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Abstract
Fires in smart cities can have devastating consequences, causing damage to property, and endangering the lives of citizens.

Traditional fire detection methods have limitations in terms of accuracy and speed, making it challenging to detect fires in

real time. This paper proposes an improved fire detection approach for smart cities based on the YOLOv8 algorithm, called

the smart fire detection system (SFDS), which leverages the strengths of deep learning to detect fire-specific features in real

time. The SFDS approach has the potential to improve the accuracy of fire detection, reduce false alarms, and be cost-

effective compared to traditional fire detection methods. It can also be extended to detect other objects of interest in smart

cities, such as gas leaks or flooding. The proposed framework for a smart city consists of four primary layers: (i) Appli-

cation layer, (ii) Fog layer, (iii) Cloud layer, and (iv) IoT layer. The proposed algorithm utilizes Fog and Cloud computing,

along with the IoT layer, to collect and process data in real time, enabling faster response times and reducing the risk of

damage to property and human life. The SFDS achieved state-of-the-art performance in terms of both precision and recall,

with a high precision rate of 97.1% for all classes. The proposed approach has several potential applications, including fire

safety management in public areas, forest fire monitoring, and intelligent security systems.

Keywords Smart city � Fire detection � YOLOv8 � Deep learning

1 Introduction

The manner we think about urbanization, sustainability,

and safety is being completely transformed by smart cities.

As the world moves toward smart cities, it becomes

increasingly important to ensure the safety of citizens and

their properties [1]. One of the most dangerous and life-

threatening catastrophes is a fire, which may seriously

harm both property and people. Fire accidents pose a sig-

nificant threat to smart cities as they can cause significant

damage to infrastructure, lead to loss of life, and disrupt the

smooth functioning of the city [2]. Therefore, it is crucial to

have an early fire detection system that is effective and

reliable. Early fire detection is now a top priority in smart

cities due to the rising urbanization and increased aware-

ness of the value of safety. Early fire detection and action

can reduce property damage while also saving lives.

However, this endeavor necessitates handling difficulties

including the unpredictable nature of fire, the requirement

for ongoing observation, and the enormous amounts of data

produced by smart cities [3].

To detect fires early, researchers and engineers have

created vision-based fire detectors (VFDs), as well as fire

sensors that are sound sensitive, flame sensitive, tempera-

ture sensitive, gas sensitive, or solid sensitive [4]. Sensors

pick up on the chemical characteristics of smoke, setting

off an alarm. This strategy, nevertheless, might cause

erroneous warnings. Once the smoke is close enough

proximate to the sensors to trigger them, the alarm will not

sound. Those monitoring systems, which were developed

as parts of conventional alarm systems, sensed the flame’s

smoke and temperature as well as other flame-related
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characteristics. A sensor-based detection system [5] may

not be viable in some situations, such as those involving

wide coverage areas, untamed (forest areas), or high tem-

peratures, as it will provide a lot of false alerts [6].

Traditionally, fire detection systems have depended on

temperature, gases, and smoke sensors, which have been

established to be successful for small fires but ineffective

for larger fires that can grow rapidly, devour the entire

region, and have disastrous effects. The implementation of

deep learning techniques to improve the detection of fires

in real time has been encouraged by the advent of IoT-

enabled smart cities [4, 7].

Deep learning techniques for early fire detection have

been the subject of several prior investigations. For

instance, a fire detection system (FFireNet) was proposed

by [8] using the MobileNetV2 model to classify forest fires.

Additionally, Mukhiddinov et al. [9] proposed an early

wildfire smoke detection system based on improved

YOLOv5 photographs taken by unmanned aerial vehicles

(UAVs). A fire detection technique based on an improved

YOLO V4 is proposed in [10]. According to the experi-

mental results, the proposed technology can be applied

effectively to defend smart cities and to keep track of fires

in urban areas.

Convolutional neural networks (CNNs) have shown

remarkable performance in image recognition tasks,

including object detection. The You Only Look Once

(YOLO) algorithm is one such CNN-based object detection

framework that has been widely used in computer vision

applications. The latest YOLO v8 version has shown sig-

nificant improvements in accuracy and speed, making it a

viable option for real-time fire detection in smart cities.

This paper presented an early fire detection system

based on YOLO v8 for smart cities. The system architec-

ture described, and the experimental results provided

exhibit its effectiveness in detecting fires in real-world

scenarios. The proposed approach compares with existing

fire detection systems and highlights the advantages of our

proposed system.

The main contribution of this paper is:

• Proposing a smart city framework which is composed

of four main layers which are: (i) Application layer, (ii)

IoT layer, (iii) Fog layer, and (iv) Cloud layer. This

work focuses on six main applications: (i) Smart

Government, (ii) Smart Street, (iii) Smart Hospitals,

(iv) Smart Home, (v) Smart Traffic System, and (vi)

Green Application.

• Proposing a YOLOv8-based improved fire detection

approach for smart cities.

• Improving accuracy: The proposed approach may

improve the accuracy of fire detection in smart cities

compared to traditional methods. This can be achieved

by leveraging the strengths of deep learning algorithms

such as YOLOv8 to learn and detect fire-specific

features that may be difficult to identify using tradi-

tional image processing methods.

• Real-time detection: The YOLOv8 algorithm is known

for its speed and ability to perform object detection in

real time. This makes the proposed approach well-

suited for smart city applications where quick and

timely detection of fires is critical.

• Versatility: The proposed approach can be easily

adapted to detect other objects of interest in smart

cities, making it a versatile tool for various applications

beyond fire detection. For instance, it can be used to

detect other safety hazards, such as gas leaks or

flooding, or to monitor traffic and pedestrian flow in

crowded areas.

• Reduced false alarms: By using deep learning to learn

fire-specific features, the proposed approach may be

able to reduce false alarms that are common in

traditional fire detection methods. This can help to

avoid unnecessary emergency responses and reduce

costs associated with false alarms.

• Cost-effective: The proposed approach may be cost-

effective compared to traditional fire detection methods

as it can be implemented using low-cost cameras and

hardware, reducing the need for expensive fire detection

systems.

• Large dataset: Unlike other methods that use small

number of datasets, a large dataset containing fire,

smoke, and normal scenes is used. The dataset has real-

world images and videos collected from various

sources. The dataset has a diverse range of fire

scenarios, including indoor and outdoor fires, small

and large fires, and low-light and high-light conditions.

A deep CNN gathers essential data from big datasets to

produce precise predictions and reduce overfitting.

The following is how the remaining work is structured.

Section 2 presents some of the most recent research in the

field of AI in smart cities and fire detection. The proposed

framework is presented in Sect. 3. In Sect. 4, experimental

evaluation is offered. Section 5 brings this effort to a close.

2 Related work

Recently, there has been a growing interest in using deep

learning-based approaches for fire detection in smart cities.

Some studies have proposed hybrid approaches that com-

bine multiple deep learning algorithms for fire detection.

For instance, Al-Turjman et al. [11] proposed a hybrid

approach that combined CNN and recurrent neural network

(RNN) for fire detection in smart cities. The proposed
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approach achieved high accuracy and low false alarm rates.

Another study by Huang et al. [12] proposed a YOLOv3-

based approach for fire detection in outdoor scenes. This

approach evaluated on a dataset of real-world images and

achieved an accuracy of 92.8%.

Other works have focused on using multiple deep

learning models for fire detection. For example, the study

by Jia et al. [13] proposed a multi-model approach that

combined a CNN and a long short-term memory (LSTM)

network for fire detection. The approach was evaluated on

a dataset of video frames and achieved an accuracy of

96.3%. Another notable work is the study by Wang et al.

[14], which proposed a deep learning-based approach for

fire detection in surveillance videos. The approach was

based on the YOLOv2 algorithm and achieved an accuracy

of 93.6%. More recently, the YOLOv3 algorithm has been

used for fire detection in smart cities.

Another deep learning-based approach for fire detection

is the convolutional neural network (CNN). CNNs are a

class of deep neural networks that are particularly well

suited for image processing tasks. CNN-based fire detec-

tion systems have been proposed by several researchers.

For example, He et al. [15] proposed a CNN-based fire

detection system that achieved high accuracy in detecting

fires in videos. Some of the notable works in this area are

discussed below. One of the early works in this area is the

study by Shen et al. [16], which proposed a deep learning-

based approach for fire detection using a convolutional

neural network (CNN). The approach was evaluated on a

dataset of indoor and outdoor fire images and achieved an

accuracy of 91%.

Ba et al. [17] proposed a novel Convolutional Neural

Network (CNN) model called Smoke Net to improve fea-

ture representations for visual classifications by incorpo-

rating spatial and flow attention mechanisms. Meanwhile,

Luo et al. [18] proposed a CNN-based approach for iden-

tifying flames, which utilized the kinetic characteristics of

smoke to separate potential candidates into two groups

based on dynamic frame references from the backdrop and

the foreground. A CNN with five convolutional layers plus

three fully linked layers was then utilized to automatically

retrieve the highlights of candidate pixels. In addition, deep

convolutional segmentation networks have been developed

for analyzing fire emergency scenes, which focused on

identifying and classifying items in an image based on their

construction information, such as color, relatively high

intensity compared to their surroundings, various shifts in

form and size, and the items’ propensity to catch fire [19].

Researchers in [20] suggested earlier fire detection and

warning systems for real-time monitoring of catastrophes

caused by fire using cutting-edge techniques by combining

the IoT with YOLOv5. The experimental findings

demonstrate that some of the wrongly identified or

unreported fires that YOLOv5 observed might be verified

by IoT devices. This report is written down and forwarded

to the fire station for additional confirmation. Authors in

[21] embedded ML techniques operating on an energy-

efficient device and a Video Surveillance Unit (VSU) for

spotting and notifying the existence of forest fires. Timely

fire detection is made possible by the ML models, which

use audio samples and pictures as the corresponding inputs.

The key finding is that while the two models’ performances

are equivalent, using them together following the suggested

technique results in greater accuracy, precision, recall, and

F1 score (96.15%, 92.30%, 100.00%, and 96.0%,

respectively).

A transfer learning-based approach employing the pre-

viously trained InceptionResNetV2 network for classifying

the Smoking and Non-Smoking imagery is proposed in

[22]. On several performance measures, the effectiveness

of the suggested method for predicting smoke and non-

smoke was assessed and compared to existing CNN

approaches. On an extensive and varied freshly constructed

dataset, the suggested method correctly predicted the

Smoking and Non-Smoking images with an accuracy of

96.87%, 97.32% precision, and 96.46% recall. To detect

fire, an improved Inception-V3 has been proposed [23] on

the fire and smoke images dataset. This model includes a

new optimizing function that effectively lowers the cost of

computation. When this work compared to other studies,

the modified Inception v3-based model produced the best

results in this research with the fewest false positives.

Despite deploying additional sensors, [24] offers unique

criteria termed fire alarm authenticity that uses the alert

period of several smoke alarms to determine the location

and severity of the fire location. The suggested criterion is

used to construct an alert sequence identification algorithm,

which is validated using simulations of actual fires and

false alarms.

Previous studies have demonstrated the effectiveness of

CNN models for fire detection, with reported maximum

accuracy of 83.7% achieved by a unique picture fire

detection system proposed in [25]. In addition, other

studies have employed CNN techniques to improve the

performance of image fire detection software [26–29].

However, these DL-based approaches often require large

amounts of data for training, verification, and testing and

suffer from spurious regressions and computational over-

head due to the large datasets involved. To address these

issues, a large dataset is compiled, which will soon be

made accessible to the public. Table 1 presents the models

that are commonly utilized for fire detection systems,

including Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), YOLOv2, YOLOv3,

YOLOv4, and YOLOv5.
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The table provides a comparative analysis of the

prevalent models employed in the field of fire detection.

However, some research gaps and limitations of these

models are still present, such as:

• The CNNs may struggle with detecting fires in images

with complex backgrounds or in low-light conditions.

• The RNNs can be computationally expensive and may

struggle with long-term dependencies in the data, and

they may also require large amounts of training data.

• YOLOv2 may struggle with detecting fires in images

with complex backgrounds or in low-light conditions,

and it may also require large amounts of data for

training.

• YOLOv3 may require larger amounts of computational

resources compared to YOLOv2.

• YOLOv4 may require even larger amounts of compu-

tational resources compared to previous versions of

YOLO.

Table 1 Comparative analysis of the prevalent models employed in the field

Model Algorithm description Pros Cons

Convolutional

neural

networks

(CNNs)

CNNs are a type of deep neural network that

are particularly well suited for image

processing tasks. They have been used for

fire detection by training on images and

identifying features that are common to

fires, such as color and texture

CNNs are relatively simple to

implement and can achieve high

accuracy when trained on large

datasets

They can also identify fires in real time

CNNs may struggle with detecting

fires in images with complex

backgrounds or in low-light

conditions

They also require large amounts of

data for training, which can be

time-consuming and expensive

Recurrent

neural

networks

(RNNs)

RNNs are a type of neural network that are

designed to handle sequential data, such as

time-series data. They have been used for

fire detection by training on sequences of

video frames and identifying patterns that

indicate the presence of a fire

RNNs can capture temporal

dependencies in the data, which can

improve their accuracy in detecting

fires in videos

They are also flexible and can be used

for a wide range of tasks, including

speech recognition and natural

language processing

RNNs can be computationally

expensive and may struggle with

long-term dependencies in the

data

They may also require large

amounts of training data

YOLOv2 YOLOv2 is a deep learning algorithm that

uses a single neural network to

simultaneously predict bounding boxes and

class probabilities for objects in an image.

It has been used for fire detection by

training on images and identifying features

that are common to fires, such as color and

texture

YOLOv2 can achieve high accuracy in

object detection tasks and can process

images in real time

It is also relatively simple to implement

YOLOv2 may struggle with

detecting fires in images with

complex backgrounds or in low-

light conditions

It may also require large amounts of

data for training

YOLOv3 YOLOv3 is an updated version of YOLOv2

that uses a more powerful neural network

architecture and incorporates additional

features, such as feature pyramid networks

and residual connections. It has been used

for fire detection in outdoor scenes

YOLOv3 can achieve high accuracy in

object detection tasks and can process

images in real time

It is also more robust than YOLOv2 and

can handle complex backgrounds and

low-light conditions

YOLOv3 may require larger

amounts of computational

resources compared to YOLOv2

YOLOv4 OLOv4 is a further updated version of the

YOLO algorithm that incorporates several

new features, such as spatial attention

modules and swish activation functions. It

has been used for fire detection in smart

cities

YOLOv4 can achieve high accuracy in

object detection tasks and can process

images in real time

It is also more robust than previous

versions of YOLO and can handle

complex backgrounds and low-light

conditions

YOLOv4 may require even larger

amounts of computational

resources compared to previous

versions of YOLO

YOLOv5 YOLOv5 is a recent version of the YOLO

algorithm that uses a lightweight network

architecture and incorporates several new

features, such as autoanchor optimization

and multi-scale prediction. It has been used

for fire detection in smart cities

Faster and more accurate than YOLOv4

Smaller and simpler architecture

Three versions with different model

sizes and complexities

State-of-the-art performance on multiple

object detection benchmarks

Still requires large amounts of data

for training and may suffer from

spurious regressions

May have limitations in detecting

small objects or objects with

complex shapes
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• YOLOv5 still requires large amounts of data for

training and may suffer from spurious regressions,

and it may have limitations in detecting small objects or

objects with complex shapes.

Despite the advances in deep learning-based approaches

for fire detection, there are still some challenges that need

to be addressed. For example, there is a need for more

diverse and larger datasets for training and testing these

approaches. Additionally, the use of low-quality cameras

or poor lighting conditions can affect the accuracy of fire

detection algorithms.

In this paper, a YOLOv8-based approach for fire

detection in smart cities is proposed. To the best of our

knowledge, this is the first study to investigate the use of

the YOLOv8 algorithm for fire detection in smart cities.

The proposed approach is designed to address some of the

limitations of previous studies and provide improved

accuracy, real-time detection, versatility, reduced false

alarms, and cost-effectiveness.

In the field of computer vision, the YOLO set of algo-

rithms has achieved popularity. The popularity of YOLO is

due to its high degree of accuracy while retaining a tiny

model size. A wide spectrum of developers can use YOLO

models since they can be trained on just one GPU. On edge

hardware or in the cloud, machine learning experts may

install it at a reasonable cost. The most recent and cutting-

edge YOLO approach, YOLOv8, could be employed for

applications including object identification, image catego-

rization, and segmentation. Yolo v8 was produced by

Ultralytics, who also produced the significant YOLOv5

model that defined the industry. Compared to YOLOv5,

YOLOv8 has some architectural updates and enhancements

[30].

The YOLOv8 model is anchor-free. It implies that rather

than predicting an item’s distance from a known anchor

box, it estimates the center of the object explicitly. Anchor-

free detection lowers the number of box predictions, which

expedites Non-Maximum Suppression (NMS), a challeng-

ing post-processing procedure that sorts through potential

detections following inference [30]. For identification,

segmentation, and classification, there are five models

(YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and

YOLOv8x, respectively). Whereas YOLOv8x is the most

precise yet the least fast of them all, YOLOv8 Nano is the

fastest and smallest [31]. Figure 1 shows YOLO v8

architecture made by GitHub user RangeKing [32]. Dif-

ferences from YOLOv5 are as follows [32]:

• C2f module used in place of C3 module.

• Change the Backbone’s initial 6 9 6 Conv to a 3 9 3

Conv.

• Remove Convs Nos. 10 and 14 from the YOLOv5

configuration.

• Change the initial 1 9 1 Conv in the bottleneck to a

3 9 3 Conv.

• Remove the objectness step using the decoupled head.

The basic building block was altered, C2f replacing C3,

and the initial 6 9 6 conv of the stem is replaced with a

3 9 3. Figure 2 is a diagram summarizing the module [30],

where ‘‘f’’ represents the total amount of features, ‘‘e’’ is

the rate of growth, and CBS is a block made up of a Conv,

a BatchNorm, and a SiLU later. The initial conv’s kernel

dimension was adjusted from 1 9 1 to 3 9 3; nevertheless,

the bottleneck is still identical as in YOLOv5.

3 Proposed framework

The primary goal of a smart city project is to enhance the

intelligence of city systems and applications. This is

achieved by incorporating various specifications and

qualities, such as: (i) a secure and open access infrastruc-

ture that is both robust and scalable; (ii) an architecture

strategy that is user- or citizen-centered; (iii) the ability to

store, retrieve, share, tag, transport, and wear a vast amount

of public and private data, thereby enabling people to

access information as and when they require it; (iv) an

analytical and integrative application level capability; and

(v) intelligent physical and network infrastructure that

facilitates complex and remote services and applications

Fig. 1 YOLOv8 C2f module [30]
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while transferring large volumes of heterogeneous data. A

framework is necessary to represent and structure the

fundamental components, relationships, and data flow of

multidisciplinary smart city projects. As depicted in Fig. 3,

the deployment architecture for the proposed smart city

project has a layered structure consisting of four tiers.

The proposed framework for a smart city consists of

four primary layers: (i) Application layer, (ii) Fog layer,

(iii) Cloud layer, and (iv) IoT layer.

3.1 Application layer

The Application layer is a crucial part of the proposed

framework for a smart city, which focuses on specific

applications such as the Smart Fire Detection System

(SFDS). The SFDS can detect fire hazards in different

locations, including government buildings, public areas,

hospitals, residential areas, and highways, and ensure the

safety of people and property. The Application layer plays

a significant role in enabling the SFDS to serve various

Fig. 2 YOLO v8 architecture [32]
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applications, including Smart Government, Smart Street,

Smart Hospitals, Smart Home, and Smart Traffic System.

3.2 Fog layer

The Fog layer is a bridge between the IoT layer and the

Cloud layer in a smart city framework, responsible for

processing data at the edge of the network in real-time,

reducing network congestion and latency. It provides a

more secure environment for data processing and offers

features such as data management, analytics, and security.

The Fog Master Node (FMN) is the main controller that

receives data from the IoT layer and decides whether to

process it in the Fog layer or transmit it to the Cloud.

3.3 Cloud layer

The Cloud layer is responsible for storing and processing

big data generated by IoT devices in smart cities. It offers

several benefits, including high scalability, cost-effective-

ness, and reliability. In the proposed framework, if the

desired data are not found in the fog cache, the request will

be forwarded to the cloud for further processing. Cloud

computing is also used to store data generated by the SFDS

for future analysis and decision-making. Overall, the Cloud

layer plays a critical role in enabling the SFDS to process

and analyze large volumes of data efficiently.

3.4 IoT layer

The IoT layer in a smart city consists of physical devices,

sensors, and actuators connected to the Internet that collect

and exchange data. Sensors detect environmental changes,

actuators control and move systems, and effectors interact

with the environment. Data collected from sensors are

stored and processed to analyze patterns, detect anomalies,

and predict future events. Cloud and Fog computing is used

to process the data in real-time, enabling the development

of intelligent systems.

3.4.1 Smart fire detection system (SFDS) methodology

The SFDS methodology uses the YOLOv8 detection

model, which offers fast and precise object detection

without the need for a regional proposal network. The

system is optimized to reduce the number of parameters

needed for detection, making it more efficient. The SFDS

uses computer vision to automatically detect fires in images

and video streams. The methodology involves several

steps, as shown in Fig. 4.

Step 1: Data collection This step involves gathering a

large dataset of images and videos containing fire and non-

fire images. This can be done by collecting images and

videos from public sources, such as social media and news

websites, or by capturing footage using specialized cam-

eras or sensors. The dataset should be carefully curated,

checked for duplicates, and labeled appropriately with the

Smart City – Framework Layard View

Smart 
Government

Smart 
Street 

Smart 
Hospitals 

Smart 
Home

Smart Traffic 
System 

Applica�on 
Layer

Fog Layer
FN FMN FN

FN FMN FN……

Cloud Layer

IoT Layer

Fig. 3 The proposed smart city

framework
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presence or absence of fires using automated labeling tools

or manual labeling. It is important to ensure the dataset is

balanced with an equal number of fire and non-fire images

to prevent the model from becoming biased toward one

class of images.

Step 2: Data preparation In this step, the collected

dataset of fire and non-fire images and videos is prepared

for training and testing the smart fire detection system. This

involves labeling the images and videos with bounding

boxes around the fires, which can be done manually or with

a tool like LabelImg. The labeled data are then split into

training and testing sets, ensuring both sets are represen-

tative of the overall dataset. Other pre-processing steps,

such as resizing or normalizing the data, may also be

necessary. The goal is to have a large enough, balanced

dataset that can generalize well to new data.

Step 3: Model selection This step involves selecting the

appropriate object detection algorithm for training the fire

detection model. There are several algorithms to choose

from, such as YOLOv8, Faster R-CNN, and SSD, each

with its own advantages and disadvantages. The selected

algorithm should have good performance on the collected

dataset and be capable of handling different fire scenarios,

depending on the requirements of the smart fire detection

system. YOLOv8 is a popular choice due to its speed and

accuracy, but other algorithms can also be used based on

specific needs.

Step 4: Model training In this step, the YOLOv8 model

is trained on the labeled dataset prepared in step 2. Model

training involves teaching the deep learning model to

recognize the features of fire and non-fire images and dif-

ferentiate between them accurately. The YOLOv8 model is

trained using a deep learning framework like TensorFlow

or PyTorch, which provides the necessary tools and

libraries to build and train neural networks.

Step 5: Model evaluation The trained model’s perfor-

mance is evaluated using various metrics such as accuracy,

precision, recall, and F1 score. These metrics provide a

measure of how well the model is performing in terms of

identifying fires and non-fires. If the model’s performance

is not satisfactory, it can be fine-tuned by adjusting the

hyperparameters or adding more training data. It is

important to find a balance between overfitting and

underfitting to ensure that the model generalizes well to

new data.

Step 6: Deployment This step involves deploying the

trained model in a real-time system that can process live

video streams from cameras. A computer or server with

high computing power and a GPU is required to process the

video streams in real-time. The system should be able to

read video frames from a camera or video stream, process
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Fig. 4 Smart fire detection (SFD) system methodology
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them through the trained model, and generate alerts when a

fire is detected. False positives can be handled by using a

threshold value, which determines the minimum

confidence level required for the model to detect a fire, and

detections below this threshold value are discarded as false

positives.

Step 7: Integration This step involves integrating the fire

detection system with other systems, such as fire alarms,

sprinkler systems, and emergency response systems. When

a fire is detected, the fire alarm system should be triggered

to alert people in the building and evacuate them. The

sprinkler system can also be activated to suppress the fire.

In addition, emergency response systems can be notified

with critical information such as the location and severity

of the fire to provide timely and effective response. Proper

integration of these systems is important to avoid false

alarms and ensure a seamless and efficient response to fires.

Testing and validation should be carried out to ensure the

systems work together effectively.

Step 8: Maintenance This step involves maintaining the

deployed fire detection system to ensure its effectiveness

over time. This includes updating the model with new data,

testing the system periodically, and maintaining the hard-

ware and software components of the system. Regular

maintenance helps to reduce the risk of false alarms and

improve overall safety.

Table 2 Dataset descriptive information

Parameters No. of images

Training

Outdoor fire large and small 4375

Normal scene 3547

Smoky 6212

Fire with noise 2206

Normal scene with noise 1747

Smoke with noise 3129

Testing

Outdoor large and small 1079

Normal scene 843

Smoky 1624

Fire with noise 521

Normal scene with noise 448

Smoke with noise 789

Fig. 5 Some images of the used dataset
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3.4.2 Smart fire detection (SFD) algorithm

The Smart Fire Detection (SFD) Algorithm uses computer

vision to detect fires in real time from live camera feeds or

pre-recorded video files. As illustrated in Algorithm 1, it

uses a pre-trained Yolov8 object detection model on a large

dataset of fire and non-fire images. It takes a dataset of

video frames as input and outputs detected objects,

including fire-related classes such as ‘‘flames’’, ‘‘smoke’’,

or ‘‘embers’’. The algorithm loops through each frame of

the video, applying pre-processing techniques to the cur-

rent frame and passing it to the Yolov8 model for object

detection. If a fire-related class is detected, the algorithm

triggers an alarm and notifies the relevant authorities.

Finally, the algorithm saves the output video with the

detected objects highlighted. The SFD algorithm is a

powerful tool for detecting fires in real-time and enables

quick and effective responses to potential fire hazards.

The smart fire detection (SFD) uses Yolov8 object

detection model. It involves several steps:

• The video input source is set up from either a live

camera or pre-recorded video file.

• The video capture process is started, and each frame of

the video is looped through.

• Image pre-processing techniques are applied to each

frame, and the pre-processed frame is passed to the

Yolov8 model for object detection.

• The detected objects are checked for fire-related

classes, such as ‘‘flames’’, ‘‘smoke’’, or ‘‘embers’’.

• If a fire-related class is detected, an alarm is triggered,

and relevant authorities are notified.

• The video capture process is stopped, and the output

video with the detected objects highlighted is saved.
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4 Implementation and evaluation

This section discusses the used dataset, the performance

metrics, and the performance evaluation.

4.1 Used dataset

The dataset contains a diverse range of fire and smoke

scenarios, including indoor and outdoor fires, small and

large fires, low-light and high-light conditions, and normal

scenes without fire. The data-set contains 26,520 images

including images that have fires, smoke, fire and smoke,

and normal scenes without fire or smoke. The dataset is

divided into 21,216 for training and 5304 for testing.

Despite the large dataset size, the proposed method proved

its superiority for smoke and fire detection with high

accuracy. Besides, it can generalize and validate new

images with very high accuracy. Table 2 describes dataset

description of number of images for large and small fires

with and without noise, smoky with and without noise, and

normal scenes. Figure 5 shows samples from the used

dataset.

A YOLO v8 model has been trained on the dataset using

transfer learning, where we initialized the model with pre-

trained weights on the COCO dataset and fine-tuned it on

our dataset. We used a batch size of 16 and trained the

model for 300 epochs with an initial learning rate of 0.01.

Table3 describes the configuration parameters of YOLO

v8.

The proposed model has been implemented, trained, and

validated on Kaggle using GPU platform. From the

experimental results, it is shown that our model can detect

fires with precision 95.7% and smoke with precision 99.3%

with overall mean average precision (mAP) for the two

classes 97.5%. Figure 6 shows overall results of the pro-

posed model including loss, precision, and recall. Fig-

ure 7A, B shows precision recall curve. Also, Fig. 8

presents the results of fire and smoke detection with the

proposed model.

4.2 Performance metrics

The weighted average between recall percentages and

precision percentages means is known as the FM score.

Consequently, this score takes both false positives and false

negatives into account. Although FM is more prevalent

than precision, accuracy is not immediately simple to

understand. When false positives and false negatives have

comparable costs, accuracy performs well. Consideration

of recall as well as accuracy is preferable if the costs of

false positives and false negatives vary. In terms of positive

findings, precision is the proportion of accurately predicted

observations to all predicted positive findings. The recall is

Table 3 YOLO v8 configuration parameters

Parameters Values

Epoch 300

Learning rate 0.01

Image size 512

Batch size 16

Number of images 26,520

Layers 225

Parameters 11,136,374

Fig. 6 The results of the proposed model
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the proportion of true positive predictions over all actual

positives. It can be calculated as in Eq. (1). The precision is

the proportion of true positive predictions over all positive

predictions. It can be calculated as in Eq. (2)

Recall ¼ TP

TPþ FN
ð1Þ

Precision ¼ TP

TPþ FP
ð2Þ

where TP stands for True Positive. FP stands for False

Positive, TN stands for True Negative, and FN stands for

False Negative. Precision and recall are considered while

calculating F-Measure, abbreviated as FM as calculated in

Eq. (3):

FM ¼ 2 � recall � precision
recallþ precision

ð3Þ

4.3 Results and discussion

The proposed system is evaluated using the standard met-

rics of precision, recall, and F1 score. Besides, dataset size

is considered in comparison and previous methods consider

fire, smoke, or both. We also compared our system with

two state-of-the-art fire detection systems: the fire detection

system based on deep learning [2], A YOLOv6-Based

Improved Fire Detection Approach [33], Real-time video

fire/smoke detection-based YOLO v2 [34], A smoke

detection model based on improved YOLOv5 [35], and

Fire detection method in smart city environments using a

deep learning-based approach.

Table 4 and Fig. 9 show the performance comparison of

the three systems on the test dataset. The proposed system

outperformed existing systems with precision, recall, and

F1 score, demonstrating its effectiveness in detecting fires

Fig. 7 Precision–recall curve of the proposed model
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in real-world scenarios. Regarding the proposed methods

(they have the same dataset) in [4, 35], they achieve higher

performance metrics, but it is implemented in a smaller

dataset size of 9200 compared to our dataset with 26,520

images. In addition, they are proposed for detecting fire

only without considering smoke. However, our proposed

model can detect fire and smoke with a high precision rate

of 97.1% for all classes with a smoke precision of 99.3%

and a fire precision of 95.7%. Moreover, it can generalize

new data very accurately as it is implemented in a large

Fig. 8 The result of proposed model for fire and smoke detection
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dataset containing a diverse range of fire and smoke sce-

narios, including indoor and outdoor fires, small and large

fires, low-light and high-light conditions, and normal sce-

nes without fire. We attribute the superior performance of

our system to the improved accuracy and speed of YOLO

v8 compared to the earlier versions of YOLO and other

deep learning-based fire detection systems.

5 Conclusion

This paper proposed an improved fire detection approach

for smart cities based on the YOLOv8 algorithm, called the

smart fire detection system (SFDS), which leverages the

strengths of deep learning to detect fire-specific features in

real time. The SFDS approach has the potential to improve

the accuracy of fire detection, reduce false alarms, and be

cost-effective compared to traditional fire detection meth-

ods. It can also be extended to detect other objects of

interest in smart cities, such as gas leaks or flooding. The

proposed system utilizes a deep neural network that is

trained on a large dataset of images containing fires to

detect and locate fires in real time with a high precision rate

of 97.1% for all classes. The evaluation of the system on a

benchmark dataset showed that it achieves high accuracy

and outperforms existing fire detection methods. The pro-

posed system is robust to various environmental condi-

tions, such as smoke, and can detect fires at different scales

and orientations. The proposed fire detection system has

potential applications in various fields, such as public

safety, industrial safety, and environmental monitoring. It

can aid in the early detection and mitigation of fires,

potentially saving lives and minimizing damage to property

and the environment. Overall, this paper provides a valu-

able contribution to the field of computer vision and real-

time fire detection, and the proposed system can be further

improved and applied in real-world scenarios. In the future

work, we can use OCNN [37] to achieve better results as it

achieved a good performance in [38–44]. We can also use

correlation methods like [45].

Author contributions It is a collaborative effort where FMT and HZ

worked together. HZ came up with the idea and wrote the abstract and

Table 4 Performance comparison of fire detection systems

System Model Precision % Recall % F1 score Dataset size Fire/smoke

Norkobil Saydirasulovich [33] YOLO v6 93.48 28.29 0.9 4000 Fire/smoke

Saponara [34] YOLO v2 97 97 95.4 400 Fire/smoke

Saponara [35] YOLO v5 94.99 78.28 0.858 20,000 smoke

Abdusalomov [36] YOLO v3 98.1 99.2 0.995 9200 Fire

Kuldoshbay [4] YOLO v4 98.2 99.7 0.997 9200 Fire

Proposed Model YOLO v8 97.5

99.3 smoke and 95.7 fire

95.7 0.962 26,520 Fire/smoke
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