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Abstract
This article describes a method to analyze time series with a neural network using a matrix of area-normalized persistence

landscapes obtained with topological data analysis. The network’s architecture includes a gating layer that is able to

identify the most relevant landscape levels for a classification task, thus working as an importance attribution system. Next,

a matching is performed between the selected landscape levels and the corresponding critical points of the original time

series. This matching enables reconstruction of a simplified shape of the time series that gives insight into the grounds of

the classification decision. As a use case, this technique is tested in the article with input data from a dataset of elec-

trocardiographic signals. The classification accuracy obtained using only a selection of landscape levels from data was

94:00%� 0:13 averaged after five runs of a neural network, while the original signals achieved 98:41%� 0:09 and

landscape-reduced signals yielded 97:04%� 0:14.

Keywords Persistent homology � Persistence landscape � Neural network � Importance attribution

Abbreviations
ECG Electrocardiogram

MIT-BIH Massachusetts Institute of Technology and

Beth Israel Hospital

TDA Topological data analysis

UCR University of California, Riverside

H0 Zero-dimensional homology

kmax kth largest value of a given set of real numbers

kk kth persistence landscape level (k ¼ 1; 2; . . .)

wk Weight of kth landscape level assigned by a

gating layer

1 Introduction

In this article, we use topological data analysis (TDA) for

the purpose of interpretability of classification results in

deep learning. More precisely, we use persistence land-

scapes to retrieve information about features from data on

which a neural network focuses to perform a classification

task.

While the use of topological methods to enhance the

performance of neural networks is widespread, this is the

first study, to our knowledge, in which TDA-based algo-

rithms have been implemented for importance attribution.

Related work A number of articles have used TDA in

connection with neural networks since 2018. Tracking

changes in the topology of a dataset as it passes through the

layers of a trained neural network is the subject of [1],

while the topology of neuron activations is analyzed in [2].

Assessment of the generalization gap by means of persis-

tence descriptors without the need of a testing set is dis-

cussed in [3, 4]. None of these articles, however, addresses

attribution of importance based on classification outcomes.

The use of landscapes as persistence descriptors was

initiated by Bubenik in [5]. Landscapes were used in

connection with deep learning in [6] with the goal of

improving learnability by adding information on topolog-

ical features of input data into subsequent layers, but not
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for explainability purposes either. Activation landscapes

have also been used as topological summaries of perfor-

mance of neural networks in [7].

Many articles address the study of time series by means

of neural networks without using topology. For example, in

[8], a pre-training method using auto-encoders was

designed for time series prediction, and in [9] a multilayer

feedforward perceptron neural network was used to assess

its capability of accurately predicting stock market short-

term trends.

A survey of topological methods for time-series analysis

in deep learning using Betti numbers is offered in [10].

Persistent homology is used in [11] to detect and quantify

topological patterns in time series of financial crashes, and

for personalized arrhythmia classification in [12]. In dif-

ferent directions, methods from topological data analysis

have also been used to provide versatile vectorizations

[13], or to achieve a higher prediction accuracy or classi-

fication accuracy [14], or to regularize learning algorithms

by feeding topological information extracted from data

[15–17]. Topology has also been used to reduce the size of

datasets without much loss in training accuracy [18].

In contrast to most of the aforementioned articles, the

purpose of the present paper is neither to achieve an

increased classification accuracy nor to investigate any

aspects of the structure of a neural network, but rather to

link classification outcomes with specific topological

characteristics of the dataset.

Problem statement While the reasons for a classification

outcome from a neural network often remain unknown, it is

feasible to determine which features of data were espe-

cially relevant after training a network. The purpose of this

article is twofold: first, to design a mechanism for impor-

tance attribution using persistence descriptors and, second,

to ascertain whether such descriptors (or a skeleton of data

focusing on selected descriptors) achieve a similar classi-

fication accuracy through the same architecture.

Research approach and methods The hierarchical

structure of persistence landscapes allows us to design a

method for finding the most informative levels. For this,

we preprocess data so that the network is fed with a

persistence landscape extracted from data instead of the

original signals. Furthermore, we introduce an additional

layer to a chosen architecture, whose mission is to assign

weights to landscape levels. Then we run again the net-

work using only those levels with the highest weights.

The results show that the set of selected landscape levels

(normally 2–4) yield similar classification accuracies as

the whole landscape.

Selecting the most relevant landscape levels for a deep

learning classification task opens the possibility of recon-

structing the given data using only the chosen landscape

functions. The resulting simplified version of the given data

sheds light on which parts of data signals were most rele-

vant for the network’s classification task. Our reconstruc-

tion method is described more precisely in a companion

article [19], which addresses some mathematical questions

related to the present paper and is related to the inverse

problem in TDA, namely recovering certain types of data

from persistence summaries [20–22].

In the context of a heartbeat analysis (Sect. 4.2), we

checked that our neural network obtains similar accuracies

when fed with reconstructions of signals from selected

landscape levels in comparison with those obtained with

raw data. This enhances confidence in the classification

results by providing evidence that the network is not

focusing on artifactual details during the learning process.

Outline Basic facts about persistence landscapes are

collected in Sect. 2, and our attribution algorithm for

landscape levels is described in Sect. 3. In Sect. 4.1, we

validate our technique with nine datasets from the UCR

Time Series Classification Archive [23] and use it in Sect.

4.2 to test the accuracy of classification of electrocardio-

graphic signals from the MIT-BIH Arrhytmia Database

[24]. In Sect. 4.3, the effect of shifting signals on classi-

fication accuracy is analyzed.

2 Persistence landscapes for sublevel sets

Time-series arrays can be viewed as one-dimensional

continuous piecewise linear functions where persistent

homology can be applied to study the evolution of sublevel

sets. Thus we consider a sliding parameter t along the y-

axis, and for each function f defined on an interval [a, b]

and each value of t we compute the number of connected

components of the corresponding sublevel set Ltðf Þ ¼ fx 2
½a; b� j f ðxÞ� tg: This coincides with the number of con-

nected components of the part of the graph of f which lies

at or below height t. The collection of all sublevel sets for a

given function yields a persistence module whose value at t

is the vector space H0ðLtðf Þ;RÞ, where H0 denotes zero-

dimensional homology and coefficients in the field R of

reals are used.

For background about persistence modules and their

associated barcodes and persistence diagrams, see [25].

Barcodes were first considered in a topological context

in [26]. A barcode depicts the lifetime of each connected

component of a sublevel set, from the height t ¼ b (birth)

where it appears until the height t ¼ d (death) in which it

merges with some other connected component. The cor-

responding persistence diagram contains a point (b, d) for

each barcode line starting at b and ending at d (see

Fig. 1). The infinite ray depicting the essential homology

class that survives to infinity is discarded for practical

purposes.
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Persistence diagrams are not optimal for their use in

deep learning. Neural networks perform best with array-

shaped data. Therefore, in this article we use landscapes as

persistence summaries. Persistence landscapes were

defined in [5] and, in our case, they express the evolution of

connected components of sublevel sets of signals by means

of a finite sequence of continuous piecewise linear func-

tions with compact support. Computationally, each land-

scape function can be expressed as an array of discretized

values, which makes it suitable to be introduced into a deep

learning system.

The sequence of landscape functions associated with a

persistence diagram is defined as follows. For each point

(b, d) in the persistence diagram, one considers the corre-

sponding tent function

Kðb;dÞðtÞ ¼ maxf0;minft � b; d � tgg:

Next, a piecewise linear function kk : R ! R is defined for

each k� 1 as

kkðtÞ ¼ kmaxfKðb;dÞðtÞg;

where kmax returns the kth largest value of a given set of

real numbers whose elements are counted with multiplici-

ties, or zero if there is no kth largest value (Fig. 2).

Therefore, since the number of points in a persistence

diagram is finite, kk ¼ 0 for all sufficiently large values

of k. The first landscape levels k1; k2. . . depict the most

persistent topological features, while the last ones corre-

spond to less persistent phenomena.

3 Attribution of importance

The fact that persistence landscapes can be stratified into a

hierarchical sequence of levels makes it possible to design

a mechanism for importance attribution ranking landscape

levels of a given sample of signals. In [19] a deterministic

procedure is described to reconstruct signals from direc-

tional persistence landscapes in a number of chosen

directions. It is also shown in [19] how to partially

reconstruct the given signals using only a subset of selected

landscape levels, which is the focus of interest in the pre-

sent article. By combining this procedure with a machine

learning assignment of a sequence of weights to land-

scapes, we achieve a substantial reduction of the number of

critical points of the given data functions without losing

much classification accuracy.

To do this, we stack landscape functions from persis-

tence of sublevel sets of the given signals in a matrix that

will be fed into a neural network. Landscapes provide a

convenient representation, since each landscape level cor-

responds to a different region of the oscillation of the input

signal.

Since our objective is to feed a deep learning model, we

decided to normalize the area under each landscape func-

tion in order to force the network to focus on their mor-

phology instead of their actual values. This process is

illustrated in Fig. 3.

The existence of different levels of information naturally

leads to the study of which levels are more important than

others for the classification task. In order to implement this

idea, we propose the use of a gating layer: we maintain the

matrix shape throughout the architecture and, before

applying the fully connected layers, each landscape level

Fig. 1 From left to right, a piecewise linear function, its barcode of zero-dimensional homology of sublevel sets and the corresponding

persistence diagram

Fig. 2 Sequence of nonzero levels kk of a persistence landscape (left)
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kk is multiplied by a positive less-than-one learnable

weight wk. Thus we obtain a set of weights that indicate

how influential is each landscape level for the classification

task. Typically, a network should regard the first landscape

levels as more important than the last ones, given that the

first levels contain information about the most persistent

topological features.

By building a ranking of landscape levels, we are able to

decide at which threshold of information the network stops

learning. This is helpful in two main ways: first, we are

able to reduce the information that we use to train our

system by reducing the number of landscape functions that

we pass to our network; and second, we can attribute

importance to the parts of the original data that are pro-

ducing the most relevant landscape levels.

4 Experimental setting and results

In this section, we present the results of our experiments

using a neural network with a fixed architecture and dif-

ferent input signals. Our main aims are to assess the

changes in classification accuracy by using only a set of

selected landscape levels in comparison with the full

landscape and with the original data, while determining

which are the most relevant landscape features in each

database. Robustness of our method is estimated by

applying it to nine databases of very different nature.

Data We applied our methodology to a collection of

datasets taken from the UCR Time Series Classification

Archive [23]. The criteria for choosing a dataset were the

following: the dataset should have at most five different

classes and the total number of samples divided by the

number of classes should be greater than or equal to 500.

These criteria were adopted in order to avoid dealing with

data scarcity problems and difficulties caused by imbal-

anced classes or by an excessive number of classes. Table 1

contains a summary of the characteristics of each dataset.

Methodology In order to avoid discrepancies in the

accuracy of the method due to the different ranges of

values among datasets, input functions have been

standardized to have values between 0 and 1. Moreover,

when the topological preprocessing is applied, landscapes

have been normalized so that the area under each landscape

function is equal to 1. In doing so, we force the neural

network to study the shape of the landscape, rather than

only taking into account its actual values.

The main objective of our study is to compare the ability

of landscape levels to capture information against a base-

line of the raw data with the only preprocessing of stan-

dardization. Furthermore, to assess if the selected

landscape levels are sufficient to classify, the results of

feeding a neural network with the full landscape and the

results of using only the selected levels are compared.

The architecture of the neural network is as follows:

three convolutional layers combined with row-preserving

max pooling layers followed by two dense layers (Fig. 4).

Our gating layer is used for selection and attribution pur-

poses and it is only present when landscape levels are used

as input. In such case, the gating layer is placed between

the last max pooling layer and the first dense layer. The

experiments are conducted using a fivefold cross-valida-

tion. Training sets amount to 80% of each dataset. The

neural network is trained during 240 epochs, with a starting

learning rate of 0.01 that is divided by 5 every 100 epochs.

This architecture has been chosen to be rather generic,

without attempting to achieve the highest possible accu-

racy, neither with the original data nor by means of land-

scapes. Our purpose was to assess the validity of our

method while avoiding possible particularities due to a

tailored choice of an optimal architecture.

As for performance metrics, only accuracy is taken into

account in the present article.

4.1 Validation of the method

4.1.1 Performance results

We carried out the same experiment for 9 different datasets

from [23] to verify the stability of the results (Table 2). For

each dataset, we ran a neural network (Fig. 4) with three

different inputs: the original data, a sequence of persistence

Fig. 3 Extracting information through persistence landscapes to feed a neural network

20146 Neural Computing and Applications (2023) 35:20143–20156

123



landscape levels, and a selected subset of levels. Since the

length of the full sequence of nonzero landscape levels is

variable, we chose the first 10 levels k1; . . .; k10 as in most

cases the 10th level was already zero, and fixing a larger

number of landscape levels caused memory difficulties

during the training process without a significant increase in

accuracy.

Subsequently, the selection of a smaller number of

principal landscape levels was made by choosing the

highest weights provided by the gating layer. The number

of selected levels ranged from 2 to 5 depending on the

dataset (Fig. 5). Further details about the selection of an

appropriate subset of landscape levels are given in Sect.

4.1.2.

Table 2 shows the average accuracy and standard

deviation of each experiment using fivefold cross-valida-

tion. The table contains average accuracy results using raw

data, unnormalized landscapes, normalized landscapes, and

Fig. 4 Architecture of the

neural network designed for this

study. The gating layer is placed

immediately before the first

dense layer (pink) when

landscapes are used as input

Table 2 Average accuracies

given as percentages and

standard deviations on test sets

from five runs of a neural

network (Fig. 4) for nine signal

datasets

Dataset Raw data Unnormalized Normalized Selected No

ECG5000 94:72 � 0:7 92:96� 0:5 93:12� 0:4 92:88� 0:3 3

FreezerRT 99:53 � 0:4 63:70 � 4:2 88:97� 0:3 88:70� 1:6 2

HandOutlines 89:20 � 1:7 75:77 � 4:6 85:26� 2:0 81:90 � 2:0 5

ItalyPowerD 97:73 � 1:1 87:18 � 3:4 89:45� 1:7 90:36� 1:3 2

MoteStrain 90:98 � 1:1 71:84 � 1:8 77:33� 2:8 76:31� 1:7 3

PhalangesOC 64:02 � 2:1 63:95 � 4:2 68:95� 0:9 69:21� 0:8 4

Star LightC 95:70 � 0:4 89:82 � 2:3 94:92� 0:1 95:22� 0:5 3

Wafer 99:65 � 0:2 90:86 � 0:8 98:63� 0:3 98:79� 0:4 3

Yoga 82:48 � 1:6 64:21 � 4:1 75:36 � 1:1 78:33� 1:0 4

Accuracies obtained from original data (first column) are compared with those obtained from the first 10

landscape levels without area normalization (second column) and with area normalization (third column),

and from the most informative landscape levels (fourth colum). The last column indicates how many

landscape levels were selected in each case. Statistically comparable accuracies among TDA-based

strategies appear in boldface

Table 1 A summary of the

characteristics of each dataset
Dataset Samples Length Classes Imbalanced

ECG5000 5000 140 5 Yes

Freezer Regular Train 3000 301 2 No

Hand Outlines 1370 2709 2 Yes

Italy Power Demand 1096 24 2 No

Mote Strain 1272 84 2 No

Phalanges Outlines Correct 2658 80 2 Yes

Star Light Curves 9236 1024 3 Yes

Wafer 7164 152 2 Yes

Yoga 3300 426 2 Yes

For each dataset we indicate the total number of samples, the length of each sample, the number of classes

and whether the dataset is imbalanced or not
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a selected subset of normalized landscape levels. The

results show that landscapes achieve sufficiently high

classification accuracies, especially when they are nor-

malized (third and fourth columns). In that respect, land-

scape accuracies are statistically comparable up to one

standard deviation to using raw data in four out of the nine

datasets.

In Table 2, the results obtained by TDA-based strategies

that are statistically comparable among them—including

the method that achieved maximum accuracy—are high-

lighted in bold font. Unnormalized landscapes consistently

miss relevant information in most cases, and this is trans-

lated into a significant reduction in accuracy. It is also

remarkable that the selected landscape levels achieve

similar performances as whole (normalized) landscapes.

This reinforces the hypothesis that most of the information

contained in data is captured by a small subset of landscape

levels.

In the PhalangesOC dataset, normalized landscapes

perform even better than the original data. As pointed out

in Sect. 5, this could be due to the inherent elastic defor-

mation invariance provided by the landscape

representation.

4.1.2 Ranking of landscape levels

The keystone of our process is to be able to identify which

landscape levels carry the highest amount of information

for classification outcomes. The gating layer multiplies

each landscape level kk (with k ¼ 1; . . .; 10) by a learnable

Fig. 5 Average weights and standard deviations of the first ten landscape levels for nine datasets after five runs of a neural network (Fig. 4)

equipped with a gating layer
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weight wk with 0�wk � 1. After the full training process of

the neural network, the resulting weights are used to

attribute importance to each landscape level.

To ensure significance, we performed the experiment

five times and recorded the mean weight value and stan-

dard deviation for each landscape level, as seen in Fig. 5.

Although there is no obvious numerical method to deter-

mine the number of landscape levels that should be con-

sidered important in view of their weights, we used the

following criterion. If wk\ 1
2
wk�1 for some k, we call k a

significant drop. If k is the largest significant drop with

wk�1 [ 0:1, then we select k1; . . .; kk�1 as most important

landscape levels. If there is no significant drop with

wk�1 [ 0:1, then we pick the smallest k such that w1 þ
� � � þ wk�1 [wk þ � � � þ w10 and also select k1; . . .; kk�1.

With very few exceptions, the network regards the first

landscape levels as more important. These contain infor-

mation of the most persistent topological features of each

signal (connected components of sublevel sets). The first

10 levels were used in all the experiments. In some cases—

namely, ItalyPowerD and PhalangesOC—landscape levels

kk with k[ 6 were zero for all samples in the dataset. In

these cases, the gating layer assigned small but not nec-

essarily zero weights to the null levels.

It is remarkable that the terminal landscape level (i.e.,

the 10th in our study) tends to be consistently more rele-

vant than the immediately precedent ones, except in those

cases where it is zero for the whole dataset. This suggests

that the terminal landscape level may convey discriminant

information, deserving further study.

Figure 5 shows that for certain datasets all weights are

below 0.4, specifically HandOutlines and PhalangesOC,

and marginally also Yoga. Looking at Table 2, we find that

these datasets are precisely the ones that yield accuracies

below 90% on test sets after the neural network had been

trained with the original data. The datasets where the

original data achieved a higher classification accuracy

coincide with those with a smallest number of important

landscape levels. Indeed, Fig. 6 shows an inverse rela-

tionship between accuracies and the number of selected

landscape levels.

As examples of unfavorable cases, we now discuss

results obtained with the datasets FordA and TwoPatterns

from [23]. These datasets share a common property,

namely they consist of wave-like signals with a varying

wavelength and the key information to classify them is the

x-coordinate where the changes in the waves are happen-

ing. In one of them (FordA), the original data are difficult

to classify, while in the other one (TwoPatterns) the orig-

inal data are easily classifiable. In both cases, replacing the

data by persistence landscapes erases the relevant infor-

mation for a neural network classifier—since landscapes

are invariant under wavelength changes if amplitude is

preserved—and thus we obtain low accuracy and consid-

erable overfitting if landscapes are used instead of raw

data.

In Fig. 7 we see that, for the FordA datasets (where the

neural network has trouble classifying even with the orig-

inal data) the weights of persistence landscape levels are all

similar and with a low relevance. In contrast, in the

TwoPatterns case we see a clear ranking of the first land-

scape levels. Hence, landscape selection yields meaningful

information about the dataset even in disadvantageous

situations, since there is a consistent inverse relationship

between the ability of the neural network to correctly

classify the original data and the number of important

landscape levels found through our method. In conclusion,

Figs. 6 and 7 provide evidence that the outcome of land-

scape level selection can be related to how well a neural

network can perform.

4.2 A use case: results of a heartbeat analysis

As an application case, we used our algorithm for a clas-

sification of electrocardiogram signals (ECG) from the

MIT-BIH Arrhytmia Database [24] for evaluation of

arrhytmia detectors. The dataset can be retrieved from [27]

and it includes 48 half-hour excerpts of 24-hour ECG

recordings obtained from 47 subjects (25 men aged 32 to

89 years and 22 women aged 23 to 89 years) studied

between 1975 and 1979. Our data sample includes 87,554

heartbeats of five classes: one corresponding to normal

beats (82.77%); three classes corresponding to different

arrhythmia types, namely supraventricular premature beats

(2.54%), premature ventricular contraction (6.61%), and

fusion of ventricular and normal beats (0.73%); and one

class for unidentifiable heartbeats (7.35%).

Table 3 shows average accuracy after a fivefold cross-

validation. The classification accuracy of our neural

Fig. 6 Inverse relationship between the accuracy of our neural

network (red) trained with the original raw data and the number of

landscape levels (blue) that were selected as important. Datasets in

the horizontal axis are ordered by increasing accuracy
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network (Fig. 4) fed with the original unprocessed signals

(98.41%) is compared with the accuracy of the same

architecture using a 10-level landscape (94.55%) and using

only the three most important landscape levels (94.00%).

Landscapes were area-normalized since Table 2 evidenced

an advantage of normalized landscapes versus unnormal-

ized ones. The choice of three levels was based on weights

assigned by the network, as shown in Fig. 8, where k ¼ 4 is

the largest significant drop.

Next we used the partial reconstruction technique

described in detail in [19, Section 3] in four examples,

corresponding to the classes of (a) normal heartbeats,

(b) supraventricular premature beats, (c) premature ven-

tricular contraction, and (d) fusion of ventricular and nor-

mal beats. Three landscape levels were used for

approximation in each case. Results are shown in Fig. 10.

Each landscape function kk was paired with a list of y-

values of critical points of the given signal f as specified in

[19, Proposition 3.1]. Hence we obtained a list of y-values

of critical points of f associated with the subset of selected

landscape levels. The values in this list were compared

with the list of all critical points of f in order to obtain the

matching x-values, and a new graph was drawn by joining

the resulting critical points of f in the order of their x-

coordinates, as in Fig. 9. The procedure is detailed below

in Algorithms 1, 2, 3 and Fig. 11. The resulting simplified

graphs (Fig. 10) mark the points of interest, according to

the neural network used in our experiment, for the classi-

fication of ECG samples. Thus they encode the most rel-

evant information on which the network focused for its

task.

We subsequently introduced the simplified reconstruc-

tions of the wave functions (Fig. 9) into the network in

order to check if the data features distilled by our recon-

struction method were sufficient for the network’s classi-

fications task. The results can be seen in Table 3 and

indicate that the simplified signals gave rise to similar

accuracies (97.04%) as the original data (98.41%).

4.3 Invariance under translations

Persistence summaries are not altered by horizontal shifts

of signals and hence the accuracy of a classification task

based on landscapes is invariant under such shifts. How-

ever, shifts may cause a loss of classification accuracy by a

neural network fed with the original data. To demonstrate

this effect, we used the same ECG dataset from Sect. 4.2,

Fig. 7 Average weights and

standard deviations of the first

ten landscape levels for two

datasets after five runs of a

neural network (Fig. 4)

equipped with a gating layer

Fig. 8 Average weights and standard deviations of the first ten

landscape levels for a sample of the MIT-BIH Arrhytmia Database

after five runs of a neural network (Fig. 4)

Table 3 Average accuracy of classification given in percentages and standard deviation on test sets from five runs of our neural network (Fig. 4)

Raw data 10 levels 3 levels Reconstructed

Accuracy 98:41 � 0:09 94:55 � 0:16 94:00 � 0:13 97:04 � 0:14

The network was fed with unprocessed data (first column); processed data with ten landscape levels (second column); processed data using the

most significant three landscape levels (third column); and data approximately reconstructed by means of the most significant three landscape

levels (fourth column)
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yet we modified each heartbeat by adding a number of

zeros randomly split between the beginning and the end of

the beat signal. Thus, while in the original dataset each

heartbeat was represented by a vector of length 187, in our

experiment we introduced zeros so that the length was

increased to 374.

Classification of the shifted ECG graphs by means of the

same neural network as in Sect. 4.2 with five repetitions

resulted in lower accuracy (Table 4) than with the original

data. However, shifts do not alter the evolution of

connected components of sublevel sets and therefore the

landscapes associated with the shifted graphs are the same

as those of the original data.

5 Discussion

Our results contribute to explainability of classification

outcomes by neural networks in the following ways. First,

we found that using whole persistence landscapes is not

Fig. 9 An ECG signal function

(left) and its approximate

reconstruction from a set of

selected landscape levels (right)

Fig. 10 Partial reconstruction of ECG graphs using the three most important landscape levels for each of four types of heartbeats
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necessary for an accurate classification of signals: once we

have identified the subset of landscape levels that is most

important for the network, running the experiment with

only this subset of levels yields a statistically comparable

accuracy (Table 2).

Secondly, our method allows us to partially reconstruct

the given signals using the set of selected landscape levels,

thus depicting which features of the data are most relevant

for classification by means of the chosen architecture.

Persistence descriptors are not injective in general and

cannot be used to recover data except in some cases where

a collection of directional persistence diagrams are con-

sidered [19, 20, 22, 28]. However, in our case we need not

fully reconstruct a function with the only knowledge of its

persistence diagram, but our reconstruction task consists of

matching points in the persistence landscape with corre-

sponding parts of the given signals.

A methodological novelty of this study in the framework

of topological data analysis is normalization of landscape

level functions so that the area below their graph is con-

stantly equal to one. This was conceived as an attempt to

feed the neural network with shapes rather than magni-

tudes. As Table 2 shows, the accuracies obtained with

normalized landscapes were higher than those obtained

prior to normalization. Furthermore, the standard deviation

of accuracy is lower after normalization in most cases,

suggesting that normalization enhances stability.

Limitations Since the given signals have been dis-

cretized, difficulties regarding numerical precision may

arise. Thus, when comparing y-values of critical points

obtained from landscape peaks with those of the original

functions, a zero difference cannot be expected. Instead, a

threshold e has to be used, whose value may depend on the

range of functions in the dataset and on the precision with

which landscapes are vectorized.

A feature of our method is that persistence diagrams of

sublevel sets of signals do not capture information about

Table 4 Accuracies (given in percentages) of our neural network fed

with unmodified data versus modified data by inserting zero segments

at the beginning and end of each signal so as to duplicate the length of

the signals (second column)

Raw data Double length

Accuracy 98:41 � 0:09 96:77 � 0:10

Fig. 11 Flow diagram of the

execution of algorithms 1–3
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the distribution of data along the x-axis, but only along the

y-axis. This can be a disadvantage for the use of persistent

homology in cases when, for example, the wavelength of

periodic or almost periodic functions is crucial for classi-

fication purposes, as illustrated by the datasets FordA and

TwoPatterns in Sect. 4.1.2. However, it can be an advan-

tage if expansion or contraction along the x-axis produces

undesired effects, as in the case of bradycardia and

tachycardia in [14] or in the experiment made in Sect. 4.3.

Computational complexity The methodology in this

article involves three processes, namely calculating per-

sistence landscapes of sublevel sets, training a neural net-

work, and partially reconstructing signals using selected

landscapes. Let n be the vector length of the original

function to be analyzed, m the number of critical points of

this function, r the length of the discretized landscape

vector, and k the number of landscape levels to be com-

puted. Building a persistence diagram of sublevel sets of a

function requires OðnÞ to determine the local extrema;

Oðm logmÞ to order the y-values of extrema; OðmÞ to

determine birth and merging of connected components; and

OðkrÞ to construct a persistence landscape. As a result, data

feed into a neural network requires a preprocessing cost of

Oðkr þ nþ m logmÞ. Here r� n, and the larger the value

of r the more precise is expected to be the classification

outcome. Thus, the cost is linear in the resolution of the

input signal. The training procedure by feeding a neural

network with a matrix of k landscape levels of each func-

tion increases its processing time by OðkÞ in comparison

with the processing time required to train with the original

data, assuming that r ¼ n. The reconstruction process

requires Oð‘rÞ to explore the selected landscapes and

Oð‘nmÞ to locate the corresponding critical points in the

original function, where ‘� k is the amount of selected

landscape levels. Hence, the complexity of this step is also

linear in terms of the resolution of the input signal. In

summary, the computational cost of the proposed

methodology is linear or sub-linear in terms of the original

signal size.

Future research Middle layers in architectures of neural

networks such as max pooling or mean pooling layers in a

convolutional neural network are mainly used for two

purposes: On one hand, they serve to reduce the size of the

inner representation of the input signal; on the other hand,

they introduce invariance to scale, translation, and rotation.

Taking advantage of the invariance inherent to the use of

persistent homology, we plan to explore the use of per-

sistence descriptors—such as landscapes—as middle layers

in deep neural networks with the aim of testing whether

such layers could replace pooling layers and therewith

possibly reduce computation time.

From an applied perspective, we plan to explore the use

of persistence summaries in domains in which elastic

deformations of signals may hinder discrimination. This is

the case, for example, in behavior recognition, activity

recognition, or action recognition using wearable inertial

measurement units, where the speed of actions does not

include discriminative information.

6 Conclusion

This article highlights an instance of the usefulness of

topological data analysis in machine learning, specifically

towards interpretability of outcomes of neural networks.

Our procedure enabled us to distill partial information from

the given data sufficiently relevant for classification pur-

poses without a significant loss of accuracy. We used

landscapes as persistence descriptors of sublevel sets of

signals, exploiting the fact that landscapes come with a

hierarchy of levels that enables us to rank the importance of

each level by means of weights assigned by a gating layer

in a neural network.

Importance attribution in conjunction with a recon-

struction algorithm uncovers the most relevant features

used by a network during training. Additionally, since

topological summaries of data are invariant under affine or

elastic temporal deformations, they are particularly suit-

able when significant recognition ingredients rely on shape

properties.

Regardless of the effect on performance metrics of the

use of persistence descriptors instead of raw data, we gain

insight about key patterns used to classify the given data,

which makes the process more trustworthy. Thus, our

method not only provides information about the focus of

the network’s learning process but it also serves to explore

and better understand the dataset.
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