞ þ A2ðxÞ
; n2ðxÞ ¼

A2ðxÞ
A1ðxÞ þ A2ðxÞ

ð22Þ

For the weights w ¼ w ¼ 1 in (8), the regression matrix X

has the form of

X
4�2

¼

n1ðx1Þ n2ðx1Þ
n1ðx2Þ n2ðx2Þ
n1ðx3Þ n2ðx3Þ
n1ðx4Þ n2ðx4Þ

2

6
6
6
4

3

7
7
7
5
¼

0:8153 0:1847

0:6419 0:3581

0:4639 0:5361

0:3324 0:6676

2

6
6
6
4

3

7
7
7
5

ð23Þ

Assuming that the design matrix (9) is of type ’inter-

actions’, we obtain

D
4�3

¼

d1ðnðx1ÞÞ d2ðnðx1ÞÞ d3ðnðx1ÞÞ
d1ðnðx2ÞÞ d2ðnðx2ÞÞ d3ðnðx2ÞÞ
d1ðnðx3ÞÞ d2ðnðx3ÞÞ d3ðnðx3ÞÞ
d1ðnðx4ÞÞ d2ðnðx4ÞÞ d3ðnðx4ÞÞ

2

6
6
6
4

3

7
7
7
5

¼

n1ðx1Þ n2ðx1Þ n1ðx1Þn2ðx1Þ
n1ðx2Þ n2ðx2Þ n1ðx2Þn2ðx2Þ
n1ðx3Þ n2ðx3Þ n1ðx3Þn2ðx3Þ
n1ðx4Þ n2ðx4Þ n1ðx4Þn2ðx4Þ

2

6
6
6
4

3

7
7
7
5

¼

0:8153 0:1847 0:1506

0:6419 0:3581 0:2299

0:4639 0:5361 0:2487

0:3324 0:6676 0:2219

2

6
6
6
4

3

7
7
7
5

ð24Þ

Applying the ridge regression (16) with the regularization

parameter k ¼ 0, we obtain the vector of parameters

b ¼ ½9:827; 24:72;�43:86�T ð25Þ

which means that the output of the T2RFIS model is

described by the function

ŷ ¼ 9:827n1 þ 24:72n2 � 43:86n1n2 ð26Þ

Fig. 3 Fuzzy sets for the input x of the T2RFIS model

Table 1 Results for the T1RFIS and T2RFIS models in the illustrative

example; yi is the training data, ŷi is the estimated value, and ri ¼
yi � ŷi is the residual (error)

T1RFIS [92] T2RFIS

i yi ŷi ri ŷi ri

1 6 5.942 0.0584 5.974 0.0262

2 5 5.155 �0:1549 5.081 �0:0807

3 7 6.835 0.1653 6.906 0.0937

4 10 10.06 �0:0633 10.04 �0:0392
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The list of estimated values ŷi and the residuals (errors)

ri ¼ yi � ŷi for the T1RFIS and T2RFIS models are pre-

sented in Table 1. For the models obtained, the square root

of the mean square error defined as RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 r

2
i

q
is

equal to 0.1432 and 0.0662, respectively. The approxima-

tion of the observation data using the T1RFIS and T2RFIS

models is shown in Fig. 4.

5 Training fuzzy sets

5.1 Multi-objective genetic algorithm

The genetic algorithm (GA) [27, 82, 91] is a global opti-

mization method inspired by the biological process of

evolution. In each generation of GA, individuals are

selected from the current population as parents and used to

obtain children for the next generation. The population

evolves in subsequent generations toward the optimal

solution. To create the next generation from the current

population, GA uses three main types of rules: selection,

crossover, and mutation. In addition to these rules, domi-

nance, rank, and crowding distance are also used in the

multi-objective GA (MGA) algorithm [82]. A more

detailed description of these terms is given in [92].

5.2 Structure of an individual

The structure of an individual for the multi-objective GA

algorithm is presented in Fig. 5. This individual consists of

3pmþ 4 variables, where p is the number of fuzzy sets

defined for m inputs of the T2RFIS model. The variables

constituting the elements of the individual are the centers

c1; . . .; cp�m of the membership functions, the widths

r1; . . .; rp�m of the upper membership functions, the dis-

tances d1; . . .; dp�m between the lower and upper member-

ship functions, the parameter q1 for a feature selection

method, the number q2 of selected features and the weights

w, w of regression matrices.

6 Determining objective functions

6.1 Feature selection

Feature selection is a process by which a subset of features

is selected to build the model. The main rationale for using

the feature selection technique is that the data can contain

certain features that are redundant or irrelevant, and

therefore, can be deleted without losing a significant

amount of information. The use of feature selection can

improve prediction performance, reduce training time, and

avoid the curse of dimensionality. In the proposed

approach, feature selection is used to select predictors

(columns) from the design matrix. This matrix can contain

multiple columns, which can lead to complex models with

consequent performance degradation. In the previous work

of the author [92], the following feature selection methods

are considered [83]: F-test, ReliefF, NCA (neighborhood

component analysis), and Lasso (least absolute shrinkage

and selection operator). Since a feature selection method is

called inside the objective function, it should be fast. Based

on the work [92], in which the calculation time of the

feature selection algorithms mentioned above is analyzed,

it can be concluded that the F-test method turned out to be

the fastest. For this reason, it is selected for use in the

experiments presented in Sect. 7.

6.2 Objective functions

In the proposed approach, we use multi-criteria optimiza-

tion, thus we have to define objective functions that are

minimized during optimization. It is proposed to use two

objective functions, one responsible for the complexity of

the model (f1) and the other responsible for its accuracy

(f2). The values of these functions are determined as

follows:
Fig. 4 Approximation of observation data using the T1RFIS and

T2RFIS models

Fig. 5 Structure of an individual for the multi-objective genetic

algorithm and T2RFIS models; c1; . . .; cp�m are the centers of

membership functions, r1; . . .; rp�m are the widths of lower member-

ship functions, d1; . . .; dp�m are the distances between lower and upper

membership functions, q1 is the parameter of a feature selection

method, q2 is the number of selected features, and w, w are the

weights of regression matrices
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f1 ¼ N

f2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V

XV

k¼1

yk � ŷkð Þ2
s

8
><

>:
ð27Þ

where f1 is specified by the number of active features (N) in

the design matrix, and f2 is specified by the root of the

mean squared validation error (RMSE). The number N

denotes the number of predictors of the design matrix after

applying a feature selection method. In the formula

describing the function f2, V is the number of observations

in the validation set, yk is the kth validation observation,

and ŷk is the estimate for the kth validation observation.

The value of this estimate is given by formula (15).

In addition to the prediction of real value for regression

models, we will also consider the prediction of classes for

classification models. In this case, the pair of objective

functions are as follows:

f1 ¼ N

f2 ¼
nmis
nall

8
<

:
ð28Þ

where f1 denotes, as for regression models, the number of

selected features, f2 is the confusion error, nmis is the

number of misclassified validation records, and nall is the

number of all validation records.

6.3 Calculation scheme

Figure 6 shows the calculation scheme of the objective

functions for the T2RFIS models. In the first step, an

individual is decoded, giving the parameters of type-2

fuzzy sets, that is, the centers ckj , upper widths rkj , and

distances dkj . Additionally, the parameter q1 for a feature

selection method and the parameter q2 for the number of

features are obtained. On the basis of the lower widths and

distances, the upper widths are determined from the

relationship

rkj ¼ rkj þ dkj ð29Þ

In the next two steps, the regression matrix Xt and the

design matrix Dt of a given type are calculated for the

training data. The design matrix is then truncated using a

feature selection method, and the parameters of the system

function b are obtained by the ridge regression with the

given value of the parameter k. Before predicting the

output, the regression matrix Xv and the design matrix Dv

are determined for the validation data. On their basis, the

system output ŷ is predicted, and after that, the objective

functions f1 and f2 are determined.

7 Experimental results

In this section, the following four experiments utilizing the

proposed method are presented:

– approximation of a one-variable function,

– prediction of fuel consumption,

– classification of breast tissue,

– prediction of concrete compressive strength.

In these experiments, the proposed method is compared

with the well-known ANFIS model [32] and the RFIS

model with type-1 fuzzy sets [92]. The ANFIS model is

realized with constant rule consequents (ANFIS ’con-

stant’) and with linear ones (ANFIS ’linear’).

Moreover, in the first experiment, the result of an

approximation with a polynomial model is presented. The

T1RFIS and T2RFIS models are applied with the design

matrix of four types: ’linear’, ’purequadratic’,

’interactions’, and ’quadratic’ as presented in

Sect. 3. The number of bins in the F-test method is boun-

ded in the range from 1 to 20. The number of active pre-

dictors is limited from one to the number of all features.

The MGA algorithm is used to train the T1RFIS and

T2RFIS models. Training includes ten trials, for which the

results are averaged. The final model is chosen as the

model whose result is closest to the average value.

7.1 Experiment 1

In this experiment, we consider the following one-variable

function

y ¼ 5 sinð4pxÞ expð�j4xjÞÞ ð30Þ
Fig. 6 Calculation scheme of the objective functions for the T2RFIS

model
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where x 2 ½�1; 1� (Fig. 7). The task is to train the T2RFIS

approximator of the given function assuming an accuracy

not greater than the threshold value of the validation error

RMSEt ¼ 0:075. The number of observation data is 121,

which are divided into training and validation sets con-

sisting of 60% and 40% randomly selected observations,

respectively. For the input x of the ANFIS, T1RFIS, and

T2RFIS models, the number of fuzzy sets is five. In

training the T1RFIS and T2RFIS models, the centers are

bounded by cmin ¼ �1, cmax ¼ 1. The distances of the

membership functions in the training of the T2RFIS

models are bounded by dmin ¼ 0, and dmax ¼ 0:5. For the

T2RFIS models, the widths of membership functions are

bounded by rmin ¼ 0:05, rmax ¼ 0:8, and for the T1RFIS

models by rmin ¼ 0:05, rmax þ dmax ¼ 1:3. The T1RFIS

and T2RFIS models are generated with the regularization

parameter k ¼ 1e�5 of the ridge regression. The popula-

tion size for the MGA algorithm is 5n, where n is the

number of variables in the individual. The number of

iterations is 100, which gives 500n evaluations of the

objective function.

7.1.1 Polynomial approximation

Figure 8 shows the validation error of a polynomial

approximator depending on the polynomial degree

(changing from 1 to 25). As we can see, the smallest val-

idation error is 1.070 for a polynomial degree equal to 18

(Table 2). Thus, the polynomial approximator does not

achieve the prescribed accuracy RMSEt ¼ 0:075 in any

case. This approximator has the shortest training time of all

the models considered.

7.1.2 ANFIS models

In training the ANFIS models, the number of epochs was

300. Of all the epochs, the value for which the validation

error reaches the minimum is selected to obtain the best

model. For the two considered cases, that is, ANFIS

(’constant’) and ANFIS (’linear’), the results are

presented in Table 2. In the first case, the minimum RMSE

is 0.5192 for the number of epochs equal to 983, while in

the second case—0.1042 for the number of epochs equal to

1000. As we can see, the threshold value RMSEt ¼ 0:075

is not reached in any case.

7.1.3 T1RFIS models

The results for the T1RFIS models are presented in

Table 2, where it is seen that only the model F-test ?

’quadratic’ achieves the specified accuracy. The best

T1RFIS model, chosen from the Pareto front, is F-test ?

’quadratic’, for which the RMSE is 0.0685. For this

model, 11 of 20 features are selected from the design

matrix. The training times for the T1RFIS models are

longer than the training times for the ANFIS models. The

use of feature selection reduces the number of features in

the range of 13% (1� 13=15) to 45% (1� 11=20).
Fig. 7 Experiment 1: The target function being approximated

Fig. 8 Experiment 1: Validation error depending on the polynomial

degree for the polynomial approximator

Table 2 Performance comparison for Experiment 1; RMSE is the

validation error, N is the number of selected features from the design

matrix, Nall is the number of all features in the design matrix, and Tt is
the training time; n/a stands for ’not applicable’

Method RMSE NðNallÞ Tt ½s�

Polynomial model 1.070 n/a 0.045

ANFIS models [32]

ANFIS (’constant’) 0.5192 n/a 1.898

ANFIS (’linear’) 0.1042 n/a 1.921

T1RFIS models [92]

F-test ? ’linear’ 0.4037 4(5) 8.515

F-test ? ’purequadratic’ 0.1685 8(10) 9.409

F-test ? ’interactions’ 0.0793 13(15) 10.87

F-test ? ’quadratic’ 0.0685 11(20) 11.87

T2RFIS models

F-test ? ’linear’ 0.3624 4(5) 12.17

F-test ? ’purequadratic’ 0.1135 7(10) 14.00

F-test ? ’interactions’ 0.0709 11(15) 14.85

F-test ? ’quadratic’ 0:0462 14(20) 16.24

The best RMSE result is marked in bold
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7.1.4 T2RFIS models

Based on the results of the T2RFIS models in Table 2, we

can see that the models F-test ? ’interactions’ and

F-test ? ’quadratic’ have the RMSE less than the

desired accuracy. Among them, the best is the model F-test

? ’quadratic’ with RMSE ¼ 0:0462, and this is the

best result for all considered models. This model, selected

from the Pareto front depicted in Fig. 9, is described as

follows:

– lower membership functions for the input x (Fig. 10):

A1 ¼ gðx;�0:0458; 0:1150Þ ð31Þ

A2 ¼ gðx;�0:0387; 0:2103Þ ð32Þ

A3 ¼ gðx; 0:2081; 0:1591Þ ð33Þ

A4 ¼ gðx;�0:7946; 0:5638Þ ð34Þ

A5 ¼ gðx; 0:8179; 0:5265Þ ð35Þ

– upper membership functions for the input x (Fig. 10):

A1 ¼ gðx;�0:0458; 0:2717Þ ð36Þ

A2 ¼ gðx;�0:0387; 0:6341Þ ð37Þ

A3 ¼ gðx; 0:2081; 0:6014Þ ð38Þ

A4 ¼ gðx;�0:7946; 0:9740Þ ð39Þ

A5 ¼ gðx; 0:8179; 0:8032Þ ð40Þ

– system function to determine the output:

ŷ ¼ b1n1 þ b2n2 þ b4n4 þ b5n5
þ b6n1n2 þ b8n1n4 þ b10n2n3 þ b11n2n4
þ b12n2n5 þ b14n3n5

þ b16n
2
1 þ b17n

2
2 þ b19n

2
4 þ b20n

2
5

ð41Þ

where b1 ¼ 170:4, b2 ¼ �19:57, b4 ¼ �62:50,

b5 ¼ 84:91, b6 ¼ �75:96, b8 ¼ �226:9, b10 ¼ �55:16,

b11 ¼ 156:6, b12 ¼ �30:54, b14 ¼ �122:7,

b16 ¼ �351:4, b17 ¼ �14:49, b19 ¼ 56:68,

b20 ¼ �82:63.

As shown in Table 2, 14 of 20 characteristics of the

design matrix are applied in the final model. This model

has the longest training time of more than 16 s. The

approximation of the function by the obtained T2RFIS

model and the ANFIS (’linear’) model is shown in

Fig. 11. It is seen in Table 2 that that the training times of

the T2RFIS models are longer than the training times of the

T1RFIS models. The reduction in the number of features

ranges from 20% (1� 4=5) to 30% (1� 7=10).

7.2 Experiment 2

In this experiment, the objective is to predict automobile

fuel consumption in miles per gallon (MPG) [20, 81]. The

data set consists of 392 pairs ½x; y� of input–output obser-
vations. This set is divided into 196 pairs of training data

(odd-indexed samples) and 196 pairs of validation data

(even-indexed samples) (Fig. 12). The following six auto-

mobile attributes of various makes and models are used as

the model inputs: the number of cylinders (x1), displace-

ment (x2), horsepower (x3), weight (x4), acceleration (x5),

and model year (x6). The seventh attribute, which is MPG,

is used as the model output (y). We assume that the RMSE

cannot exceed a maximum value RMSEt ¼ 2:6. The

number of fuzzy sets for the ANFIS, T1RFIS and T2RFIS

models is three. The centers of the membership functions

Fig. 9 Experiment 1: Pareto front for the T2RFIS model; the

highlighted point indicates the selected solution

Fig. 10 Experiment 1: Fuzzy sets for input x of the T2RFIS model

Fig. 11 Experiment 1: Approximation of the function (30) by the

ANFIS and T2RFIS models

20308 Neural Computing and Applications (2023) 35:20299–20317

123



are bounded by cmin ¼ ½3; 68; 46; 1613; 8; 70� and

cmax ¼ ½8; 455; 230; 5140; 24:8; 82�. The distances of the

membership functions in the training of the T2RFIS

models are bounded by dmin ¼ ½0; 0; 0; 0; 0; 0� and

dmax ¼ ½1:051; 81:35; 38:68; 741:4; 3:532; 2:523�. For the

T2RFIS models, the widths of the membership functions

are bounded by rmin ¼ ½0:2123; 16:43; 7:814; 149:8;
0:7134; 0:5096�, rmax ¼ ½2:123; 164:3; 78:14; 1498; 7:134;
5:096�, and for the T1RFIS models by rmin ¼
½0:2123; 16:43; 7:814; 149:8; 0:7134;0:5096�, rmax þ dmax¼
½3:174; 245:7; 116:8; 2239; 10:67; 7:618�. The regulariza-

tion parameter for ridge regression is k ¼ 1e�03. The

population size for the MGA algorithm is n, where n is the

number of variables in the individual. The number of

iterations is 50, which gives 50n objective function

evaluations.

7.2.1 ANFIS models

The ANFIS models were trained with a number of epochs

equal to 200. The results for two cases, namely, ANFIS

(’constant’) and ANFIS (’linear’), are presented

in Table 3. In the first case, the minimum RMSE is 10.53

for the number of epochs equal to 48, and in the second

case, the minimum RMSE is 88.39 for the number of

epochs equal to 29. In any case, the threshold RMSEt ¼
2:6 is not reached. For both cases, the number of fuzzy

rules is 729.

7.2.2 T1RFIS models

The results of the T1RFIS models are presented in Table 3.

All T1RFIS models achieve the specified accuracy. The

smallest RMSE is for the model F-test ? ’interac-

tions’, and is equal to 2.517. The training times for the

T1RFIS models are shorter than the training times for the

ANFIS models. The use of the feature selection method

reduces the number of features in the range of 19%

(1� 29=36) to 91% (1� 15=171).

7.2.3 T2RFIS models

Table 3 presents the results for the T2RFIS models. Sim-

ilarly to the T1RFIS models, all models achieve the spec-

ified accuracy. Among them, the best is the model F-test ?

’interactions’ with RMSE ¼ 2:462, and this is the

best result for all considered models. This model is selected

from the Pareto front depicted in Fig. 13. As we can see in

Table 3, 43 of 171 features of the design matrix are applied

in the final model. The training times of the T2RFIS

models are shorter than the training times of the ANFIS

models, but longer than those for the T1RFIS models.

Figures 14, 15, and 16 show the fuzzy sets for the inputs

x1–x6. Figure 17 shows the real value of MPG, the

Fig. 12 Experiment 2: Training and validation data

Table 3 Performance comparison for Experiment 2; RMSE is the

validation error, N is the number of selected features from the design

matrix, Nall is the number of all features in the design matrix, and Tt is
the training time; n/a stands for ’not applicable’

Method RMSE NðNallÞ Tt ½s�

ANFIS models [32]

ANFIS (’constant’) 10.53 n/a 184.5

ANFIS (’linear’) 88.39 n/a 5268

T1RFIS models [92]

F-test ? ’linear’ 2.572 13(18) 6.988

F-test ? ’purequadratic’ 2.552 29(36) 7.762

F-test ? ’interactions’ 2.517 15(171) 13.35

F-test ? ’quadratic’ 2.531 38(189) 14.96

T2RFIS models

F-test ? ’linear’ 2.557 15(18) 10.80

F-test ? ’purequadratic’ 2.544 29(36) 12.06

F-test ? ’interactions’ 2:462 43(171) 19.76

F-test ? ’quadratic’ 2.492 114(189) 24.76

The best RMSE result is marked in bold

Fig. 13 Experiment 2: Pareto front for the T2RFIS model; the

highlighted point indicates the selected solution
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predicted value, and the error for the obtained model. The

reduction in the number of features ranges from 17%

(1� 15=18) to 75% (1� 43=171).

7.3 Experiment 3

This experiment deals with breast disease class prediction

based on electrical impedance measurements of freshly

excised tissue samples [20]. The data set contains 106

observations in the form of input–output pairs ½x; y�. The
observations are randomly divided into two sets, a training

set containing 74 records and a validation set containing 32

records. The elements of the input vector x are the fol-

lowing nine variables: impedance (ohm) at zero frequency

(x1), phase angle at 500 KHz (x2), high-frequency slope of

phase angle (x3), impedance distance between spectral ends

(x4), area under spectrum (x5), area normalized by impe-

dance distance (x6), maximum of the spectrum (x7), dis-

tance between the impedance and the real part of the

maximum frequency point (x8), and length of the spectral

curve (x9). The output variable y represents six classes:

carcinoma, fibro-adenoma, mastopathy, glandular, con-

nective, and adipose. The number of fuzzy sets for the

ANFIS, T1RFIS and T2RFIS models is two. The centers of

Gaussian fuzzy sets are bounded by the minimum and

maximum values of the input variables given by cmin ¼
½103:0; 0:0124;�0:0663; 19:65; 70:43; 1:596; 7:969;

�9:258; 125:0�, cmax ¼ ½2800; 0:3583; 0:4677; 1063;
174; 500; 164:1; 436:1; 977:6; 2897�. The distances of the

Fig. 14 Experiment 2: Fuzzy sets for inputs x1 and x2 of the T2RFIS
model

Fig. 15 Experiment 2: Fuzzy sets for inputs x3 and x4 of the T2RFIS
model

Fig. 16 Experiment 2: Fuzzy sets for inputs x5 and x6 of the T2RFIS
model

Fig. 17 Experiment 2: Comparison of the real and predicted values

for the T2RFIS model
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membership functions for the T2RFIS models are bounded

by dmin ¼ ½0; 0; 0; 0; 0; 0; 0; 0; 0� and dmax ¼ ½916:3;
0:1175; 0:1814; 354:6; 59250; 55:20; 145:5; 335:2; 941:6�.
For the T2RFIS models, the widths r are bounded

by rmin ¼ ½229:1; 0:0294; 0:0454; 88:65; 14810; 13:80;
36:36; 83:81; 235:4�,rmax ¼ ½2291; 0:2938; 0:4536; 886:5;
148; 100; 138:0; 363:6; 838:1; 2354�, and for the T1RFIS

models by rmin, rmax þ dmax ¼ ½3207; 0:4113;
0:6350; 1241; 207; 400; 193:2; 509:1; 1173; 3296�. The

regularization parameter for ridge regression is k ¼ 1e�06.

The population size for the MGA algorithm is n, where n is

the number of variables in the individual. The number of

iterations is 50, which gives 50n objective function eval-

uations. Because the considered models generate the real

value y, this value must be converted to a class number.

This paper uses the solution presented in [92]. First, the

value of y is limited to the range [1, 6], and then rounded to

an integer from the set f1; 2; . . .; 6g. In this way, we get a

predicated class for our problem.

7.3.1 ANFIS models

The ANFIS models were trained with a number of epochs

equal to 100. The results for the ANFIS with constant

consequents (’constant’) and for linear consequents

(’linear’) are presented in Table 4. In the first case, the

classification accuracy (ACC) is 53:13% for the number of

epochs equal to 21, and in the second case, the ACC is

43:75% for the number of epochs equal to 95. For both

cases, the number of fuzzy rules is 512.

7.3.2 T1RFIS models

The class predictions for the T1RFIS models are presented

in Table 4. It can be seen that the best accuracy of ACC ¼
78:13% is achieved by two models, namely F-test ?

’interactions’ and F-test ? ’quadratic’. This

result is 25% better than the ANFIS model with constant

consequents and about 34% better than the same model

with linear consequents. As in Experiment 2, the training

times for the T1RFIS models are much shorter than the

training times for the ANFIS models. The use of the feature

selection method made it possible to reduce the number of

features in the range of 28% (1� 13=18) to 97%

(1� 6=189).

7.3.3 T2RFIS models

Table 4 presents the classification results for the T2RFIS

models. Among them, the best result equal to 81.25%

achieved the model F-test ? ’quadratic’ (this is the

best result for all considered models). This model is chosen

from the Pareto front shown in Fig. 18. As we can see in

Table 4, 29 of 189 features of the design matrix are applied

in the final model. The training times of the T2RFIS

models are shorter than those of the ANFIS models, but

longer than those of the T1RFIS models. The reduction in

the number of features for the considered models ranges

from 28% (1� 13=18) to 85% (1� 29=189).

7.4 Experiment 4

This experiment is about prediction of concrete compres-

sive strength based on eight components used for concrete

preparation [20]. The data set consists of 1030 records in

the form of input–output pairs ½x; y� representing the rela-

tionship between the output variable and the input vari-

ables. The data set is randomly divided into two sets, a

training set containing 721 records and a validation set

containing 309 records. The elements of the input vector x

Table 4 Performance comparison for Experiment 3; ACC is the

classification accuracy, N is the number of selected features from the

design matrix, Nall is the number of all features in the design matrix,

and Tt is the training time; n/a stands for ’not applicable’

Method ACC ½%� NðNallÞ Tt ½s�

ANFIS models [32]

ANFIS (’constant’) 53.13 n/a 75.43

ANFIS (’linear’) 43.75 n/a 2594

T1RFIS models [92]

F-test ? ’linear’ 62.50 13(18) 4.860

F-test ? ’purequadratic’ 71.88 20(36) 6.440

F-test ? ’interactions’ 78.13 21(171) 10.66

F-test ? ’quadratic’ 78.13 6(189) 13.09

T2RFIS models

F-test ? ’linear’ 62.50 13(18) 7.687

F-test ? ’purequadratic’ 75.00 13(36) 8.848

F-test ? ’interactions’ 78.13 45(171) 15.75

F-test ? ’quadratic’ 81:25 29(189) 16.43

The best ACC result is marked in bold

Fig. 18 Experiment 3: Pareto front for the T2RFIS model; the

highlighted point indicates the selected solution
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are the following variables: cement (x1), blast furnace slag

(x2), fly ash (x3), water (x4), superplasticizer (x5), coarse

aggregate (x6), fine aggregate (x7), and age (x8). The

number of fuzzy sets for fuzzy models is two. The centers

of Gaussian fuzzy sets are bounded using the minimum and

maximum values of the input variables

cmin ¼ ½102:0; 0; 0; 121:8; 0; 801:0; 594:0; 1:000�, cmax ¼
½540:0; 359:4; 200:1; 247:0; 32:20; 1145; 992:6; 365:0�. The

distances of the membership functions for the T2RFIS

models are bounded by dmin ¼ ½0; 0; 0; 0; 0; 0; 0; 0� and

dmax ¼ ½167:4; 137:4; 76:48; 47:87; 12:31; 131:5; 152:3;
139:1�. For the T2RFIS models, the widths r are bounded

by rmin ¼ ½37:20; 30:52; 16:99; 10:64; 2:735; 29:22;
33:85; 30:92� and rmax ¼ ½372:0; 305:2; 169:9; 106:38;
27:35; 292:2; 338:6; 309:2�. For the T1RFIS models, the

bounds are rmin and rmax þ dmax ¼ ½539:4; 442:6; 246:4;
154:2; 39:65; 423:6; 490:9; 448:3�. The regularization

parameter for ridge regression is k ¼ 1e�03. As in previ-

ous experiments, the population size for the MGA algo-

rithm is n, where n is the number of variables in the

individual. The number of iterations is 50, which gives

50n objective function evaluations.

7.4.1 ANFIS models

The results for two ANFIS models, namely ANFIS

(’constant’) and ANFIS (’linear’), are presented

in Table 5. These models were trained with a number of

epochs equal to 100. For the first model, the minimum

RMSE is 8.909 and for the second model, the minimum

RMSE is 171.7. For both models, the number of fuzzy

inference rules is 256. The table shows a very long training

time of 12,580 s for the model with linear consequents.

7.4.2 T1RFIS models

The concrete strength predictions for the T1RFIS models

are presented in Table 5. As we can see, the best accuracy

of RMSE ¼ 6:814 is achieved by the model F-test ?

’quadratic’. This result is better by 2.095 than for the

ANFIS model with constant consequents and by 164.9 than

for the ANFIS model with linear consequents. As in

Experiments 2 and 3, the training times for the T1RFIS

models are much shorter than the training times for the

ANFIS models. The use of the feature selection method

made it possible to reduce the number of features in the

range of 47% (1� 17=32) to 72% (1� 43=152).

7.4.3 T2RFIS models

In Table 5, the concrete strength predictions are presented

for the T2RFIS models. Among these models, the best

result equal to 6.703 achieved the model F-test ?

’quadratic’ (this is the best result for all considered

models). This model is chosen from the Pareto front pre-

sented in Fig. 19. As we can see in Table 5, 53 of 152

predictors of the design matrix are applied in this model.

The training times of the T2RFIS models are shorter than

those of the ANFIS models, but longer than those of the

T1RFIS models. The reduction in the number of features

ranges from 31% (1� 22=32) to 65% (1� 53=152).

7.5 Remarks on computational complexity

An important issue is the complexity of the model, for

which we can observe that for the T2RFIS models it is the

same as for the T1RFIS models. This is because the

number of predictors in the regression matrices in both

cases is n� pm [92], so the number of predictors in the

design matrices is the same (Table 6). It is seen that for a

Table 5 Performance comparison for Experiment 4; RMSE is the

validation error, N is the number of selected features from the design

matrix, Nall is the number of all features in the design matrix, and Tt is
the training time; n/a stands for ’not applicable’

Method RMSE NðNallÞ Tt ½s�

ANFIS models [32]

ANFIS (’constant’) 8.909 n/a 358.9

ANFIS (’linear’) 171.7 n/a 12580

T1RFIS models [92]

F-test ? ’linear’ 8.733 8(16) 6.810

F-test ? ’purequadratic’ 7.283 17(32) 9.793

F-test ? ’interactions’ 6.896 37(136) 17.16

F-test ? ’quadratic’ 6.814 43(152) 18.03

T2RFIS models

F-test ? ’linear’ 8.752 10(16) 10.99

F-test ? ’purequadratic’ 7.032 22(32) 13.37

F-test ? ’interactions’ 6.773 63(136) 25.72

F-test ? ’quadratic’ 6:703 53(152) 27.65

The best RMSE result is marked in bold

Fig. 19 Experiment 4: Pareto front for the T2RFIS model; the

highlighted point indicates the selected solution
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given number of fuzzy sets, the complexity is linearly

related to the number of inputs for models of type

’linear’ and ’purequadratic’, and squarely for

the models interactions and ’quadratic’. In

comparison, the complexity of the ANFIS models expres-

sed in terms of the number of fuzzy rules depends expo-

nentially on the number of inputs (Table 6), so in their case

the curse of dimensionality arises.

The complexity of the model affects the training time,

which can be clearly seen in the results for the experiments

presented above. With the exception of the first experi-

ment, where we deal with the approximation of a function

of one variable, in the remaining experiments the training

times for the ANFIS model are much longer than for the

T1RFIS and T2RFIS models. In Experiments 2, 3 and 4 for

the ANFIS model, we have 729 (36), 512 (29) and 256 (28)

inference rules, respectively. A large number of rules

causes the training times of this model to be long. For

example, in Experiment 4, the training times for the ANFIS

models are 358.9 s and 12,580 s, while for the T1RFIS and

T2RFIS models the time ranges from 6.81 s to 27.65 s.

Moreover, it can be seen that in this example, as well as in

the others, the training time for the ANFIS models with

linear consequents is much longer than for the models with

constant consequents. This analysis shows the low effi-

ciency of the ANFIS model for more complex (multidi-

mensional) problems, which is not visible in the T1RFIS

and T2RFIS models.

8 Conclusions

A novel multi-variable fuzzy inference system with type-2

fuzzy sets has been proposed. This system does not have

explicitly defined fuzzy inference rules. It consists of

Gaussian fuzzy sets of type-2 defined for the inputs and

linearly parameterized system functions for determining

the output. The system training is performed using obser-

vation data in the form of input/output pairs. The fuzzy sets

are determined by a multi-objective genetic algorithm that

uses a feature selection method, and the system function

parameters are obtained by ridge regression. Calculating

the output is simple and fast; it requires only the multi-

plication of the design matrix and the vector of parameters

(by ¼ Db).

The experiments carried out confirmed the usefulness of

the proposed method. On the basis of these experiments, it

can be seen that the proposed method can improve the

results obtained by the ANFIS and T1RFIS models. Future

work will be devoted to the use of the proposed method for

multidimensional data, applications of other algorithms for

training fuzzy sets, and the development of this method for

use with nonlinearly parameterized system functions.
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