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Abstract
Coconut water is the clear liquid found inside coconuts, famous for rehydrating after exercise or while suffering from a

minor sickness. The essential issue tackled in this paper is how to estimate the appropriate stage of maturity of coconut

water, which is a time-consuming task in the beverage industry since, as the coconut age increases, the coconut water flavor

varies. Accordingly, to handle this issue, an adaptive model based on Fuzzy Neural Network and Sperm Whale Opti-

mization, dubbed FNN–SWO, is developed to assess coconut water maturity. The Sperm Whale Optimization (SWO)

algorithm is a meta-heuristic optimization algorithm. It is embedded in this model along with neural networks and fuzzy

techniques (FNN system), which can be employed as an essential building block in the beverage industry. The proposed

FNN–SWO model is trained and tested utilizing fuzzy rules with an adaptive network. In contrast, the SWO algorithm is

adopted to determine the optimal weights for the fuzzy rules. Three subsets of data divided according to three levels of

coconut water maturity-tender, mature, and very mature, are used to validate the combined FNN–SWO model. Depending

on these three subsets of data, a comparison of the proposed FNN–SWO model has been conducted against a set of the

most common conventional techniques. These techniques include Support Vector Machine, Naı̈ve Bayes, FNN, Artificial

Neural Network, as well as their embedding with other meta-heuristic optimization algorithms. For various key perfor-

mance indicators, such as recall, F1-score, specificity, and accuracy, the proposed FNN–SWO model provides the best

prediction outcomes compared to the current time-consuming techniques. The dominance of the proposed FNN–SWO

model is evident from the final findings compared to its time-consuming peers for estimating coconut water maturity on

time. As a result, the proposed FNN–SWO model is an effective heuristic for locating optimal solutions to classification

problems. It can thereby be reassuringly applicable to other similar prediction problems. Additionally, it would benefit the

scientific community interested in evaluating coconut water.

Keywords Coconut water maturity � Sperm whale optimization (SWO) � Meta-heuristic optimization � Fuzzy neural

network (FNN)

Abbreviations
ANN Artificial neural network

ANN-GA Artificial neural network with genetic

algorithm

FNN Fuzzy Neural Network

FNN–

SWO

Fuzzy neural network and sperm whale

optimization

MAE Mean absolute error

MLP Multilayer perceptron

MSE Mean squared Error

MSGs Master sub-group

NB Naı̈ve Bayes

Rj Inference rule

SI Swarm intelligence based algorithms

SVM Support vector machine

SVM-GA Support vector machine with genetic

algorithm

SWO Sperm whale optimization

TSGs Temporal sub-groups

List of symbols

oŷ
ou

� ��1 The inverse of the partial derivative is used to

convert the difference between the desired and

predicted outputs into a change in the manip-

ulated variable, which can be applied to the

plant model
oEu

owi
Partial derivative of the error with respect to

the weight
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Dwi vð Þ Change in weight in the current epoch of

training (v)

cij vþ 1ð Þ The updated degree of membership of data

point i in cluster j

eu Error of the manipulated variable

f ðxbÞ The best fitness

f ðxtþ1
b Þ The best fitness value at completion of the

present iteration t?1

k Output space

k4 Scaling factor that determines the spread of

the clusters

k3i The centroid of cluster j

k2ij The precedents’ membership (j) values for

each rule (i)

k3j Rule’s firing strength

u(v) Manipulated variable in order to make the

predicted output of the FFN as close as pos-

sible to the desired output

ufbðvÞ Fuzzified values of the outputs

wiðvþ 1Þ The updated weight

wj The weights of the consequence links.

xb The best whalés position

xtþ1
b

The best position at the end of the current

iteration t?1

xc Space’s central reflection

xi Data point (i)

xr The acquired reflection position

xw The worst whale’s position

y The output value for a given input vector ‘‘x’’

ŷ Predicted output value

yd Desired output value

g Constant learning rate

lij Membership function (j) for each input vari-

able (i)

rij vþ 1ð Þ The standard deviation of cluster j

ui The normalized degree of individual rule

firing

1 Introduction

Coconut is a wonderfully versatile raw material. Coconut

can be classified as a fruit (nut or seed), but it is also a type

of berry. Coconut is a raw material used in sweet and salty

cooking. The natural habitats of coconut include islands,

coastal areas, and humid tropical regions with relatively

large rainfall. Coconut palms are cultivated in more than

ninety countries and zones worldwide, with a total pro-

duction of more than 59 million tons in 2021 [1–3].

Coconut is a very beneficial fruit that is used in a wide

range of products. Most production of coconut is in tropical

areas of Asia (Indonesia, the Philippines, and India),

accounting for more than 72% of the overall production.

Mexico is ranked eighth in coconut production of 0.25M

Tons in 2023 [4], with a production area of 190,000 ha [5].

Currently, global coconut products account for a share of

more than US$20.24 billion in 2022. There is anticipated to

be an increase in the compound annual growth rate

(CAGR) of 8.4 percent between 2023 and 2030 [6].

Tropical coconuts are not native to Egypt due to the limited

rainfall there. There are, however, some giant coconut

palms on Kitchener’s Island in Aswan, where the British

planted exotic and non-native flora [7, 8]. Further investi-

gations of coconut cultivation in Egypt are needed. Coco-

nut water is the liquid found in the center of a young, green

coconut. It helps nourish the fruit. As the coconut matures,

which takes around 10–12 months, some liquid remains

while the rest ripens into the solid white flesh known as

coconut meat. [9].

The coconut kernel has an edible skin, and coconut

water is delicious and used to rehydrate the human body

after exercise due to its high content of sugar and minerals.

Additionally, the coconut husk has strong fibers. The

coconut (Cocos nucifera L.) fruit can be processed for use

in a variety of beverages and foods, such as coconut milk,

which is derived from the solid endosperm, coconut water,

which is from the aqueous part of the coconut endosperm,

and the ‘‘meat’’ of the coconut which is from trimmed

young coconuts [10]. The liquid endosperm (coconut

water) in the coconut kernel cavity of coconut fruit is a

highly valued beverage used as a natural source of carbo-

hydrates and suitable for rehydration after physical activity

[11].

Coconut water is a fragile liquid found in the center of a

young, green coconut and rapidly deteriorates [12, 13];

consequently, assessing its quality during storage and

processing remains a challenge [14]. According to the

coconut maturity, the coconut water volume and nutrients

vary. Each beverage is produced considering the specific

characteristics of coconut water. There are determinant

factors for coconut water selection. For example, minerals

and sugars are varied and affected by the development

stage of coconuts, soil characteristics, and farming prac-

tices [15]. The water of very mature coconuts has higher

concentrations of magnesium and potassium than the water

of very tender coconuts, but the calcium concentration

dramatically decreases with age [16]. The coconut water

volume also varies with coconut age; for example, the

volume increases at ages of 7 to 9 months old and then

declines before being converted to jelly [16]. Depending on

the maturity stage of the coconut, the uses of coconut water

can vary as follows: (1) Young coconut water, known for

its high electrolyte content, is a popular drink for athletes

and people who are dehydrated. It possesses anti-
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inflammatory and anti-bacterial properties. According to

[17], young coconut water can have a strong anti-inflam-

matory effect. In contrast, mature coconut water may have

a more moderate anti-inflammatory effect. It can be applied

topically to alleviate skin irritations, (2) Mature coconut

water is less sweet than young coconut water but is still

rich in nutrients. According to [18, 19], the maturity stage

influences sugar levels. As maturity increased, the sucrose

content increased, while fructose and glucose levels

decreased. It is a popular ingredient in smoothies, juices,

and other beverages. It is also known to have antioxidant

properties, making it a popular drink for people looking to

improve their skin health and (3) Overripe coconut water is

found in coconuts that have started to spoil. Although

overripe coconut water is unsuitable for drinking, it can be

used in cooking. It is often used as a natural flavoring in

curries, stews, and other dishes. It can also be used as a

natural tenderizer for meat. Separating the coconut water

extracted from very mature fruits from that of very young

fruits is essential. This process is useful for utilizing all the

water extracted from the fruits, whether for nutrition or

later sale to pharmaceutical companies. Therefore, it is

necessary to grade and classify types of coconut water

according to their intended use. Coconut fruit classification

is insignificant because the extraction process is needed for

all coconut fruits and be punched as one batch.

There are many challenges to sorting coconut water.

[20] characterized the volatile compounds/profiles of five

different tender varieties of coconut water for further dis-

crimination using the headspace solid-phase microextrac-

tion technique. The dissolved oxygen concentration of

natural coconut water varies according to the coconut

maturity stage; at the 7-month growth stage, the dissolved

oxygen content of coconut water increases from 6 to 9

mg l�1 after 3 h of extraction and remains constant for 4 h.

After 10 h, the content declines to zero. In contrast, the

coconut water of 9-month-old coconuts has a maximum

dissolved oxygen concentration of 6 mg l�1, which in dif-

ferent experiments decreased to zero after 7 h [20] and

stayed constant for 4 h before dropping to zero after 10 h.

In the past ten years, artificial intelligence has been

increasingly applied to solve multiple problems associated

with coconut cultivation. Notable developments in expert

systems and machine learning [21] have prompted new

discoveries and led to solutions for many problems in

coconut cultivation and production [22]. ANN [23] relies

on intelligent mathematical models and parameterless

features, and these networks are biological nervous system-

inspired. In the past thirty years, the ANN has been widely

implemented in regression, forecasting, classification, and

pattern recognition problems [24, 25]. The proficiency of

an ANN is deeply affected by the number and effectiveness

of the corresponding learning stages [26]. Multilayer per-

ceptron (MLP) neural networks are the most commonly

used and implemented ANNs [27]. The appropriate

supervised training methods can be classified into two main

categories: stochastic processes and gradient-based meth-

ods [28]. The back-propagation algorithm and its variants

are examples of gradient-based methods, and researchers

commonly use them. However, gradient-based methods are

associated with three main problems: slow convergence,

initial parameter dependency, and local minima [29, 30].

Swarm Intelligence (SI)-based algorithms have been

utilized in many applications due to their robustness to

initial requirements, global search efficiency, and accuracy.

The main objective of SI algorithms is to improve the

performance of computations that can assist in solving

complex optimization problems with other techniques,

such as FNN. SWO, one of the most powerful SI algo-

rithms, has not been fully investigated for selecting optimal

weights for fuzzy bases [31, 32].

[33] exploited the Harris Hawks optimizer with a

recurrent gated unit to discover various infections in

coconut trees. The empirical investigation was conducted

on the suggested model, and the results demonstrated the

adequate performance of the presented model over recent

approaches. [34] reported sixteen texture and color attri-

butes for 1265 damaged images of coconut pests by

extracting the texture and color attributes of the damaged

images in the grey and color domain after damage seg-

mentation utilizing a thresholding approach. They imple-

mented the gray level run length matrix and the gray level

co-occurrence matrix to discover the texture attributes of

the damages, and they reported two ANN models to cate-

gorize the extracted data attributes of the damages into five

various classes. The experimental results showed that ANN

and SVM outperformed the others in all performance

measures, and their proposed model can be used as a

baseline model for additional studies to determine coconut

pest damage using deep learning methods. [35] utilized

seven CNN structures (VGG19, VGG16, MobileNet,

Xception, InceptionResNetV2, InceptionV3, and

ResNet50) to identify two main maturity stages of the

coconut (mature and tender). Recognizing the maturity

level of the coconut plants is difficult because of the

external lighting with challenging background conditions.

Their empirical outcomes showed that the ResNet50

method effectively identified two main stages of coconut

maturity with an accuracy of 98.32%. [36] utilized

YOLOv5 approach to identify the on-tree mature coconut
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fruits With an accuracy of 88.4%. [37] introduced a dataset

containing the general differences of the coconuts in terms

of their maturity statuses through their acoustic character-

istics. Their dataset can also help develop an intelligent

classification system of coconut through deep learning and

machine learning models.

In the literature, very few works consider using SI

algorithms in this direction since many improved SI algo-

rithms have been developed [38, 39].

1.1 Motivations

This investigation aims to develop a precise detector to sort

and classify coconut water from coconuts in three different

development stages: tender, mature, and very mature, with

green, greenish-brown or yellowish-brown, and completely

brown colors, respectively. The SWO algorithm is devel-

oped to choose the optimal weights for the fuzzy rules to

obtain the coconut water maturity prediction, and a pro-

totype sorter is implemented based on the information on

the actual times and dissolved oxygen level acquired from

an optimized ANN to evaluate the anticipated values of

coconut water maturity with an acceptable error margin.

1.2 Contributions

The fundamental contributions of this paper can be sum-

marized in the following:

• A new model, called FNN–SWO, for predicting coco-

nut water maturity is established based on clustering the

input data and data fuzzification to estimate the

appropriate stage of maturity of coconut water.

• The proposed FNN–SWO model is trained and tested

utilizing fuzzy rules with an adaptive network. In

contrast, the SWO algorithm is adopted to determine

the optimal weights for the fuzzy rules.

• Compare the proposed model with the state-of-the-art

models and evaluate their performance.

1.3 Structure

This paper is structured as follows. Section 2 presents the

theories and methods used, that is, the components of the

FNN system and the SWO algorithm. The proposed FNN–

SWO assessment model is discussed in Sect. 3. Section 4

presents the experimental results and performance analysis.

Lastly, concluding remarks are given in Sect. 5.

2 Fundamental preliminaries

This section concisely describes the methods and materials

used in this paper: the components of the FNN system and

the SWO algorithm.

2.1 ANNs

Neural networks [21, 26, 40] are modeled after the human

brain and imitate the way biological neurons communicate

with each other. Node (neuron) layers, including input,

hidden, and output layers, make up neural networks. The

nodes are components used in information processing. The

number of nodes in the input and output layers relates to

the dataset’s input and output variables. At the same time,

the experiment must determine the appropriate number of

nodes in the hidden layer.

Each node (neuron) links to others in a specific pattern

through a connection link. That link is associated with a

corresponding weight, which contains details about the

input signal and provides helpful information about input

to address the problems. Each node can access various

inputs but only one output. It takes in the inputs from

nearby neurons, elaborates them, and then sends the output

to adjacent neurons, giving the inputs the proper weight

using the connective values [41].

Neural networks are effective tools that classify and

cluster data at a high rate. The ability of neural networks to

learn from examples (training data, input, and output

samples) is their primary property for improving their

accuracy over time. For setting, the required I/O relation-

ship that depicts the behavior of the designed system with

an acceptable level of error for the application, neural

networks compute outputs from input data, compare the

measured and calculated outcomes, and then adjust their

internal structure and the weights of the connections

between artificial neurons to reduce the discrepancy

between the measured and calculated values. It’s essential

to watch out throughout training to prevent over-fitting.

Over-training causes the network to get so used to the

example training patterns that it cannot generalize to new

data.

2.2 Fuzzy systems

There are several reasons to deal with fuzzy events, which

are hard to classify. First, fuzzy logic can represent human

knowledge more naturally and appropriately. Second, it is

widely recognized that many real-world situations are

intrinsically fuzzy. Third, fuzzy quantity is simple and easy

to use [42, 43]. Fuzzy systems are provided to study fuzzy
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events and interpret the subjective human knowledge of the

actual processes. The main specialized paper, which pro-

posed the foundations and mathematics of the fuzzy set

theory, was published by [44]. This theory suggested using

the continuous interval [0, 1] instead of the discrete set [0,

1] for the membership function (values of true and false).

There are three stages in the technique of fuzzy inference:

• Fuzzification: a function sets the numeric inputs’ values

based on the degree to which related fuzzy sets agree.

• Processing: rules are processed by the fuzzy system in

line with the inputs’ firing strengths.

• De-fuzzification: the consequent fuzzy values are

returned to scalar values.

2.3 FNN system

In neural networks [45], the principle of fuzzy systems is

used to enable a system to handle real-life situations in a

manner more like humans, which helps in accelerating

network processes or improving parameters. In FNN, there

is a combination of the neural network’s capacity to pro-

vide the learning’s computational features, generalize to

untrained samples, and its simplicity in implementation for

any complex problem, as well as the fuzzy systems’

capacity to clarify the ambiguous data that is so common in

real-world situations.

Different FNN systems include combinations between

neural networks and fuzzy systems according to the stage

at which the neural networks are used. FNN systems can be

either concurrent, cooperative, or hybrid [46].

Concurrent FNN systems are competing systems that

take the output from each other, and a neural network can

work on one task without affecting other parameters [47].

These systems are not FNN systems in the strict sense

because the fuzzy system and the neural network interact

continually. Cooperative (or parallel) FNN systems are pre-

processors for fuzzy systems in which the parameters are

set using neural networks in an initial phase using training

data. Once the fuzzy rules have been produced, the neural

networks are taken out, and the fuzzy system is left to

operate independently [48]. Hybrid (or integrated) FNN

systems combine fuzzy logic and neural networks in a strict

sense to determine the parameters iteratively. Hybrid FNN

systems are the most suitable for solving diagnostic prob-

lems [49].

The advantage of FNN systems is that they can learn

through patterns and are simple in interpreting their oper-

ations [50]. Recently, the applications of FNN systems

have expanded to cover all branches of knowledge,

including data classification, data analysis, error detection,

and decision-making support.

The five-layer network is recommended for usage in the

FNN system of this study. The suggested FNN system is

depicted in Fig. 1. An input space x 2 Rn is mapped to an

output space K 2 R using this FNN system. The FNN uses

the following inference rule, namely, rule Rj.

Rj : If x1 is l1jðx1Þ , x2 is l2jðx2Þ, . . . , xi is lijðxiÞ
then y is wj:

ð1Þ

Where xiði ¼ 1; 2; . . .; nÞ is an input with a membership

lijði ¼ 1; 2; . . .;mÞ, and wj denotes the weight of the jth

consequence link.

A specific procedure must be used to update the

parameters, which is summarized as a five-layer network

[51], as shown in Fig. 1. Firstly, the input layer that ini-

tializes the training stage set \x; k[ by determining the

minimum and maximum values signs. Then the second

layer is called the membership function layer and is defined

as:

k2ij ¼ lijðxiÞ ¼ exp � 1

2

xi � cij
rij

� �2
 !

: ð2Þ

Where the membership k2ij consists of the present j
th neuron

with the ith input from the former layer as the subscript and

the layer number as the superscript. xi denotes the value of

ith input. cij and rij stand for the center and width of a

Gaussian distribution for a set that is assigned to lij,
respectively.

The third layer is dubbed the rule layer. In this layer, the

precedents’ membership values for each rule are multiplied

by each other to acquire the rule’s firing strength, which is

used to determine the volume of each neuron’s output as

follows:

k3j ¼ k21j P k22j P . . . P k2nj: ð3Þ

Subsequently, the resulting layer is the fourth layer. Its

outputs are fuzzified values of the outputs from the rule

layer. This layer is determined as follows:

uðvÞ � k4 ¼
Xr
i¼1

wi ui ; ui ¼
k3iPr
i¼1 k

3
i

: ð4Þ

Where ui means the normalized degree of individual rules’

firing.

The connection weights can be determined as follows:
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wiðvþ 1Þ ¼ wiðvÞ þ DwiðvÞ ¼ wiðvÞ � g
oEu

owi
: ð5Þ

Where g 2 ½0; 1� is a given rate of constant learning for the

neural network, weights are changed in proportion to the

negative of the error derivative with respect to each weight.

The fuzzy set values can be calculated, as:

cijðvþ 1Þ ¼ cijðvÞ þ DcijðvÞ

¼ cijðvÞ � g
oEu

ok4
ok4

ok3i

ok3i
ocij

¼ cijðvÞ þ g eu ui fwiðvÞ � k4g � xi � cijðvÞ
frij ðvÞg2

" #
;

ð6Þ

rijðvþ 1Þ ¼ rijðvÞ þ g eu ui fwiðvÞ � k4g

� fxi � cijðvÞg2

frijðvÞg3

" #
:

ð7Þ

An adaptive approach is provided to train the FNN system.

During the training procedure, it will look for the value of

u(v) until the most negligible value for jydðvþ 1Þ � yðvþ
1Þj is obtained. The value of ŷðvþ 1; tÞ will get closer to

ydðvþ 1Þ as the desired value of the manipulated variable

is reached. Hence:

Dŷðvþ 1Þ
DuðvÞ ¼ yd ðvþ 1Þ � ŷ ðvþ 1 ; tÞ

uðvÞ � uðv� 1Þ ¼ oŷ

ou
; ð8Þ

euðvÞ ¼ uðvÞ � uðv� 1Þ ¼ ðoŷ
ou
Þ�1 fyd ðvþ dÞ � ŷ ðvþ 1; tÞg:

ð9Þ

In FNN training, the value of euðvÞ is employed, and the

plant model makes sure that ŷðvþ 1Þ closely approximates

ydðvþ 1Þ.
There are two ways to assess the learning algorithm

mentioned above. At first, the forward way in which the

current degree of rules’ firing is computed, and the FNN’s

output is projected. The second way is either optimizing

the weight in the resultant layer or concurrently modifying

the membership functions and weights.

2.4 SWO algorithm

An effective nature-inspired optimization algorithm termed

SWO algorithm [52] is introduced to imitate the sperm

whale’s natural behaviors to live. Breathing and feeding for

sperm whales consider two inverse cyclical processes; as

they provide on squids but should descend to the depths of

the water at about 2000–3000 m to catch squids where they

live; while they need to surface to breathe, they can halt

breathing for about 90 min [53].

Each solution in the SWO algorithm indicates a sperm

whale. Firstly, a sperm whale’s initial population is formed,

assessed, and arranged. After that, to maintain the global

optimum and avoid falling into local optima, this sperm

whale’s initial population is separated into n distinct

Temporal Sub-Groups (TSGs), each of which has m mem-

bers. For each new Master Sub-Group (MSG), one member

is arbitrarily chosen from each Temporal Sub-Group (TSG)

[53], as illustrated in Fig. 2.

As mentioned before, in the breathing-feeding cycle,

sperm whales pass through two contrasting locations.

Hence, there are two solutions for each sperm whale are

Fig. 1 Structure of the

suggested FNN system
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taken into consideration, one for its certain location and the

other for its opposite location, and the two solutions’

objective functions are evaluated. Additionally, only the

worst solution is reflected because the best solution’s

opposite impression does not help determine the optimal

solution. SWO transfers the worst solution to an arbitrary

point on the line connecting the worst and the best solu-

tions for ensuring that the search space’s central reflection

xc transmits the point within the wanted solution area. As a

result, xc and the acquired reflection position xr can be

formulated mathematically as follows:

xc ¼ xw þ c� xb; ð10Þ

c ¼ r � ci; ð11Þ

xr ¼ 2xc � xw: ð12Þ

Where xw is the worst whale’s position, xb is the best

whale’s position. c denotes the center factor, which might

be any number, ci is the beginning center factor, and r is

the shrinking coefficient, which has a value smaller than 1.

Equation 11 is applied only in the case of xr is beyond the

search space for lessening the value of c.

When dealing with global optimization problems that

are bound-constrained, the parameter’s range c can be

chosen so that xr does not go outside the bounds of the

search space. Assume C be a vector with a 1� n dimen-

sion. In this case:

c ¼ rand�MinðCÞ: ð13Þ

Where rand is an arbitrary number chosen from a uniform

distribution within the [0, 1] range, in this instance, it is not

necessary to confirm whether or not xr is beyond the

search, which speeds up the process of finding a solution.

As there would be no need to specify r and c, this also

reduces the number of parameters.

From each MSG, a selection of q whales with more

satisfactory objective functions are chosen as the Good

Gang group. Then, a local search is conducted on this Good

Gang group’s members by altering the solutions within a

specified radius; if the altered solutions are improved, they

will replace the originals in the Good Gang group. The best

solution from the Good Gang group then crosses over with

the remaining solutions in the MSG, and between two

created children, one (randomly) replaces the mother

solution; this procedure is repeated a specific number of

times. At last, all of the subgroups’ solutions are set next to

each other in the sperm whales group and arranged them.

These steps are repeated until the optimum solution is

obtained. The pseudo-code defining the SWO algorithm is

offered in Appendix A after presenting the stages of the

SWO algorithm outlined above.

3 A proposed model based on FNN
and SWO (FNN–SWO) for coconut water
maturity assessment

This paper suggests an effective modeling process, dubbed

FNN–SWO, for forecasting coconut water maturity. The

proposed modeling process consists of the following

stages: clustering the data, fuzzy analysis including SWO,

machine learning, FNN–SWO training, and FNN–SWO

Fig. 2 Gathering process in

SWO algorithm
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testing. An overview of the suggested model is presented in

the following Subsections, which provide a detailed

explanation of each modeling stage and an illustration of

the dataset utilized in the case study.

Two key components make up the prediction of coconut

water maturity. The first component is the dataset’s real-

time values, which are utilized to analyze the prediction

model. Specifically, the actual times and dissolved oxygen

contents are used to compute the predicted values of

coconut water maturity based on the appropriate model

parameters. All phases of coconut maturation are repre-

sented in the model by the values in the dataset, which are

derived from the real-time monitoring sensors. The second

component is the mechanism that integrates the data and

actual timings to calculate the anticipated value of coconut

water maturity based on the analyses with a reasonable

margin of error.

3.1 Data clustering stage

In this stage, all values input into the training dataset are

clustered into an n vector space based on the following

parameters chosen for clustering:

• Effective domain: assign the areas of cluster center for

all dimensions of the training dataset.

• Parameters used: the first parameter determines the

neighborhood of a cluster center.

• Acceptance probability: this parameter specifies the

threshold above which data points are regarded as

cluster centers.

• Refusal probability: this parameter sets the threshold

below which data points are not considered cluster

centers.

The inner vector V of cluster centers is generated during the

clustering process. The positions of the cluster centers are

included in all rows of vector V. The feedback from vector

V contains the values of v, which assign the effective

domain of each clustering center for all the dimensions of

data, as shown in Algorithm in Appendix B.

3.2 Fuzzification stage

A fuzzy block [54] is an extracted group of rules depending

on the number of clusters. The rules are grouped in the IF-

THEN structure as input–output relationships. This paper

proposes a fuzzy and fast machine-learning method based

on reinforcement learning. The suggested fuzzy blocks are

dependent on two factors.

• The input factor: the parameters of each fuzzy block are

updated using a fitness function and the network output.

• The critical metric factor: evaluates the signal based on

the actual signal. The neural network determines the

critical metric. The critical weights are updated using

the SWO algorithm, which is explained in Sect. 2.4.

Furthermore, the Lyapunov stability function [55] is

employed to select the status of the learning rates and

guarantee the stability of the proposed model.

3.3 Prediction stage

The rules of the membership function are calculated for all

values of the input training dataset. The membership rules

function is determined using the parameter centroids ðcij
and domain area BijÞ. The fuzzification stage transforms the

input values into membership values and then computes the

output using the relevant rules. The outcome of the fore-

casting region is calculated for making a proper decision.

Figure. 3 shows the five-layer FNN recommended in the

proposed FNN–SWO model. A first-order fuzzy logic

model transforms the fuzzy rules into the desired outputs.

The FNN consists of five layers. The first layer is associ-

ated with the membership function of the actual value. The

second layer represents the degree of membership, which is

constructed from the function (ranging from the minimum

to the maximum) of the incoming real value. The third

layer represents the optimal weight wi ratio of the mem-

bership’s degree of the ith rule. The fourth layer is the

defuzzification layer. The fifth layer calculates the total

output as the summation of all real values incoming from

the fourth layer.

All parameters in the prediction stage of coconut water

maturity are optimized using the SWO algorithm. The

proposed model uses fuzzy rules as inputs to the ANN and

chooses the optimal weight using the SWO algorithm to

obtain the coconut water maturity prediction.

Finally, after describing the stages of the suggested

FNN–SWO model in the preceding Subsections for eval-

uating the maturity of coconut water, Fig. 4 provides the

flowchart of the stages in structure determination, training,

and testing for the suggested FNN–SWO model.

• The first stage involves determining the data parameters

and initially clustering the values.

• The second stage is the clustering operation.

• The third stage includes training the clustered data in

the model considering the allowable Mean Squared

Error (MSE).
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• The fourth stage involves testing the model and

calculating the average absolute difference between x

and Y Mean Absolute Error (MAE), as follows:

MAE ¼ 1

n

Xn
i¼1

jyi � ŷij ð14Þ

4 Results and discussions

The experimental results for SVM with Genetic Algorithm

(GA)(SVM-GA), ANN, FNN, ANN-GA, NB, FNN with

Particle Swarm Optimization (FNN-PSO), FNN with Dif-

ferential Evolution (FNN-DE), ANN-SWO and the pro-

posed FNN–SWO are presented in this section. The models

were evaluated using training and testing datasets. The final

findings were derived using the evaluation metrics’ average

value. The datasets used to verify the efficacy of the pro-

posed model are described in Sect. 4.1, the parameters that

are utilized in working environments are presented in

Sect. 4.2, the performance metrics are shown in Sect. 4.3,

and comparative analysis is explained in Sect. 4.4.

4.1 Dataset description

Two hundred fruits of coconut from the 7-month devel-

opment stage and older were gathered after inflorescence

emerged from two Pacific coast fields. Coconut water was

emptied from a 15-mm hole with a drill. All coconuts were

categorized into three classes: tender, mature, and very

mature, with green, greenish-brown, or yellowish-brown

and completely brown colors, respectively. Dissolved

oxygen concentration measurements were made for each

class of coconut maturity. The continuous measurements of

the oxygen concentration were recorded with a data logger

each second in the air and the coconut water to identify the

transient response of oxygen in the coconut water from

coconuts of each stage. Dissolve oxygen measurements for

coconut water can be obtained through three different

techniques. First, the transducer is introduced to the

coconut water for one minute. Then, the transducer is

removed from the coconut water (in the air) for three

intervals of 5, 7, and 10 s in different techniques. Three

other peak measurements were obtained from each period

of transducer contact with the air.

The dissolved oxygen measurements’ reference points

were specified as condition states. The dissolved oxygen

concentrations in the air after 5, 7, and 10 s according to

the measurement technique, were used to establish the

maximum dissolved oxygen (DOmax). The measurements

were taken 5, 10, and 60 s after transducer insertion in

coconut water and were subsequently denoted as DO5,

DO10, and DO60, respectively. The automatic sorter con-

structed by Hahn [56] was applied in the newly developed

model to obtain an exact sorting process, as shown in

Fig. 5. Hahn [56] described the main components of the

sorter and the operation of the sorter in detail. A dissolved

oxygen sensor with a resolution of 0.1 mg of O2 j�1
(HI

76410/4, Hanna Instruments, USA) was connected to an

analyzer panel (HI 8410, Hanna Instruments, USA). The

analyzer panel provides an output current of 4-20 mA

based on the amount of dissolved oxygen measured by a

microcontroller (Fig. 5b).

The curtain valve, as shown in Fig. 5, has a diameter of

150 mm, and the coconut water discharge rate is 75 ml/s.

The dissolved oxygen sensor starts to take measurements

after 4 s. The microcontroller receives the measurement

data for the incoming coconut water class and sends a

Fig. 3 The structure of the proposed FNN–SWO model
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signal to one of the four solenoid valves, as shown in

Fig. 5.

Figure 6 shows the dissolved oxygen values for three

different samples of the tender class of coconut water.

Figure 7 shows the dissolved oxygen values for three dif-

ferent samples of the mature class of coconut water. Fig-

ure 8 shows the dissolved oxygen values for three samples

of the very mature class of coconut water.

Fig. 4 Flowchart of the proposed FNN–SWO model for coconut water maturity assessment
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4.2 Working environment

The suggested FNN–SWO method was compared against

five state-of-the-art techniques, including SVM-GA, ANN,

FNN, ANN-GA, and NB, executed in this paper. To

implement all experiments in this paper, Python was uti-

lized on a computing environment with a Dual Intel�

Xeon� Gold 5115 2.4 GHz CPU and 128 GB of RAM on

the operating system Microsoft Windows Server 2019. In

the proposed approach, the optimality of the results was

validated by using the hold-out strategy, where the training

and test sets are realized by randomly dividing each dataset

into two parts, where the training phase is done on 80% of

the dataset while the remaining 20% is for testing purposes.

The configuration parameters of the proposed methodology

are set considering the original variants and the data pre-

sented in their first publications [57, 58].

4.3 Evaluation metrics

Accuracy, precision, recall, F-Score, sensitivity, and

Specificity metrics were selected to validate the proposed

model’s performance in this study. These metrics depend

on True Positive (TP), True Negative (TN), False Positive

(FP) and False Negative (FN) which are common evalua-

tion parameters for predictive models [59, 60]. Accuracy is

expressed as in Eq. (15):

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð15Þ

Precision [61] is formulated as in Eq. (16):

Precision ¼ TP
TP þ FP

ð16Þ

Recall [62] is defined mathematically as in Eq. (17):

Recall ¼ TP
TP þ FN

ð17Þ

F-Score [63] is expressed as Eq. (18):

F � Score ¼ 2 � Precision� Recall

Precisionþ Recall
ð18Þ

Sensitivity [64] is written as in Eq. (19):

Fig. 5 Coconut water sorter system with funnels (a, c), the embedded

system (b), four solenoid valves (d), the sensors (e), and curtain valve

f cited from [56]

Fig. 6 Dissolved oxygen values

for different samples of each

type of coconut water (Tender

class)
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Sensitivity ¼ TP
TP þ FN

ð19Þ

Specificity [64] is formulated as in Eq. (20):

Specificity ¼ TN
TN þ FP

ð20Þ

4.4 Comparative analysis

This paper’s coconut water dataset comprises real-time

data collected over 3 months. The FNN parameters were

optimized based on the learning factor and learning coef-

ficient. An experimental method to determine the param-

eters was developed. A structure of 1 to 8 neurons in the

hidden layer, a learning factor from 0.01 to 1, and a

learning factor step of 0.01 were selected. Different

Fig. 7 Dissolved oxygen values

for different samples of each

type of coconut water (Mature

class)

Fig. 8 Dissolved oxygen values

for different samples of each

type of coconut water (Very

mature class)

Table 1 Experiment results with partial derivatives (Gradients) and with SWO Optimizer

Subset size Algorithm Accuracy (%) Precision Recall (%) F-Score (%)

50 FNN with partial derivatives (Gradients) 94.57 84.43 93.63 91.00

Proposed FNN–SWO 97.41 85.52 96.52 97.00

100 FNN with partial derivatives (Gradients) 95.37 86.34 94.41 91.00

Proposed FNN–SWO 96.69 85.72 96.94 96.50

500 FNN with partial derivatives (Gradients) 94.07 82.61 92.65 90.00

Proposed FNN–SWO 97.19 83.32 96.28 96.50
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training and validation steps were performed for each

factor, covering the entire range. Then, the number of

weights and iterations needed for network training, the

prediction error (MAE), and the correlation between the

real and predicted values and time data were analyzed for

each sample.

4.4.1 Experimental results with partial derivatives
(Gradients) and with SWO Optimizer

To show the effectiveness of the proposed framework, an

experiment is conducted With partial derivatives (Gradi-

ents) and with SWO Optimizer. The obtained results for

accuracy, recall, precision, and F1-score are presented in

Table 1, in which boldface numbers indicate the best

results. It can be noted from Table 1 that the use of SWO

leads to a massive improvement in all of the performance

metrics by substantial percentages.

4.4.2 Training results

Table 2 shows the accuracy, precision, recall, and F-Score

of the three training subsets of the collected coconut water

data and the performance of the proposed FNN–SWO

against different algorithms from the literature, including

SVM-GA, ANN, FNN, ANN-GA, NB, FNN-PSO, FNN-

DE, ANN-SWO, and FNN–SWO, in which boldface

numbers indicate the best results. The proposed method

and its competitors were performed under the same

experimental settings. It is evident from Table 2 that the

proposed FNN–SWO method obtained the best perfor-

mance regarding accuracy, recall, and F-score for 50, 100,

and 500 subsets in the training phase. ANN-SWO reached

the best performance regarding precision for 50, 100, and

500 subsets in the training phase.

It should be noted that for the 50 subsets, the proposed

FNN–SWO ranked first for all performance measures

except precision. ANN-SWO achieved first place in pre-

cision and second in accuracy, recall, and F-score. Finally,

NB achieved the worst accuracy, recall, and F-score

Table 2 Accuracy, precision,

recall and F-Score for 50, 100,

and 500 subsets in the training

phase

Subset size Algorithm Accuracy (%) Precision (%) Recall (%) F-Score (%)

50 SVM-GA 94.00 83.28 93.19 90.00

ANN 90.71 81.62 90.84 89.00

FNN 94.57 84.43 93.63 91.00

ANN-GA 94.31 90.61 91.42 92.50

NB 90.22 81.32 90.33 88.00

FNN-PSO 94.98 84.63 93.93 92.00

FNN-DE 92.42 80.19 93.04 92.33

ANN-SWO 95.23 90.72 94.13 93.14

Proposed FNN–SWO 97.41 85.52 96.52 97.00

100 SVM-GA 93.38 82.22 92.48 86.00

ANN 92.41 84.52 91.56 85.00

FNN 95.37 86.34 94.41 91.00

ANN-GA 94.21 82.44 96.55 94.00

NB 90.12 80.36 90.65 89.00

FNN-PSO 93.98 84.63 93.93 92.00

FNN-DE 91.94 81.24 92.53 91.59

ANN-SWO 94.33 90.13 93.22 92.55

Proposed FNN–SWO 96.69 85.72 96.94 96.50

500 SVM-GA 93.38 81.98 92.45 89.00

ANN 91.41 81.52 90.64 90.00

FNN 94.07 82.61 92.65 90.00

ANN-GA 93.21 83.32 93.81 93.00

NB 89.12 80.22 85.36 87.00

FNN-PSO 95.18 82.73 92.54 91.34

FNN-DE 91.87 80.33 91.24 90.62

ANN-SWO 95.93 90.13 93.22 92.55

Proposed FNN–SWO 97.19 83.32 96.28 96.50
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results. For 100 subsets, the proposed FNN–SWO ranked

first for all performance measures except precision. ANN-

SWO reached first place in precision. FNN achieved sec-

ond place in accuracy, precision, recall, and F-score.

Finally, NB achieved the worst accuracy, precision, and

recall results.

Regarding 500 subsets, the proposed FNN–SWO ranked

first for all performance measures except precision. ANN-

SWO achieved first place in precision and second place in

accuracy. ANN-GA achieved second place in terms of

recall and F-score. Finally, NB achieved the worst accu-

racy, precision, recall, and F-score results. Therefore, the

proposed FNN–SWO method could be considered a well-

Fig. 9 Accuracy, precision,

recall and F-score values for all

competitors regarding 50 subset

in the training phase

Fig. 10 Accuracy, precision,

recall and F-score values for all

competitors with respect to 100

subset in the training phase
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Table 3 Accuracy, sensitivity,

specificity, and precision for 50,

75, and 120 subsets in the

testing phase

Subset size Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

50 SVM-GA 93.90 82.08 93.23 90.00

ANN 92.66 83.72 92.77 91.00

FNN 94.47 85.63 94.92 91.00

ANN-GA 94.21 86.51 92.55 92.50

NB 89.42 81.44 90.44 89.00

FNN-PSO 93.85 83.44 92.93 91.50

FNN-DE 91.62 80.01 92.13 91.98

ANN-SWO 94.92 80.92 93.82 92.58

Proposed FNN–SWO 96.91 85.53 94.32 97.00

75 SVM-GA 93.27 83.72 91.44 87.00

ANN 91.21 82.32 90.59 86.00

FNN 94.97 85.60 93.92 90.00

ANN-GA 93.92 81.22 95.22 93.00

NB 90.22 80.61 90.65 88.00

FNN-PSO 92.78 81.93 91.75 90.98

FNN-DE 91.83 80.21 91.43 90.01

ANN-SWO 94.99 80.83 92.77 91.98

Proposed FNN–SWO 96.88 84.72 96.28 96.50

120 SVM-GA 92.38 80.55 91.49 89.00

ANN 90.41 80.31 90.64 90.00

FNN 93.97 81.22 92.77 91.00

ANN-GA 93.31 82.71 93.81 92.00

NB 89.02 81.35 86.56 87.00

FNN-PSO 91.82 80.93 90.85 89.98

FNN-DE 91.13 80.21 91.43 88.79

ANN-SWO 93.92 80.03 91.87 90.89

Proposed FNN–SWO 96.95 84.61 96.28 96.80

Fig. 11 Accuracy, precision,

recall and F-score values for all

competitors with respect to 500

subset in the training phase
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regarded and proficient heuristic for discovering optimal or

near-optimal solutions to classification problems.

Meanwhile, Fig. 9 shows the values of each of the four

metrics utilized in that competition. Based on the values

recorded (as depicted in Fig. 9), the proposed FNN–SWO

approach exceeded others for all performance metrics

except precision for the 50 subsets in the training phase.

Figure 10 shows the values of each of the four metrics

utilized in that competition for 100 subsets in the training

phase. Based on the values recorded, the proposed FNN–

SWO performed the best for all performance measures

except precision. Based on the values recorded in Fig. 11,

Fig. 12 Accuracy, sensitivity,

Specificity, and precision values

for all competitors regarding 50

subsets in the testing phase

Fig. 13 Accuracy, sensitivity,

Specificity and precision values

for all competitors regarding 75

subset in the testing phase
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Fig. 14 Accuracy, sensitivity,

Specificity, and precision values

for all competitors regarding

120 subsets in the testing phase

Fig. 15 The real and predicted

values of coconut water

maturity for the data subsets

(Tender class)

Fig. 16 The real and predicted

values of coconut water

maturity for the data subsets

(Mature class)
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the proposed FNN–SWO achieved the best for all perfor-

mance measures except precision for 500 subsets in the

training phase. Regarding Figs. 9, 10, and 11, ANN-SWO

ranked first in precision for 50, 100, and 500 subsets in the

training phase.

4.4.3 Testing results

Table 3 shows the accuracy, precision, recall, and F-Score

for three subset data periods of the collected coconut water

data, in which boldface numbers indicate the best results.

For 50 subsets, the proposed FNN–SWO ranked first in

accuracy and precision. ANN-GA ranked first in terms of

sensitivity. FNN ranked first in terms of Specificity.

Regarding 75 subsets, the proposed FNN–SWO

achieved the best for all performance measures except

sensitivity. FNN performed the best for sensitivity. Finally,

the proposed FNN–SWO ranked first for all performance

measures in 120 subsets.

Meanwhile, Fig. 12 shows the accuracy, sensitivity,

Specificity, and precision values for the proposed method

and their counterparts with respect to 50 subsets in the

testing phase. Based on the recorded values, the proposed

FNN–SWO achieved the best accuracy and precision.

ANN-GA achieved the best in terms of sensitivity. FNN

ranked first in terms of Specificity. Figure 13 shows the

performance measures obtained by the proposed method

and their counterparts for 75 subsets in the testing phase.

Fig. 17 The real and predicted

values of coconut water

maturity for the data subsets

(Very mature class)

Table 4 MAE and MSE values

obtained by the proposed

method and their counterparts in

training and testing phases for

the coconut dataset

Performance Best MAE Average MAE Worst MAE MSE

SVM-GA Training 2.81E?00 3.72E?00 1.94E?01 8.90E?00

Testing 8.80E-01 7.90E?00 2.88E?02 9.80E?00

ANN Training 5.04E?00 5.96E?00 7.68E?00 5.96E?00

Testing 4.94E?00 4.53E?00 6.99E?00 5.07E?00

ANN-GA Training 3.92E?00 2.98E?00 3.81E?00 2.88E?00

Testing 2.81E?00 1.22E?00 3.01E?03 1.22E?00

NB Training 6.94E?00 7.43E?00 8.78E?00 5.37E?00

Testing 5.83E?00 6.95E?00 9.88E?00 5.20E?00

FNN-PSO Training 3.95E-01 4.65E?00 4.26E?00 3.98E-01

Testing 4.75E-01 4.82E-01 5.27E-01 4.79E-01

FNN-DE Training 5.76E-01 5.88E?00 5.26E?00 4.98E-01

Testing 4.68E-01 5.92E-01 6.38E-01 5.99E-01

ANN-SWO Training 3.23E-01 3.45E?00 3.66E?00 3.50E-01

Testing 3.65E-01 4.52E-01 5.27E-01 3.79E-01

Proposed FNN–SWO Training 1.42E201 3.30E201 1.65E100 1.30E201

Testing 1.51E201 2.32E202 5.27E202 1.48E201
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Fig. 18 MAE and MSE values

obtained by the proposed

method and their counterparts in

the training phase for the

coconut dataset

Fig. 19 MAE and MSE values

obtained by the proposed

method and their counterparts in

the testing phase for the coconut

dataset
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Based on the values registered, the proposed FNN–SWO

achieved the best for all performance measures except

sensitivity. FNN performed the best for sensitivity. Fig-

ure 14 shows the evaluation metrics obtained by the pro-

posed method and their competitors concerning 120 subsets

in the testing phase.

The proposed FNN–SWO achieved the best for all

performance measures based on the values registered. The

actual and predicted values data for three subset data

periods of the collected coconut water data in the testing

phase are compared and presented in Figures. 15, 16, and

17. Figure 15 shows the tender class, Fig. 16 represents the

mature class, and Fig. 15 reveals the very mature class. The

predicted data are consistent with the actual data shown in

these figures, which also reveals that the proposed FNN–

SWO method could be considered a well-regarded and

proficient heuristic for discovering optimal or near-optimal

solutions to classification problems.

4.4.4 MAE and MSE values

The prediction model is run with the training and testing

subsets, and the worst, average, and best MAE and MSE

values are computed for each subset of data, as shown in

Table. 4, in which boldface numbers indicate the best

results. Based on the values of MAE and MSE shown in

Table. 4, the proposed FNN–SWO obtained the least value

for MSE (1.30E-01) for the training phase and (1.48E-01)

for the testing phase. Regarding MAE values, the proposed

FNN–SWO recorded the minimum average MAE value

(0.33E?00) for the training phase and (2.32E-02) for the

testing phase.

Based on the MAE and MSE values shown in Fig. 18,

the proposed FNN–SWO obtained the least MAE and MSE

values in the training phase for the coconut dataset. Based

on the MAE and MSE values shown in Fig. 19, the pro-

posed FNN–SWO obtained the least MAE and MSE values

in the testing phase for the coconut dataset.

4.4.5 Managerial implication of the proposed model

The proposed FNN–SWO method employs the SWO

algorithm to select the optimum weights for the fuzzy

rules. Our proposed FNN–SWO can achieve high accuracy

in terms of training and testing compared to other models.

It plays an essential role as a tool for predicting the

maturity level of coconut water. This tool can be combined

with coconut water extraction machines in manufacturing

to separate coconut water into three maturity levels (i.e.,

tender, mature, and very mature).

5 Conclusion and future work

The main problem addressed in this study is how to

accurately evaluate the maturity level of coconut water, a

time-consuming task in the beverage industry. Therefore,

to solve this problem, an integrated model called FNN–

SWO has been proposed to evaluate the maturity of

coconut water. The SWO method has been incorporated

into this approach along with FNN techniques, which can

be utilized as an essential building block in the beverage

industry. The proposed FNN–SWO model is trained and

tested using fuzzy rules with an adaptive network, whereas

the SWO algorithm is utilized to select the optimum

weights for the fuzzy rules. Multiple evaluation measures

(precision, recall, F1-score, specificity, sensitivity, and

accuracy) were adopted to estimate its performance. Based

on the findings, The noticeable outcomes were: (i) the

FNN–SWO model had the best prediction results for recall,

F1-score, specificity, and accuracy and was ranked second

in terms of precision and sensitivity; and (ii) The SWO

algorithm had a significant impact on improving the pre-

diction of the maturity of coconut water. These results

revealed that integrating both methods has an inherent

advantage over other methods for distinguishing between

different maturity classes of coconut water. Compared with

other methods, the FNN–SWO model outcomes performed

best. Overall, these findings could pave the way for the

future design and development of robust prediction algo-

rithms for specific datasets. Furthermore, the results

recorded from the dataset would greatly benefit the scien-

tific community interested in coconut water assessment.

To expedite this process, surrogate-assisted models

could be investigated in the future. Furthermore, other SI

and meta-heuristic algorithms could be tested, such as the

ant colony and sparrow search. Also, adopting other data-

sets in the proposed approach could be considered.

19560 Neural Computing and Applications (2023) 35:19541–19564

123



A The pseudo-code of the original SWO
algorithm
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B The pseudo-code of data clustering
algorithm
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